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Large-scale motions in wall-bounded turbulent flows are frequently interpreted as
resulting from an aggregation process of smaller-scale structures. Here, we explore
the alternative possibility that such large-scale motions are themselves self-sustained
and do not draw their energy from smaller-scale turbulent motions activated in buffer
layers. To this end, it is first shown that large-scale motions in turbulent Couette flow
at Re= 2150 self-sustain, even when active processes at smaller scales are artificially
quenched by increasing the Smagorinsky constant Cs in large-eddy simulations
(LES). These results are in agreement with earlier results on pressure-driven turbulent
channel flows. We further investigate the nature of the large-scale coherent motions
by computing upper- and lower-branch nonlinear steady solutions of the filtered
(LES) equations with a Newton–Krylov solver, and find that they are connected by a
saddle–node bifurcation at large values of Cs. Upper-branch solutions for the filtered
large-scale motions are computed for Reynolds numbers up to Re = 2187 using
specific paths in the Re–Cs parameter plane and compared to large-scale coherent
motions. Continuation to Cs = 0 reveals that these large-scale steady solutions of
the filtered equations are connected to the Nagata–Clever–Busse–Waleffe branch of
steady solutions of the Navier–Stokes equations. In contrast, we find it impossible to
connect the latter to buffer-layer motions through a continuation to higher Reynolds
numbers in minimal flow units.
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1. Introduction
1.1. Streaky motions in wall-bounded turbulent flows

One of the most robust features observed in wall-bounded turbulent shear flows is
the presence of quasi-streamwise streaks, i.e. narrow streamwise regions where the
streamwise velocity is larger or smaller than its mean value. The flow visualizations
of Kline et al. (1967) revealed that the near-wall region of turbulent boundary layers
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is very active and is populated by streamwise streaks in a spanwise quasi-periodic
pattern. The average spanwise streak spacing in the viscous sublayer and the buffer
layer scales in wall units and corresponds approximately to λ+z = 100 (Kline et al.
1967; Smith & Metzler 1983). This spacing has been confirmed by the first direct
numerical simulation of channel flow at Reτ ≈ 180 by Kim, Moin & Moser (1987),
which also revealed the existence of counter-rotating quasi-streamwise vortices.

Streaky motions also exist at much larger scales. It has long been known that in
turbulent flows the outer region is dominated by large-scale motions (LSM) with
dimensions of the order of the outer length scale h (e.g. the channel half-width or
the boundary layer δ99 thickness), often separated by regions of non-turbulent fluid
(Corrsin & Kistler 1954; Kovasznay, Kibens & Blackwelder 1970; Blackwelder &
Kovasznay 1972). More recently it has been realized that in addition to large-scale
motions, ‘very large-scale motions’ (VLSM) exist with streamwise extents at least
fourfold those of the LSM. Large- and very-large scale motions have been observed
in turbulent pipe flow (Kim & Adrian 1999), turbulent plane Poiseuille flow (del
Álamo & Jiménez 2003) and in the turbulent boundary layer (Tomkins & Adrian
2003, 2005; Hutchins & Marusic 2007a). At high Reynolds numbers, these structures
dominate the streamwise turbulent kinetic energy throughout the logarithmic region
(Tomkins & Adrian 2003, 2005), and modulate the cycles of near-wall structures
(Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009).

As far as turbulent Couette flow is concerned, Lee & Kim (1991) found large-scale
motions in the form of quasi-steady large-scale coherent streaks and rolls in direct
numerical simulations at Re = 3000 (where Re is based on the channel half-width
h and half of the velocity difference between the walls). These structures, of
spanwise wavelength λz ≈ 4h, occupied half of the spanwise size (Lz = 8.4h) of the
computational domain and its whole streamwise extent (Lx= 12.6h). The existence of
large-scale streaks was confirmed by the experiments of Tillmark & Alfredsson (1994).
In order to understand whether the characteristics of these large-scale structures were
affected by the size of the computational box, Komminaho, Lundbladh & Johansson
(1996) repeated the computations in a larger domain (Lx = 88h and Lz = 25.1h)
at Re = 750. They found large- and very large-scale coherent streaks with the
same spanwise wavelength (≈4 h) as reported by Lee & Kim (1991), but more
unsteady and extending more than 30h in the streamwise direction. They also found
that resolving these structures is important to obtain accurate turbulence statistics.
Kitoh, Nakabayashi & Nishimura (2005), Tsukahara, Kawamura & Shingai (2006),
Tsukahara, Iwamoto & Kawamura (2007) and Kitoh & Umeki (2008) also found
large- and very large-scale streaks at higher Reynolds numbers with typical spanwise
spacings λz ≈ 4.2h–5h and streamwise lengths attaining λx ≈ 40h–60h for very
large-scale motions.

1.2. Mechanisms sustaining streaky motions
There is now a relatively wide consensus that streaky motions in the near-wall
region rely on a self-sustained process. That the process is self-sustained was
demonstrated by Jiménez & Moin (1991) who found that near-wall turbulence
can be sustained in spanwise and streamwise periodic numerical domains as small
as L+x × L+z ≈ (250–300) × 100, showing that the motions in the viscous region
are sustained independently from motions at larger scales. Hamilton, Kim & Waleffe
(1995) and Waleffe (1995) decomposed this nonlinear self-sustained process into three
basic mechanisms: the lift-up effect which amplifies quasi-streamwise vortices into



quasi-streamwise streaks; the amplification of sinuous modes supported by the streaks;
and the streak breakdown supporting the regeneration of the vortices. The lift-up is
associated with the redistribution of streamwise momentum by counter-rotating,
spanwise periodic, quasi-streamwise vortices immersed in a basic shear flow. This
redistribution leads to the transient amplification of high-velocity and low-velocity
streamwise streaks (Moffatt 1967; Ellingsen & Palm 1975; Landahl 1980, 1990;
Schmid & Henningson 2001). When the streaks reach sufficiently large amplitudes
they become unstable to secondary perturbations via an inflectional, typically sinuous,
instability (Waleffe 1995; Reddy et al. 1998). As this secondary instability is
subcritical, sinuous modes can also develop on top of streaks of amplitude smaller
than the critical one (Schoppa & Hussain 2002; Cossu et al. 2011). The breakdown
of streamwise streaks finally leads to the regeneration of streamwise vorticity via
nonlinear mechanisms. For the process to be self-sustained, the Reynolds number and
the spanwise length of the box need to be large enough to allow for sufficient energy
amplification by the lift-up effect and the streamwise length needs to be large enough
to allow the secondary instability to be sufficiently amplified.

