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Abstract: Use of a case-control design to compare the accuracy of two binary diagnostic tests is
frequent in clinical practice. This design consists of applying the two diagnostic tests to all of the
individuals in a sample of those who have the disease and in another sample of those who do not
have the disease. This manuscript studies the comparison of the predictive values of two diagnostic
tests subject to a case-control design. A global hypothesis test, based on the chi-square distribution,
is proposed to compare the predictive values simultaneously, as well as other alternative methods.
The hypothesis tests studied require knowing the prevalence of the disease. Simulation experiments
were carried out to study the type I errors and the powers of the hypothesis tests proposed, as
well as to study the effect of a misspecification of the prevalence on the asymptotic behavior of the
hypothesis tests and on the estimators of the predictive values. The proposed global hypothesis test
was extended to the situation in which there are more than two diagnostic tests. The results have
been applied to the diagnosis of coronary disease.

Keywords: binary diagnostic test; case-control design; predictive values; type I bivariate bino-
mial distribution

1. Introduction

The main parameters to assess and compare the accuracy of binary diagnostic tests
(BDTs) are sensitivity and specificity. The sensitivity (Se) is the probability of the result of
the BDT being positive when the individual has the disease, and the specificity (Sp) is the
probability of the result of the BDT being negative when the individual does not have the
disease. Other parameters that are used to assess and compare two BDTs are the predictive
values (PVs). The positive predictive value (PPV) is the probability of an individual having
the disease when the result of the BDT is positive, and the negative predictive value (NPV)
is the probability of an individual not having the disease when the result of the BDT is
negative. The PVs represent the accuracy of the diagnostic test when it is applied to a
cohort of individuals, and they are measures of the clinical accuracy of the BDT. The PVs
depend on Se, Sp and on the disease prevalence (p), and are easily calculated applying
Bayes Theorem, i.e.,

PPV =
p× Se

p× Se + (1− p)× (1− Sp)
and NPV =

(1− p)× Sp
p× (1− Se) + (1− p)× Sp

(1)

whereas the Se and the Sp quantify how well the BDT reflects the true disease status
(present or absent), the PVs quantify the clinical value of the BDT, since both the individual
and the clinician are more interested in knowing how probable it is to have the disease
given a BDT result.

The comparison of the performance of two binary diagnostic tests is a topic of special
importance in the study of statistical methods for the diagnosis of diseases. This comparison
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is made through a paired-design or through a case-control design. The paired design
consists of applying the two BDTs and the gold standard to all of the individuals in a
single sample. The case-control design consists of applying the two BDTs to all of the
individuals in two samples, one made up of individuals who have the disease (case sample)
and another made up of individuals who do not have the disease (control sample). The
advantages and disadvantages of the case-control design over the paired design can be
seen in the book by Pepe [1]. Summarizing, the case-control design has some advantages
over the paired design: (a) the case-control design is more efficient in terms of sample
size requirements, (b) case-control studies allow for the exploration of subject-related
characteristics of the test. Nevertheless, the case-control design has the disadvantage is
that by using it we cannot estimate the prevalence of the disease.

In paired designs, the comparison of PVs has been the subject of several studies.
Bennett [2,3], Leisenring et al. [4], Wang et al. [5] and Kosinski [6] studied hypothesis tests
to independently compare the PPVs and the NPVs of two BDTs. Moskowitz and Pepe [7]
studied the estimation of the PVs through a confidence region. Roldán-Nofuentes et al. [8]
studied the joint comparison of the PPVs and NPVs of two BDTs, and proposed a global
hypothesis test based on the chi-square distribution to simultaneously compare the PVs of
two BDTs.

In a case-control design, Mercaldo et al. [9] have studied the estimation of the PVs of
a BDT, assuming that the prevalence of the disease (p) is known. The prevalence can be
known from other studies, such as population studies of health services, cohort studies, etc.
Mercado et al. have verified through simulation experiments that the confidence interval
with the best asymptotic behavior is the logit interval, whose equations are:
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where P̂PV and N̂PV are the estimators of the PVs calculated from Equation (1), z1−α/2 is
the 100(1− α/2)th percentile of the normal standard distribution, and the variances are:

V̂ar
(

logit
(

P̂PV
))

=
1− Ŝe
n1Ŝe

+
Ŝp

n2
(
1− Ŝp

) and V̂ar
(

logit
(

N̂PV
))

=
Ŝe

n1
(
1− Ŝe

) + 1− Ŝp
n2Ŝp

,

where Ŝe and Ŝp are the estimators of sensitivity and specificity, n1 is the size of the case
sample and n2 is the size of the control sample.

In this article, we extended the study of Mercaldo et al. [9] to the case of two BDTs,
studying different hypothesis tests to compare the PVs of the two BDTs subject to a case-
control design. Subject to a case-control design, the two BDTs are applied to all of the
individual in two samples, one of n1 individuals who have the disease (case sample) and
another with n2 individuals who do not have the disease (control sample). In this design,
the sample sizes n1 and n2 are set by the researcher. The sample of individuals that have the
disease is extracted from a population of individuals that have the disease (e.g., registers of
diseases), and the control sample is extracted from a population of individuals who are
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known not to have the disease. As the PVs depend on the disease prevalence and subject
to a case-control design the quotient n1/(n1 + n2) is not an estimator of the prevalence, in
order to estimate and compare the PVs subject to this design it is necessary to know the
value of the prevalence of the disease. This value can be obtained from health surveys or
from previous studies. Consequently, the methods of comparison of the PVs subject to a
paired design cannot be applied when there is a case-control design. In Section 2, we study
hypothesis tests to simultaneously compare the PVs of two BDTs subject to a case-control
design. A global hypothesis test is studied to simultaneously compare the PVs of the two
BDTs, i.e.,

H0 : (PPV1 = PPV2 and NPV1 = NPV2),

and simultaneous comparison is also studied from individual hypothesis tests, i.e.,

H0 : PPV1 = PPV2 and H0 : NPV1 = NPV2

each of them to the α error and also applying multiple comparison methods. In Section 3,
simulation experiments are carried out to study the type I errors and the powers of the
hypothesis tests proposed in Section 2, and we study the effect of the misspecification of
the prevalence on the asymptotic behavior of the hypothesis tests proposed in Section 2
and on the estimators of the PVs. In Section 4, the results are applied to a real example on
the diagnosis of coronary heart disease. In Section 5, the model proposed in Section 2 was
extended to the situation in which we compare the PVs of more than two BDTs, and in
Section 6 the results are discussed.

2. Global Hypothesis Test

Let us consider two BDTs, Test 1 and Test 2, which are applied to all of the individuals
in two samples, one of n1 individuals who have the disease (case sample) and another of
n2 individuals who do not have it (control sample). Let T1 and T2 be two binary variables
that model the results of each BDT, in such a way that Ti = 1 when the result of the
corresponding BDT is positive and Ti = 0 when it is negative. In Table 1, we can see the
probabilities associated to the application of both BDTs to both types of individuals (cases
and controls), as well as the frequencies observed.

Table 1. Probabilities and observed frequencies subject to case-control design.

Probabilities

Case Control

T2 = 1 T2 = 0 Total T2 = 1 T2 = 0 Total
T1 = 1 ξ111 ξ110 Se1 T1 = 1 ξ211 ξ210 1− Sp1
T1 = 0 ξ101 ξ100 1− Se1 T1 = 0 ξ201 ξ200 Sp1
Total Se2 1− Se2 1 Total 1− Sp2 Sp2 1

Observed Frequencies

Case Control

T2 = 1 T2 = 0 Total T2 = 1 T2 = 0 Total
T1 = 1 n111 n110 n11· T1 = 1 n211 n210 n21·
T1 = 0 n101 n100 n10· T1 = 0 n201 n200 n20·
Total n1·1 n1·0 n1 Total n2·1 n2·0 n2

Using the conditional dependence model of Vacek [10], the probabilities given in the
table are written as:

ξ1jk = Sej
1(1− Se1)

1−jSek
2(1− Se2)

1−k + δjkε1,

and
ξ2jk = Sp1−j

1 (1− Sp1)
jSp1−k

2 (1− Sp2)
k + δjkε2,
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with j, k = 0, 1. The parameter ε1 (ε2) is the covariance between the two BDTs in cases
(controls), where δjk = 1 if j = k and δjk = −1 if j 6= k, and it is verified that 0 ≤ ε1 ≤
Min{Se1(1− Se2), Se2(1− Se1)} and 0 ≤ ε2 ≤ Min{Sp1(1− Sp2), Sp2(1− Sp1)}. If εi = 0
then the two BDTs are conditionally independent on the disease status. In practice, the
assumption of the conditional independence is not realistic, and therefore ε1 > 0 and/or
ε2 > 0. In terms of the probabilities ξijk, the sensitivities are written as:

Se1 = ξ111 + ξ110 and Se2 = ξ111 + ξ101,

and the specificities are written as:

Sp1 = ξ201 + ξ200 and Sp2 = ξ210 + ξ200.

