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1. Introduction

ABSTRACT

The unsteady loads in a tube bundle are studied at moderate and high Reynolds number
by means of URANS and hybrid (DDES) modelling. The onset of fluid-elastic instability is
analysed for different structural parameters, Scruton number and reduced velocity. The
simulations have been carried out with the code NSMB (Navier-Stokes Multi Block) by
using turbulence modelling methods URANS and DDES (Delayed Detached Eddy Simula-
tion). The CEA-DIVA configuration is considered for the cylinders array for an inter-tube
Reynolds number 60 000. The study is carried out for a configuration of (4 x 5) cylinders
in static conditions as well as for the vertical free motion of one of the central cylinders in
one DOF (Degree Of Freedom).The inter-tube Reynolds number is 60 000. It is found that
this cylinder spontaneously displays an oscillatory motion which first corresponds to
Vortex Induced Vibration (VIV), associated to a lock-in mechanism for low values of the
reduced velocity and secondly develops Movement Induced Vibration, MIV, for higher
values of the reduced velocity. The variation of the cylinder's oscillations frequency, of the
unsteady loads and the structure's displacement are studied as a function of the reduced
velocity for low and high values of the Scruton number. The increase of the phase-lag
between the forces and the displacement is predicted and discussed for different Scruton
number values and reduced velocities.

The prediction of fluid-elastic instabilities developed in a tube bundle is of major importance for the design of heat
exchangers for vapor cooling in nuclear reactors and for the prevention of accidents associated with material fatigue, shocks
between beams and severance of the solid walls. The fluid-elastic instabilities leading to flutter in tube-arrays appear in the
laminar regime and persist as far as the turbulent regime. This kind of galloping instability has been identified for the past
forty years. However, little has been achieved in the domain of detailed numerical simulations for the prediction of the
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unsteady loads and of the displacement of the solid structure. Many studies have been devoted to enhancing understanding
and to offer phenomenological models for the design. A considerable number of this kind of models have been developed
since the work of Connors (1970), Blevins (1974, 1979), Tanaka and Takahara (1981, 1982), Chen (1983), Paidoussis and Price
(1988) and Lever and Weaver (1982) among others.

Explaining and understanding the instability onset and its dependence on the flow-structure parameters such as the
reduced velocity and Scruton number increase are an important aspect concerning fundamental phenomena in the domain
of fluid-structure interaction. A key point for the understanding of this instability is related to the appearance of negative
damping which comes from the fluid forces interacting with the structure. This occurs when the transverse flow velocity
increases, where the phase difference between the force applied by the fluid and the cylinder's movement changes sign and
results in a sign change of the apparent damping, thereby creating fluid-elastic instability. The main problem is to correctly
evaluate this phase shift model. Despite various modelling attempts, the question remains open, as noted by Weaver (2008):
“Despite more than 40 years of research, this mechanism is not fully understood”. However quasi-static models are used to
characterize the instability in high Scruton numbers Scruton (Sc > 30) and in two or more degrees of freedom. For low
Scruton numbers, the instability develops already for a single degree of freedom. This phenomenon can be modeled by
taking into account a delay time between the movement and the efforts. The pure delay model is “amnesia.” Granger and
Paidoussis (1996) proposed a model “with memory” of first or second-order with respect to the time constants.

In the industrial context, the high Reynolds number causes a complex interaction between the instability due to the
movement of the solid structure and the near-wall unsteady turbulence around the cylinders. To take sufficient account of
this interaction and to accurately predict the unsteady loads, it is necessary to use reliable turbulence modelling approaches.
These methods have to simultaneously include the low frequency organised motion effects associated with the structure's
movement and the fluid's coherent vortices as well as the random turbulence effects. In this context, approaches such as
Unsteady Reynolds Average Navier-Stokes (URANS), derived from turbulence in statistical equilibrium assumptions, tend to
underestimate the global coefficients (drag, lift) and their amplitudes (see collected papers after the European research
program “Detached Eddy Simulation for Industrial Aerodynamics” (DESIDER), Haase et al., 2009).

The Large Eddy Simulation (LES) is appropriate and offers a rich physical content in the moderate Reynolds number
range. However, this approach is mandatorily 3-D and quite costly for design purposes at this stage. On the other hand, in
higher Reynolds numbers it becomes more difficult to apply it by using realistic grid sizes, in respect to industrial design
requirements. In this flow category, it is noticeable that the upstream nominal Reynolds number based on the free-stream
velocity corresponds to a much higher inter-tube Reynolds number which can be three or four times higher than the nominal
Re, depending on the pitch distance. Therefore, a ‘moderate’ upstream Reynolds number flow for the cylinders array
corresponds to a high Reynolds range in the flow physics context. These facts have to be considered for the CFD method
choice in the Computational Fluid Dynamics-Computational Structural Mechanics (CFD-CSM) coupling.