There is less consensus on the origin of large-scale motions. Early investigations
showed that these motions contain a number of smaller-scale structures which have
been interpreted as hairpin vortices (Falco 1977; Head & Bandyopadhay 1981).
Motions at large scales have therefore been interpreted as generated by the mutual
vortical induction (Zhou et al. 1999; Adrian, Meinhart & Tomkins 2000) and merger
and growth of hairpins ultimately originating from the near-wall region (Tomkins
& Adrian 2003; Adrian 2007). The idea that large-scale motions originate from
motions at smaller scales is often implied in structural models of the logarithmic
layer (Perry & Chong 1982, and following extensions). Regarding very large-scale
motions, it has been proposed that they result from the streamwise concatenation
of large-scale motions (see e.g. Kim & Adrian 1999; Guala, Hommema & Adrian
2006; Dennis & Nickels 2011). From a different perspective, Toh & Itano (2005)
conjectured the existence of a co-supporting cycle where near-wall structures sustain
large-scale structures in plane Poiseuille flow. The common point of these theories
is that large-scale streaky motions would not exist in the absence of the near-wall
active cycle.

The idea that near-wall active motions are ultimately necessary to form large-scale
motions is, however, challenged by a growing number of recent results. For instance,
it has been shown that large-scale outer motions are not significantly influenced by
the change of the near-wall dynamics induced by wall roughness (Flores & Jiménez
2006; Flores, Jiménez & del Álamo 2007), which implies that they are not very
sensitive to the near-wall cycle. Also, some studies cast doubts on the very idea that
hairpin vortices are a prominent feature of high-Reynolds-number turbulence (see
e.g. Jeong et al. 1997; Eitel-Amor et al. 2015). Indeed, an alternative explanation of
the origin of large-scale motions is currently emerging, which conjectures that these
motions are sustained by a mechanism similar to the self-sustained process (SSP)
proposed by Hamilton et al. (1995). This self-sustained process has been identified in
transitional flows but Hamilton et al. (1995) argue that the near-wall streaky motions
identified by Kline et al. (1967) are based on the same mechanism. An essential
ingredient of this emerging scenario is the existence of a ‘coherent lift-up effect’,
which would allow coherent large-scale motions to extract energy from the mean flow.
That this coherent lift-up effect exists was shown by del Álamo & Jiménez (2006),
Cossu, Pujals & Depardon (2009) and Pujals et al. (2009), who computed the
optimal linear transient growth sustained by turbulent mean flow profiles using



the eddy viscosity model of Reynolds & Hussain (1972). Following the same
approach Willis, Hwang & Cossu (2010) and Hwang & Cossu (2010a,b) showed
that turbulent Poiseuille, Hagen–Poiseuille and plane Couette flows all have very
large amplifications of harmonic and stochastic forcing. These different investigations
all show that coherent streamwise and quasi-streamwise streaks can be amplified
starting from coherent streamwise and quasi-streamwise vortices. The most amplified
spanwise scales have been shown to be in good agreement with the spanwise spacing
of large-scale streaks in the outer region and the associated maximum amplifications
have been shown to increase with the Reynolds number. Pujals, Cossu & Depardon
(2010) experimentally confirmed the existence of the spatially coherent transient
growth of artificially forced large-scale structures in the turbulent boundary layer.

The existence of a robust coherent lift-up effect and of a secondary instability
of large-scale streaks (Park, Hwang & Cossu 2011) are strong indications that
a self-sustained process might be at work at large scales in turbulent flows. A
confirmation of the existence of this process was given by Hwang & Cossu
(2010c), who showed that large-scale motions can self-sustain even in the absence
of smaller-scale processes active in the near-wall and logarithmic regions. In order
to suppress the small-scale motions while preserving the dissipation associated with
them, Hwang & Cossu (2010c) used a large-eddy simulation (LES) filter without
energy backscatter and artificially increased its cutoff characteristic length. In this
way, they were able to show that when the near-wall motions are artificially quenched,
motions with the usual scales of large-scale motions survive. These conclusions were
later extended by Hwang & Cossu (2011) to intermediate flow units characteristic of
motions in the logarithmic layer (Flores & Jiménez 2010).

1.3. Goal of the present study
The scope of the present study is twofold. The first, most immediate, objective is to
determine if large-scale motions are also self-sustained in turbulent plane Couette flow.
This would provide the first confirmation of the findings of Hwang & Cossu (2010c)
in a flow other than the pressure-driven channel flow. For the sake of the exposition
of the objectives of our study, we anticipate the result that large-scale motions are
indeed also self-sustained in turbulent plane Couette flow.

As a second objective we would like to further investigate the nature of the process
by which these large-scale motions do self-sustain by using methods borrowed from
dynamical systems theory. In particular, the computation and analysis of invariant
solutions of the Navier–Stokes equations has led to important progress in the
understanding of subcritical transition in shear flows. A number of non-trivial
steady-state solutions have, for instance, been computed in plane Couette flow
(Nagata 1990; Clever & Busse 1992, 1997; Waleffe 1998, 2003; Gibson, Halcrow
& Cvitanovic 2008). These steady-state solutions do typically represent ‘saddles’ in
phase space and appear in a saddle–node bifurcation at low Reynolds numbers, with
additional solutions appearing when the Reynolds number is increased. Lower-branch
solutions are related to the laminar–turbulent transition boundary, while upper-branch
solutions display features consistent with the turbulent flow arising from the transition
process. Most of these saddle solutions have only a few unstable eigenvalues.
The original hope was that turbulent solutions spend a significant time in the
neighbourhood of the relevant saddles when approaching them near their stable
manifold and before being ejected along the unstable manifold. This was later shown
not to be the case (Kerswell & Tutty 2007; Schneider, Eckhardt & Vollmer 2007).



The current hope is that turbulence statistics could be captured by expansions based
on the properties of unstable periodic solutions (Artuso, Aurell & Cvitanovic 1990;
Kawahara & Kida 2001). However, to date, attempts to prove the relevance of
this approach have not been completely successful (see e.g. Chandler & Kerswell
2013), which calls into question the relevance of using such solutions to describe
fully developed, higher-Reynolds-number turbulent regimes in which their number
increases very rapidly and their spatial structures become increasingly complex.

A possible way to by-pass this problem is to model small-scale motions, in order to
take only their averaged effect into account, and to concentrate on large-scale coherent
motions which contain most of the energy at high Reynolds numbers. In the second
part of this study, we therefore attempt to compute invariant solutions corresponding
to coherent large-scale motions. In particular, we will look for steady solutions of the
filtered motions, i.e. solutions of the same LES equations used in the first part of the
study to show that large-scale motions are self-sustained. Many questions of great
interest can be investigated through this approach, several of which will be addressed
in the paper. Do steady-state solutions of the filtered equations exist? If yes, how are
they related to the steady solutions computed for the Navier–Stokes equations, mainly
at transitional Reynolds numbers? Are these Navier–Stokes solutions relevant in fully
developed turbulent flows? Do they evolve into near-wall or large-scale structures
when the Reynolds number is raised sufficiently for inner–outer scale separation to
set in?

The paper is organized as follows. After a brief introduction in § 2 of the
mathematical formulation and main numerical tools used in our study, we show
in § 3 that large-scale and very large-scale motions survive the quenching of the
near-wall cycle in very large and long domains. Nonlinear steady-state solutions of
the filtered (LES) equations are then computed, analysed, and discussed in § 4. The
main results of our work are finally summarized and discussed in § 5. Note that two
auxiliary results are presented in appendices to simplify the presentation. Appendix A
shows that large-scale motions are also self-sustained in the absence of potentially
active very large-scale motions of finite wavelength. Appendix B shows that NBCW
(Nagata–Busse–Clever–Waleffe) solutions do not represent near-wall structures if
continued to large Reynolds numbers in a minimal flow unit.