The estimators of sensitivities are Ŝe1 = n11·/n1 and Ŝe2 = n1·1/n1, and the estimators
of specificities are Ŝp1 = n20·/n2 and Ŝp2 = n2·0/n1. The estimators of their variances are
V̂ar

(
Ŝe1
)
= Ŝe1

(
1− Ŝe1

)
/n1, V̂ar

(
Ŝe2
)
= Ŝe2

(
1− Ŝe2

)
/n1, V̂ar

(
Ŝp1

)
= Ŝp1

(
1− Ŝp1

)
/n2

and V̂ar
(
Ŝp2

)
= Ŝp2

(
1− Ŝp2

)
/n2. Therefore, the sensitivities and the specificities are

estimated as proportions of marginal totals. In this way, in the case sample we are interested
in the marginal frequencies n11· and n1·1, and therefore these frequencies are the product
of a type I bivariate binomial distribution [11]. In an analogous way, from the control
sample, the marginal frequencies n20· and n2·0 are the product of a type I bivariate binomial
distribution. In the individuals with the disease, the type I bivariate binomial distribution
is characterized [11] by Se1, Se2 and the correlation coefficient (ρ1) between T1 and T2. In an
analogous way, in the individuals who do not have the disease, the type I bivariate binomial
distribution is characterized by Sp1, Sp2 and the correlation coefficient (ρ2) between T1 and
T2. Therefore, the proposed model is a parametric model based on the distribution of the
marginal frequencies in each 2× 2 table. In the individuals with the disease (cases), the
correlation coefficient between the two BDTs is:

ρ1 =
ξ111 − Se1Se2√

Se1(1− Se1)Se2(1− Se2)
=

ε1√
Se1(1− Se1)Se2(1− Se2)

,

and in the individuals who do not have the disease (controls), the correlation coefficient
between the two BDTs is:

ρ2 =
ξ200 − Sp1Sp2√

Sp1(1− Sp1)Sp2(1− Sp2)
=

ε2√
Sp1(1− Sp1)Sp2(1− Sp2)

.

It is easy to show that ε̂1 = (n1n111 − n11·n1·1)/n2
1, ε̂2 = (n2n200 − n20·n2·0)/n2

2,
Ĉov

(
Ŝe1, Ŝe2

)
= ε̂1/n1 and Ĉov

(
Ŝp1, Ŝp2

)
= ε̂2/n2. All of the other covariances are

zero, since the two samples are independent. The estimators of ρ1 and ρ2 are ρ̂1 =
n1n111−n11·n1·1√

n11·(n1−n11·)n1·1(n1−n1·1)
and ρ̂2 = n2n200−n20·n2·0√

n20·(n2−n20·)n2·0(n2−n2·0)
. Assuming that the disease

prevalence p is known, the estimators of the predictive values are:

P̂PV1 =
pn2n11·

pn2n11· + qn1(n2 − n20·)
and N̂PV1 =

qn1n20·
pn2(n1 − n11·) + qn1n20·

,

for Test 1, and

P̂PV2 =
pn2n1·1

pn2n1·1 + qn1(n2 − n2·0)
and N̂PV2 =

qn1n2·0
pn2(n1 − n1·1) + qn1n2·0

for Test 2, where q = 1− p. Let the variance-covariance matrixes be defined as:

∑ Ŝe =

(
Var

(
Ŝe1
)

Cov
(
Ŝe1, Ŝe2

)
Cov

(
Ŝe1, Ŝe2

)
Var

(
Ŝe2
) )
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and

∑ Ŝp =

(
Var

(
Ŝp1

)
Cov

(
Ŝp1, Ŝp2

)
Cov

(
Ŝp1, Ŝp2

)
Var

(
Ŝp2

) )
.

Let θ = (Se1, Se2, Sp1, Sp2)
T be a vector whose components are the sensitivities and

the specificities, and letω = (PPV1, PPV2, NPV1, NPV2)
T be a vector whose components

are the PVs. The variance-covariance matrix of θ̂ is:

∑ θ̂ =

(
1 0
0 0

)
⊗∑ Ŝe +

(
0 0
0 1

)
⊗∑ Ŝp, (2)

where ⊗ is the Kronecker product. Applying the delta method, the matrix of variances-

covariances of
^
ω is:

∑ ^
ω

=

(
∂ω

∂θ

)
∑̂
θ

(
∂ω

∂θ

)T
. (3)

Expressions of the variances-covariances of the PVs can be seen in Appendix A. The
PVs of each BDT depend on the same parameters, the sensitivity and the specificity of
the test and disease prevalence, and therefore they are related parameters. Consequently,
the PVs of the two BDTs can be compared simultaneously. The global hypothesis test to
simultaneously compare the PVs of the two BDTs is:

H0 : PPV1 = PPV2 and NPV1 = NPV2
H1 : at least one equality is not true,

which is equivalent to the hypothesis test:

H0 : Aω = 0 vs H1 : Aω 6= 0 (4)

where A is a complete range matrix sized 2× 4 whose elements are known constants, i.e.:

A =

(
1 −1 0 0
0 0 1 −1

)
.

As the vector
^
ω is distributed asymptotically according to a multivariate normal

distribution, i.e.,
√

n1 + n2

(
^
ω−ω

)
→

n1+n2→∞
N(0, Σω), then the test statistic for the

global hypothesis test (4) is:

Q2 =
^
ω

T
AT
(

A ˆ∑ ^
ω

AT
)−1

A
^
ω, (5)

which is distributed asymptotically according to Hotelling’s T-squared distribution with a

dimension 2 and n1 + n2 degrees of freedom, where 2 is the dimension of the vector A
^
ω.

When n1 + n2 is large, the statistic Q2 is approximately distributed according to a central
chi-square distribution with 2 degrees of freedom when the null hypothesis is true.

On the other hand, the individual comparison of the positive (negative) predictive
values is solved with the hypothesis test:

H0 : PV1 = PV2 vs H0 : PV1 6= PV2,

where PV is PPV or NPV. Based on the asymptotic normality of the estimators, the test
statistic for this hypothesis test is:

z =
P̂V1 − P̂V2√

V̂ar
(

P̂V1

)
+ V̂ar

(
P̂V2

)
− 2Ĉov

(
P̂V1, P̂V2

) , (6)
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which is distributed asymptotically according to a normal standard distribution, and where
the variances-covariances are obtained from the Equation (3) (see Appendix A).

The global hypothesis test H0 : Aω = 0 simultaneously compares the PPVs and the
NPVs of the two BDTs. Some alternative methods to this global hypothesis test, based
on the individual hypothesis tests, are: (1) testing the hypotheses H0 : PPV1 = PPV2
and H0 : NPV1 = NPV2 (Equation (6)) each one to an α error; (2) testing the hypotheses
H0 : PPV1 = PPV2 and H0 : NPV1 = NPV2 (Equation (6)) and applying a multiple
comparison method such as the Bonferroni method [12] or the Holm method [13], which are
methods that are very easy to apply based on the p-values. Bonferroni method [12] consists
of solving each individual hypothesis test to an error equal to α/2. The Holm method is
a step-down method which is based on Bonferroni method but is more conservative. In
Appendix B, the Holm method [13] is summarized.

3. Simulation Experiments

Simulation experiments were carried out to study the type I errors and the powers of
the four methods proposed to simultaneously compare the predictive values: the global hy-
pothesis test based on the chi-square distribution (Equation (5)), the individual hypothesis
tests each one to an α error (Equation (6)), the individual hypothesis tests (Equation (6)) ap-
plying the Bonferroni method and the individual hypothesis tests (Equation (6)) applying
the Holm method. We have also studied the effect of a misspecification of the prevalence
on the asymptotic behavior of these methods and on the estimators of the PVs.

The experiments were designed setting the values of the PVs. For each BDT, we
took as PVs the values 0.60, 0.65, . . . , 0.90, 0.95, and as disease prevalence we took the
values 10%, 25% and 50%. Based on the PVs and the prevalence, Se and Sp of each BDT
were calculated from the Equation (1), only considering those cases in which the solutions
are between 0 and 1. As values of the correlation coefficients ρ1 and ρ2 we took low
values (25% of the maximum value), intermediate (50% of the maximum value) and high
(75% of the maximum value), where the maximum value of each correlation coefficient is:
max(ρ1) =

min{Se1(1−Se2),(1−Se1)Se2}√
Se1(1−Se1)Se2(1−Se2)

and max(ρ2) =
min{Sp1(1−Sp2),(1−Sp1)Sp2}√

Sp1(1−Sp1)Sp2(1−Sp2)
respectively.

As sample sizes, we took the values ni = (50, 75, 100, 200, 500). The simulation experiments
were carried out with R [14], using the “bindata” package [15] to generate the samples of
each type I bivariate binomial distribution.