Hybrid RANS-LES methods are quite suitable for this category of fluid-elastic instability problems, because they associate
the benefits of URANS in the near-region and those of LES in the regions of flow detachment. In particular, the Delayed
Detached Eddy Simulation (DDES), Spalart et al. (2006) is a hybrid method which is successfully used for strongly detached
unsteady flows as reported by the collected papers of the fourth ‘Hybrid RANS-LES Methods’ (HRLM) symposium, Fu et al. (2012).
DDES can be considerably improved by using adapted URANS modelling in the near-wall region and adapted LES modelling in the
flow detachment areas, in order to allow for modification of the turbulent scales accounting for non-equilibrium turbulence. In this
context, improved approaches can be used to take account of these effects, as for example the Scale Adaptive Simulation (SAS),
Menter and Egorov (2005), Menter and Bender (2003), the Organised Eddy Simulation (OES), Braza et al. (2006) and Bourguet et al.
(2008) among others. SAS adapts the Kolmogorov turbulence scale according to flow regions governed by non-equilibrium
turbulence effects. OES accounts for stress-strain directional misalignment in non-equilibrium turbulence regions thanks to a
tensorial eddy-viscosity concept derived from Differential Reynolds Stress Modelling (DRSM) projection on the principal directions
of the strain-rate tensor.

The current efforts in turbulence modeling are devoted to accurately reproduce the flow physics with respect to
instability amplification, of strong flow detachment and to accurately predict the associated frequencies and unsteady load
fluctuations. Although a significant progress has been accomplished in the last decade, there still remain open questions
with regard to the prediction of the above mechanisms with the accuracy required by the design and in particular of these
mechanisms modification due to the fluid-structure coupling. To our knowledge, there do not exist predictions of vibration
instability in the high-Reynolds number range by using efficient CFD and producing new results in this area. In particular,
the progressive development and assessment of the phase-lag between the forces and the displacement of the solid
structure from the Vortex Induced Vibration (VIV) state towards the Movement Induced Vibration (MIV) dynamics are
among the main objectives of the present study. Therefore, the present paper mainly focuses on new results obtained by
means of efficient CFD with regard to the physics of Flow Induced Vibration (FIV) in a cylinders bundle in a Reynolds number
range corresponding to industrial applications. An exhaustive comparison of turbulence models is not presented in this
paper. Only selected models from the previously mentioned state-of-the-art, able to deal with strong unsteadiness, with
high-Reynolds number effects and with predominant instabilities, are considered and coupled with efficient numerical
schemes. The purpose of a first part of the present study is to select among these few models, the most appropriate for the
static-case unsteady flow simulations, in order to use them in the dynamic case simulations of FIV (central cylinder allowed
for one degree of freedom vertical motion). Furthermore, a special attention is paid to examine the predictive capabilities of
the finally selected modelling in two- and three-dimensions for the dynamic case at high Reynolds number. In the physical
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reality, the 2-D and 3-D mechanisms act simultaneously and it is difficult to distinguish those of the physical mechanisms
having a two-dimensional origin from those which are three-dimensional. This can be accomplished by means of the
numerical simulation. Moreover, it is important for the industrial design to assess the part of reliability allowing for two-
dimensional predictions comparing to the full three-dimensional approach, which is much more costly. According to these
elements, the present paper is structured in the following sections: the mechanisms of fluid-elastic instability are studied
for the configuration described in Section 2, by using fluid-structure coupling where the CFD part involves URANS and DDES
modelling as described in the same section. The motion of the solid structure is coupled with the fluid by means of the
acceleration equation involving mass, damping and stiffness. Modal structural analysis is not needed in this context, because
the solid remains rigid. The mesh is adapted to follow the cylinder's motion by means of the Arbitrary Lagrangian-Eulerian
approach, ALE. The results are presented in Sections 3 and 4. Section 3 refers to the static case of cylinder's bundle. The
‘DIVA’ configuration is studied at an inter-tube Reynolds number Re=60 000. This section allows for validation of the
numerical method and of the turbulence modelling to be used for the dynamic case, as well as for a physical analysis of the
flow instabilities occurring in the present Reynolds number range. Section 4 studies the fluid-structure interaction in the
case of 1 DOF motion, carried out by URANS (in 2-D) and hybrid URANS-LES (DDES) turbulence modelling in 3-D at the same
Reynolds number value.