2. Background
2.1. Computing coherent (filtered) motions

We consider the plane Couette flow of a viscous fluid of constant density ρ and
kinematic viscosity ν between two parallel plates located at y=±h. The streamwise,
wall-normal and spanwise coordinates are denoted by x, y and z respectively. The
two plates move in opposite directions with velocity (±Uw, 0, 0) and the Reynolds
number is defined as Re = hUw/ν. We are mainly interested in the fully developed
turbulent regime where averaged quantities are of interest. The mean velocity profile
U(y) and the root-mean-square (r.m.s.) velocity fluctuations urms(y), vrms(y), wrms(y)
are obtained by averaging the instantaneous fields over horizontal x–z planes and in
time (after the extinction of transients). The friction Reynolds number Reτ = uτh/ν is
based on the friction velocity uτ =√τw/ρ, where τw/ρ=ν dU/dy|w. We denote by a +
superscript variables expressed in wall units, i.e. made dimensionless with respect to
ν/uτ for lengths and uτ for velocities. Lengths expressed in wall units can be obtained
by multiplication by Reτ of those expressed in terms of the outer length h, so that,
for instance, y+ = Reτy/h.



In this investigation, large-eddy simulations are used to study the dynamics of large-
and very large-scale motions. The equations for the filtered motions are the usual ones
(see e.g. Deardorff 1970; Pope 2000):

∂ui

∂xi
= 0,

∂ui
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+ uj

∂ui
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where the overbar denotes the filtering action, τ r= τ R− tr(τ R)I/3, with τ R
ij=uiuj−uiuj

and q=p+ tr(τ R)/3. The anisotropic residual stress tensor τ ij is modelled by choosing
an appropriate subgrid model in terms of eddy viscosity νt as τ r

ij = −2νtSij, where
Sij is the rate of strain tensor associated with the filtered velocity field. For the eddy
viscosity, we choose the static (Smagorinsky 1963) model:

νt =D(Cs∆)
2S , (2.2)

where S ≡ (2SijSij)
1/2, ∆= (∆x∆y∆z)

1/3 is the average length scale of the filter based
on the mean grid spacing and Cs is the Smagorinsky constant. In the following we
will use as a reference value Cs = 0.05, like Hwang & Cossu (2010c, 2011). This
value is known to provide the best turbulence statistics compared to those of direct
numerical simulations (i.e. the best performance for a posteriori tests as discussed by
Härtel & Kleiser 1998). To avoid non-zero residual velocity and shear stress at the
wall we use the wall (damping) function D= 1− exp(−(y+/A+)2) proposed by Kim
& Menon (1999) with A+ = 25.

The use of the static Smagorinsky model ensures that the residual motions cannot
transfer energy to the filtered motions, i.e. there is no ‘backscatter’ of energy. This
is essential in our approach of determining if large-scale motions can be sustained
in the absence of forcing by smaller-scale motions. In particular, in the following we
will use the same technique as used by Hwang & Cossu (2010c, 2011) to quench
small-scale motions, and investigate if the large-scale motions survive despite this
quenching. The technique is simply based on increasing the Smagorinsky constant Cs,
which is equivalent to an increase of the ‘Smagorinsky mixing length’ l0 = Cs∆, as
shown by Mason & Callen (1986). As Cs is increased, therefore, an increasing range
of small-scale motions become inactive as they are modelled with an increasingly
large (positive) eddy viscosity. In ‘over-damped’ simulations the value of Cs will be
increased to values in a typical range Cs ≈ 0.1–0.18. Two warnings must be issued
here in order to avoid possible misunderstanding of the ‘over-damped LES’ technique.
First, it must be recalled that the aim of using ‘over-damped LES’ is, of course, not to
provide a quantitatively accurate representation of large-scale motions (which can be
done using state-of-the-art models for the LES) but to show that large-scale motions
can survive in the absence of the near-wall process. For e.g. Cs= 0.1 or Cs= 0.14, the
near-wall region is (and must be) inaccurate because the buffer-layer cycle has been
shut down. However, as already found by Hwang & Cossu (2010c, 2011) and Hwang
(2015) and in the following, the over-damped flow displays key features of the ‘real’
large-scale motions despite the inaccuracy of the near-wall region. Secondly, it must
be noted that increasing Cs is not equivalent to a reduction of the ‘effective’ Reynolds
number in the simulations because in the Smagorinsky model the viscosity depends
on the local rate of strain (while it is constant in the Navier–Stokes equations). In
practice it is observed that the friction Reynolds number of over-damped solutions is
only weakly affected by the increased Cs.



Name Lx Lz Nx Ny Nz ∆x ∆y,min ∆y,max ∆z

VLSM-Box 131.9h 18.85h 640 49 128 0.2h 0.01h 0.08h 0.15h
LSM-Box 10.89h 5.46h 54 49 36 0.2h 0.01h 0.08h 0.15h
LSM-Box-Newton 10.89h 5.46h 32 61 32 0.34h 0.0055h 0.06h 0.165h

TABLE 1. Numerical domains and discretization parameters used in the present study. The
VLSM-Box and the LSM-Box are used to perform the numerical experiments respectively
described in § 3 and appendix A.

Large-eddy simulations are performed with the code diablo (Bewley, Moin &
Temam 2001) which implements the fractional-step method based on a semi-implicit
time integration scheme and a mixed finite-difference and Fourier discretization
in space. The computational domain, which extends from 0 to Lx and from 0 to
Lz in the streamwise and spanwise directions respectively and from −h to h in
the wall-normal direction, is discretized with Nx × Ny × Nz points in respectively
the streamwise (x), wall-normal (y) and spanwise (z) directions. Grid stretching is
applied in the wall-normal direction in order to refine the grid near the wall. No-slip
boundary conditions are applied at the walls and periodic boundary conditions at
other boundaries. The numerical domains and the associated discretization parameters
used in the following are listed in table 1.

2.2. Computing three-dimensional nonlinear steady solutions
In the second part of this study (§ 4), we compute steady three-dimensional nonlinear
solutions of the filtered equations by using a modified version of the code peanuts
(Herault et al. 2011; Riols et al. 2013), which provides an implementation of a
modified Newton–Krylov method through the PETSc toolkit (Balay et al. 2011). An
important feature of the algorithm is that it is matrix-free and therefore only relies
on (many) calls to the large-eddy simulation solver diablo.