Regarding the random samples, these were generated in the following way. Firstly,
once the values of the PVs and of the prevalence were set, we calculated the sensitivities,
the specificities and the maximum values of the coefficients ρ1 and ρ2. We then generated
10,000 random samples from a type I bivariate binomial distribution with a sample size n1,
probabilities Se1 and Se2, and correlation coefficient ρ1. Similarly, we generated another
10,000 random samples from a type I bivariate binomial distribution with a sample size
n2, probabilities Sp1 and Sp2, and correlation coefficient ρ2. In this way, we obtained the
marginal frequencies n11· and n1·1 (n20· and n2·0) of each one of the 10,000 case (control)
samples. The rest of the marginal frequencies were easily calculated: n10· = n1 − n11·,
n1·0 = n1 − n1·1, n21· = n2 − n20· and n2·1 = n2 − n2·0. In order to construct the 2× 2
table of each case sample, we generated a random value n111 from a doubly truncated
binomial distribution of parameters n1 and ξ111 = Se1Se2 + ε1, with n11· + n1·1 − n1 ≤
n111 ≤ min(n11·, n11·). This is necessary so that the sum of the frequencies leads to the
marginal totals randomly generated through the type I bivariate binomial distribution. In
the same way, in order to construct the 2× 2 table of each control sample, we generated a
random value n200 from a doubly truncated binomial distribution of parameters n2 and
ξ200 = Sp1Sp2 + ε2, with n20· + n2·0 − n2 ≤ n200 ≤ min(n20·, n2·0). For each one of the
10,000 case (control) samples, once we have generated the values n11·, n1·1 and n111 (n20·,
n2·0 and n200) it is easy to construct the complete 2 × 2 table. Thus, n110 = n1 − n11·,
n101 = n1·1 − n111 and n100 = n10· − n101 for the case samples, and n201 = n20· − n200,
n210 = n2·0 − n200 and n211 = n21· − n210 for the control samples. For the experiments
α = 5% was set. Moreover, all of the samples were generated in such a way that in all
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of them the parameters and the variances-covariances can be estimated. If in a random
sample it is obtained that ni10 = ni01 = 0, with i = 1, 2, then Ŝei = Ŝpi = 1 and V̂ar

(
Ŝei
)
=

V̂ar
(
Ŝpi
)
= 0, and therefore the test statistic Q2 =

^
ω

T
AT
(

A∑̂ ^
ω

AT
)−1

A
^
ω cannot be

calculated since A∑̂ ^
ω

AT is a non-singular matrix. This problem occurs mainly when the
sample size is small or moderate. In this situation, the sample has been discarded and
another is generated in its place until the 10,000 samples are obtained.

3.1. Type I Errors and Powers

In Tables 2 and 3, we can see some results obtained for the type I errors of the global
test and of the alternative methods proposed in Section 2. In these tables, we can only
see the results for the global test, the individual comparisons with α = 5% and with the
Bonferroni method. The results obtained with the Holm method are not shown as they
are practically the same as those obtained with the Bonferroni method. From the results
obtained we can draw the following conclusions. In general terms, the type I error of the
global hypothesis test fluctuates around the nominal error, especially in the case of samples
sized ni ≥ 100, depending on the prevalence and the correlations between the two BDTs.
For samples with smaller sizes (ni ≤ 75), the type I error of the global test is lower than
α = 5%. The correlations between the two BDTs have an important effect on the type I
error of the global test, with a decrease in the type I error when there is an increase in the
correlation coefficients.

Table 2. Type I errors for PPV1 = PPV2 = 0.70 and NPV1 = NPV2 = 0.95.

Se1 = 0.5385 , Sp1 = 0.9744 , Se2 = 0.5385 , Sp2 = 0.9744 , p = 10%

ρ1 = 0.25 ρ2 = 0.25 ρ1 = 0.50 ρ2 = 0.50 ρ1 = 0.75 ρ2 = 0.75
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.031 0.051 0.029 0.027 0.048 0.027 0.004 0.013 0.004
50 75 0.029 0.059 0.029 0.025 0.051 0.026 0.004 0.017 0.005
50 100 0.028 0.063 0.030 0.029 0.061 0.028 0.008 0.018 0.007
75 75 0.023 0.061 0.026 0.031 0.056 0.028 0.015 0.034 0.017

100 100 0.027 0.063 0.029 0.023 0.052 0.024 0.020 0.043 0.019
200 200 0.044 0.086 0.045 0.032 0.063 0.031 0.025 0.050 0.026
500 500 0.055 0.107 0.056 0.058 0.102 0.057 0.040 0.077 0.039

Se1 = 0.8615 , Sp1 = 0.8769 , Se2 = 0.8615 , Sp2 = 0.8769 , p = 25%

ρ1 = 0.25 ρ2 = 0.25 ρ1 = 0.50 ρ2 = 0.50 ρ1 = 0.75 ρ2 = 0.75
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.048 0.094 0.046 0.018 0.047 0.018 0.001 0.007 0.002
50 75 0.053 0.100 0.051 0.025 0.063 0.026 0.002 0.012 0.003
50 100 0.053 0.106 0.057 0.034 0.076 0.032 0.008 0.023 0.008
75 75 0.059 0.105 0.055 0.039 0.087 0.037 0.007 0.016 0.006

100 100 0.059 0.117 0.059 0.056 0.102 0.054 0.011 0.040 0.010
200 200 0.058 0.099 0.057 0.048 0.094 0.049 0.044 0.090 0.042
500 500 0.052 0.098 0.053 0.051 0.101 0.052 0.049 0.090 0.048

Se1 = 0.9692 , Sp1 = 0.5846 , Se2 = 0.9692 , Sp2 = 0.5846 , p = 50%

ρ1 = 0.25 ρ2 = 0.25 ρ1 = 0.50 ρ2 = 0.50 ρ1 = 0.75 ρ2 = 0.75
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.026 0.049 0.026 0.025 0.061 0.026 0.006 0.017 0.006
50 75 0.020 0.049 0.023 0.019 0.052 0.024 0.007 0.028 0.010
50 100 0.019 0.043 0.023 0.016 0.045 0.019 0.010 0.034 0.014
75 75 0.024 0.065 0.027 0.020 0.051 0.027 0.012 0.038 0.017

100 100 0.028 0.066 0.029 0.021 0.052 0.025 0.012 0.042 0.019
200 200 0.047 0.088 0.044 0.034 0.074 0.032 0.021 0.058 0.026
500 500 0.052 0.099 0.052 0.050 0.097 0.049 0.037 0.077 0.034

Global: global hypothesis test based on the chi-square distribution. α = 5%: individual hypothesis tests each one to an error of 5%. Bonf.:
Bonferroni method.
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Regarding the method based on the individual hypothesis tests H0 : PPV1 = PPV2
and H0 : NPV1 = NPV2 to an error α = 5% each one of them, the type I error may clearly
overwhelm the nominal error (a situation that we have considered when the type I error is
greater than 7%), especially when the correlations are not high. Consequently, this method
may lead to erroneous results (false significances) and, therefore, should not be used. As for
solving the global test from the individual tests applying the Bonferroni (Holm) method,
the type I error has a very similar behavior to that of the global hypothesis test.

Table 3. Type I errors for PPV1 = PPV2 = 0.85 and NPV1 = NPV2 = 0.95.

Se1 = 0.5312 , Sp1 = 0.9896 , Se2 = 0.5312 , Sp2 = 0.9896 , p = 10% , 0 ≤ ρ1 ≤ 1 , 0 ≤ ρ2 ≤ 1

ρ1 = 0.25 ρ2 = 0.25 ρ1 = 0.50 ρ2 = 0.50 ρ1 = 0.75 ρ2 = 0.75
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.033 0.056 0.034 0.020 0.051 0.024 0.004 0.014 0.004
50 75 0.024 0.049 0.024 0.026 0.050 0.025 0.005 0.019 0.006
50 100 0.032 0.057 0.033 0.030 0.056 0.030 0.004 0.016 0.004
75 75 0.034 0.054 0.033 0.025 0.052 0.026 0.014 0.036 0.015

100 100 0.027 0.055 0.026 0.027 0.055 0.026 0.017 0.041 0.017
200 200 0.033 0.059 0.031 0.025 0.050 0.024 0.022 0.055 0.021
500 500 0.046 0.087 0.049 0.031 0.068 0.033 0.018 0.050 0.024

Se1 = 0.85 , Sp1 = 0.95 , Se2 = 0.85 , Sp2 = 0.95 , p = 25% , 0 ≤ ρ1 ≤ 1 , 0 ≤ ρ2 ≤ 1

ρ1 = 0.25 ρ2 = 0.25 ρ1 = 0.50 ρ2 = 0.50 ρ1 = 0.75 ρ2 = 0.75
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.023 0.058 0.022 0.005 0.030 0.007 0.001 0.005 0.001
50 75 0.037 0.077 0.036 0.014 0.039 0.015 0.001 0.008 0.001
50 100 0.049 0.092 0.048 0.022 0.056 0.022 0.001 0.007 0.002
75 75 0.042 0.087 0.041 0.025 0.055 0.025 0.004 0.014 0.004

100 100 0.048 0.095 0.043 0.028 0.066 0.027 0.005 0.025 0.005
200 200 0.033 0.059 0.031 0.025 0.050 0.024 0.022 0.055 0.021
500 500 0.048 0.097 0.046 0.056 0.101 0.051 0.050 0.099 0.049

Se1 = 0.9562 , Sp1 = 0.8312 , Se2 = 0.9562 , Sp2 = 0.8312 , p = 50% , 0 ≤ ρ1 ≤ 1 , 0 ≤ ρ2 ≤ 1

ρ1 = 0.25 ρ2 = 0.25 ρ1 = 0.50 ρ2 = 0.50 ρ1 = 0.75 ρ2 = 0.75
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.031 0.072 0.031 0.014 0.041 0.015 0.001 0.007 0.001
50 75 0.032 0.069 0.033 0.022 0.049 0.022 0.005 0.015 0.005
50 100 0.025 0.057 0.026 0.025 0.064 0.026 0.008 0.025 0.008
75 75 0.038 0.081 0.037 0.027 0.054 0.025 0.006 0.017 0.006

100 100 0.039 0.084 0.038 0.031 0.073 0.030 0.008 0.030 0.009
200 200 0.033 0.059 0.031 0.025 0.050 0.024 0.022 0.055 0.021
500 500 0.051 0.099 0.049 0.050 0.097 0.047 0.043 0.087 0.042

Global: global hypothesis test based on the chi-square distribution. α = 5%: individual hypothesis tests, each one to an error of 5%. Bonf.:
Bonferroni method.