2. Flow-structure configuration, numerical method and turbulence modelling
2.1. Flow-structure configuration

The fluid-structure configuration corresponds to an experimental set-up (DIVA) designed by the CEA where 20 cylinders
are arranged in 5 columns with a pitch of 1.5D, D being the cylinder's diameter. The upstream Reynolds number is of 20 000
which corresponds to an inter-tube Reynolds number of 60 000. The 2-D grid is composed by ~400 000 cells distributed in
80 structured blocs.

The first grid distance from the wall is located at the distance 1.5-10~% D which assures a y+ value lower than 1, as
required by the turbulence modelling assumptions used in the present study, according to the synthesis of works collected
by Haase et al. (2009) and Fu et al. (2012). The spanwise length of this grid is 1D and 50 cells have been used in the z
direction resulting in a grid of ~23M cells and 8192 blocks.

This mesh has been derived according to detailed grid-dependence studies concerning the refinement near the wall,
Skopek et al. (2012), as well as in the Ph.D. thesis of Marcel (2011), in order to provide grid-independent results. The
dimensionless time step At =dtxU,,/D used for the static configuration is 10~3, according to the numerical study by
Ferreira-Perez (2013), providing time-step independence of the solution. In the following, t* designates the dimensionless
time, t* = txUoco/D. The influence of the time step is presented in the present paper in the section of the dynamic motion.

The spanwise length of this grid is 1D and 50 cells have been used in this direction. The domain size is presented in Fig. 1.
The inflow distance is 10D, the outflow distance is 12D, the upper and lower boundary distances from the central cylinder
are 3-D.

The boundary conditions are presented in the following:

® The inlet velocity is uniform and a free-stream turbulence level of 0.1% has been used.

® At the outlet boundary: subsonic outflow with imposed static pressure based on Riemann invariants.

® Top-bottom boundaries in the (x, y) plane: no-slip walls.

® Spanwise boundary conditions: symmetry and periodic conditions have been compared. The symmetry boundary
conditions have been chosen in order to not force a preferential spanwise wavelength.

2.2. Numerical method

The simulations have been performed with the Navier-Stokes Multi-Block (NSMB) solver. The NSMB solver is the fruit of
a European consortium that included Airbus from the beginning of 90s, as well as main European aeronautics research
Institutes, as KTH, EPFL, IMFT, ICUBE, CERFACS, University of Karlsruhe, ETH-Ecole Polytechnique de Zurich, among others.
This consortium is coordinated by CFS Engineering in Lausanne, Switzerland. NSMB is a structured code including a variety
of efficient high-order numerical schemes and turbulence modelling closures in the context of LES, URANS and RANS-LES
hybrid turbulence modelling, especially DDES (Delayed Detached Eddy Simulation). A first reference of the code description
can be found in Vos et al. (1998) concerning the versions of this code in the decade of 90s. Since then, NSMB highly evolved
up to now and includes an ensemble of the most efficient CFD methods, as well as efficient fluid-structure coupling for
moving and deformable structures. These developments can be found in Hoarau (2002) regarding URANS modelling for
strongly detached flows, Martina et al. (2008), in the area of moving body configurations, Barbut et al. (2010) and Grossi
(2014) allowing for Detached Eddy Simulation with the NSMB code.

The solid structure motion is taken into account by the Arbitrary Lagrangian Eulerian method (ALE). The current version
of NSMB code includes CHIMERA grid methods, Deloze et al. (2010), to handle very complex geometries and body motion
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Fig. 1. Grid overview and computational domain.

and deformation. NSMB solves the compressible Navier-Stokes equations using a finite volume formulation on Multi-Block
structured grids. Furthermore, this code includes different preconditioning numerical schemes to solve very low Mach
number/incompressible flows. The time integration relies on a second-order backward Euler scheme based on the full
matrix implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) method and on the dual-time stepping, performing internal
iterations, to reach convergence in each time step, Jameson (1991). For the present problem, a typical number of inner
iterations of 100 was necessary for the convergence in each time step. In the present study, the artificial compressibility
method, Chorin (1968), has been employed with a second-order centered spatial scheme.

2.3. Turbulence modelling

The URANS turbulence models used in this study are the Spalart and Allmaras (1992), the k- models (baseline and SST),
Menter (1994), the OES k-¢ and the OES k-» models, described in Braza et al. (2006) and Bourguet et al. (2008). The Delayed
Detached Eddy Simulation (DDES), Spalart et al. (2006), is employed by using the turbulence length scale from the OES
modelling.