For a Newton-iteration-based method to converge, it is crucial to have a good initial
guess for the solution. One possibility to obtain such an initial guess is to compute
the edge state of the system, i.e. the relative attractor on the surface which (in phase
space) is the boundary of the basin of attraction of self-sustained motions. In cases
where the dimension of this boundary is N − 1, N being the dimension of the phase
space, it is possible to constrain the solution to remain in a neighbourhood of the
boundary by a one-parameter bisection technique (see e.g. Itano & Toh 2001; Toh
& Itano 2003), sometimes labelled ‘edge tracking’. Edge tracking has indeed been
successfully used by e.g. Viswanath (2007) and Schneider et al. (2008) to compute
lower-branch non-trivial steady solutions of the Navier–Stokes equations (unfiltered
motions) in plane Couette flow. In the present study, edge tracking is implemented by
selecting as initial condition of the LES the mean flow profile U to which we add a
coherent, three-dimensional large-scale perturbation u0 of amplitude A0: u0=U+A0u0.
A standard bisection is then performed to compute the threshold value of A0 which
separates solutions evolving to active large-scale motions from the laminar solution,
as will be further shown in § 4.

3. Self-sustained nature of large-scale motions
In the first part of this study we address the question of the self-sustained (or

not) nature of motions at large scale in the fully developed turbulent Couette flow at
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FIGURE 1. (Colour online) Comparison of the reference LES (Cs = 0.05, lines) results
obtained in the VLSM-Box to the data (symbols) of Tsukahara et al. (2006) obtained by
DNS in domains of similar extent at the same Reynolds number Re= 2150 (Reτ = 128).
The mean flow profiles U+ are compared in (a), while in (b) the r.m.s. velocity profiles
u+rms, v

+
rms and w+rms are reported.

Re= 2150, corresponding to Reτ = 128. This Reynolds number, though not excessively
high, is large enough to distinguish the size of near-wall structures from those of
large-scale motions.

3.1. Reference large-eddy simulations
As a first step, we assess the ability of our large-eddy simulations to reproduce
the main features of near-wall, large-scale and very large-scale motions in turbulent
Couette flow by performing a reference simulation with the Smagorinsky constant
fixed to its reference value Cs = 0.05. The simulations are performed in a very
large domain Lx × Lz = 132h × 18.85h (labelled VLSM-Box in table 1), the size of
which is comparable to the largest ones used by Tsukahara et al. (2006) in their
direct numerical simulations (DNS) of turbulent Couette flow. Given the typical
streamwise and spanwise size of the very large-scale structures (λx ' 42h–64h and
λz ' 4h–5h, according to Tsukahara et al. 2006), the domain allows for two or
three very large-scale structures in the streamwise direction and three or four in the
spanwise direction. The grid spacings in the streamwise and the spanwise direction
are set to 1x+ = 26.3 and 1z+ = 18.2, respectively (before dealiasing), while the
wall-normal grid spacing is chosen such that the minimum and maximum spacings
respectively become 1y+min= 1.27 and 1y+max= 9.7. We note that while grid spacing is
small enough to reasonably resolve the near-wall structures (Härtel & Kleiser 1998),
it is much coarser than the one use by Tsukahara et al. (2006) (who use 1x+ = 8
and 1z+ = 6 and 1y+ = 0.2–5.7).

The mean velocity and r.m.s. velocity profiles of the reference LES are in
reasonably good agreement with the DNS data of Tsukahara et al. (2006), as
shown in figure 1. In the instantaneous field visualized in figure 2(a), very long
streaky structures with the spanwise spacing roughly at λz ≈ 4h–5h are clearly
visible throughout the entire domain on top of small-scale background turbulence,
in agreement with previous simulations (see e.g. Komminaho et al. 1996; Tsukahara
et al. 2006). The large-scale streaks also show the characteristic ‘ramp’ structure
of the low-speed regions with angles ≈10◦–12◦ to the wall (see figure 3) already
observed e.g. in turbulent boundary layers (see e.g. figure 8 of Dennis & Nickels
2011).
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FIGURE 2. (Colour online) Iso-surface (u+ = −2.5) of the instantaneous negative
streamwise velocity fluctuations (low-speed streaks) on the lower wall at Re = 2150:
(a) Cs=0.05 (reference case); (b) Cs=0.10; (c) Cs=0.14; (d) Cs=0.18. The visualization
illustrates that the progressive quenching of small-scale motions for increasing values of
Cs does not affect the self-sustainment of large- and very large-scale streaky motions.

One-dimensional spectra of the streamwise velocity shown in figure 4 are also
in good agreement with the DNS ones reported by Tsukahara et al. (2006). The
spanwise spectra reveal two well-separated peaks depending on the wall-normal
location (figure 4a). The first peak appears at λ+z ' 100 in the near-wall region
(y+ 6 30), while the second peak is at λz ≈ 4h–5h in the outer region (y > 0.2h); the
former corresponds to near-wall streaks whereas the latter corresponds to large- and
very large-scale streaky structures. The streamwise spectra have a peak at λ+x ' 700 in
the near-wall region, which is representative of near-wall streaks. In the outer region,
the spectra exhibit two peaks, one at λx ≈ 10h and the other at λx ≈ 42h–64h. The
two peaks at λx ≈ 10h and λx ≈ 42h–64h, which are also in good agreement with the
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FIGURE 3. (Colour online) Side view of the low-velocity fluctuations in the VLSM-Box
for the reference case Cs= 0.05 (a) and the over-damped Cs= 0.14 (b) at Re= 2150. The
data are the same as in figure 2(a,c). In order to highlight the ramp structure of large-scale
motions, only a limited streamwise part of the computational domain is represented and
the levels u+ =−3.9 for Cs = 0.05 and u+ =−5.3 for Cs = 0.14 are used. The 12◦ angle
is measured from the wall.

DNS results, correspond respectively to large- (LSM) and very large-scale motions
(VLSM).

A terminological note is necessary here. We choose to use the LSM and VLSM
terminology in Couette flow also, where it does not appear to be currently standard,
because we think that the mechanisms underlying their dynamics are common to other
wall-bounded turbulent shear flows. Also, we will denote by VLSM only structures
that have a very large (e.g. ≈40–60h) but finite streamwise wavelength. These motions
can be detected only in very long domains. Structures with infinite wavelength in the
streamwise direction will not be referred to as VLSM because streamwise-uniform
motions cannot self-sustain (see e.g. Waleffe 1995) and therefore are not of interest
here.

3.2. Over-damped simulations: self-sustained large-scale motions
Having validated the ability of the reference LES to quantitatively reproduce the main
features of the turbulent Couette flow obtained by DNS in previous studies, we now
examine if the motions at large scales persist even in the absence of smaller-scale
active motions in the near-wall region. As in Hwang & Cossu (2010b), we therefore
gradually increase the Smagorinsky constant Cs, which determines the filter width
of the LES, to remove the small-scale active structures from the near-wall region.
It should be noted that the increase of Cs does not significantly affect the friction
Reynolds number Reτ = 128 of the reference simulation (Cs= 0.05): it is indeed found
that Reτ = 119 for Cs = 0.10, Reτ = 117 for Cs = 0.14, Reτ = 119 for Cs = 0.18.

