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Evaluation of Tenebrio molitor protein as a source
of peptides for modulating physiological
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Emilia M. Guadix

The increasing world population has led to the need to search for new protein sources, such as insects,

the harvesting of which can be economical and environmentally sustainable. This study explores the bio-

logical activities (angiotensin-converting enzyme (ACE) inhibition, antioxidant capacity, and dipeptidyl

peptidase IV (DPP-IV) inhibition) of Tenebrio molitor hydrolysates produced by a set of food-grade pro-

teases, namely subtilisin, trypsin, ficin and flavourzyme, and the degree of hydrolysis (DH), ranging from

5% to 20%. Trypsin hydrolysates exhibited the highest ACE inhibitory activity at a DH of 10% (IC50 0.27 mg

mL−1) in the experimental series, which was attributed to the release of short peptides containing Arg or

Lys residues in the C terminus, and described as the ACE-inhibition feature. The levels of in vitro anti-

oxidant activities were comparable to those reported for insect species. Subtilisin and trypsin hydrolysates

at a DH of 10% displayed optimal DPPH scavenging and ferric reducing activities, which was attributed to

the presence of 5–10-residue active peptides, as reported in the literature. Iron chelating activity was sig-

nificantly favoured by increasing the DH, attaining a minimal IC50 of 0.8 mg mL−1 at a DH of 20% regard-

less of the enzymatic treatment. Similarly, in vitro antidiabetic activity was significantly improved by exten-

sive hydrolysis, and, more specifically, the presence of di- and tripeptides. In this regard, the combined

treatment of subtilisin–flavourzyme at a DH of 20% showed maximal DPP-IV inhibition (IC50 2.62 mg

mL−1). To our knowledge, this is the first study evaluating the DPP-IV activity of Tenebrio molitor hydroly-

sates obtained from these commercial proteases. We conclude that Tenebrio molitor hydrolysates pro-

duced with food-grade proteases are a valuable source of active peptides that can be used as functional

ingredients in food and nutraceutical preparations.

1. Introduction

Insects represent the highest percentage of biomass on the
planet, and are increasingly regarded as a valuable source of
protein for human consumption. Insects are particularly nutri-
tious and, even though western societies are reluctant to
consume them, entomophagy occurs widely in many regions.
Not only are insects rich in protein and healthy fats (mainly
monounsaturated fatty acids), but also in micronutrients and
fibre.1 Insect farming is more economical and environmentally
friendly compared with that of traditional livestock. Moreover,
reared insects present an average feed-to-protein conversion
ratio that is higher than for other species.2,3 As of 2018, insects

are considered as novel foods in Europe, which paves the way
for further research on their nutritional value and incorpor-
ation into foodstuffs.4

Mealworms are already being raised on an industrial scale,
and are considered as good protein sources for the future.5

Some insect species, such as Tenebrio molitor, can be found in
some stores in European countries for human consumption.2

Considering the estimated increase in world population, up to
9 billion people by 2050, we hypothesize that entomophagy
will be normalised in most countries in the short term.6,7

Enzymatic hydrolysis of proteins to obtain bioactive pep-
tides from insects was reported in 2005, when angiotensin-
converting enzyme (ACE) inhibitory peptides from four insects
were identified.8 Recently, the biological potential of proteins
from edible insects subjected to enzymatic hydrolysis has been
reviewed.9 Focusing on T. molitor, some bioactivities have been
described for peptides released from this source by enzymatic
treatments, such as antioxidant,10 antihypertensive,11 or
antithrombotic activities.12
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Most of the peptides exhibiting antihypertensive activities
are able to inhibit the proteolytic activity of angiotensin-con-
verting enzyme I, an enzyme involved in blood pressure
regulation.13,14 For the antidiabetic peptides, the major
mechanism is the inhibition of dipeptidyl peptidase IV, an
enzyme involved in carbohydrate metabolism.15,16 Antioxidant
activities may be exerted through a wide range of mechanisms,
such as scavenging of free radicals, chelation of metal ions,
and the ability to reduce oxidised species.17,18 Antioxidants are
widely employed in food processing to avoid lipid oxidation
and oxidative damage.19–21