The association of the OES modelling in the RANS part of the DES/DDES is reported in a number of studies of the present
research group, reported in a variety of test cases in the European research programs in aeronautics, DESIDER and
“Advanced Turbulence Modelling for Aeronautics Applications Challenges” (ATAAC), Fu et al. (2012). The use of a turbulence
length scale from OES in the DDES is reported in Haase et al. (2009), Bourguet et al. (2008) and in Skopek et al. (2012). In the
present study, the use of the above mentioned turbulence models allows assessment of their predictive capabilities with
respect to the strongly detached unsteady flow in the cylinder array.

3. Results for the static-case configuration

Regarding the 2-D simulations, the unsteady loads on the central cylinder are presented versus time in Fig. 2 in
comparison with the experimental results. It can be seen that these signals are qualitatively of a similar nature. Comparison
of their rms values is presented in Table 1. As discussed in a next paragraph, higher-order frequencies similar to the
experimental histories appear in a more pronounced way in both cases and they are more pronounced in the case of the
k-w-OES modeling. The predominant frequencies are shown in Table 2.

The k—e-OES and the URANS-SA models provide the closest predictions of rms to the experiment. To our knowledge, it is
the first time that unsteady numerical simulations through statistical turbulence modelling are able to produce a significant
part of the flow physics in the cylinder bundle configuration at an inter-tube Reynolds number of 60 000, even under the
two-dimensional approximation. This is an interesting issue for pre-design needs in the industrial context of nuclear
reactors, as pointed out by the CEA, EDF and AREVA in the collaborative French ANR ‘BARESAFE’ research project in which
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Fig. 2. Comparison of the lift coefficient signals (solid line) with the DIVA experiment (dots). (a) SA model and (b) k-»-OES model.

Table 1
rms of the lift coefficient for different turbulence models compared with the experiment.

Models CLrms
SA 0.44
k—w-SST 0.19
k— »-BL-OES 0.65
k—e-OES 0.46
DIVA experiment 0.45

Table 2
Values of predominant frequencies.

Models Styk Stvi, it Stc Sts.
SA 0.34 0.11 0.99 2.25
k—w-SST 0.36 0.12 0.99 2.25
k— »-OES 0.39 0.13 1.01 2.25
k—e-OES 0.39 0.13 1.01 2.25

the present study has been carried out. The k-»-SST model produces a rather high level of eddy-viscosity in the present
case, having the tendency to dampen the amplitudes of the von Karman instability and therefore to lower the rms of the lift
coefficient. On the other hand, the k-»-BL-OES model has the tendency to decrease the eddy-viscosity and therefore to
enhance the amplification of this instability and of the overall flow fluctuations, yielding a higher rms value. Moreover, the
differences between the modeling approaches are mainly due to the fact that the flow physics of the boundary layer
upstream of the first cylinder separation point correspond to laminar flow, due to the subcritical Reynolds number. The
turbulence models generally assume a turbulent boundary layer, except for those models which specifically include
transition modelling. Using transition modelling in the context of the present URANS approaches is a recommended issue
which may improve the results. The OES approach, as shown in Jin and Braza (1994) and Bourdet et al. (2007), allows a
better capturing of the boundary layer physics than standard URANS, thanks to the reduction of an excessive turbulent
kinetic energy production upstream of the body, often occurring in URANS modeling when employing the Boussinesq
approximation in the stress-strain law. Therefore, through this inherent reduction in the turbulence level, the laminar flow
regions are dynamically captured by this approach. As an example, the well-known laminar separation bubble developed in
the leading-edge region of an aerofoil at incidence and in the subcritical Reynolds number range can be captured by the
present approach, as shown by Hoarau (2002) and Bourdet et al. (2007). In the present study, both SA and k-»-OES models
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Fig. 3. Power spectrum density of the lift coefficient, two-dimensional simulations using the turbulence models: Spalart-Allmaras, k-o-SST, k-»-Baseline-
OES and k-&-0ES, in comparison with the experiments.

provide close results with the experiments, although the first model produces a less rich statistical content with respect to
the fluctuation amplitudes. The PSD (Power Spectral Density) figures are presented in Fig. 3.

Three predominant frequencies appear in the spectra of the numerical study. These spectra correspond to FFT of the lift
coefficient signals. The sampling rate is equal to the time step, At =102, and the signal's length contains an order of 50
vortex shedding periods.