Regarding the powers of the hypothesis tests, in Tables 4 and 5 we can see some of
the results obtained for the global test and other alternative methods. The results obtained
with the Holm method are not shown as they are practically the same as those obtained
with the Bonferroni method. The power of the global hypothesis test is calculated as the
proportion of samples in which it is accepted that PPV1 6= PPV2 or NPV1 6= NPV2 (being
true that PPV1 6= PPV2 or NPV1 6= NPV2). From the results, the following conclusions are
obtained. The disease prevalence has an important effect on the power of each one of the
methods to solve the global test, and the power increases with an increase in the prevalence.
Regarding the correlations ρ1 and ρ2, these do not have a clear effect on the power, and the
power increases sometimes and decreases other times when the correlations increase. In
general terms, when the prevalence is small (p = 10%) we need large samples (ni > 500)
so that the power of the global hypothesis test is greater than 80%; for a prevalence of
25% with sample sizes ni ≥ 200 we obtain a power greater than 80%; and for a very large
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prevalence (p = 50%) with sample sizes ni ≥ 50 we obtain a very higher power, greater
than 80%–90%, depending on the difference between the PVs.

Table 4. Powers for PPV1 = 0.75, NPV1 = 0.95, PPV2 = 0.60 and NPV2 = 0.95.

Se1 = 0.5357 , Sp1 = 0.9802 , Se2 = 0.5455 , Sp2 = 0.9596 , p = 10% , 0 ≤ ρ1 ≤ 0.9805 , 0 ≤ ρ2 ≤ 0.6933

ρ1 = 0.25 ρ2 = 0.17 ρ1 = 0.49 ρ2 = 0.35 ρ1 = 0.74 ρ2 = 0.52
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.025 0.056 0.031 0.023 0.049 0.024 0.005 0.019 0.007
50 75 0.037 0.077 0.036 0.029 0.063 0.030 0.010 0.030 0.011
50 100 0.054 0.103 0.052 0.042 0.084 0.038 0.019 0.046 0.016
75 75 0.038 0.078 0.038 0.032 0.066 0.033 0.018 0.042 0.018

100 100 0.053 0.098 0.047 0.044 0.081 0.037 0.031 0.063 0.026
200 200 0.199 0.276 0.180 0.208 0.286 0.181 0.168 0.252 0.138
500 500 0.495 0.575 0.462 0.591 0.668 0.556 0.720 0.785 0.678

Se1 = 0.8571 , Sp1 = 0.9048 , Se2 = 0.8727 , Sp2 = 0.8061 , p = 25% , 0 ≤ ρ1 ≤ 0.9354 , 0 ≤ ρ2 ≤ 0.6614

ρ1 = 0.23 ρ2 = 0.17 ρ1 = 0.47 ρ2 = 0.33 ρ1 = 0.70 ρ2 = 0.50
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.259 0.335 0.230 0.254 0.345 0.230 0.195 0.334 0.210
50 75 0.409 0.496 0.378 0.454 0.543 0.424 0.467 0.606 0.470
50 100 0.505 0.584 0.462 0.598 0.677 0.556 0.683 0.776 0.675
75 75 0.416 0.498 0.382 0.469 0.557 0.436 0.501 0.608 0.476

100 100 0.528 0.606 0.488 0.625 0.699 0.579 0.718 0.793 0.685
200 200 0.822 0.862 0.790 0.891 0.923 0.873 0.974 0.983 0.964
500 500 0.996 0.999 0.996 1 1 1 1 1 1

Se1 = 0.9643 , Sp1 = 0.6786 , Se2 = 0.9818 , Sp2 = 0.3455 , p = 50% , 0 ≤ ρ1 ≤ 0.7071 , 0 ≤ ρ2 ≤ 0.50

ρ1 = 0.18 ρ2 = 0.13 ρ1 = 0.35 ρ2 = 0.25 ρ1 = 0.53 ρ2 = 0.38
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.890 0.939 0.893 0.935 0.969 0.941 0.977 0.989 0.978
50 75 0.978 0.990 0.977 0.995 0.997 0.993 0.999 0.999 0.999
50 100 0.995 0.998 0.995 0.999 0.998 0.999 1 1 1
75 75 0.984 0.992 0.983 0.995 0.999 0.994 0.999 1 0.999

100 100 0.998 0.999 0.998 1 1 0.999 1 1 1
200 200 1 1 1 1 1 1 1 1 1
500 500 1 1 1 1 1 1 1 1 1

Global: global hypothesis test based on the chi-square distribution. α = 5%: individual hypothesis tests, each one to an error of 5%. Bonf.:
Bonferroni method.

The power of the method based on the individual hypothesis tests to an error α = 5%
is greater than that of the global test based on the chi-square distribution due to the fact
that its type I error is also greater. Regarding the hypothesis test based on the individual
tests with the Bonferroni method, in general terms, its power is very similar to that of the
global test when the sample sizes are large. When the sample sizes are small or moderate,
in general terms and depending on prevalence and correlations, the power of the global
test is slightly greater than that of the individual tests with the Bonferroni method. The
same conclusions are obtained when the Holm method is applied (whose results are almost
identical to those of the Bonferroni method).
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Table 5. Powers for PPV1 = 0.95 NPV1 = 0.95, PPV2 = 0.75 and NPV2 = 0.95.

Se1 = 0.5278 , Sp1 = 0.9969 , Se2 = 0.5357 , Sp2 = 0.9802 , p = 10% , 0 ≤ ρ1 ≤ 0.9841 , 0 ≤ ρ2 ≤ 0.3910

ρ1 = 0.25 ρ2 = 0.10 ρ1 = 0.49 ρ2 = 0.19 ρ1 = 0.74 ρ2 = 0.29
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.030 0.059 0.030 0.019 0.048 0.020 0.007 0.019 0.008
50 75 0.031 0.063 0.032 0.023 0.054 0.023 0.009 0.024 0.009
50 100 0.033 0.064 0.033 0.030 0.063 0.030 0.010 0.031 0.009
75 75 0.033 0.057 0.032 0.025 0.055 0.025 0.015 0.036 0.015

100 100 0.034 0.067 0.033 0.026 0.059 0.026 0.026 0.054 0.026
200 200 0.123 0.182 0.094 0.122 0.177 0.095 0.108 0.168 0.078
500 500 0.666 0.770 0.662 0.669 0.781 0.667 0.699 0.811 0.696

Se1 = 0.8444 , Sp1 = 0.9852 , Se2 = 0.8571 , Sp2 = 0.9048 , p = 25% , 0 ≤ ρ1 ≤ 0.9511 , 0 ≤ ρ2 ≤ 0.3779

ρ1 = 0.24 ρ2 = 0.09 ρ1 = 0.48 ρ2 = 0.19 ρ1 = 0.71 ρ2 = 0.28
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.172 0.247 0.142 0.154 0.234 0.127 0.107 0.198 0.097
50 75 0.422 0.537 0.396 0.398 0.521 0.378 0.365 0.541 0.367
50 100 0.627 0.734 0.615 0.641 0.755 0.638 0.674 0.779 0.653
75 75 0.434 0.549 0.400 0.432 0.555 0.410 0.402 0.552 0.391

100 100 0.635 0.753 0.634 0.655 0.774 0.656 0.666 0.796 0.683
200 200 0.965 0.981 0.964 0.977 0.987 0.974 0.989 0.994 0.988
500 500 1 1 1 1 1 1 1 1 1

Se1 = 0.95 , Sp1 = 0.95 , Se2 = 0.9643 , Sp2 = 0.6786 , p = 50% , 0 ≤ ρ+ ≤ 0.8388 , 0 ≤ ρ− ≤ 0.3333

ρ1 = 0.21 ρ2 = 0.08 ρ1 = 0.42 ρ2 = 0.17 ρ1 = 0.63 ρ2 = 0.25
n1 n2 Global α = 5% Bonf. Global α = 5% Bonf. Global α = 5% Bonf.
50 50 0.929 0.969 0.942 0.954 0.983 0.966 0.965 0.992 0.978
50 75 0.994 0.998 0.995 0.999 0.999 0.999 0.999 1 0.999
50 100 1 1 1 1 1 1 1 1 1
75 75 0.995 0.998 0.995 0.997 0.999 0.998 1 1 1

100 100 1 1 1 1 1 1 1 1 1
200 200 1 1 1 1 1 1 1 1 1
500 500 1 1 1 1 1 1 1 1 1

Global: global hypothesis test based on the chi-square distribution. α = 5%: individual hypothesis tests, each one to an error of 5%. Bonf.:
Bonferroni method.

The graphs in Figure 1 show the powers of the three methods when PPV1 = 0.90,
NPV1 = (0.80, 0.85, 0.90, 0.95), PPV2 = 0.85 and NPV2 = 0.90, for different sample sizes
n1 = n2 = (50, 100, 200), p = (25%, 50%) and values intermediate of the correlation
coefficients. These graphs show that when NPV1 varies and the rest of the PVs are constant,
the powers decrease when the prevalence increases. Similarly, the graphs in Figure 2
show the powers of the three methods when PPV1 = (0.80, 0.85, 0.90, 0.95), NPV1 = 0.95,
PPV2 = 0.60 and NPV2 = 0.95, for different sample sizes n1 = n2 = (50, 100, 200),
p = (10%, 25%) and values intermediate of the correlation coefficients. These graphs show
that when the PPV1 varies and the rest of the PVs are constant, the power of each method
increases when the prevalence increases.