These natural compounds that are released from protein
hydrolysis have recently become regarded as adequate biologi-
cal regulators because they exert physiological functions
within the body,22 and, consequently, they could be used in
functional food to prevent some diseases without the occur-
rence of side effects.23,24 The functionality and potential bioac-
tivity of a given peptide depends on its length and amino acid
composition, and is therefore influenced by the enzyme and
operating parameters of the hydrolysis reaction. To date, very
few studies have been found that investigate the impact of
enzymatic treatment on both the antioxidative and antihyper-
tensive bioactivities of T. molitor hydrolysates. To our knowl-
edge, little on the in vitro DPP-IV inhibitory properties of
T. molitor protein or derived hydrolysates has been reported
so far.25

The aim of this work is to explore the in vitro ACE inhibi-
tory, antioxidant capacity and DPP-IV inhibitory activities of
Tenebrio molitor hydrolysates obtained by a set of conventional
and combined enzymatic treatments employing commercial
food-grade proteases (i.e. subtilisin, trypsin, ficin and flavour-
zyme), by studying the influence of both enzymatic treatment
and degree of hydrolysis on the in vitro activities.

2. Materials and methods
2.1. Tenebrio molitor meal and enzymes

Tenebrio molitor meal was kindly donated by MealFoodEurope
(Salamanca, Spain) in April 2019. The samples contained, on
average, 46.8% w/w of protein.

Four commercial proteases were employed for the enzy-
matic treatments: subtilisin (EC 3.4.21.62) and pancreatic
trypsin (EC 3.4.21.4), which act as serine endoproteases; ficin
(EC 3.4.22.3), which is a cysteine endoprotease; and flavour-
zyme 1000L™ (3.4.11.1), which is an enzymatic complex
mostly comprising exoprotease (i.e. aminopeptidase and
dipeptidase) fractions.26 All the enzymes were provided by
Nozoymes (Bagsvaerd, Denmark). The reagents employed for
the analytical assays were purchased from SigmaAldrich
(St Louis, USA).

2.2. Hydrolysis procedure

The enzymatic reaction was conducted in a jacketed reactor
coupled to an automatic titrator (718 Stat Titrino, Metrohm,
Herisau, Switzerland) to maintain constant pH. All the hydro-

lysis reactions were conducted at 50 °C and pH 8. Protein at
30 g L−1 from T. molitor was diluted in distilled water. The
enzyme-to-substrate ratio was set at 3% and the reaction con-
tinued until the desired degree of hydrolysis was achieved.

Titration allowed monitoring of the degree of hydrolysis
(DH) as a function of the consumption of base (1 M NaOH)
required to maintain the pH in the course of the reaction.27 A
set of protein hydrolysates were produced using six different
enzymatic treatments, classified into two groups as follows:

(1) Single enzyme reactions, employing subtilisin
(denoted as S), porcine trypsin (T) or ficin (F) as sole catalysts.

(2) Combined treatments employing 1 : 1 w/w combi-
nations of subtilisin–porcine trypsin (S–T), subtilisin–ficin (S–
F) and subtilisin–flavourzyme (S–E). Based on previous studies
on the proteolysis of the substrate, subtilisin was chosen as a
component in all the enzyme combinations.