The von Karman vortex shedding dimensionless frequency is designated by Styy. The Strouhal number corresponding to
the accelerated (due to the confinement) inter-tube velocity is represented by Stc. The shear layer vortices Strouhal number
is designated by Sts;. The experimental spectra are more ‘noisy’ than the numerical ones with respect to chaotic turbulence
dynamics, which dampen the area of the von Kirman mode. They display predominant peaks in the area of the shear-layer
instability frequency, identified from the simulations fields, as discussed in the next paragraph.

Furthermore, the Strouhal number can be also defined as a function of the inter-tube velocity, which we denote as

. _fd _ P*-1 . w P
St_’,t_—_< It )St, with P =4 (1)

Uit

where P* is the reduced step and P is the dimensional distance between the cylinders (pitch). The values of these
predominant frequencies are summarized in Table 2.

The inter-tube Strouhal number corresponding to the von Karman mode is equal to 0.34, close to the well known value in
the literature for a single cylinder in the high Reynolds number range of 60 000 (St ~ 0.2 for a single cylinder). The four
models practically predict the same values for the three predominant frequencies. The spectra of the experimental study
display a ‘bump’ area in the region of the frequency peak of 0.34. This difference is because the turbulence effects are more
predominant in the experiment and lead to a more chaotic vortex shedding.

The study of the separation point cartography is presented in Fig. 4. The central cylinder is considered. The time-
dependent evolution of the separation points at the cylinder's wall is illustrated. The positions on the wall are marked as a
function of the angle « defined in Fig. 4. The black regions correspond to separation areas on the wall, as a function of time.

A periodic appearance of patterns is noticed. These patterns are associated with the instantaneous vorticity fields and
illustrate the periodic behaviors depicted in the spectra concerning the predominant frequencies found in the spectra
(Fig. 3).

The von Karman vortex shedding, whose frequency is rather low (relatively to the two other), occurs at the rear of the
cylinder, in the area |a| > 150°. A frequency corresponding to the shear-layer vortices is also depicted, by tracking these
vortices in space-time and by evaluating their convection velocity which allowed identifying their frequency peak in the
spectra. The frequency of the shear-layer eddies is higher (order 2.5) than the von Karman vortex shedding. It is worthwhile
mentioning that the majority of URANS approaches has the tendency to dampen the instability related to the appearance of
the shear-layer mode, as a consequence of an excessive kinetic energy production upstream of the first cylinder. As
previously stated, this is due to an excessive level of turbulent viscosity, usually produced by the Boussinesq law and by the
standard values of the modeling constants in URANS. This excessive turbulence viscosity has the tendency to dampen the
instability onset. A good representation of the shear-layer instability is achieved in the present study. This fact plays an
important role in the evaluation of the amplitudes of the fluid forces. Finally, the third frequency is linked to a phenomenon
related to the impact of coherent structures on the zone || ~60°. This is the area where the structures issued by the
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Fig. 4. Separation areas versus time. The ‘black’ areas correspond to w,=0.

upstream rows of cylinders are destroyed. This predominant frequency is linked to the confinement, caused by the adjacent
cylinders in the bundle.

The present study associates the appearance of these frequency modes with the related instabilities and vortex
structures, Figs. 4 and 5 where these frequencies are linked to the physical phenomena of the von Karman and shear-layer
instability vortices. Moreover, the vorticity iso-contours corresponding to OES reveal a more rich ensemble of vortex
structures in the flow than in the other URANS approaches (Fig. 6) and the energy of the corresponding frequency peaks is
higher in the spectra. These peaks as well as the organized vortex structures are directly linked with the unsteady load
amplitudes which are important in the dynamics of the fluid-elastic instability, studied in Section 4.

Fig. 7 shows the onset of the three-dimensional motion by means of streamwise and w, vorticity within a time interval of
10 s. The initial conditions are those of flow at rest. The DDES-k-»-OES modelling has been used. The onset of three-
dimensional motion is organized according to counter-rotating cells of positive-negative vorticity, displaying a regular
predominant wavelength, 1=0.2D. This structure persists as a function of time, as shown within the time interval of 10 s in
the present simulations. This flow pattern is in qualitative accordance with experimental studies by Wu et al. (2005), where
the cross-sectional size of secondary vortices ranges between 0.2D and 0.5D past a normal flat plate in the Reynolds number
range 1800-27 000. Moreover, this wavelength is comparable to other simulations on a single cylinder at high Reynolds
number (Bourguet et al., 2008; El Akoury et al., 2009).