The flow fields visualized in figure 2 show that the small-scale turbulent motions are
gradually damped out as Cs is increased. For Cs = 0.14 (figure 2c), only the motions
at large and very large scale are left in the flow field, suggesting the outer motions are
likely to be sustained by themselves. The survival of the large-scale motions persists
at Cs= 0.18 (see figure 2d), although they are eventually quenched for Cs= 0.25 (not
shown). An examination of figure 3 further confirms that when small-scale motions
are smoothed out the surviving coherent large- and very large-scale structures are
reasonably similar to the ‘natural’ ones obtained in the reference case. In particular,
they show the typical ‘ramp’ structure of the low-speed regions with angles ≈10◦–12◦
to the wall.
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FIGURE 4. Spanwise premultiplied power spectra kzEuu(λz) (a,c,e,g) and streamwise
premultiplied power spectra kxEuu(λx) (b,d,f,h) for respectively the reference simulation
with Cs = 0.05 (a,b) and for the cases Cs = 0.10 (c,d), Cs = 0.14 (e,f ) and Cs = 0.18
(g,h). The premultiplied spectra are extracted in the inner layer (y+= 11, 17, 28 based on
Reτ of the reference simulation, dashed lines) and in the outer layer (at distances from
the bottom wall of y+ h= 0.40h, 0.57h, 0.78h, h solid lines).

The premultiplied spectra reported in figure 4 provide a quantitative confirmation
of this scenario. The original (Cs = 0.05) peak location of the near-wall motions at
λ+z ' 100 in the spanwise spectra (figure 4a) is initially shifted to a larger spanwise



wavelength for Cs = 0.10 (figure 4c) and completely suppressed for Cs = 0.14
(figure 4e) and higher (figure 4g), where only the footprint of large-scale motions
appears in the near-wall region. Similar features are observed in the streamwise
spectra where the original peak location at λ+x '700 in the near-wall region (figure 4b)
is shifted to higher wavelengths up to its complete suppression (figure 4d,f,h).

In contrast, large-scale motions (LSM) appear to be fairly robust to the increase of
Cs. The peak at λz'4.5h in the spanwise spectra robustly remains at the same location
for all increasing values of Cs (figure 4a,c–e). In the streamwise spectra, for Cs= 0.10
the LSM peak at λx' 10h remains unchanged, while the VLSM peak at λx' 42h–64h
is blurred. For Cs= 0.14, the original location of the first peak (λx' 10h) has drifted
to a slightly longer streamwise wavelength (λx ' 14h) (figure 4f ), and it appears that
this feature makes the presence of the VLSM structures even more blurred. Similar
drifts of the streamwise wavelength of LSM for relatively large Cs have also been
observed in the case of the pressure-driven channel flow (Hwang & Cossu 2010b).
When Cs= 0.18, the artificial over-damping begins to have a non-negligible effect on
the dynamics of large-scale motions in the near-wall region where energy accumulates
at the longest available streamwise wavelengths. This is why in figure 3 and in the
following we only discuss the dynamics of structures corresponding to Cs . 0.14.

These results suggest that motions with typical spanwise spacings λz ' 4h–5h
are sustained by a process which is not forced by motions at smaller scales. The
relation between large-scale (LSM) and very large-scale motions (VLSM) is left
partially unsolved by these simulations because they do not exclude the self-sustained
process being associated with the VSLM very long wavelengths. The reference
and over-damped simulations have been therefore repeated in a smaller domain (the
LSM-Box listed in table 1) having the typical dimensions of large-scale motions. The
results of this additional series of LES, discussed in appendix A, are very similar to
the ones discussed above and show that large-scale motions are also self-sustaining in
the absence of potentially active motions of even larger scale when near-wall active
processes are quenched. There is, therefore, an active process at precisely this scale
(λz≈ 4h–5h, λx≈ 10h–12h). The nature of this process is further explored in the next
section.

4. Steady ‘exact’ nonlinear large-scale solutions of the filtered equations
The over-damped simulations of filtered motions have shown that large-scale

motions can be self-sustaining even when near-wall motions are artificially quenched.
Similarly to what has been done to understand transitional structures for the
Navier–Stokes equations, we investigate the specific mechanism by which turbulent
large-scale motions are sustained by looking for the existence of nonlinear ‘exact’
solutions. More specifically, we look for steady solutions of the filtered equations at
Reynolds numbers where the flow is in a fully developed turbulent state. To make the
steady-state computations manageable and to avoid potentially active very large-scale
motions coming into the picture, we consider the domain LSM-Box-Newton listed
in table 1, whose size Lx × Lz = 10.9h × 5.5h is that of large-scale motions (see
figure 4). The dimensions of the LSM-Box also correspond to those of the ‘optimum’
domain considered by Waleffe (2003) and are very similar to those of domains in
which early ‘transitional’ steady solutions of the (unfiltered) Navier–Stokes equations
have been found (Nagata 1990; Clever & Busse 1992). We will show that this
is not a mere coincidence, and that these solutions, which we will denote by
NBCW (Nagata–Busse–Clever–Waleffe), are indeed much more closely related to
self-sustained large-scale motions than to near-wall cycles.
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FIGURE 5. (Colour online) Edge tracking in the over-damped LES at Re= 750 (Reτ = 52)
and Cs = 0.14. Two initial conditions (circle symbol) lying almost on the edge of chaos
surface initially remain near the surface while being attracted to the steady solution edge
state (triangle symbol). The solution lying on the upper side of the edge of chaos (green
line, dotted) finally evolves toward a state with irregular large-scale active motions, while
the other one (solid, red line) finally relaxes to a state with no large-scale active motions.
The trajectories are shown in both the t–‖v‖ (a) and in the ‖u‖–‖v‖ plane (b), displaying
the streaks–vortices dynamics.

4.1. Coherent steady solutions at Re= 750
We begin by looking for exact solutions near the relatively low Reynolds number
Re= 750 (corresponding to Reτ = 52), which roughly corresponds to twice the value
of the transitional Reynolds number. The box discretization details are reported in
table 1. It has been verified (Rawat 2014) that reference large-eddy simulations at the
considered values Re= 750 with Cs= 0.05 in the LSM-Box compare well to the DNS
results obtained in the same box and are relatively similar to those obtained in larger
domains at the same Reynolds number (see also Komminaho et al. 1996; Tsukahara
et al. 2006, for a discussion of the box size effects). The premultiplied spectra also
show a reasonable agreement with the DNS results for Cs= 0.05 and only large-scale
motions survive when the near-wall cycle is artificially quenched by increasing the
Smagorinsky constant Cs (Rawat 2014).