For every enzymatic treatment, four levels of DH—5%, 10%,
15% and 20%—were assayed. Under the experimental con-
ditions in this work (pH 8, 50 °C and enzyme/substrate = 3%),
the full experimental range of DH could not be completed for
some enzymatic treatments. For instance, trypsin did not allow
protein hydrolysates above a DH of 15%. Porcine trypsin is an
endopeptidase that bonds near arginine and lysine residues.28

This specificity restrained the number of peptide bonds prone
to enzyme attack and, therefore, the final level of DH reached.
Ficin is reported to attack a broad range of peptidic bonds,
such as Ala, Asn, Gly, Leu, Lys, Tyr and Val.29 However,
Tenebrio meal showed limited proteolysis with ficin treatment,
attaining a steady maximum DH of 5%. Given the broad speci-
ficity of subtilisin, it was chosen to take part in all the com-
bined treatments (i.e. S–T, S–F and S–E). Finally, flavourzyme
is an enzymatic mixture containing mostly amino- and dipepti-
dases.30 Due to its specificity towards N-terminal sites, this
enzyme requires initial degradation of the native protein by an
endopeptidase,31 so it was not employed as a single catalyst
but only in combination with subtilisin (treatment S–E).

After completing the hydrolysis treatment, the reaction was
stopped by enzyme denaturation, heating at 90 °C for
5 minutes. The hydrolysates were then stored at −20 °C prior
to analysis.

2.3. Molecular weight distribution of the protein hydrolysates

Molecular mass distribution was estimated by gel filtration
chromatography using a fast protein liquid chromatography
system (Pharmacia LKB Biotechnology AB, Uppsala, Sweden).
Aliquots of 500 μL (10 mg protein per mL) were eluted at
0.5 mL min−1 with MiliQ water as the mobile phase in a
Superdex Peptide 10/300GL column (GE Healthcare, Uppsala,
Sweden). The absorbance was measured at 280 nm. A mole-
cular mass calibration curve was prepared using the following
standards: L-tyrosine (217.7 Da), vitamin B12 (1355 Da), and
ribonuclease (13 700 Da).

2.4. Determination of protein solubility and protein content

Protein solubility was determined as described by Amiri-Rigi
et al.32 with some modifications. Briefly, 800 mg of powdered
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hydrolysate was diluted with 20 mL of ultrapure water and
stirred at 500 rpm and 20 °C for 5 min and then centrifuged at
5000 rpm for 5 min. Supernatant (10 mL) was recovered and
freeze-dried. The protein solubility of the sample was
expressed as the percentage of protein, related to the initial
protein mass, recovered in the supernatant.

The protein content of the samples was analysed in a Flash
2000 Organic elemental analyser (Thermo Scientific). Gases
from combustion with oxygen at high temperature (1020 °C)
were transported through a gas chromatographic column to
separate them and a thermal conductivity detector to detect
the signal for each element proportional to the concentration.
The nitrogen-to-protein factor was considered to be 5.6, as
reported by Janssen et al.33

2.5. ACE inhibitory activity

The ACE inhibitory activity was determined as described by
Shalaby et al.34 The percentage of inhibition of ACE exerted by
the hydrolysates was determined spectrophotometrically by
mixing 10 µL of the enzyme (0.25 U mL−1), 10 µL of a wide
range of concentrations of the samples and 150 µL of
0.88 mM of substrate (N-[3-(2-furyl)acryloyl]-L-phenyl-alanyl-
glycyl-glycine, FAPGG) in buffer, Tris–HCl 50 mM, pH 7.5 and
0.3 M of NaCl. The decrease in absorbance was recorded at
340 nm over 30 min using a Multiskan FC microplate photo-
meter (Thermo Scientific, Vantaa, Finland). A blank solution
was prepared containing ACE and FAPGG without addition of
hydrolysate. The percentage ACE inhibition was calculated
from the ratio of the slopes of the absorbance against time of
reaction for the sample si and the slope of the blank solution
s0 (i.e. sample containing FAPGG and ACE in the absence of
hydrolysate), as expressed by eqn (1).

% ACE inhibition ¼ 1� si
s0

� �
� 100 ð1Þ

The concentration of hydrolysate inhibiting ACE activity by
50% is referred to as the half-maximal inhibitory activity, IC50.