4. Simulation of the fluid-structure interaction in the case of the central cylinder one-DOF motion

In this section the central cylinder is allowed to move freely in the vertical direction. The first part of this numerical study
is 2-D by using in the CFD part the k-»-BL-OES model, presented in Section 3. The second part of the study is 3-D by using
the DDES-k-»-BL-OES model, after the static-case study developed in Section 3. The Reynolds number is of 60 000 inter-
tube. With regard to the solid structure, three important parameters for the study of the fluid-elastic instability are: the
mass of the cylinder per unit length m, the natural frequency f; of the solid structure and the damping ratio ¢. The definitions
of these variables vary widely. These variables are often defined with respect to the fluid medium at rest. In the present
study, these parameters are defined in vacuum (practically in air). All the structural parameters and their definitions are
listed in Table 3.

The equation of motion of the central cylinder has been non-dimensional by using the flow parameters above and is
given by the following equation:

my* b Y+ Ky = (%), )

In this equation, y is the displacement of the cylinder in the vertical axis, perpendicular to the cross flow and ¢, is the
unsteady, non-dimensional lift force per unit length in the y axis.

4.1. 2-D simulation results

The influence of the time step on the induced cylinder's movement is firstly presented. The study has been carried out by
means of the k-»-BL-OES model and for a Reynolds number of 60 000. The results are shown in Fig. 8.

A good convergence of the results is obtained for the time-steps 0.01 and 0.02. The time-step At = 0.005 indicates a slight
difference in the amplitudes and in the phase. Reducing the time step beyond a ‘limit’ value with respect to the grid
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Fig. 5. Instantaneous vorticity contours showing the dynamics of the shear layers and of the vortex structures in the (x, y) plane with the 2-D k-w»- OES
model; on the right, zoom around a central cylinder indicating the separation structure as well as the dynamics of the shear layer and of the von Karman
vortices.

refinement, which remains the same, typically leads to a loss of convergence. This is the case in the present results
corresponding to the finer time-step. A finer grid would be necessary in order to respect the decrease of the truncation error
obtained by the time-step reduction. The intermediate time-step value is adopted therefore (At =0.01) in order to provide
realizable computations in the 3-D dynamic case.

The onset of the fluid-elastic instability in MIV (Movement Induced Vibration) is shown in Fig. 9(a). This phenomenon is
characterized by the negative damping of the displacement amplification. This occurs because the energy supplied by the
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Fig. 7. w, vorticity iso-surfaces for the DDES-k-»-OES model (b) within a time interval of 10 dimensionless time-units.

Table 3
Variable definitions.

Variable name Definition Description
Reduced velocity fLD U is inflow velocity, fs is structure
(U%) : frequency
Mass (m™) 1/)% m*=6.76 is fixed, L - cylinder length
2°r
i o b # _ 4S
Damping (b*) b b* = 45
Scruton number aim* Or ™. with 6§ = — 2%
(50) oD Vi-g
i * k 2
Stiffness (k*) L K — (%) m*
Damping ratio (¢) b* Changed using m* and Sc
2/ m*k*
Reduced velocity 2, [ f;‘ — %
Gl ¥

fluid cannot be instantaneously destroyed by the solid structure, which is excited by a progressively increasing energetic
level. This energy does not have the time to be consumed and consequently creates a negative damping appearance.
According to Connors diagram and to the studies by Paidoussis and Price (1988), as well as Granger and Paidoussis (1996),
this instability particularly occurs for values of the Scruton number and of reduced velocity beyond (1, 4). For lower values of
these parameters, the displacement amplitude versus time is either dampened or reaches a steady state, Fig. 9.

For values of the reduced velocity up to 3, the frequency of the displacement and of the lift coefficient is the same as the
fluid's vortex shedding frequency (Fig. 8(b) and (d)). This corresponds to a lock-in behavior characterizing the VIV
mechanism. An important feature occurring as the reduced velocity increases is the increase of the phase lag in the
displacement (Figs. 10 and 11) for reduced velocities included in the MIV range, whereas there is no phase-lag for reduced
velocities lower or equal to 3 (Fig. 9(b)).

