
 

Unified weak and strong coupling framework
for nuclear matter and neutron stars

Niko Jokela ,1,2,* Matti Järvinen ,3,4,5,† Govert Nijs,6,‡ and Jere Remes 1,2,§

1Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014, Finland
2Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014, Finland

3The Raymond and Beverly Sackler School of Physics and Astronomy,
Tel Aviv University, Ramat Aviv 69978, Israel

4Asia Pacific Center for Theoretical Physics, Pohang University of Science and Technology,
Pohang 37673, Republic of Korea

5Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
6Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands

(Received 21 December 2020; accepted 2 March 2021; published 9 April 2021)

Ab initio methods using weakly interacting nucleons give a good description of condensed nuclear
matter up to densities comparable to the nuclear saturation density. At higher densities strong interactions
between overlapping nucleons become important; we propose that the interactions will continuously switch
over to follow a holographic model in this region. In order to implement this, we construct hybrid equations
of state (EOSs) where various models are used for low-density nuclear matter, and the holographic V-QCD
model is used for nonperturbative high-density nuclear matter as well as for quark matter. We carefully
examine all existing constraints from astrophysics of compact stars and discuss their implications for the
hybrid EOSs. Thanks to the stiffness of the V-QCD EOS for nuclear matter, we obtain a large family of
viable hybrid EOSs passing the constraints. We find that quark matter cores in neutron stars are unstable
due to the strongly first-order deconfinement transition and predict bounds on the tidal deformability as
well as on the radius of neutron stars. By relying on universal relations, we also constrain characteristic
peak frequencies of gravitational waves produced in neutron star mergers.
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I. INTRODUCTION

The era of multimessenger astrophysics has enabled
theorists working on neutron stars (NSs) to scrutinize their
models against new available data. In particular, the
announcement of the tidal deformability constraint by
the LIGO/Virgo Collaboration [1,2] has excluded numer-
ous models, some of which were already proposed decades
ago. Future observations of NS mergers and successfully
combining the information coming in from the gravitational
waves with the electromagnetic kilonova observations will
further narrow down the possible models, with the prospect
of nailing down the underlying equation of state (EOS).
In addition, constraints to the EOS from spectroscopic

measurements of accreting NSs, x-ray bursts, or high-
precision timing observations of rotating stars are expected
to become more accurate in the near future. Discerning the
EOS alone, however, will not be fully satisfactory as it does
not give direct information on the low-energy degrees of
freedom. To achieve this, progress in theoretical under-
standing of dense QCD is needed.
In principle, the theory governing the composition of

NSs is well known: It is the Standard Model of particle
physics, in particular QCD in the regime of dense matter.
However, first-principles solutions to the properties of
matter in this regime have escaped from theorists due to
technical difficulties, due to the famous sign problem of
lattice QCD [3] and due to perturbative QCD being
invalidated by the sizable value of the gauge coupling
[4]. In the current work we will seek another approach and
solve a theory which is not QCD but has been phenom-
enologically tuned to mimic QCD as closely as possible.
Our approach is to rely on holographic duality and map the
equations of this QCD-like theory to a problem in classical
general relativity which is much easier to tackle. The merit
of our program is that we can easily provide, e.g., the EOS
in the strong coupling regime of cold and dense matter
where standard perturbative methods are not applicable.
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The holographic approach has been surprisingly suc-
cessful in describing the hot quark-gluon plasma [5–7]. It is
hence irresistibly captivating to ponder if holography could
also teach us useful lessons at finite baryon density. At face
value, this is far from clear as the description of nuclear
matter would greatly depend on Nc, and in general the
applicability of gauge-gravity duality rests heavily on
taking Nc → ∞. Nevertheless, gauge-gravity duality has
proved to be useful to study dense matter for real world
QCD with Nc ¼ 3, similarly to what has been found in the
applications to the hot (but not dense) quark-gluon plasma.
The article [8] applied a top-down model based on the
famous N ¼ 4 super Yang-Mills, with quenched funda-
mental flavors [9], in cold and dense regime of QCD matter
showing that the holographic approach continues to fare
very well. The microscopic mechanisms of many complex
phenomena occurring at finite density quark matter have
since been addressed [10–13].
However, any top-down string theory construction, even

if backreaction is taken into account, cannot possibly
capture all the rich phenomena of QCD. An alternate
approach is to relax the stringent rules stemming from
string theory and to take a more phenomenological bottom-
up approach: Follow the rules of gauge-gravity duality as
closely as possible but allow some freedom in model
building. Such an effective holographic framework for
dense and cold QCD matter has been studied recently in
[14–17] based on models introduced in [18–21], i.e.,
improved holographic QCD and V-QCD. The idea is to
first tune a relatively complex generic five-dimensional
gravity model to describe well generic, salient features of
QCD and lattice data in the low-density region where it is
available. The model can then be used to compute precise
predictions for dense matter. This approach was seen to
work surprisingly well: First, a very precise fit to the lattice
data for QCD thermodynamics (with Nc ¼ 3 and 2þ 1
flavors) was seen to be possible [14]. Second, the predicted
quark matter EOS at finite density was seen to be tightly
constrained by the fit and in accordance with known
constraints both at zero [14] and at finite [16] temperature.
Third, including nuclear matter in the same framework by
using a simple approximation scheme leads to a stiff EOS
(i.e., a high speed of sound) for dense nuclear matter [15],
which is what is needed for the EOS to pass known
astrophysical constraints [22,23].
This progress has made it possible to construct examples