2.6. Antioxidant activities of the hydrolysates

2.6.1. DPPH scavenging activity. The DPPH scavenging
activity was determined as described by Picot et al.35 and
García-Moreno et al.36 For this purpose, a 1 : 1 mixture contain-
ing hydrolysate at increasing protein concentrations (1–10 mg
mL−1) and 0.1 mM DPPH in methanol was shaken and stored
for 0.5 h at 25 °C in the dark. Then, the absorbance of the reac-
tion mixture was measured at 515 nm. The DPPH scavenging
activity was calculated from eqn (2):

DPPH scavenging activity; % ¼ 1� Asample � Acontrol
Ablank

� �
ð2Þ

where the control sample was prepared using methanol
instead of DPPH, and the blank solution contained 1 mL
DPPH and 1 mL distilled water. The IC50 value was determined
as the concentration of hydrolysate that reduces DPPH activity
by 50%.

2.6.2 Ferrous ion chelating activity. The chelating activity
of the hydrolysates was determined as described by Decker
and Welch37 and García-Moreno et al.36 For this purpose, 1 mL
of hydrolysate at increasing protein concentration (0.5–4 mg
mL−1) was mixed with 3.7 mL of deionised water and 0.1 mL
of 2 mM ferrous chloride. After 3 minutes incubation, 0.2 mL
of 5 mM ferrozine was added to stop the reaction. After 10 min
of incubation, the absorbance of the mixture was measured at
562 nm. The ferrous ion chelating activity was then calculated
using eqn (3):

Ferrous ion chelating activity; % ¼ 1� Asample � Acontrol
Ablank

� �

ð3Þ
where the control sample was prepared without adding ferro-
zine, and water was added instead of hydrolysate for the blank
solution. The ferrous ion chelating activity of each hydrolysate
was reported as IC50 value.

2.6.3 Reducing power (FRAP). The reducing power of the
hydrolysates was determined as described by Oyaizu.38 Briefly,
a mixture of 2 mL of hydrolysate at different protein concen-
trations (1–20 mg mL−1), 2 mL of 0.2 mM phosphate buffer
and 2 mL of 1% potassium ferricyanide was incubated for
20 min at 50 °C. Then, 2 mL of 10% TCA (trichloroacetic acid)
solution was added, the mixture stirred and, after centrifu-
gation, 2 mL of supernatant was extracted and mixed with
2 mL of water and 0.4 mL of 0.1% ferric chloride. The absor-
bance was measured at 700 nm after incubating for
10 minutes at room temperature. Since the absorbance
increases with hydrolysate concentration, the reducing power
capacity was reported using the EC0.5 value, which is defined
as the concentration of protein with an absorbance of 0.5
units.

2.7 DPP-IV inhibitory activity

The DPP-IV inhibition assay was performed as described by
Lacroix and Li-Chan,39 with slight modification. Briefly, 25 µL
of enzyme (0.02 U mL−1) was mixed with 100 µL of hydrolysate
solution (previously centrifuged) at different concentrations
and incubated for 10 minutes. After that, the reaction was
initiated by adding 50 µL of 1 mM Gly-Pro-p-nitroanilide and
the absorbance at 405 nm was measured over 120 minutes, at
2-minute intervals employing a Multiskan FC microplate
photometer (Thermo Scientific, Vantaa, Finland ). The IC50

was calculated by plotting the progress of the reactions com-
pared with the control.

3. Results and discussion
3.1. Protein solubilisation and molecular weight profiles of
the hydrolysates

The average levels of protein solubilisation shown by the raw
protein and the set of hydrolysates are depicted in Fig. 1a.
After enzymatic treatment, all the resulting hydrolysates pre-
sented improved solubility compared with the undigested
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sample of T. molitor, which showed, on average, 8.0 ± 1.5%
w/w of protein solubility. Indeed, the protein solubility of the
hydrolysates ranged from 27% to 46% w/w. On average, the
protein solubility increased with DH, regardless of the enzy-
matic treatment. Indeed, most of the enzymatic treatments
attained 44% w/w of protein solubilisation on average at a DH
of 20%, except for treatment with subtilisin–flavourzyme
(SE20), which exhibited the maximum for the experimental
series (46% w/w, on average). Although single trypsin could
not attain a DH of 20%, this treatment was the most efficient
for solubilising Tenebrio protein, attaining 45.3% w/w on
average at a DH of 10%. Interestingly, this value was not
improved at a DH of 15%.