As discussed in § 2.2, an edge-tracking technique can be effective for computing
lower-branch steady solutions in plane Couette flow. We therefore apply the
edge-tracking technique to the over-damped LES simulations with Cs = 0.14 at
Re= 750 in the LSM-Box where the near-wall cycle is quenched and only large-scale
motions survive. The initial condition given to the LES consists of the mean
turbulent flow, to which is added a pair of streamwise-uniform counter-rotating
rolls along with a sinuous perturbation of the spanwise velocity, which is similar
to that used by Toh & Itano (2003) and Cossu et al. (2011): u0 = {U(y), 0, 0} +
A0{0, ∂ψ0/∂z, −∂ψ0/∂y} + 0.1 A0{0, 0, wsin} where ψ0(y, z) = (1 − y2) sin(2πz/Lz)
and wsin(x, y) = (1 − y2) sin(2πx/Lx). The bisection is performed by adjusting the
amplitude A0 of the perturbations. The results of the edge tracking, displayed in
figure 5, show that the edge-state solution has constant energy. The initial transient
clearly shows the coherent transient growth of the initial condition (slow decrease
of the wall-normal velocity perturbations and large increase of the streamwise-streak
norm ‖u‖) leading to the edge state.

The edge-tracking solution is then used as an initial guess for Newton–Krylov
iterations, performed with the peanuts code. The solver converges to a steady



1.0
0 0.2 0.4 0.6

2.5

S

3.5

4.5

FIGURE 6. (Colour online) Continuation diagram of the steady solutions in the
Smagorinsky constant Cs at Re = 750 (Reτ = 52). S = τw/(µUw/h) is the wall shear
rate of the solution normalized by its laminar value (where µ is the viscosity of the
fluid). The symbols denote the solutions found at Cs = 0 (Navier–Stokes, squares, with
S = 1.37 on the lower branch and S = 4.59 on the upper branch), Cs = 0.05 (reference
LES, circles) and Cs = 0.14 (over-damped LES where the edge tracking has been
performed, triangles). Empty symbols denote lower-branch solutions, filled symbols denote
upper-branch solutions.

solution (i.e. with zero phase speed, up to the precision of the Newton solver
computation) of the (LES) equations for the filtered motions. The converged solution
can be continued in Cs using a Newton-based continuation. When continued to higher
Cs, the solution encounters a saddle–node bifurcation from which the lower branch
and an associated upper branch originate, as shown in figure 6. As the solutions
obtained for Cs & 0.18 lose much of their physical relevance because the LSM
become themselves over-damped, the high-Cs continuation should be considered only
as a method (just as an homotopy) to access upper-branch solutions. Also, it must be
noted that the high-Cs bifurcation is not simply reproducing the low-Re bifurcation
of Navier–Stokes solutions. Here the stress tensor depends nonlinearly on the rate of
strain, which models turbulent dissipation. As a consequence, for example, the value
of the shear parameter S at the saddle–node bifurcation is more than double the value
of S at the low-Reynolds number saddle–node bifurcation of Navier–Stokes solutions.

Even more interestingly, both upper- and lower-branch solutions can be continued to
lower values of Cs and in particular to Cs= 0.05, the ‘reference’ value used to match
DNS solutions, and even to Cs= 0, which corresponds to solutions of the (unfiltered)
Navier–Stokes equations. The mean and r.m.s. velocity profiles corresponding to Cs=
0.14, Cs = 0.05 and Cs = 0, reported in figure 7, are very similar to one another
and are reminiscent of the NBCW solutions of the Navier–Stokes equations. For the
lower-branch solutions, most of the energy is concentrated in the quasi-streamwise
streaky motions (mainly the urms component) which are forced by low-amplitude quasi-
streamwise vortices (mainly the vrms component), while for the upper-branch solutions,
quasi-streamwise streaks and vortices have comparable energy.

4.2. Continuation to higher Reynolds numbers
The steady solutions obtained at Re = 750 are very similar to the NBCW solutions.
We have, therefore, continued the solution corresponding to Cs= 0 (i.e. the unfiltered
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FIGURE 7. (Colour online) Lower- (a–c) and upper- (d–f ) branch steady solutions in the
LSM-Box at Re= 750 (Reτ = 52): mean flow (a,d), streamwise (b,e) and cross-stream (c,f )
r.m.s. velocity profiles corresponding to Cs=0.14 (over-damped LES), Cs=0.05 (reference
LES) and Cs = 0 (Navier–Stokes steady solution).

Navier–Stokes solution) from Re= 750 to Re= 400, where it appears to be identical
to the one computed by Waleffe (2003) in the same box at the same Re. Continuation
to lower Re does indeed show that the upper and the lower branches are connected
by the saddle–node bifurcation at Re= 127 (Waleffe 2003) as shown in figure 8.

At Re = 750 (Reτ ≈ 52), the near-wall and large-scale motions scales are not yet
separated enough to allow definitive conclusions on the nature of the steady solutions
of the filtered equations. It is, therefore, potentially unclear that the computed steady
solutions are associated with the self-sustained large-scale motions discussed in § 3
and not with near-wall motions. In order to clarify this issue the coherent steady
solutions of the over-damped LES have been continued to higher Reynolds numbers,
keeping the box dimensions constants in outer units (Lz = 5.5h and Lx = 10.9h).

We concentrate on upper-branch solutions because they are most relevant to the
turbulent dynamics (lower-branch solutions are related to the transition problem which
is probably less relevant in the turbulent regime). A continuation to higher Re fails to
converge for Reynolds numbers larger than Re ≈ 1164 (Reτ ≈ 74) for the reference
Cs = 0.05 (but also for Cs = 0). To circumvent this difficulty, an alternative path has
been followed in the parameter space by first computing solutions at Cs = 0.1, as
shown in figure 8. The Cs = 0.1 steady solutions can be continued up to Re≈ 2500.
At selected Reynolds numbers ranging up to Re = 2187, the Cs = 0.1 solutions can
then be tracked down to Cs= 0.05, except for Re= 2187, corresponding to Reτ ≈ 127,
where the solution cannot be continued below Cs = 0.06.

The mean and r.m.s. velocity profiles of the ‘reference’ (Cs = 0.05 and Cs = 0.06
for the highest Re) solutions obtained at these larger Reynolds numbers are reported
in figure 9. The change of the wall-normal and spanwise r.m.s. velocity profiles with
the Reynolds number is minor. The peak streamwise r.m.s. velocity, associated with
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FIGURE 10. (Colour online) Visualization of the upper-branch large-scale coherent steady
solutions of the LES equations obtained with the reference value Cs = 0.05 and for
increasing values of the Reynolds number: (a,b) Re = 750 (corresponding to Reτ = 52),
(c,d) Re=1600 (Reτ =99), (e,f ) Re=2187 (Reτ =127, with Cs=0.06). (a,c,e) The streaks
and quasi-streamwise vortices: the green surface corresponds to a streamwise velocity
value 50 % of its maximum value while the blue and green surfaces correspond streamwise
vorticity values equal to ±70 % of the maximum. (b,d,e) The streaks and the relative eddy
viscosity associated with the filtered small-scale motions. The green surface is the same
as in (a,c,e), while the violet surfaces correspond to νt/ν = 40 % and the yellow one to
νt/ν = 10 %.



the large-scale streaks, increases with the Reynolds number and is attained nearer to
the wall. All the r.m.s. velocity components remain relatively large in the bulk of the
flow. These features are consistent with the observed behaviour of coherent large-scale
motions (see e.g. Avsarkisov et al. 2014; Pirozzoli, Bernardini & Orlandi 2014, for
the most recent DNS results). This similarity is confirmed by the analysis of the flow
fields associated with the large-scale coherent steady solutions reported in figure 10.
This figure also illustrates how the eddy viscosity associated with the residual (small-
scale) motions increases with the Reynolds number and is located mainly on the flanks
of the low-speed streak. The absolute levels of eddy viscosity are not huge even at
Re= 2187, where the maximum of νt does not exceed 90 % of the molecular viscosity
for those solutions but, contrary to the Navier–Stokes case, the eddy viscosity is not
spatially uniform and depends on the local properties of the large-scale flow.