As conclusions of the results obtained in the simulation experiments, the global
hypothesis test based on the chi-square distribution behaves well in terms of the type I
error (it does not overwhelm the nominal error of 5%), the same as the individual tests
along with the Bonferroni (Holm) method. The method based on the individual tests to a
global error α = 5% should not be used as it may clearly overwhelm the nominal error.

In the simulation experiments, the proportion of times that PPV1 6= PPV2 and that
NPV1 6= NPV2 are correctly concluded has also been studied. This issue is of special
interest when the alternative hypothesis of the global test is true, as it can be a valid
method to investigate the causes of significance. The study was carried out by applying the
individual hypothesis tests together with the Bonferroni (Holm) method. Individual tests to
an α error have not been considered as they have a type I error that can exceed the nominal
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error. If it is verified that PV1 6= PV2, then this study is equivalent to studying the power
of the individual test H0 : PV1 = PV2 to an α/2 error (since the Bonferroni method has
been applied), where PVi is PPVi or NPVi. If it is verified that PV1 = PV2 then this study
is equivalent to studying the type I error of the individual test H0 : PV1 = PV2 to an α/2
error. In the scenarios considered in Tables 4 and 5 it is verified that PPV1 6= PPV2 and that
NPV1 = NPV2. Therefore, for these two scenarios, the power of the test H0 : PPV1 = PPV2
and the type I error of the test H0 : NPV1 = NPV2 have been studied, each with an error
equal to α/2 = 2.5%. Tables 6 and 7 show the results obtained applying the Bonferroni
method. The results obtained with the Holm method are not shown as they are practically
the same as those obtained with the Bonferroni method.

Figure 1. Powers of the three methods when the negative predictive value (NPV) of a binary diagnostic test varies and the
rest of the PVs are constant.
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In general terms, the hypothesis test H0 : PPV1 = PPV2 has a high power when
the sample sizes are moderate or high, depending on the prevalence and the correlation
coefficients. Its behavior is very similar to that of the global hypothesis test. With respect
to the test H0 : NPV1 = NPV2, its type I error fluctuates around the nominal error
(2.5%) when the sample sizes are moderate or large, depending on the prevalence of
the correlation coefficients. In general terms, the hypothesis tests H0 : PPV1 = PPV2
and H0 : NPV1 = NPV2 have a good asymptotic behavior, both in terms of power and
type I error.
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Table 6. Power of the test H0 : PPV1 = PPV2 and type I error of the test H0 : NPV1 = NPV2 when PPV1 = 0.75,
NPV1 = 0.95, PPV2 = 0.60 and NPV2 = 0.95.

Se1 = 0.5357 , Sp1 = 0.9802 , Se2 = 0.5455 , Sp2 = 0.9596 , p = 10% , 0 ≤ ρ1 ≤ 0.9805 , 0 ≤ ρ2 ≤ 0.6933

ρ1 = 0.25 ρ2 = 0.17 ρ1 = 0.49 ρ2 = 0.35 ρ1 = 0.74 ρ2 = 0.52
n1 n2 Power Type I error Power Type I error Power Type I error
50 50 0.001 0.030 0.001 0.024 0.001 0.007
50 75 0.007 0.029 0.004 0.027 0.002 0.001
50 100 0.021 0.029 0.013 0.027 0.008 0.009
75 75 0.008 0.031 0.005 0.030 0.003 0.018

100 100 0.026 0.026 0.017 0.026 0.010 0.021
200 200 0.160 0.024 0.159 0.028 0.119 0.024
500 500 0.449 0.026 0.544 0.023 0.672 0.020

Se1 = 0.8571 , Sp1 = 0.9048 , Se2 = 0.8727 , Sp2 = 0.8061 , p = 25% , 0 ≤ ρ1 ≤ 0.9354 , 0 ≤ ρ2 ≤ 0.6614

ρ1 = 0.23 ρ2 = 0.17 ρ1 = 0.47 ρ2 = 0.33 ρ1 = 0.70 ρ2 = 0.50
n1 n2 Power Type I error Power Type I error Power Type I error
50 50 0.211 0.025 0.223 0.011 0.210 0.002
50 75 0.346 0.021 0.420 0.008 0.470 0.002
50 100 0.448 0.026 0.551 0.010 0.675 0.001
75 75 0.352 0.030 0.435 0.020 0.479 0.005

100 100 0.472 0.027 0.559 0.025 0.683 0.010
200 200 0.785 0.023 0.870 0.027 0.961 0.019
500 500 0.996 0.024 0.999 0.026 1 0.027

Se1 = 0.9643 , Sp1 = 0.6786 , Se2 = 0.9818 , Sp2 = 0.3455 , p = 50% , 0 ≤ ρ1 ≤ 0.7071 , 0 ≤ ρ2 ≤ 0.50

ρ1 = 0.18 ρ2 = 0.13 ρ1 = 0.35 ρ2 = 0.25 ρ1 = 0.53 ρ2 = 0.38
n1 n2 Power Type I error Power Type I error Power Type I error
50 50 0.893 0.003 0.941 0.002 0.980 0.001
50 75 0.977 0.003 0.991 0.002 0.999 0.001
50 100 0.990 0.002 0.999 0.002 1 0.001
75 75 0.983 0.005 0.993 0.002 1 0.003

100 100 0.997 0.005 1 0.004 1 0.002
200 200 1 0.012 1 0.006 1 0.007
500 500 1 0.024 1 0.024 1 0.019

From the results obtained in the simulation experiments, we propose the following
method to compare the PVs of two BDTs subject to a case-control design: (1) Applying
the global hypothesis test based on the chi-square distribution (Equation (5)) to an α error;
(2) If the global hypothesis test is not significant, the equality hypothesis of the PVs is
not rejected; if the global hypothesis test is significant to an α error, the investigation of
the causes of the significance is made by testing the individual tests (Equation (6)) and
applying the Bonferroni method or the Holm method to an α error. Therefore, if the global
test is significant, the investigation of the significance consists in solving the individual
hypothesis tests H0 : PPV1 = PPV2 and H0 : NPV1 = NPV2, each of them to an α/2 error
(Bonferroni method) or applying Holm method.

This method to simultaneously compare the PVs is very similar to other methods used
in other statistical models, such as the analysis of variance: first the global test is resolved
to an α error, and if it is significant then the causes of significance are investigated from
pairwise comparisons and the application of a multiple comparison method.
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Table 7. Power of the test H0 : PPV1 = PPV2 and type I error of the test H0 : NPV1 = NPV2 PPV1 = 0.95, NPV1 = 0.95,
PPV2 = 0.75 and NPV2 = 0.95.

Se1 = 0.5278 , Sp1 = 0.9969 , Se2 = 0.5357 , Sp2 = 0.9802 , p = 10% , 0 ≤ ρ1 ≤ 0.9841 , 0 ≤ ρ2 ≤ 0.3910

ρ1 = 0.25 ρ2 = 0.10 ρ1 = 0.49 ρ2 = 0.35 ρ1 = 0.74 ρ2 = 0.29
n1 n2 Power Type I error Power Type I error Power Type I error
50 50 0.001 0.030 0.001 0.024 0 0.006
50 75 0.002 0.032 0.002 0.027 0.001 0.008
50 100 0.005 0.031 0.003 0.027 0.002 0.008
75 75 0.002 0.032 0.001 0.026 0.001 0.017

100 100 0.010 0.030 0.006 0.022 0.005 0.023
200 200 0.071 0.027 0.068 0.028 0.056 0.022
500 500 0.654 0.025 0.678 0.028 0.693 0.025

Se1 = 0.8444 , Sp1 = 0.9852 , Se2 = 0.8571 , Sp2 = 0.9048 , p = 25% , 0 ≤ ρ1 ≤ 0.9511 , 0 ≤ ρ2 ≤ 0.3779

ρ1 = 0.24 ρ2 = 0.09 ρ1 = 0.48 ρ2 = 0.19 ρ1 = 0.71 ρ2 = 0.28
n1 n2 Power Type I error Power Type I error Power Type I error
50 50 0.120 0.025 0.118 0.012 0.097 0.001
50 75 0.378 0.028 0.371 0.012 0.376 0.001
50 100 0.604 0.026 0.634 0.012 0.652 0.001
75 75 0.382 0.027 0.396 0.022 0.388 0.005

100 100 0.622 0.031 0.644 0.026 0.679 0.012
200 200 0.963 0.025 0.974 0.024 0.987 0.026
500 500 1 0.028 1 0.024 1 0.024

Se1 = 0.95 , Sp1 = 0.95 , Se2 = 0.9643 , Sp2 = 0.6786 , p = 50% , 0 ≤ ρ1 ≤ 0.8388 , 0 ≤ ρ2 ≤ 0.3333

ρ1 = 0.21 ρ2 = 0.08 ρ1 = 0.42 ρ2 = 0.17 ρ1 = 0.63 ρ2 = 0.25
n1 n2 Power Type I error Power Type I error Power Type I error
50 50 0.942 0.002 0.965 0.001 0.978 0
50 75 0.995 0.003 0.999 0 0.997 0
50 100 1 0.002 1 0.002 1 0
75 75 0.996 0.006 0.997 0.003 0.999 0