of phenomenologically viable “hybrid” EOSs,1 where tradi-
tional nuclear matter models are used at lowest densities and
the holographic model is used for both high-density nuclear
and quark matter, matching the EOSs from different sources

continuously in the middle [17]. Moreover, the mergers of
NSs governed by such a hybrid EOS were also simulated
[17]. The analysis of the produced gravitational wave
spectrum therefore opened a new way of comparing pre-
dictions of holographic models to experimental data.
In this article we will continue this work by carrying out

a detailed analysis of the hybrid EOSs. The goal is to
explore all remaining freedom in this construction, arising
from the uncertainties in the nuclear matter model as well
as the model dependence of the holographic approach,
while also taking into account the known constraints to the
EOS coming from the LIGO/Virgo observations and NS
mass measurements. Apart from constraints from the
holographic approach and from observations, we use a
set of nuclear matter models with rather regular EOSs and
require them to match smoothly (so that pressure and
number density are continuous) with the holographic
model. Therefore we in practice restrict to EOSs having
regular behavior: Apart from features linked to changes in
physics (e.g., phase transitions), the EOSs are continuous
monotonic functions without surprising features. Our con-
struction allows us to pin down the predictions of the
approach not only for the EOS, but also for the properties of
the nuclear to quark matter phase transition as well as for
the masses, radii, and deformabilities of the NSs.
The rest of this paper is organized as follows. In Sec. II

we will explain how to construct hybrid equations of state
that will conform with known theoretical bounds. At low
density we will consider several nuclear physics models
that are compatible with chiral effective field theory [24]
and the unitary gas conjecture [25] and are otherwise not
too drastic. On the high-density side we will use the
equations of state following the holographic approach. In
Sec. III we will first discuss constraints on the equations of
state from astrophysics. We will draw lessons of physics
interest for NS properties and make predictions, e.g., on
characteristic frequencies of gravitational waves produced
in NS binary mergers for future observations. Finally, in
Sec. IV, we will summarize our main results and discuss
possible extensions of our work. The paper is supplemented
with two appendixes containing technical details and
discussion on the adiabatic index.

II. HYBRID EQUATIONS OF STATE

As we will construct EOSs which combine various
methods and extend from very low to very high densities,
it is useful to first review the phase structure of cold QCD
matter. Nuclear matter at densities below the nuclear
saturation density is well described in terms of nucleons
and perturbative interactions between them using, e.g.,
effective field theory. Quark matter at asymptotically
high densities can be described by using perturbative
QCD. Between these low- and high-density limits the
dynamics of QCD is however genuinely strongly coupled,
and it is in this strongly coupled region where we expect the

1We stress that in this article “hybrid EOSs” do not mean that
the nuclear matter phase is described by one model and the quark
matter by the other, but the transition point is at lower densities,
within the nuclear matter phase.
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description through gauge-gravity duality to be useful. This
strongly coupled region contains both dense nuclear matter
(with density above the nuclear saturation density) and
quark matter, which has even higher density (but still not
high enough for perturbative QCD to be applicable). The
potential nuclear to quark matter transition also lies in this
strongly coupled region. In this article we are interested in
the EOS in all these regions except for the region with
asymptotically high densities where perturbative QCD
applies (notice that region is also not reached in neutron
stars). This is also why we match the result from the
holographic model with the nuclear theory models but not
explicitly with perturbative QCD. Moreover we do not
consider the effect of exotic phases, such as color super-
conducting phases, in the EOS.

A. Setup

The equations of state used in this work are constructed
from two ingredients, namely a part that comes from a
nuclear matter model and a part that comes from a holo-
graphic model. Nuclear matter models are based on well-
understood physics, where the approximations used are
well under control in the regime of small densities. These
models can be extrapolated to dense nuclear matter, but the
underlying assumptions, specifically that the interactions
between the nucleons are weak enough to allow a pertur-
bative treatment, eventually break down. In fact, there is a
recent body of work [26–29] showing that nonperturbative
effects can lead to drastic differences for the EOS for both
hadronic and quark matter degrees of freedom.
Holographic models, instead, incorporate the assumption

that the coupling is strong, and this property can be used in
a way such that a holographic description can complement
a nuclear matter model. Notice that the breakdown of
weakly coupled nuclear matter models takes place at
relatively low densities: These models are reliable at best
up to about 2 times the nuclear saturation density [30,31], a
density much smaller than the potential transition density
from nuclear to quark matter. For realistic holographic
modeling of NSs it is therefore not enough to just include
quark matter, but the dense regime of the nuclear matter
phase should also be modeled.
Holographic baryons andnuclearmatter have been studied