Having observed a clear relation between NBCW and coherent large-scale motions,
it remains to verify if these solutions are also related to buffer-layer structures. This
question is addressed in appendix B where it is shown that NBCW solutions do not
converge to buffer-layer structures if continued to higher Re in minimal flow units
with L+x × L+z = 250× 100.

5. Summary and discussion

The main scope of this investigation has been to understand the origin of the
coherent large-scale motions (LSM) which are numerically and experimentally
observed in turbulent plane Couette flow.

In the first part of the study, the self-sustained nature of large-scale motions has
been investigated using the over-damped large-eddy simulation technique introduced
by Hwang & Cossu (2010b, 2011). The main results of the first part of the study can
be summarized as follows.

(1) Reference large-eddy simulations at Re = 2150 (corresponding to Reτ = 128)
in the VLSM-Box (Lx × Lz = 132h × 12.5h) and with a sufficiently refined
grid are able to capture the most important features of turbulent Couette flow,
namely the near-wall cycle and the large- and very large-scale motions (LSM
and VLSM) with characteristic sizes in good agreement with those found in the
direct numerical simulations of Tsukahara et al. (2006).

(2) Large-scale motions do survive the quenching of the near-wall cycle at Re= 2150
with properties very similar to those of the ‘natural’ large-scale motions.

(3) Large-scale motions also survive the quenching of the near-wall cycle in an
‘LSM-Box’ with dimensions Lx× Lz= 10.9h× 5.5h typical of large-scale motions
but where potentially active very large-scale motions of finite wavelength are
excluded.

These results further confirm the findings of Hwang & Cossu (2010c) for the
turbulent pressure-driven channel that a self-sustained process is at work at large
scale in wall-bounded shear flows. The process is self-sustained because it does not
rely on active motions at smaller or larger scales and its existence is in contrast
with the current view that LSM ‘are believed to be created by the vortex packets
formed when multiple hairpin structures travel at the same convective velocity’
(as summarized in the review paper by Smits, McKeon & Marusic 2011). Indeed,
figures 2 and 3 clearly show that large-scale motions are still active even when the
multiple smaller-scale structures are removed from the scene. It must be noted that
the LSM of the over-damped simulations can be only qualitatively similar to the real



ones because the near-wall self-sustained process has been artificially shut down in
order to prove that LSM are self-sustained. It is, therefore, rather surprising that the
LSM of the over-damped simulations still reproduce so many features of the ‘real’
ones despite the very strong modification of the flow induced by the over-damping.

In the second part of the study the nature of the self-sustained large-scale motions
in turbulent Couette flow has been further investigated by looking for steady-state
solutions of the filtered equations (i.e. of the, possibly over-damped, LES) in a
periodic domain with the typical dimensions of the LSM (the LSM-Box with
Lx × Lz = 10.9h × 5.5h), which also coincide with those of the ‘optimum’ domain
considered by Waleffe (2003) for the transitional Couette flow. The main results can
be summarized as follows.

(1) An upper and a lower branch of coherent large-scale steady solution of the
filtered (LES) equations have been computed at Re = 750 by edge tracking
and using Newton iterations. These solutions have been continued in Cs in
the LSM-Box. The upper and lower branches are connected via a saddle–node
bifurcation at high Cs.

(2) The continuation in Cs also shows that both upper- and lower-branch solutions
can be continued to the reference value Cs = 0.05 and even to steady solutions
of the Navier–Stokes equations obtained for Cs = 0 up to Re= 1164.

(3) Coherent steady upper-branch solutions at the reference value Cs=0.05 have been
computed at Reynolds numbers up to Re=2150 using specific paths in the Re–Cs
plane. The maximum amplitude of the associated large-scale streaks increases
with the Reynolds number and its position approaches the wall on increasing Re.
The eddy viscosity associated with these solutions also increases with Re.

(4) The solutions obtained for Cs= 0 are shown to belong to the well-known branch
of NBCW solutions of the Navier–Stokes equations originating in a saddle–node
bifurcation at Re= 127 (and Cs = 0) in the LSM-Box.

(5) The continuation of the NBCW upper-branch solutions to high Reynolds numbers
in a minimal flow unit (L+x × L+z = 250 × 100) does not converge to solutions
consistent with typical buffer-layer structures, as shown in appendix B.

This is, to the best of our knowledge, the first time that invariant ‘exact’
solutions have been computed for large-scale turbulent filtered, i.e. truly coherent,
motions. These ‘exact’ solutions of the LES equations, contrary to solutions of the
Navier–Stokes equations, take into account the effect of small scales only through
their averaged effect. The spatial and Reynolds number dependence of the eddy
viscosity associated with the averaged (residual) small-scale motions is naturally
embedded in the computed solutions. It is, in this way, possible to compute coherent
large-scale steady solutions despite the fact that motions at smaller scale are unsteady,
and therefore concentrate on the interesting dynamics of the large-scale coherent
solutions without the less relevant complications associated with motions at smaller
scales.

The features of the computed coherent steady-state upper-branch solutions are
consistent with previous findings. For instance, the fact that the maximum streak
amplitude associated with these large-scale solutions increases with the Reynolds
number is consistent with the fact that the large-scale peak in premultiplied spectra
of turbulent wall-bounded flows also increases with Reynolds number (e.g. Pirozzoli
et al. 2014). It is also consistent with the fact that the maximum energy amplification
of the most amplified streaks increases with the Reynolds number as predicted by
the theoretical analyses of Cossu et al. (2009), Pujals et al. (2009), Hwang & Cossu



(2010a,b) and Willis et al. (2010). That the position of the maximum streak amplitude
approaches the wall for increasing Re is also in agreement with previous findings
(see e.g. Mathis, Hutchins & Marusic 2011).

Another interesting result is that the coherent large-scale solutions are connected
to the NBCW solutions of the Navier–Stokes equations and are relatively similar to
them when continued to higher Reynolds numbers in the LSM-Box, whose dimensions
remain constant in outer units. In previous studies the dynamics of NBCW solutions
has been discussed for low Reynolds numbers where the spanwise size of large-scale
and buffer-layer streaks are very similar. This ambiguity is removed here by
considering sufficiently large Reynolds numbers, where scale separation sets in
between inner- and outer-layer structures, and by showing that the NBCW solutions
do not converge to typical buffer-layer structures when continued to higher Re in a
minimal flow unit. NBCW solutions can, therefore, be considered as the ‘precursors’
of large-scale motions.