The solubility of protein in a medium depends on a range
of parameters, such as molecular weight, hydrophobicity,
amino acid charges, pH or ionic strength.40 Increasing the

degree of hydrolysis is generally correlated with better solubil-
isation as new polar groups are exposed by enzyme attack.41,42

The high solubilisation attained after trypsin treatment is
explained by its specificity towards Arg or Lys residues, releas-
ing positively charged (and therefore hydrophilic) peptides
into the medium. The specificity of trypsin explains why
further hydrolysis above a DH of 10% did not improve solubil-
isation, since it only cleaves accessible bonds and numerous
insoluble sequences are not hydrolysed. As for the hydrolysate
SE20, which presents the maximal protein solubilisation, the
combined action of subtilisin and flavourzyme fragmented the
original protein down to dipeptides and free amino acids, as
shown by its molecular weight distribution (Fig. 1b). Indeed,
this sample presented the highest percentage of peptides
below 0.5 kDa (19.6% w/w). According to the molecular weight
profiles, the fraction of peptides below 0.5 kDa showed little

Fig. 1 Effect of enzymatic treatment and degree of hydrolysis on (a) protein solubilization and (b) molecular weight distribution of the hydrolysates.
Values are presented as the mean of three replicates ± standard deviation. Different superscript letters indicate statistically significant differences
among enzymatic treatments.
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variation with DH except for the combined treatment S–E,
which increased the percentage area from 11% (DH = 5%) to
19.6% (DH = 20%). This treatment has been employed in the
hydrolysis of other proteins of animal origin,31,43 when the
release of free amino acids or short-chain peptides is targeted.

3.3. ACE inhibitory activity

Fig. 2 illustrates the influence of both the enzymatic treatment
and the degree of hydrolysis on the ACE inhibitory activity of
the hydrolysates, expressed as IC50 (mg mL−1). The raw
Tenebrio protein exhibited low ACE inhibition (IC50 >100 mg
mL−1), whereas all the enzymatic treatments led to a signifi-
cant improvement in this activity. Indeed, the average IC50

values determined for the hydrolysates ranged from 0.26 to
1.28 mg mL−1, which represents a significant improvement
with respect to the intact protein. The tryptic hydrolysates T10
and T15 presented the best levels of ACE inhibition of the
experimental series, with an average IC50 of 0.27 ±
0.01 mg mL−1. In this regard, an average IC50 of 0.10 mg mL−1

was reported for the HPLC-purified fraction of Tenebrio larva
hydrolysates produced by gastrointestinal enzymes (i.e. pepsin,
trypsin, chymotrypsin).44 As for the subtilisin hydrolysates S5
to S20, they showed a significant improvement in ACE inhi-
bition with increasing DH, presenting a minimal IC50 (0.35 ±
0.02 mg mL−1) at a DH of 20%. This value is similar to the
ACE inhibition reported for subtilisin hydrolysates from
Tenebrio larva at a DH of 20%.11 The combination of subtilisin
with other enzymes did not improve the ACE inhibitory activity
with respect to the hydrolysates produced with subtilisin as
the sole enzyme. As a general trend, ACE inhibition was posi-
tively correlated with DH for the hydrolysates S–T, S–F and S–E
in the DH range from 5% to 15%. However, extensive hydro-
lysis seems to be detrimental to this activity (e.g. IC50 was 0.56
and 1.28 mg mL−1 for ST15 and ST20, respectively), probably

due to the breaking of the active peptide sequences released
previously.