extensively in the literature. It is well established that a single
baryon is dual to a soliton configuration of bulk gauge fields,
similar to the Belavin-Polyakov-Schwarz-Tyupkin instanton
in Yang-Mills theory [32,33]. This description has been
analyzed in detail in the Witten-Sakai-Sugimoto model
[34–37]; the nuclear matter phase turns out to be an instanton
crystal [38,39]. In this article, however, we will employ a
simpler approach which avoids the need to consider inho-
mogeneous configurations and therefore solving partial
differential equations. Specifically, we use a homogeneous
approximation originally developed in the context of the
Witten-Sakai-Sugimoto model [40–43]. This approximation

is expected to work best in the regime of large density, and
therefore the holographic homogeneous approach and tradi-
tional models of nuclear matter complement each other’s
regime of validity. By combining the two approaches in their
respective regimes into one EOSwith a matching procedure,
we can then obtain a hybrid EOS.
Below, we will describe in more detail the model input

and the precise matching procedure, and we will explore
how large the set of equations of state is that one obtains in
this way.
To determine how generic predictions from such a hybrid

construction are, we perform this construction for a wide
range of different nuclear matter models and holographic
models. For the nuclear matter models, we take care to
include both hard and soft choices, as well as several in
between, so as to properly parametrize the uncertainty in
these models. The models which we use, roughly from
soft to stiff, are the following: Hebeler-Lattimer-Pethick-
Schwenk (HLPS) soft variation [44],Akmal-Pandharipande-
Ravenhall (APR) [45], Skyrme Lyon (SLy) [46,47], HLPS
intermediate, IUF [48,49], and DD2 [50]. There are even
stiffer EOSs available than DD2 in the range of densities
where we will use them, but as we shall see, DD2 is already
too stiff for our purposes: The hybrid constructions using it
will fail to meet all constraints.2 It is also important to note
that these equations of state are well above the theoretical
lower limit derived from the unitary gas conjecture [25].3

For the holographic model, we use V-QCD. This is a
bottom-up holographic model, which is strongly inspired
by string theory and top-down holographic models, but has
been phenomenologically tuned to reproduce qualitative
features of QCD. The model is in turn based on earlier
models: improved holographic QCD (IHQCD) for the
gluon sector [18,19] and tachyonic brane constructions
for the flavor sector [53–58]. We work at zero quark mass.
For a detailed exposition of the model, see Appendix A.
For a successful modeling of properties of cold QCD

matter it is crucial to carry out a careful comparison to QCD
data, in particular to the available lattice data for the
thermodynamics of QCD at small densities. For the full
V-QCDmodel this was done in [14] following similar work
for IHQCD in [59,60]. A similar approach has been used to
study, among other things, the critical point on the QCD

2Notice that the DD2 EOS as such, without matching with
holography, is actually too stiff to pass the astrophysical bounds.
It could happen though that matching would make the EOS softer
at high densities, so that the hybrid DD2þ holography EOS
would pass the bounds. We will see below that this is not the case.

3The conjecture posits a lower bound on the energy at a given
density. It follows from an idealized state of fermions interacting
pairwise solely in the s-wave channel in the limit of infinite
scattering length and zero range. Almost all deviations will make
the interactions repulsive and hence increase the energy. It would
be interesting to extend the recent holographic computations
[51,52] to finite density and thus have a first-principles value for
the scattering length in our context.
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phase diagram at finite temperature and density [61–65].
In V-QCD, the data fit was seen to produce a tightly
constrained and viable prediction for the EOS of dense
quark matter both at zero [14] and at finite [16] temper-
ature. In the current article we will use V-QCD with three
sets of potentials arising from the lattice fits of [14]; see
Appendix A for details.
As the final ingredient for the current setup, the imple-

mentation of nuclear matter in the homogeneous approach
was studied for V-QCD in [15]. It was shown that this
approach produces a physically reasonable phase diagram
and a stiff EOS for dense nuclear matter, i.e., an EOS with a
high speed of sound, reaching values well above the value
for conformal field theories (c2s ¼ 1=3). Notice that the
conformal value was long thought to set a ceiling, an
obstruction for realistic holographic modeling of dense
matter [66,67], but works [11,12] revived the interest in this
context. High speed of sound makes it easier to alleviate
the bounds to the EOS from the mass measurements of
NSs [30]. In the current article we will demonstrate that the
nuclear matter EOS is stiff independently of the values of
those parameters of the holographic model which are left
free by the fit to the lattice data.
We stress that, by choosing EOSs coming from specific

models both for the low- and high-density regime and
matching them in the middle, rather than using for example
polytropic interpolations,we effectively restrict our approach
to EOSs which are relatively smooth and regular (apart from
the strong nuclear to quark matter phase transition predicted
in the model). That is, we avoid EOSs where the speed of
sound as a function of density, for example, varies quickly
without obvious physical reason for the variation. In this
sense our approach is similar to that of [23], which used
families of analytic interpolatingEOSs (including polytropes
and piecewise continuous interpolations of the speed of
sound) but regulated the EOSs by setting limits to the speed
of sound aswell as the parameters of theEOSs in consecutive
intervals.Notice, however, that, aswe shall see below, the use
of the rather soft HLPSmodel (together with the stiff V-QCD
predictions) is in slight tension with this idea: Therewill be a
sizable jump in the speed of sound at the matching point
when using this EOS at low density.
In summary, the constructed hybrid EOSs then include

three regions.
(i) For nuclear matter at low densities, up to densities

equal to roughly 2 times the saturation density, we
use the various weakly coupled models of nuclear
matter.