This study is a second step, after that of Hwang & Cossu (2010c, 2011), towards
a ‘dynamical systems’ understanding of the large-scale dynamics in fully developed
turbulent shear flows. The key ingredient is to model small-scale motions and to
only resolve large-scale motions in order to compute invariant solutions. Much work
remains to be done to assess the relevance of coherent invariant solutions of the
filtered equations to the prediction of turbulent flow dynamics. Interesting questions
left for future work are, for instance, to understand if other steady or periodic
solutions of the LES equations can be computed and to know how much time
turbulent solutions of large-eddy simulations spend in the neighbourhood of exact
coherent large-scale solutions (in the same spirit as the Navier–Stokes computations
of Kerswell & Tutty 2007; Schneider et al. 2007). One could indeed hope that the
increase in effective viscosity in fully developed turbulent large-scale flows could
lead to a ‘simpler’ dynamics of large-scale motions where a few invariant solutions
are sufficient to capture essential features of the flow, as in the case of transitional
flows (see e.g. Kawahara & Kida 2001).

As the static Smagorinsky model used in this work is very crude, there certainly
is room for improvement in the modelling of small-scale dynamics to compute
self-sustained large-scale coherent motions more accurately. However, we believe
that meaningful results can be found in other canonical wall-bounded shear flows
using this over-damped LES technique, even in its relatively primitive current
form. The methods used in this study could also help to shed light on different
problems involving shear flows, such as, for instance, the very large-Reynolds- and/or
magnetic-Reynolds-number behaviour of self-sustained processes in Keplerian shear
flow (Rincon, Ogilvie & Proctor 2007a; Rincon, Ogilvie & Cossu 2007b; Rincon et al.
2008; Herault et al. 2011; Riols et al. 2013), with possible practical applications to
the modelling of the dynamics of astrophysical accretion disks (Riols et al. 2015).
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Appendix A. Reference and over-damped LES in the LSM-BOX
A series of simulations have been performed in the LSM-Box with dimensions Lx×

Lz= 10.9h× 5.5h typical of large-scale motions in order to verify if these motions can
be self-sustaining in the absence of the potentially active very large-scale motions that
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FIGURE 11. Premultiplied one-dimensional spanwise (a,c,e) and streamwise (b,d,f ) spectra
of the streamwise velocity in the LSM-Box obtained for increasing values of the
Smagorinsky constant: (a,b) Cs = 0.05 (reference value); (c,d) Cs = 0.14; (e,f ) Cs = 0.18.

were captured in the VLSM-Box discussed in § 3. The number of grid points used in
this box (see table 1) is chosen so as to keep the same grid spacing as in the VLSM-
Box. Results are obtained at the same Reynolds number (Re= 2150, corresponding to
Reτ = 128) and for the same values of Cs considered in § 3 for the VLSM-Box. The
spanwise and streamwise premultiplied spectra of the streamwise velocity component
are shown in figure 11, which is the analogue of figure 4 of § 3.



For the Reynolds number considered, the LSM-Box (whose dimensions in inner
units are L+x × L+z = 1395 × 678) is large enough to accommodate many near-wall
structures. Indeed, at the reference value Cs = 0.05, the near-wall peaks at λ+z ' 100
and at λ+x ' 700 are clearly visible in the spanwise and the streamwise spectra,
respectively reported in figure 11(a,b). The spectral energy associated with the outer
structures appears to be highly concentrated at the largest wavelengths allowed in
the given computational domain, which correspond to large-scale motions (LSM).
As already mentioned, very large-scale motions (of finite streamwise wavelength)
are out of the picture in the LSM-Box. On increasing Cs, the near-wall peaks are
gradually quenched as in the spectra obtained in the VLSM-Box (see figure 4).
The outer structures in the confined domain appear to be well isolated at Cs = 0.14
(figure 11c,d) and persist even for the further increase of Cs (figure 11e,f ). These
results definitely confirm that the large-scale motions (LSM) are self-sustained in the
absence not only of near-wall active processes but also in the absence of potentially
active very large-scale motions (VLSM) of finite wavelength.

Appendix B. Continuation of the NBCW solutions in a MFU
In this appendix we investigate if NBCW solutions can be continued into near-wall

structures when the Reynolds number is sufficiently increased in minimal flow units.
This issue is addressed in the case of the Navier–Stokes equations (Cs = 0).

The main characteristic of the near-wall streaky structures is that their typical
spanwise and streamwise lengths decrease when the Reynolds number is increased,
but remain constant when expressed in wall units. Continuation of these solutions
to higher Reynolds numbers should, therefore, be made keeping the box dimension
fixed in wall units. As L+z = ReτLz/h, when Reτ is increased, Lz must be decreased
in order to keep L+z constant, and similarly for Lx. The approximate relation
Reτ ≈ 0.054 Re + 11.22, which fits well the data of a series of direct numerical
simulations performed in the LSM-Box for Re∈ [400, 2150], is used to determine the
box size. Attention must be paid to the grid resolution in the wall-normal direction
because the size of the buffer-layer region, where near-wall streaks reside, also
decreases when the Reynolds number is increased. In order to achieve a sufficient
accuracy in the wall-normal direction, keeping the state vector size manageable for
the Newton iterations, the time integrations required to perform the computation of
the nonlinear solutions presented here have been performed using the channelflow
code (Gibson et al. 2008), which uses a Chebyshev spectral discretization in y,
instead of the second-order finite-difference discretization of diablo. This code can
be used here because we do not consider large-eddy simulations in this appendix.
For these computations we use Nx ×Ny ×Nz = 32× 65× 32 points. We have verified
that the results do not change in any noticeable way when the number of points in
the wall-normal direction is increased to Ny= 95 for the highest considered Reynolds
numbers.

The NBCW upper-branch solution at Re = 400 is used as a starting point of the
continuation. At Re= 400 the size of the LSM-Box, in inner units, is L+z ≈ 180 and
L+x ≈ 360. As a preliminary step, this solution is continued in the parameters Lx and
Lz to achieve L+z ≈ 100 and L+x ≈ 200 (which in external units corresponds to Lz= 2.6h
and Lx = 5.51h (see also Gibson et al. 2008)). This steady solution is then continued
by increasing the Reynolds number in small steps, changing the box size so as to
keep it constant in inner units at L+z = 100 and L+x = 250 and predicting the initial
guess for the velocity fields expressed in inner units. The Newton-based iterations are
performed using peanuts.
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The velocity profiles of the converged solutions are reported in figure 12 for
selected Reynolds numbers and they appear to always belong to the same branch.
The results show that the solutions continued in the near-wall minimal flow unit do
not converge to near-wall structures. For instance, the y+ position of the maximum
of the r.m.s. velocity profiles increases when Reτ is increased, while it should
instead remain constant, as found by Jiménez & Moin (1991), in minimum flow unit
simulations (see also Hwang 2013). The NBCW solutions do not therefore seem to
be connected to near-wall structures, at least in plane Couette flow, even if continued
in minimal flow units, i.e. periodic domains which remain constant in inner units
while increasing the Reynolds number.
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