Figs. 10 and 11 show the phase-lag development between lift and displacement of the central cylinder for two values of
the Scruton number and for various reduced velocities. The two Scruton numbers selected correspond in the literature to
regimes before and after the Movement Induced Vibration. For Sc=1, the phase-lag is found to increase in the range of
reduced velocities from 5 to 14. For Sc=5, the increase of the phase-lag is less drastic. The phase-lag values are presented as
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Fig. 8. Time evolution of the displacement (a), the lift coefficient (c), spectra of the displacement (b) and the lift coefficient (d) for different time steps.
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Fig. 9. (a) Cylinder displacement for Sc=1 and different reduced velocities and (b) quasi-steady state for Sc=1 and u* = 3.

a function of the reduced velocity in Table 4. In all cases, the increase of the reduced velocity displays the appearance of
higher frequencies in the lift fluctuation. These frequencies do not appear in the body's oscillation.

The reduced velocity (U*) in the simulations is increased by decreasing the solid structure's natural frequency f;. Fig. 12(a)
shows the vorticity plot, where the central cylinder becomes unstable at Sc=1, U* = 3. Fig. 12(b) shows the rms of the
cylinder's displacement as a function of the reduced velocity for three values of Sc. The low value of the mass-damping
parameter (Sc=0.0127 corresponding to the red curve) shows a sharp increase in the amplitude of the oscillations at low
reduced velocities. The instability seems to occur at U* =~ 1.2. A further increase in the value of the Scruton Sc=1 delays
the occurrence of this instability. The curve shows a sudden increase in the oscillations for the reduced velocity U* = 3. The
green curve in Fig. 12(b) shows the response of the cylinder for the mass-damping ratio Sc=5. Table 4 summarizes the
global parameters, the Strouhal number of the lift coefficient, of the cylinder's displacement and the phase-shift angle (rad)
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Fig. 10. Time-evolution of the displacement and the lift coefficient for Sc=1,u* =2 (a), Sc=1,u*=3 (b), Sc=1,u*=5 (c) and Sc=1,u* =10 (d).
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Fig. 11. Time-evolution of the displacement and the lift coefficient for Sc =5,u* =2 (a), Sc=5,u* =3 (b), Sc=5,u* =5 (c) and Sc=5,u* =10 (d).

between the lift and the cylinder's position, as a function of the reduced velocity for the case of Scruton number 1. It is
shown that the phase-lag is practically equal to zero for the low values of the reduced velocities (VIV regime) and it
increases progressively in the range of the higher values (MIV regime).
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Table 4
Summary of the global parameters and of the phase-lag between the cylinder displacement and the forces (rad) versus the reduced velocity for the
dynamic case with Scruton number of 1 and mass ratio of 6.76.

u* (StCL) (Stpx) Cprms Crrms Shift (Arms) AmaxxD
1 0.351 0.351 0.412 0.289 0.00z 0.007
2 0.384 0.384 0.394 0.374 0.027 0.038
3 0.331 0.331 1.096 0.590 (1+0.07)x 0.277
4 0.261 0.261 0.603 0.321 (1+0.074)x 0.316
5 0.228 0.228 0.527 0.273 (1+0.078)x 0.292
6 0.192 0.192 0.449 0.222 (1+0.08)x 0.258
7 0.175 0.175 0.470 0.254 (1+0.09)7 0.278
8 0.159 0.159 0.500 0.339 (1+0.098)x 0.311

10 0.101 0.101 0.290 0.197 (1+0.104)x 0.194

12 0.098 0.098 0.336 0.240 (1+0.109)x 0.238

14 0.113 0.113 0.362 0.300 (1+0.11)x 0.276

16 0.110 0.110 0.370 0.330 (1+0.117)z 0.334

18 0.106 0.106 0.430 0.399 (1+0.119)x 0.365

20 0.101 0.101 0.421 0.400 (1+0.122)x 0.387
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Fig. 12. 1-DOF response of the central cylinder for Sc=0.0127, 1 and 5. (a) Vorticity plot for Sc=1 and U* = 3, (b) root mean square non-dimensional
displacement vs. reduced velocity (U*), (c) drag coefficient variation with increasing reduced velocity and (d) lift coefficient profile for increasing reduced
velocity. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 12(c) and (d) shows the drag and lift coefficient variations for the three cases by increasing the reduced velocity.

The static case simulation shows the Strouhal number of the order St=0.33, a purple line in Fig. 13(a). It is interesting to
show the variation of this response frequency with the change in the Scruton number (Sc). In the case of the low value of the
mass-damping parameter Sc=0.0127, the fluid-elastic instability (high amplitude oscillations) occurs without a decrease in
the Stouhal number below 0.33. Fig. 13(b) shows the response frequency spectra for the Scruton number Sc=0.0127 for
different values of the reduced velocity. The red curve for the Scruton Sc1 shows a smooth transition and follows the
structure's natural frequency curve. This feature also is reflected in Fig. 13(c). This figure shows the spectra for the response
of the cylinder at Sc=1 for reduced velocities below and above the critical value U* = 3. Furthermore, the increase in the
mass-damping ratio enhances this transition.