The ACE inhibitory peptides identified so far are usually
small-chain peptides (2–20 amino acids) containing hydro-
phobic residues (e.g. Pro, Phe, Tyr) in the tripeptide sequence
at the C-terminal end, which facilitates interaction with the
active site of the angiotensin-converting enzyme I.45 The high
levels of ACE inhibition attained by the subtilisin and trypsin
treatments can be attributed to their specific proteolytic
mechanisms. Subtilisin has been reported to produce ACE
inhibitory peptides,46 since it cleaves peptide bonds prefer-
ably with participation of hydrophobic residues. Trypsin
reacts specifically with those peptide bonds involving argi-
nine and lysine residues. Tryptic peptides are reported to
display strong ACE inhibition when the charged Arg and Lys
residues are placed at the C terminus.45 Moreover, it is
reported that trypsin presents chymotrypsin-like behaviour
at reaction temperatures above 45 °C, releasing new peptides
with hydrophobic residues (Tyr, Trp, Phe) at the carboxyl
side (i.e. potential ACE inhibitors).47 We hypothesize that
this observation could explain the high levels of ACE inhi-
bition displayed by tryptic hydrolysates that were produced
at 50 °C.

3.4. Antioxidant activities of the T. molitor hydrolysates

3.4.1. DPPH scavenging activity and reducing power.
Fig. 3a and b presents the observed values for DPPH scaven-
ging activity and Fe3+ reducing power of the hydrolysates.
Although both antioxidant mechanisms act by different path-
ways, they are related to the electronic transfer and were influ-
enced in a similar manner by the DH and enzymatic treat-
ment. All the enzymatic treatments assayed improved the anti-
oxidant capacities of the hydrolysates, which is related to the
intact Tenebrio protein. Indeed, the series of hydrolysates

Fig. 2 In vitro ACE inhibitory activity of the hydrolysates as a function of enzymatic treatment and degree of hydrolysis. Values are presented as the
mean of three replicates ± standard deviation. Different superscript letters indicate statistically significant differences among enzymatic treatments.
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presented IC50 values for DPPH ranging from 1.03 to 2.31
mg mL−1, while the IC50 of the undigested protein was
3.01 mg mL−1. As shown in Fig. 3a, low DH hydrolysates
exhibited weak radical-scavenging activity, which improved
with increasing DH until an optimum was reached. Above this
value, further hydrolysis, up to DH 20%, was detrimental to
both DPPH scavenging and Fe3+ reducing power. The enzy-
matic treatments S, T and S–T showed maximal DPPH scaven-
ging activity at a DH of 10% (e.g. IC50 of 0.93 ± 0.01 mg mL−1

for T10, the minimum for the experimental series) while the
treatments S–F and S–E did so at a DH of 15%.

As for the reducing power activity, hydrolysis improved this
property by 46–67%, related to the intact protein (EC0.5 =
13.6 ± 0.6 mg mL−1). As observed with the radical-scavenging
activity, tryptic hydrolysates presented the lowest EC0.5 value of
the experimental series (∼4 mg mL−1) at a DH of 5%. This

value was maintained at a DH of 10%, while higher DH was
detrimental to this property.

According to the molecular weight profile (Fig. 1b), the
peptide fraction (0.5–2 kDa) was the most abundant in the
hydrolysates displaying better DPPH and Fe3+ reducing power
(i.e. S10, T10, ST10, SE15). This fraction corresponds to
peptide chains of between 2 and 10 amino acid residues. In
this respect, the antioxidant peptides identified so far in
T. molitor hydrolysates, such as AAAPVAVAK, YDDGSYKPH and
AGDDAPR,10 fall into this size range.