(ii) For dense nuclear matter, we use the V-QCD model
with the homogeneous approach as established
in [15].

(iii) For quark matter, we use the V-QCD EOSs con-
structed in [14].

We stress that the last two regions, as well as the nuclear
to quark matter transition, are described by the same

holographic model. Examples of such hybrid equations
of state were already constructed in [17] and used as an
input in the numerical simulation of NS mergers. In this
article we explore how much freedom there is left in this
construction, taking into account the uncertainties in the
nuclear matter models, the parameter dependence of the
holographic model, and astrophysical constraints.

B. Matching procedure

V-QCD contains several potential functions, which para-
metrize the remaining freedom in the model. In [14], these
potentials have been quantitatively matched to available
lattice data, resulting in several possible choices of poten-
tials which are compatible with lattice data. Of these, we
use potentials 5b, 7a, and 8b (see Appendix A). In this way,
we also parametrize part of the uncertainty in the holo-
graphic model.
For each of these choices, the components need to be

glued together to obtain a hybrid EOS. Since the two parts
are supposed to be two descriptions of the same matter, we
would ideally want the density at which the matching is
performed to be a crossover. This is not possible, however,
so instead we demand that the transition is as smooth as
possible, which is a second-order phase transition. For a
given density at which we want to perform the matching,
we therefore require both the pressure and its first derivative
with respect to the chemical potential to be identical for
both the nuclear matter part and the holographic part. As
these are two parameters, we need two parameters to tune
to make this possible. These two parameters are

(i) the normalization of the pressure cb in the baryonic
phase of the holographic model (see Appendix A).—
This maps to the normalization of the nuclear matter
action of V-QCD, and letting it be a free parameter
amounts to taking the speed of sound as the input
from the holographic model instead of the pressure
itself.

(ii) the parameter b as defined in [15] and in
Appendix A.—With the choice of potentials for
V-QCD as discussed above, there is still this one
degree of freedom left, which comes from the
Chern-Simons part of the action of the holographic
model. This parameter controls the location of the
instanton in the bulk and its coupling to the tachyon
field, which is dual to the chiral condensate in QCD.

In this way, we obtain for each combination of nuclear
matter model and V-QCD potentials a family of equations
of state parametrized by the matching density ntr. We
choose the values of ntr to lie within the range 1.2ns ≤
ntr ≤ 2.6ns where ns ¼ 0.16 fm−3 is the nuclear saturation
density. The lower end of the interval is determined by the
constraints: As we shall see only hybrids with ntr ≳ 1.4 are
soft enough to pass the constraint coming from LIGO/
Virgo. The upper end was chosen to lie above the maximal
validity range of the nuclear models. For a discussion of the
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values of b and cb, determined by the matching, see
Appendix A.
In summary the hybrid EOSs depend on the choices of

the models and parameters as follows:
(i) The low-density region up to the nuclear saturation

density ns depends only on the choice of the nuclear
matter model, HLPSs (HLPS soft), APR, SLy,
HLPSi (HLPS intermediate), IUF, or DD2, from
soft to stiff.

(ii) The intermediate density region ns ≲ n≲ 2.5ns
depends mostly on the choice of ntr. Because the
V-QCD EOSs are (up to few exceptions) stiffer than
the nuclear matter models in this regime, increasing
ntr means softer EOS.

(iii) In the high-density regime n ≳ 2.5ns, the details and
stiffness of the model depend mostly on the choice
of the parameters of the holographic V-QCD model,
i.e., the choice of the potentials 5b, 7a, or 8b
(ordered here from soft to stiff). There is, however,
also some dependence on the choice of the nuclear
matter model and ntr because the parameters b and
cb of the nuclear matter sector in the holographic
model were determined through the matching pro-
cedure.

III. RESULTS

We now discuss the results obtained by analyzing the
hybrid EOSs. Apart from basic thermodynamic properties,
we find the structure of nonrotating NSs for each of the
EOSs by solving the Tolman-Oppenheimer-Volkov (TOV)
equations. Some of the most important results are collected

in Fig. 1, where the left-hand plot depicts the pressure p as
a function of energy density ϵ in log-log scale and the right-
hand plot shows the mass-radius relations for nonrotating
NSs. The light red bands are spanned by the viable hybrid
EOS which pass known constraints. We will discuss the
results shown in these plots in more detail below.