100 100 1 0.010 1 0.006 1 0.002
200 200 1 0.029 1 0.015 1 0.010
500 500 1 0.026 1 0.024 1 0.024

3.2. Effect of the Prevalence

The estimation and comparison of the PVs of two BDTs subject to a case-control design
requires knowledge of the disease prevalence. To study the effect of a misspecification of
the prevalence on the comparison of the PVs and on the estimators of the PVs, we carried
out simulation experiments similar to those made to study the type I errors and the powers.
For this purpose, we took as the prevalence for the inference a misspecification equal to
10% and to 20% of the value of the prevalence set, and we have studied the type I errors
and the powers of the global test and of the Bonferroni and Holm methods, and the relative
root mean square error (RRMSE) of the estimator of each PVs. Thus, for each estimator we
calculated the relative root mean square error (RRMSE), i.e.,

RRMSE
(

P̂Vi

)
=

√
1
N

N
∑

k=1

(
P̂Vik − PVi

)2

PVi
,

where PVi is the PPV or the NPV of the ith BDT (i = 1, 2) and P̂Vik is its estimator calculated
from the kth sample (k = 1, . . . , N), and N = 10, 000. For the values of the parameters
we took as prevalence p = (10%, 25%, 50%) respectively, and to estimate the PVs we took
as prevalence p′ = p± d× p with d = (10%, 20%). A value d = 10% (d = 20%) can be
considered as a small (moderate) value of the relative deviation.

Table 8 shows some of the results obtained for the type I errors and the powers of the
global test and the Bonferroni method (the results of the Holms method are not shown
as they are practically identically to those obtained with the Bonferroni method). In this
Table we show the results when there is no misspecification of the prevalence (p′ = p) and
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when there is a misspecification of the prevalence (p′ < p or p′ > p). From the results
of these experiments, it is verified that the type I errors of the methods studied do not
overwhelm the nominal error (α = 5%). In general terms there are no important differences
between the type I errors when there is a misspecification of the prevalence and when there
is not. Regarding the powers, the conclusions are also very similar, there are no important
differences between the powers when there is a misspecification of the prevalence and
when there is not.

Regarding the estimators, Table 8 shows some of the results obtained for the RRMSEs
(in %) of the estimators of the PVs of Test 1 (the results for Test 2 are identical). In general
terms, the difference between the RRMSEs is small (around 5% or less, in absolute value)
when the two sample sizes are moderate (ni = 100) or large (ni ≥ 200) and the relative
deviation is small (10%) or moderate (20%). Therefore, a small or moderate misspecification
of the prevalence (p′ < p or p′ > p) does not have an important effect on the estimators of
the PVs when the samples are moderate or large. Additionally, there is not an important
difference between the RRMSEs when the sample sizes are small (ni ≤ 75) and the relative
deviation is small. However, the difference between the RRMSEs is larger when the sample
sizes are small and the relative deviation is moderate. In this situation, a misspecification
of the prevalence has an important effect on the estimators of the PVs.

Table 8. Effect of a misspecification of the prevalence.

Type I errors

PPV1 = PPV2 = 0.90 , NPV1 = NPV2 = 0.80
Se1 = 0.2571 , Sp1 = 0.9905 , Se2 = 0.2571 , Sp2 = 0.9905 , p = 25% , ρ1 = 0.75 , ρ2 = 0.75
p′ = p = 25% p′ = 20% p′ = 22.50% p′ = 27.50% p′ = 30%

n1 n2 Global Bonf. Global Bonf. Global Bonf. Global Bonf. Global Bonf.
50 50 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001
50 75 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002
50 100 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003
75 75 0.003 0.007 0.003 0.008 0.003 0.008 0.003 0.007 0.003 0.007
100 100 0.006 0.010 0.006 0.011 0.006 0.011 0.006 0.009 0.006 0.009
200 200 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.019 0.010 0.019
500 500 0.020 0.024 0.020 0.024 0.020 0.024 0.020 0.023 0.020 0.023

Powers

PPV1 = 0.95 , PPV2 = 0.75 , NPV1 = 0.95 , NPV2 = 0.95
Se1 = 0.8444 , Sp1 = 0.9852 , Se2 = 0.8571 , Sp2 = 0.9048 , p = 25% , ρ1 = 0.71 , ρ2 = 0.28
p′ = p = 25% p′ = 20% p′ = 22.50% p′ = 27.50% p′ = 30%

n1 n2 Global Bonf. Global Bonf. Global Bonf. Global Bonf. Global Bonf.
50 50 0.172 0.142 0.145 0.139 0.143 0.135 0.142 0.121 0.139 0.117
50 75 0.422 0.396 0.381 0.382 0.385 0.382 0.374 0.380 0.375 0.379
50 100 0.647 0.615 0.600 0.587 0.627 0.604 0.616 0.614 0.598 0.596
75 75 0.434 0.400 0.414 0.396 0.415 0.396 0.397 0.394 0.390 0.390
100 100 0.635 0.634 0.618 0.604 0.632 0.612 0.639 0.620 0.623 0.615
200 200 0.965 0.964 0.941 0.931 0.951 0.952 0.958 0.956 0.942 0.933
500 500 1 1 1 1 1 1 1 1 1 1

RRMSEs of the estimators of PVs of Test 1

PPV1 = PPV2 = 0.90 , NPV1 = NPV2 = 0.80
Se1 = 0.2571 , Sp1 = 0.9905 , Se2 = 0.2571 , Sp2 = 0.9905 , p = 25% , ρ1 = 0.75 , ρ2 = 0.75
p′ = p = 25% p′ = 20% p′ = 22.50% p′ = 27.50% p′ = 30%

n1 n2 P̂PVi N̂PVi P̂PVi N̂PVi P̂PVi N̂PVi P̂PVi N̂PVi P̂PVi N̂PVi
50 50 27.4 1.8 36.6 5.5 31.8 2.6 29.3 3.8 34.5 6.4
50 75 20.5 1.7 27.0 5.1 23.5 2.8 21.9 3.6 25.5 6.1
50 100 16.1 1.7 21.9 5.2 18.8 2.9 17.8 3.5 21.1 6.0
75 75 20.1 1.4 26.5 5.1 23.1 2.6 21.4 3.5 24.1 6.1
100 100 15.4 1.2 19.2 4.9 18.1 2.5 16.1 3.3 18.6 5.9
200 200 8.0 0.9 11.7 4.7 9.9 2.4 8.7 3.0 10.2 5.6
500 500 4.4 0.5 7.1 4.1 5.4 2.2 4.9 2.8 5.7 5.5

Global: global hypothesis test based on the chi-square distribution. Bonf.: Bonferroni method.
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4. Example

The results obtained have been applied to the diagnosis of coronary heart disease,
using an electrocardiogram and an echocardiography as diagnostic tests. Both tests have
been applied to a sample of 105 older men with coronary heart disease (case sample) and
to another sample of 120 older men without this disease (control sample). In Table 9 we
can see the frequencies obtained, where the random variable T1 models the result of the
electrocardiogram and the variable T2 models the result of the echocardiography. In order
to illustrate the method proposed, we are going to consider that the prevalence of the
disease in older men is 5%. The objective is to compare the clinical accuracy (PVs) of both
BDTs in the population whose prevalence of coronary heart disease is 5%. The comparison
of the PVs will be made with α = 5%.

Table 9. Diagnosis of coronary heart disease.

Observed Frequencies

Case Control
T2 = 1 T2 = 0 Total T2 = 1 T2 = 0 Total

T1 = 1 77 10 87 T1 = 1 4 2 6
T1 = 0 6 12 18 T1 = 0 13 101 114
Total 83 22 105 Total 17 103 120

From the case sample, the estimates of the two sensitivities (and their standard
errors, SE) and of the correlation coefficient between them are Ŝe1 ± SE = 0.829± 0.037,
Ŝe1 ± SE = 0.790± 0.040 and ρ̂1 = 0.511. From the control sample, the estimates of the two
specificities and of the correlation coefficient between them are Ŝp1 ± SE = 0.950± 0.020,
Ŝe1 ± SE = 0.858± 0.032 and ρ̂2 = 0.345. Assuming that the prevalence of coronary heart
disease is 5%, the estimates of the PVs are:

P̂PV1 = 0.05×0.829
0.05×0.829+(1−0.05)×(1−0.950) = 0.466,

P̂PV2 = 0.05×0.790
0.05×0.790+(1−0.05)×(1−0.858) = 0.227,

N̂PV1 = (1−0.05)×0.950
0.05×(1−0.829)+(1−0.05)×0.950 = 0.991

and

N̂PV2 =
(1− 0.05)× 0.858

0.05× (1− 0.790) + (1− 0.05)× 0.858
= 0.987.

Applying the delta method (Equation (3)), the estimated variance-covariance matrix
of the estimators of the PVs is:

ˆ∑ ^
ω

=


0.009926 0.001398 0.000041 0.000029
0.001398 0.001632 0.000012 0.000039
0.000041 0.000012 0.000004 0.000002
0.000029 0.000039 0.000002 0.000006

.