Several authors have reported a direct relationship between
the presence of hydrophobic residues in the peptide sequence
and potential radical-scavenging activity,48,49 highlighting the
good antioxidant properties of subtilisin and trypsin hydroly-
sates. As for the length of the peptide chain, it is widely
accepted that antioxidant capacity is favoured by the presence

Fig. 3 Influence of enzymatic treatment and DH on (a) the in vitro DPPH scavenging activity and (b) the iron reducing power. Values are presented
as the mean of three replicates ± standard deviation. Different superscript letters indicate statistically significant differences among enzymatic
treatments.
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of short peptides,50,51 due to the steric hindrance associated
with larger peptides.52 The trend observed in this work is in
agreement with previous works, which reported that DPPH
scavenging and reducing power activities presented an optimal
DH with minimal IC50. Above this value, active peptides were
cleaved by further enzymatic treatment, worsening the DPPH
scavenging activity of the hydrolysate.53,54

Some previous studies report improvement in antioxidant
activities when subtilisin is used in combination with other
enzymes, such as trypsin, ficin or flavourzyme. A higher
radical-scavenging activity of T. molitor hydrolysates was
obtained by combination of subtilisin and flavourzyme than
was obtained with single treatments.55 Antioxidant properties
of horse mackerel hydrolysates produced by a combination of
subtilisin and trypsin in different proportions have also been
studied. The authors found that the ratio of both enzymes in
the combined treatment had a great impact on the antioxidant

properties, suggesting a ratio of 2 : 1 subtilisin–trypsin for
optimal DPPH scavenging and Fe3+ reducing power activities.56

3.4.2. Fe2+ chelating activity. The ferrous chelating activity
of the hydrolysates (Fig. 4a), reported as IC50, ranged from 0.53
to 2.12 mg mL−1. Intact Tenebrio protein presented an IC50 of
4.86 ± 0.34 mg mL−1, leading to the conclusion that the enzy-
matic treatment had a positive impact on this property. Unlike
radical scavenging and ferric reduction capacities, ferrous che-
lating activity improved continuously with increasing levels of
DH, attaining an optimum (average IC50 ∼0.8 mg mL−1) at a
DH of 20%, regardless of the enzymatic treatment. The
minimal IC50 value corresponded to the hydrolysate SF20
(0.53 mg mL−1) obtained by combination of subtilisin and
ficin. This value was statistically equivalent to the chelating
activity observed for the samples S20, ST20 and SF20.

Overall, a higher degree of hydrolysis is correlated with an
increased chelating bioactivity of the peptides, since new sites

Fig. 4 Influence of enzymatic treatment and DH on (a) the in vitro ferrous chelating activity and (b) the DPP-IV inhibitory activity. Values are pre-
sented as the mean of three replicates ± standard deviation. Different superscript letters indicate statistically significant differences among enzy-
matic treatments.
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that are able to bind metal ions are exposed. The metal
binding capacity of protein hydrolysates depends on the pres-
ence of specific residues able to bind metals in the C termi-
nus, such as Gly, Asp, Lys or Arg.48,57,58 Other residues, such
as His, show high affinity for metal coordination when located
at the N terminus.59 In this regard, the improvement in chelat-
ing activity with DH observed in T and S–T hydrolysates could
be explained by release of new peptides containing Arg or Lys
at the side chain. So far, references reporting chelating pep-
tides from insect protein are limited to some insect species
hydrolysed by gastrointestinal enzymes. In this regard, chelat-
ing activities inferior to our results (IC50 2.03 mg mL−1) for
silkworm larva protein subjected to simulated gastrointesti-
nal digestion (i.e. pepsin, trypsin and chymotrypsin) have
been reported.60 Similarly, antioxidant activities of the
digested protein (i.e. alpha-amylase, pepsin and pancreatin)
from some edible insect species have recently been
reported.10 The authors identified some peptides displaying
strong Fe2+ chelating activity (IC50 0.11 mg mL−1 on average),
such as AAAPVAVAK, YDDGSYKPH and AGDDAPR from
Tenebrio molitor, or GKDAVIV and AIGVGAIER from
Schitocerca gregaria.