A. Implementing astrophysical constraints

In this subsection we will discuss which constraints from
the astrophysical observations will be relevant in our
analysis.
The most precise bounds on the EOS come from the mass

measurements of NSs. Over the years, convincing evidence
formassiveNSswithM ∼ 2 M⊙ has been accumulated from
various astronomical observations. A compact star may exist
in the low-mass x-ray binary 4U 1636 − 536 M ¼
2.0� 0.1 M⊙ [72] and the pulsar B1516þ 02B in the
globular cluster M5 M ¼ 2.08� 0.19 M⊙ [73], as well
as the millisecond pulsars J1614 − 2230 M ¼ 1.97�
0.04 M⊙ [74], J0348þ 0432 M ¼ 2.01� 0.04 M⊙ [75],
and J0740þ 6620M ¼ 2.14þ0.10

−0.09 M⊙ [76] accurately mea-
sured by using Shapiro delay. The existence of thesemassive
stars sets a stringent lower bound to the maximum mass
of NSs.
The gravitational wave observations by the LIGO/Virgo

Collaborations have also set constraints on compact star
properties. The (non)observation of the squishiness of the
star constrains the tidal deformability for the compact star
of mass 1.4 M⊙ in the range [2]

580 ≥ Λð1.4 M⊙Þ ≥ 70 ðGW170817Þ: ð1Þ

FIG. 1. Left: the EOS cloud spanned by the hybrid EOSs presented in the pressure-energy density plane. The EOSs satisfying both
constraints (1) and (2) span the light red band, and the unconstrained EOSs span the striped band. The light blue band represents the
polytropic interpolations between the nuclear matter EOSs and pQCD satisfying the astrophysical constraints. Also presented are some
examples of hybrid EOSs for the different nuclear matter models used, colored as in Fig. 2 and combined with potential 7a at
ntr=ns ¼ 1.9. Right: the mass-radius cloud spanned by the EOSs following the same color coding as on the left. Also indicated are the 1σ
contours for the NICER analysis on PSR J0030þ 0451 from Ref. [68] with the dashed blue line and from Ref. [69] with the dashed
black line, along with the 1σ low-mass x-ray binary fits from the time-evolving x-ray burst spectra for 4U 1702 − 429 (dark cyan) from
Ref. [70] and 4U 1724−307 (magenta) and SAX J1810.8−2609 (light green), both from Ref. [71]. The examples of hybrid M−R
curves presented correspond to the EOSs on the left.
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This study assumed that both stars obey the same EOS,
therefore effectively assuming that neither of the objects in
the merger event GW170817 were black holes for which Λ
would be strictly vanishing (see, however, [77]). The upper
bound essentially requires stars of mass 1.4 M⊙ to be
small, so that the tidal forces have very little effect: The
matter is kept very tightly close to the center of the star.
However, this is a merely a rule of thumb. The presence of a
strong phase transition in the outer crust can lead to
nonmonotonic behavior of the dependence of the radius
R with Λ1.4 M⊙

[10].
Of the astrophysical observables relevant for the study of

dense EOSs, reliable constraints on NS radii are more
difficult to obtain than are the mass and tidal deformability
estimates. There are, however, some interesting recent
results for the isolated millisecond pulsar PSR J0030þ
0451 by the NICER Collaboration. Both Riley et al. [69]
and Miller et al. [68] have independently done Bayesian
parameter estimation on the energy-dependent x-ray pulse
waveform data with independently developed codes to
determine the pulse waveforms and different modeling of
the emitting spots on the stellar surface and the instrumental
response. Both of these works find consistent estimates for
M and R, with 1σ results for both studies shown in Fig. 1,
with the data by Riley et al. in black and Miller et al. in
blue. There is an ongoing discussion on the atmospheric
model used in the analysis to model the emitting hot spots
[78], leading perhaps to slightly updated constraints in the
future. The additional contours in Fig. 1 are Bayesian
parameter fits applying state-of-the-art atmospheric models
directly to observed time-evolving thermonuclear x-ray
burst cooling tail spectra, obtained by the Rossi X-Ray
Timing Explorer for low-mass x-ray binaries 4U 1702 −
429 (in dark cyan) from Ref. [70] and 4U 1724−307

(in magenta) and SAX J1810.8−2609 (in light green), both
from Ref. [71].
We now discuss how we take into account these

astrophysical bounds in our setup. As we showed above,
the most stringent bounds on the maximum mass of the NS
come from the measurements of J0348þ 0432 and
J0740þ 6620 [75,76]: The former has significantly smaller
error bars, whereas the latter sets a higher lower bound at 1σ
level. In the following we will not strictly follow either of
these results but we adopt the following rule: We exclude
any hybrid EOS for which maximum NS mass Mmax falls
below two solar masses; i.e., we require that

Mmax ≥ 2 M⊙: ð2Þ

We will also exclude all EOSs which do not satisfy the
LIGO/Virgo bound (1). We will not impose any of the
radius measurements directly but will rather compare our
results to them. As we will demonstrate below, the results
constrained by maximum mass and tidal deformability are
already consistent with the NICER analyses. The meas-
urement of 4U 1702 − 429 appears more constraining, but
one should recall that all the x-ray measurements may
contain sizable systematic uncertainties due to the model-
ing of the NS atmosphere.
The effect of imposing the bounds (1) and (2) is shown in