Applying Equation (5), the value of the test statistic for the global test:

H0 : PPV1 = PPV2 and NPV1 = NPV2
H1 : at least one equality is not true,

is Q2 = 7.516 and the p-value is 0.023, and therefore the null hypothesis of the global test is
rejected. Testing the individual hypothesis tests it is found that the value of the test statistic
for H0 : PPV1 = PPV2 is equal to 2.552 (two sided p-value is 0.011) and that the value of the
test statistic for H0 : NPV1 = NPV2 is equal to 1.469 (two sided p-value is 0.142). Applying
the Bonferroni (or Holm) method, the hypothesis of equality of the positive predictive
values is rejected and the hypothesis of equality of the negative predictive values is not
rejected. Therefore, in a population in which the prevalence of coronary heart disease is
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5%, the positive predictive value of electrocardiogram is significantly greater than that of
the echocardiography (95% confidence interval for the difference: 0.056 to 0.422), while
there are no significant differences between the two negative predictive values.

5. More Than Two BDTs

Let us consider that J BDTs (J ≥ 3) are applied to all of the individuals in the case
sample and the control sample. For each BDT we define the random variable Tj in a
similar way to how this was done in Section 2. Let Sej and Spj be the sensitivity and
the specificity of the jth BDT, with j = 1, . . . , J. Let n1i1 ...iJ be the number of individuals
with the disease for whom T1 = i1, . . . , TJ = iJ , with ij = 1 when the result of the jth
BDT is positive and ij = 0 when it is negative. In a similar way, n2i1 ...iJ is the number
of without the disease for whom T1 = i1, . . . , TJ = iJ . Let us consider the probabilities
ξhi1,...,iJ = P

(
T1 = i1, T2 = i2, . . . , TJ = iJ

)
, with h = 1, 2. Thus, for example for three BDTs,

using the dependence model of Torrance–Rynard and Walter [16], these probabilities are:

ξ1i1i2i3 =
3

∏
j=1

Se
ij
j
(
1− Sej

)1−ij +
3

∑
j,k,j<k

(−1)|ij−ik |ε1jk

and

ξ2i1i2i3 =
3

∏
j=1

Sp
1−ij
j
(
1− Spj

)ij +
3

∑
j,k,j<k

(−1)|ij−ik |ε2jk,

with ij = 0, 1, ik = 0, 1 and j, k = 1, 2, 3, and where ε1jk (ε2jk) is the covariance between
the jth BDT and the kth BDT for individuals with the disease (without the disease). The
estimators of these probabilities are ξ̂hi1 ...iJ = nhi1 ...iJ /nh, with h = 1, 2. The sensitivity and
the specificity of the jth BDT are:

Sej =
1

∑
i1, . . . , iJ = 0

ij = 1

ξ1i1,...,iJ and Spj =
1

∑
i1, . . . , iJ = 0

ij = 0

ξ2i1,...,iJ ,

and its estimators are:

Ŝej =

1
∑

i1, . . . , iJ = 0
ij = 1

n1i1,...,iJ

n1
and Ŝpj =

1
∑

i1, . . . , iJ = 0
ij = 0

n2i1,...,iJ

n2
.

The estimators of the variances-covariances of these estimators are V̂ar
(
Ŝej
)

=

Ŝej
(
1− Ŝej

)
/n1, V̂ar

(
Ŝpj
)
= Ŝpj

(
1− Ŝpj

)
/n2, Ĉov

(
Ŝej, Ŝek

)
= ε̂1jk/n1 and Ĉov

(
Ŝpj, Ŝpk

)
= ε̂2jk/n2, and the rest of the covariances are equal to zero. The estimators of the PVs of
the jth BDT are:

P̂PVj =

pn2
1
∑

i1, . . . , iJ = 0
ij = 1

n1i1,...,iJ

pn2
1
∑

i1, . . . , iJ = 0
ij = 1

n1i1,...,iJ + qn1
1
∑

i1, . . . , iJ = 0
ij = 1

n2i1,...,iJ



Mathematics 2021, 9, 658 18 of 22

and

N̂PVj =

qn1
1
∑

i1, . . . , iJ = 0
ij = 0

n2i1,...,iJ

qn1
1
∑

i1, . . . , iJ = 0
ij = 0

n2i1,...,iJ + pn2
1
∑

i1, . . . , iJ = 0
ij = 0

n1i1,...,iJ

,

where p is the disease prevalence and q = 1− p.
Let θ =

(
Se1, . . . , SeJ , Sp1, . . . , SpJ

)T be the vector whose components are the sensitiv-
ities and the specificities, and letω =

(
PPV1, . . . , PPVJ , NPV1, . . . , NPVJ

)T be the vector
whose components are the PVs. The variance-covariance matrix of the vector θ̂, with a
dimension 2J × 2J, is similar to that given in Equation (2), where ∑Ŝe and ∑Ŝp are matrixes

with a dimension J × J. Applying the delta method, the variance-covariance matrix of
^
ω,

with a dimension 2J × 2J, has an expression similar to that given in Equation (3). The PVs
of each one of the J BDTs depend on the same parameters (the sensitivity and the specificity
of the jth diagnostic test) and, therefore, these parameters can be compared simultaneously.
The global hypothesis test to simultaneously compare the PVs of the J BDTs is:

H0 : PPV1 = PPV2 = . . . = PPVJ and NPV1 = NPV2 = . . . = NPVJ
H1 : at least one equality is not true,

which is equivalent to the hypothesis test:

H0 : Aω = 0 vs H1 : Aω 6= 0,

where A is a matrix with a dimension 2(J − 1)× 2J, i.e.,

A =

(
A1 A0
A0 A1

)
.

A0 is a matrix with a dimension (J − 1) × J whose elements are all equal to 0,
and A1 is a matrix with a dimension (J − 1) × J where each component (i, i) is equal
to 1, each element (i, i + 1) is equal to −1 for i = 1, . . . , J − 1, and the rest of the el-
ements in this matrix are equal to 0. Applying the multivariate central limit theorem

it is verified that
√

n1 + n2

(
^
ω−ω

)
→

n1+n2→∞
N2J(0, Σω). Then, the statistic Q2 =(

^
ωA

)T(
A∑̂ ^

ω
AT
)−1

A
^
ω is distributed according to Hotelling’s T-squared distribution

with a dimension 2(J − 1) and n1 + n2 degrees of freedom, where 2(J − 1) is the dimension

of the vector A
^
ω. When n1 + n2 is large, the statistic Q2 is distributed according to a central

chi-squared distribution with 2(J − 1) degrees of freedom when the null hypothesis is
true, i.e.,

Q2 =

(
^
ωA

)T(
A ˆ∑ ^

ω
AT
)−1

A
^
ω →

n→∞
χ2

2(J−1).

Finally, the method to compare the PVs of the J BDTs would consist of the following
steps: (1) Solve the global hypothesis test to an α error calculating the statistic Q2 =(

^
ωA

)T(
A∑̂ ^

ω
AT
)−1

A
^
ω based on the chi-squared distribution; (2) if the global test is

not significant to an α error then we do not reject the homogeneity of the J PVs, but if the
hypothesis test is significant then the causes of significance are investigated comparing
the PPVs (NPVs) in pairs (Equation (6)) and applying a multiple comparison method
(e.g., Bonferroni or Holm).
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6. Discussion

The comparison of the positive and negative predictive values of two binary diagnostic
tests is an important topic in the study of statistical methods in diagnostic medicine.
Subject to a paired design, this topic has been subject to different studies. In this article
we studied the simultaneous comparison of the predictive values of two diagnostic tests
subject to a case-control design, analyzing and comparing several methods. These methods
consisted of a global test based on the chi-square distribution, a method based on the
individual comparisons each one to an α error, and other two methods based on individual
comparisons along with a multiple comparison method. The multiple comparison methods
that were used were the Bonferroni method and the Holm method, which are methods
based on the p-values of the individual hypothesis tests and are very easy to apply. The
methods studied to compare the predictive values require knowing the prevalence of the
disease. The prevalence can be known from other studies, such as population studies of
health services, cohort studies, etc. If the researcher has a great uncertainty about the value
of the prevalence, the problem can be solved by using several values for the prevalence
and then analyzing and comparing the results obtained.

Simulation experiments were carried out to study the type I errors and the powers of
the four methods proposed. These experiments were based on the generation of random
samples with type I bivariate binomial distributions, which are the distributions that
are inherent to case-control design, since proportions of marginal totals are estimated
from these samples. The results have shown that the global hypothesis test based on the
chi-square distribution behaves well in terms of type I error, and does not overwhelm
the nominal error. Regarding its power, in general this strongly depends on the disease
prevalence, and it is necessary to have very large samples when the prevalence is small and
relatively small sample sizes when the prevalence is high, so that the power will be high.

Based on the results of the simulation experiments, a method has been proposed
to compare the predictive values of two diagnostic tests subject to a case-control design.
This method, which is similar to that proposed by Roldán-Nofuentes et al. [8], consists
of the following steps: (1) Simultaneously comparing the predictive values applying the
global hypothesis test based on the chi-square distribution to an α error; (2) if the global
hypothesis test is not significant, then the equality hypothesis of the PVs is not rejected.
If the global hypothesis test is significant to an α error, then the causes of the significance
are studied solving the individual hypothesis tests and applying the Bonferroni method or
the Holm method to an α error. This procedure that we propose is similar to the analysis
of variance: firstly, the global test is solved and, if this is significant, then the causes of
the significance are studied starting with paired comparisons along with some multiple
comparison method.