3.5 DPP-IV inhibitory activity

The DPP-IV inhibitory activity of the hydrolysates is presented
in Fig. 4b. The IC50 values ranged from 2.62 to 34.13 mg mL−1,
whereas the intact protein did not show bioactivity (IC50

>100 mg mL−1). The results show significant differences in
DPP-IV inhibitory activity among the enzymatic treatments.
Moreover, we observed a positive correlation between DH and
the DPP-IV activity of the hydrolysates, regardless of the enzy-
matic treatment. The stabilisation of the antidiabetic activity
above a DH of 10% reported for subtilisin hydrolysates has
also been described for other substrates.61 The subtilisin–fla-
vourzyme treatment led to the best improvement in DPP-IV
activity, attaining maximal inhibition at a DH of 20% (IC50

2.62 ± 0.16 mg mL−1). Compared with the sole use of subtili-
sin, the combined treatment with flavourzyme significantly
improved the levels of antidiabetic activity. The efficacy of the
combination of subtilisin and flavourzyme has already been
reported to produce good DPP-IV inhibitor peptides.62 This
fact is related to the synergy between both enzymes, where
subtilisin releases peptide fragments that are subsequently
cleaved by flavourzyme peptidases near the carboxyl terminus.
In our case, this is confirmed by the molecular weight profile,
where SE20 presents 19.6% of the total area for the peptidic
fraction below 0.5 kDa. Most of the antidiabetic peptides
identified so far correspond to di- and tripeptides,61,63 and
have been isolated from dairy, vegetable or marine
sources.62,64,65 As for insect sources, the DPP-IV inhibitory
activity of lesser mealworm (A. diaperninus) protein has been
studied, reporting the maximal antidiabetic activity for the
thermolysin hydrolysate (IC50 of 0.63 mg mL−1).66

To the best of our knowledge, only high DPP-IV inhibitory
peptides from cuticular protein from T. molitor hydrolysed
with papain (IC50 of 0.82 mg mL−1) have been identified.25

Hence, this is the first study describing the in vitro antidiabetic
activity of Tenebrio molitor hydrolysates obtained from assay of
a set of commercial proteases.

4. Conclusions

Insects are gaining much interest as novel sources for human
nutrition, in view of recent changes in population and con-
cerns for the sustainability of food resources and environ-
mental issues. The aim of this paper was to evaluate the
in vitro biological activities (i.e. ACE inhibitory, antioxidant
and DPP-IV inhibitory activities) of a set of protein hydroly-
sates from Tenebrio molitor meal, employing commercial food-
grade proteases (i.e. subtilisin, trypsin, ficin and flavourzyme)
as single catalyst or in 1 : 1 mixtures. Both the enzymatic treat-
ment and the degree of hydrolysis had a significant impact on
the bioactivities of the hydrolysates, which was attributed to
their specific peptide profile.

The most bioactive ACE inhibitory peptidic fractions were
obtained with trypsin, at a DH of 10% (IC50 0.27 mg mL−1),
and subtilisin, at a DH of 20% (IC50 0.35 mg mL−1), which was
related to the release of peptides with hydrophobic residues in
the terminal position.

The highest DPPH scavenging and Fe3+ reducing activities
were displayed by the subtilisin and trypsin hydrolysates at a
DH of 10%. Above this value, active peptides were cleaved by
further enzymatic treatment, worsening both properties. In
contrast, ferrous chelating activity of the Tenebrio molitor
hydrolysates was favoured by increasing DH, attaining a
minimal IC50 of 0.8 mg mL−1 at a DH of 20%, regardless of the
enzymatic treatment.

The DPP-IV activity of the hydrolysates was significantly
improved with increasing degree of hydrolysis, regardless of
the enzymatic treatment. The combination of subtilisin with
flavourzyme led to the most active hydrolysate (IC50 2.62 mg
mL−1) at a DH of 20%. According to the molecular weight
profile, this hydrolysate presented the highest content of
short-chain peptides below 0.5 kDa, which are likely to inhibit
DPP-IV.

We conclude that the Tenebrio molitor hydrolysates pro-
duced with food-grade proteases are a valuable source of active
peptides able to be used as functional ingredients in food and
nutraceutical preparations.
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