Fig. 2, wherewe plot the tidal deformabilityΛð1.4 M⊙Þ and
the maximum mass Mmax as a function of the matching
density ntr. The excluded zones are indicated in the plots by
the gray regions, and the thick curves show the EOSs which
pass both bounds. We also show the 1σ lower bounds from
themassmeasurements of J0348þ 0432 and J0740þ 6620,
in addition to our mass cutoff, for comparison. Both figures
exhibit a downward trend, as a higher matching density

FIG. 2. The tidal deformability Λ bound (left) and the maximum mass bound (right) from the hybrid (nuclear matter þ V-QCD)
equations of state as a function of the matching density ntr normalized to the nuclear saturation density ns. The colors indicate the used
nuclear matter model as shown in the label. The dotted, solid, and dashed curves are for potentials 5b, 7a, and 8b, respectively. The gray
regions are excluded by the LIGO/Virgo bound [2] on tidal deformability from GW170817 (left plot) and NS mass measurement
through Shapiro delay in NS–white dwarf binaries [75,76] (right plot).
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corresponds to a softer EOS, which supports smaller maxi-
mummasses and smaller tidal deformabilities. Thus, because
we have an upper limit for Λð1.4 M⊙Þ and a lower limit for
Mmax and the curves in question are monotonic, we can
bracket the values of ntr=ns from these astrophysical con-
straints. The LIGO/Virgo bound (left plot) excludes some of
the stiffest EOSs, including all EOSs with ntr=ns < 1.4 and
all hybrids with the DD2 nuclear EOSs. The effect of the
maximum mass bound is less severe because it has the
tendency of ruling out softer equations of state, and the V-
QCD nuclear matter EOS is quite stiff. Some of the hybrids
with HLPSs and APR nuclear matter models are, however,
excluded for large values of ntr. From Fig. 2 we can also note
that the nonexcluded transition densities differ greatly
between the different nuclear matter and potential combi-
nations used. For example, HLPSs with potential 5b
has a window of 1.4 < ntr=ns < 1.6, whereas the same
nuclear matter EOS combined with potential 8b allows
for 1.5 < ntr=ns < 2.1.

B. Physics lessons: Thermodynamics
and phase transitions

We now discuss the predictions of our construction to the
EOS and the nuclear to quark matter transition. First, in
Fig. 1 (left), the light red band is spanned by all hybrid
equations of state which satisfy the constraints of Eqs. (1)
and (2). The light blue band is spanned by the quadrutropic
interpolations [79] between low-density nuclear matter and
perturbative QCD results which satisfy the same con-
straints,4 while the striped band is spanned by all the
hybrid EOSs of this article with 1.2ns ≤ ntr ≤ 2.6ns, also
those which fail to satisfy the constraints. We also show
examples of the hybrid EOSs as the colored curves, using
V-QCD with potentials 7a and ntr ¼ 1.9ns while varying
the nuclear matter model.
In the leftmost section of the curves and the band, up to

the matching density which is where the curves for the
examples of EOSs have kinks (i.e., for ϵ≲ 300 MeV=fm3),
the EOSs are determined by the nuclear matter models. In
this regime our construction excludes the stiffest EOSs
(having higher pressures). This happens because the V-
QCD EOS at higher densities is stiff, which makes the
effect of the LIGO/Virgo bound in (1) for the low-density
part of the EOSs more severe.
In the regime of dense nuclear matter up to the phase

transition (which appears as a horizontal line on the curves)
the EOS is given by the nuclear matter phase in V-QCD.
Because this EOS is stiff and in part due to the maximum

mass bound in (2), the softest EOSs are excluded in this
region. In addition, the light red band of the hybrid EOSs is
narrower than the light blue band of the quadrutrope
interpolations, because our construction restricts to “regu-
lar” EOSs, excluding combinations of very soft and very
stiff sections. As we pointed out above, our approach is
therefore similar in spirit to that of [23], which used
constraints on the speed of sound to regulate families of
analytic interpolating EOSs. Our results in the nuclear
matter regime are also similar to this reference.5 Above the
phase transition, the V-QCD quark matter EOS is very
tightly constrained and leads to a narrow band. There is
more spread though, if the thermodynamic potentials are
plotted as a function of the chemical potential, as shown
in [14].
In order to analyze the hybrid EOSs in more detail, we

show the speed of sound squared c2s ¼ dp=dϵ as a function
of the baryon number density in Fig. 3. In the top, bottom
left, and bottom right plots we vary the nuclear matter
model, the matching density ntr, and the potentials of the V-
QCD model, respectively. In these plots, the EOS arises
from nuclear theory models for n≲ 2ns, from nuclear
matter in V-QCD for 2ns ≲ n≲ 5ns, and from quark matter
in V-QCD for n≳ 10ns, so that the gap at 5ns ≲ n≲ 10ns
appears due to the first-order nuclear to quark matter
transition. As discussed in Sec. II B, varying the different
parameters mostly affects the speed of sound in distinct
regions: The nuclear matter model affects the low-density
region, ntr affects the intermediate-density region, and the
potential choice of V-QCD affects the high-density region.
The nuclear to quark matter transition density, however,
depends on a combination of the parameters. We also note
that for all hybrid equations of state, the speed of sound
rises well above the conformal value c2s ¼ 1=3 in the dense
nuclear matter region, and even values c2s ≈ 0.6 can be
reached with potentials 8b.
The matching between the nuclear matter and holo-