Simulation experiments were carried out to study the effect of a misspecification of the
prevalence in the asymptotic behavior of the global hypothesis test based on the chi-square
distribution and on the methods based on multiple comparisons. In general terms, we
can conclude that a small or moderate misspecification of the prevalence do not have an
important effect on the behavior of these hypothesis tests, especially when the sample sizes
are moderate or large.

The global hypothesis test was extended to the situation in which we simultaneously
compare the PVs of more than two BDTs, and for this we propose a method which is
similar to that proposed for two BDTs. To be able to calculate the global test statistic

Q2 =

(
^
ωA

)T(
A∑̂ ^

ω
AT
)−1

A
^
ω it is necessary that A∑̂ ^

ω
AT to be non-singular. For two

BDTs, this matrix is non-singular when it is verified that ni10 + ni01 > 0, with i = 1, 2.
If ni10 = ni01 = 0 then the method proposed to compare the PVs cannot be applied A
solution to this problem consists in adding the value 0.5 to all the observed frequencies
(the sample size increases by two units), a very frequent solution in the analysis of 2× 2
tables. Simulation experiments have been carried out to study the type I errors and the
powers of the hypothesis tests proposed in Section 2, using this solution when in a sample
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it is verified that ni10 = ni01 = 0. These experiments have been designed in a similar way
to those performed in Section 3. Table 10 shows some results (type I errors and powers)
for some of the scenarios considered in Section 3, as well as the average proportions (of
the three correlation scenarios) of case (control) samples in which the value 0.5 has been
added. Obviously, the proportion of samples in which the value 0.5 has been added is
greater when the sample size is small. In general terms, the conclusions are the same as
those obtained in the simulation experiments presented in Section 3, although the powers
of all hypothesis tests are slightly lower when the sample sizes are small. Therefore, adding
0.5 to all the observed frequencies of a sample in which ni10 = ni01 = 0 is an adequate
solution to be able to apply the PVs comparison method.

Table 10. Type I errors and powers when 0.5 is added to the samples in which ni10 = ni01 = 0.

Type I Errors

PPV1 = PPV2 = 0.70 , NPV1 = NPV2 = 0.95
Se1 = 0.5385 , Sp1 = 0.9744 , Se2 = 0.5385 , Sp2 = 0.9744 , p = 10%

ρ1 = 0.25ρ2 = 0.25 ρ1 = 0.50ρ2 = 0.50 ρ1 = 0.75ρ2 = 0.75

n1 n2 P1 P2 Global α =
5% Bonf. Global α =

5% Bonf. Global α =
5% Bonf.

50 50 3.3 78.1 0.028 0.065 0.030 0.023 0.056 0.025 0.012 0.040 0.015
50 75 3.1 63.7 0.038 0.075 0.039 0.026 0.060 0.026 0.012 0.041 0.014
50 100 2.7 51.9 0.047 0.096 0.046 0.035 0.074 0.037 0.011 0.041 0.015
75 75 0.4 64.3 0.037 0.074 0.037 0.026 0.062 0.027 0.015 0.045 0.019

100 100 0.1 51.8 0.040 0.085 0.038 0.032 0.090 0.034 0.021 0.048 0.023
200 200 0 22.7 0.061 0.104 0.060 0.045 0.088 0.042 0.024 0.055 0.025
500 500 0 2.8 0.052 0.099 0.0524 0.056 0.101 0.048 0.044 0.094 0.045

Powers

PPV1 = 0.75 , PPV2 = 0.60 , NPV1 = 0.95 , NPV2 = 0.95
Se1 = 0.8571 , Sp1 = 0.9048 , Se2 = 0.8727 , Sp2 = 0.8061 , p = 25% , 0 ≤ ρ1 ≤ 0.9354 , 0 ≤ ρ2 ≤ 0.6614

ρ1 = 0.25ρ2 = 0.25 ρ1 = 0.50ρ2 = 0.50 ρ1 = 0.75ρ2 = 0.75

n1 n2 P1 P2 Global α =
5% Bonf. Global α =

5% Bonf. Global α =
5% Bonf.

50 50 14.8 18.1 0.297 0.369 0.269 0.342 0.427 0.306 0.369 0.484 0.340
50 75 14.5 9.6 0.417 0.501 0.379 0.492 0.576 0.449 0.604 0.688 0.568
50 100 14.2 5.5 0.515 0.590 0.476 0.629 0.693 0.576 0.739 0.798 0.704
75 75 5.8 9.7 0.424 0.506 0.392 0.502 0.584 0.456 0.622 0.705 0.579

100 100 2.5 5.5 0.525 0.603 0.486 0.624 0.693 0.583 0.761 0.819 0.728
200 200 0.1 0.7 0.817 0.863 0.786 0.910 0.930 0.876 0.975 0.983 0.965
500 500 0 0 0.996 0.999 0.997 1 1 1 1 1 1

P1: average proportion (in %) of case samples in which 0.5 has been added. P2: average proportion (in %) of control samples in which 0.5
has been added. Global: global hypothesis test based on the chi-square distribution. α = 5%: individual hypothesis tests, each one to an
error of 5%. Bonf.: Bonferroni method.

Author Contributions: The two authors have collaborated equally in the realization of this work.
Both authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Spanish Ministry of Economy, Grant Number MTM2016-
76938-P, and by the University of Nouakchott Alaasriya.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the three referees for their helpful comments that improved the quality
of this manuscript. We thank Professor Cheikh Saad Bouh Camara, the president of the University of
Nouakchott, for his help to finance the publication of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 658 21 of 22

Appendix A

Performing algebraic operations in Equation (3) it is found that:

Var
(

P̂PV1

)
=

(
p2Se1 + pQ1

Q2
1

)2

Var
(
Ŝe1
)
+

(
pqSe1

Q2
1

)2

Var
(
Ŝp1

)
,

Var
(

P̂PV2

)
=

(
p2Se2 + pQ2

Q2
2

)2

Var
(
Ŝe2
)
+

(
pqSe2

Q2
2

)2

Var
(
Ŝp2

)
,

Var
(

N̂PV1

)
=

(
pqSp1

(1−Q1)
2

)2

Var
(
Ŝe1
)
+

(
q(1−Q1)− q2Sp1

(1−Q1)
2

)2

Var
(
Ŝp1

)
,

Var
(

N̂PV2

)
=

(
pqSp2

(1−Q2)
2

)2

Var
(
Ŝe2
)
+

(
q(1−Q2)− q2Sp2

(1−Q2)
2

)2

Var
(
Ŝp2

)
,

Cov
(

P̂PV1, P̂PV2

)
=(

pQ1−p2Se1
Q2

1

)(
pQ2−p2Se2

Q2
2

)
Cov

(
Ŝe1, Ŝe2

)
+ p2q2Se1Se2

Q2
1Q2

2
Cov

(
Ŝp1, Ŝp2

)
,

Cov
(

P̂PV1, N̂PV1

)
=

pq
Q2

1(1−Q1)
2

[(
pQ1 − p2Se1

)
Sp1Var

(
Ŝe1
)
+
{

q(1−Q1)− q2Sp1
}

Se1Var
(
Ŝp1

)]
,

Cov
(

P̂PV1, N̂PV2

)
=

pq(pQ1−p2Se1)
Q2

1(1−Q2)
2 Sp2Cov

(
Ŝe1, Ŝe2

)
+

pq{q(1−Q2)−q2Sp2}
Q2

1(1−Q2)
2 Se1Cov

(
Ŝp1, Ŝp2

)
,

Cov
(

P̂PV2, N̂PV1

)
=

pq
Q2

2(1−Q1)
2

[(
pQ2 − p2Se2

)
Sp1Cov

(
Ŝe1, Ŝe2

)
+
{

q(1−Q1)− q2Sp1
}

Se2Cov
(
Ŝp1, Ŝp2

)]
,

Cov
(

P̂PV2, N̂PV2

)
=

pq
Q2

2(1−Q2)
2

[(
pQ2 − p2Se2

)
Sp2Var

(
Ŝe2
)
+
{

q(1−Q2)− q2Sp2
}

Se2Var
(
Ŝp2

)]
and

Cov
(

N̂PV1, N̂PV2

)
=

p2q2Sp1Sp2

(1−Q1)
2(1−Q2)

2 Cov
(
Ŝe1, Ŝe2

)
+

(
q(1−Q1)−q2Sp1

(1−Q1)
2

)(
q(1−Q2)−q2Sp2

(1−Q2)
2

)
Cov

(
Ŝp1, Ŝp2

)
,

and where q = 1− p and Qi = p× Sei + q× (1− Spi).

Appendix B

Let us assume that we are going to solve K hypothesis test H0k vs. H1k with k =
1, . . . , K. Let p[1] ≤ p[2] ≤ . . . ≤ p[K] be the p-values obtained ordered from the lowest to
the highest, and therefore p[k] is the p-value that corresponds to the hypothesis test H0[k] vs.
H1[k]. The Holm method [13] consists of the following steps:

Step 1. If p[1] ≤ α/K then hypothesis H0[1] is rejected and we go to the next step; if
p[1] > α/K then no null hypothesis is rejected and the process finishes.

Step 2. If p[2] ≤ α/(K− 1) then H0[2] is rejected and we go to the next step; if
p[2] > α/(K− 1) we do not reject the null hypotheses H0[k] with k = 2, . . . , K and the
process finishes . . . .

Step K. If p[K] ≤ α then H0[K] is rejected and the process finishes; and if p[K] > α then
H0[K] is not rejected and the process finishes.
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