The spectra of the cylinder's displacements at Sc=5 and reduced velocities U* =3,6,7,10 are shown in Fig. 13(d).
The spectrum at the reduced velocity U* = 3 shows a peak about 0.37, while the spectra for U* = 6, 7 indicate peaks at 0.12
and at about 0.37. The spectrum at the reduced velocity U* = 10 shows a peak at the dimensionless frequency of 0.12.
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Fig. 13. 1-DOF response of the central cylinder for different values of Scruton number (Sc) and reduced velocity (U*). (a) Variation of Strouhal number (St)
in different cases, (b) frequency spectra of the central cylinder displacement for Sc=0.0127, (c) frequency spectra of the cylinder displacement for Scruton
number Sc=1 and (d) frequency spectra of the displacement for Scruton number Sc=5. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

Fig. 14 shows a comparison of the cylinder's response spectra between the experiment and the simulations. A good
agreement is shown concerning the predominant frequency close to the Strouhal number of 0.33, which corresponds to the
fluid's vortex shedding frequency, as expected in the context of the VIV mechanism, in the low reduced velocity range.

4.2. 2-D vs. 3-D comparison

The turbulent motion is inherently three-dimensional, therefore it is interesting to examine the influence of the third
dimension on the results at high Reynolds numbers. Static case simulations carried out by LES at low upstream Reynolds
number Re,=2840 (Shinde et al., 2013) indicated that the flow is nearly invariant in the third (z) direction, except for a weak
large-scale spanwise wavelength undulation. However, in the higher Reynolds number range, the three-dimensional effects
are more significant.

Fig. 15 compares the response of the central cylinder in 2-D and 3-D simulations. The computational domain length in
spanwise direction is 1D. Fig. 15(a) and (b) is time-histories of the cylinder's displacement and of the lift coefficient of the
central cylinder respectively. The simulations have been carried out for the unstable case, at Sc=1 and U* = 3. The 3-D
simulation shows about 30% increase in the amplitude of the oscillations than in the two-dimensional case, (red curve in
Fig. 15(a)). The lift coefficient versus time shows irregular fluctuations in 3-D compared to the 2-D signal (see Fig. 15(b)).
Fig. 15(c) and (d) shows the spectra in 2-D and 3-D for the cylinder's displacement and the lift coefficient respectively. The
spectra of the response signal of the cylinder show the same frequency of the oscillations in 2-D and 3-D simulations. This
confirms theoretical considerations of the fluid-elastic instability, as well as experimental observations reporting that the
instability mainly appears in the perpendicular direction with respect to the cross flow. In addition, the lift coefficient
spectrum in 3-D displays higher frequencies indicating that the turbulence energy increases due to the spanwise direction
dynamics. There are frequency peaks at Strouhal numbers St=0.6 and St=0.9 approximately, which are related to the first
and second harmonics of the main vortex shedding respectively. The peak at 0.6 is a first harmonic of the main vortex
shedding and indicates a coupling with the drag coefficient, which is mainly influenced, as known, by this first harmonic of
the Strouhal number.

5. Conclusions

In this paper, the numerical simulation of the fluid-elastic instability in a cylinder bundle has been carried out at a
high Reynolds number range, for various reduced velocity values and for two Scruton numbers corresponding to the
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low and high range of the Connors diagram. The turbulence motion effect has been captured by means of URANS and
DDES modelling. The spontaneously amplified fluid-elastic instability of a central cylinder of the array, freely moving in
one DOF has been produced by the present simulations and the phase-lag between the vertical oscillation's displacement
with respect to the forces has been assessed. It has been shown that a first stage of the instability corresponds to a VIV
lock-in mechanism of the displacement's frequency for the Scruton number 1 and reduced velocities lower or equal to 5,
as well as for the Scruton number 5 and reduced velocities lower than 3. The successive stage for higher values of reduced
velocity is an MIV mechanism where the displacement frequency decreases and tends towards an asymptote, slightly
higher than the natural frequency of the solid structure. The present study shows significant 3-D effects in the amplitude
variation, whereas the main frequency peaks are practically unaffected by the three-dimensionality. The two-dimensional
simulations, which are much faster than the 3-D ones, produce the predominant instability frequencies but under-
estimate the fluctuation amplitudes. These facts are significant for the design of the cylinder bundles in nuclear reactor
engineering.
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