graphic model in effect leads to a second-order transition,
where the speed of sound jumps. Such a jump may be
understood as an approximation for a region of rapid
change of the speed of sound as we move from weakly
coupled low-density nuclear matter to the strongly coupled
high-density region. The jump is moderate for most of the
hybrid models and even practically absent for some hybrids
with the HLPS intermediate EOS but very drastic for
hybrids with the HLPS soft EOS. An example of such an
EOS is shown as the thin blue curve in the top row plot.
Even though some of the EOSs with most extreme
discontinuities (such as the one shown in the plot) are

4We use quadrutropes with continuous pressure and number
density, i.e., with second-order phase transitions at the joints. In
principle one should allow for a first-order deconfinement
transition. This, however, would change the results very little
because first-order transitions can be mimicked to arbitrary
precision by nearby second-order transitions.

5The width of the light red band in Fig. 1 (left) roughly
corresponds to requiring c2s < 0.5 or c2s < 0.6 in [23]. Notice,
however, that due to differences in assumptions one should be
cautious when comparing the results; see the discussion in
Sec. IV.
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excluded by the maximum mass bound, we expect that the
hybrids with the HLPS soft EOS are less likely to be good
models of the nuclear matter EOS in this region than the
other hybrids, and results based on them should be
interpreted with caution.
Our results for the speed of sound have very similar

features to the results obtained by using the functional
renormalization group approach (see, e.g., [26,80,81], and
references therein) in both the nuclear and quark matter
phases [27–29]. This is particularly interesting as these
studies use a somewhat similar approach to the current
article: the use of a nonperturbative method in the regime
where ab initio calculations cannot be trusted.
We also study the closely related quantity, the adiabatic

index γ ¼ d logp=d log ϵ ¼ ϵc2s=p in Appendix B. We
note that it shows much weaker dependence on the
parameters of V-QCD than the speed of sound. Near the
phase transition we obtain that γ ≈ 1.5 universally for all
EOSs, which is a very low value compared to typical
predictions (γ ≳ 2) of nuclear matter models [23].

The plots in Fig. 4 show the effect of the constraints
imposed on the nuclear matter–quark matter first-order
transition. In toto, the astrophysical constraints do not limit
the quark matter transition parameters as strongly as they
do the astrophysical observables. However, in specific
cases, like for potential 7a with HLPSs, the constraint is
quite stringent, limiting 4.7 < nb=ns < 6.8 for all allowed
ntr (top left plot). None of the constrained hybrid EOSs
support a quark matter transition below four saturation
densities, and for ntr=ns < 1.9, all constrained hybrid EOSs
have nb=ns < 8.
The latent heat of the quark matter transition for each

hybrid EOS is presented in the top right plot in Fig. 4. There
we see that all hybrid EOSs produce aΔϵ > 700 MeV=fm3,
implying that the transition is strongly first order for all
transition densities and EOSs. For ntr=ns < 2.2 the values of
Δϵ are bounded both from below and from above, so that
700 MeV=fm3 < Δϵ < 2000 MeV=fm3. This, combined
with the solutions for the TOV equations, tells us that cold
NSs cannot contain a quark matter core for these transition

FIG. 3. The dependence of the speed of sound on the parameters of the hybrid EOS as a function of the normalized number density
n=ns. Top: c2s for the hybrid EOS with various nuclear matter models keeping the potentials of V-QCD and the matching density
ntr ¼ 1.9ns fixed. Bottom left: the dependence on the matching density. Bottom right: the dependence on the choice of potentials. The
thick (thin) curves are the results for EOSs which pass (violate) the astrophysical bounds of Fig. 2. In all the panels the thin horizontal
dotted line corresponds to the conformal value 1=3 to guide the eye.
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densities because of the energy barrier. This finding is
consistent with the analysis of [14] which used V-QCD
for quarkmatter and amodel-independent approach employ-
ing quadrutropes for nuclear matter. It is furthermore
expected that the latent heats will decrease with a moderate
ratewith increasing temperature [16], leaving ample room for
quasistable quark matter core generation in mergers.
Finally, the critical value of the chemical potential is

shown in Fig. 4 (bottom). We observe that the critical value
depends even more distinctly on the holographic model
than, say, nb=ns. The dependence on ntr and on the nuclear
matter model, which appears due to the matching pro-
cedure, is mostly a small correction. The results fall within
the range 470 MeV≲ μc ≲ 680 MeV. The relatively large
spread reflects a similar spread of the dependence of the
thermodynamic potentials on the chemical potential in the
quark matter phase [14] as the parameters of the holo-
graphic model are varied. Notice, however, that this
dependence mostly cancels in the EOS, which is expressed
as a relation between the potentials, ϵ ¼ ϵðpÞ.
As a final remark, we notice that the upper bounds of all

parameters shown in Fig. 4 are set by the hybrids using the
soft variant of the HLPS EOSs for low-density nuclear
matter. As we have pointed out above, this means that there

is a jump from a very soft to a somewhat stiff EOS at the
matching density ntr, rendering the hybrid EOS potentially
unreliable. The problem is enhanced by the fact that these
EOSs (thick dashed blue curves) use the stiffest version of
V-QCD with potentials 8b. Therefore the other curves
should be regarded as more realistic predictions of our
construction.

C. Physics lessons: Neutron star properties

As mentioned above, given a hybrid EOS constructed in
Sec. II, we can solve the full Einstein equations, which for a
spherical configuration of a self-gravitating perfect fluid are
called the TOV equations. As a solution of these equations
one obtains the mass-radius (M − R) relation for non-
rotating NSs, examples of which are shown in Fig. 1 (right),
along with a band spanned by all of the hybrid EOSs,
NICER results for PSR J0030þ 0451, and a selection of
results from measurements of cooling of x-ray bursts. We
note that the hybrid EOSs favor relatively large NS radii,
above 11 km for typical NS masses. Moreover, we note that
the stars with lowest radii are obtained by using the HLPS
soft model at low density, and as noted above, this means
that such EOSs have a significant jump in the speed of
sound at the matching density. The more regular EOSs

FIG. 4. The baryon number density at the nuclear to quark matter transition (top left), the latent heat at the nuclear to quark matter
transition (top right), and the critical chemical potential at the nuclear to quark matter transition (bottom) as a function of the normalized
matching density ntr=ns. Thick (thin) parts of curves correspond to EOSs which pass (violate) the astrophysical bounds of Fig. 2.

UNIFIED WEAK AND STRONG COUPLING FRAMEWORK FOR … PHYS. REV. D 103, 086004 (2021)

086004-9



(examples of which are shown in the plot) give NS radii
around 12 or even close to 13 km. We will discuss this in
more detail below. The radii being large is a consequence of
the V-QCD nuclear matter EOS being stiff and contrasts
with results obtained through the systematic use of effective
field theory only [82] which gives Rð1.4 M⊙Þ < 11.9 km
at 90% confidence level. Notice that the regular EOSs are
however in good agreement with the radius measurement of
4U 1702-429 (dashed dark cyan curve in Fig. 1), which has
the smallest errors from the x-ray results we have included,
and are also consistent with the other direct measurements
of radii.
In Fig. 5 we show the radii of the hybrid EOSs at NS

mass M ¼ 1.4 M⊙ and M ¼ 2.0 M⊙. From the left plot in
Fig. 5 we notice that the radius of a 1.4 M⊙ NS for all
hybrid EOSs is limited to

10.9 km≲ Rð1.4 M⊙Þ≲ 12.8 km: ð3Þ

The lower limit on the radius of just under 11 km is
achieved by HLPSs combined with the stiffest set of
potentials 8b in the V-QCD model, meaning that the jump
in the speed of sound at the matching density is highest
among the hybrid EOSs we have constructed. Other hybrid
EOSs produce minimal radii of around 11.5 to 12.5 km;
see6 Table I. Thus the constrained hybrid EOSs produce
M − R curves that are bundled tightly within the limits of
best current limitations on NS radii. It is noteworthy that the
lower bound we obtain is larger than Rð1.4 M⊙Þ ≳
10.3 km stemming from the unitary gas conjecture and
by the hydrodynamical simulations of binary NSs that
insist of not having a prompt collapse to a black hole
[25,83,84].

For a given EOS and a star of a given mass and radius
one can compute the second Love number k2 and, from
that, the tidal deformability Λ ¼ ð2=3Þk2½ðc2=GÞR=M�5,
which quantifies the effect of an external tidal field on the
induced quadrupole moment of the star [85,86]. The tidal
deformability Λ is one of the most important parameters
describing the gravitational wave signal from NS mergers.
Apart from characterizing the deviation from the point mass
limit for the inspiral part of the signal, it can also be used to
roughly predict some properties of the merger and post-
merger parts (as we will discuss below).
We show the tidal deformability of a 1.4 M⊙ NS and the

maximum mass supported by the EOSs for various hybrid
EOSs as a function of the matching density ntr=ns from
nuclear models to V-QCD in Fig. 2 (left). We also show the
relation of the Λ parameter to the NS radius at three
different NS masses, M ¼ 1.4 M⊙, 1.8 M⊙, and 2.0 M⊙,
in the top left, top right, and bottom plots of Fig. 6,
respectively. We notice that the requirement of Eq. (2) also
constrains the values of Λ. As an example of a constraint
following from our construction, we obtain a lower bound
for Λ at M ¼ 1.4 M⊙:

Λð1.4 M⊙Þ≳ 230: ð4Þ

Here one should note that the lowest values are obtained
(again) by the hybrid EOS using the HLPS soft model
together with the stiffest (8b) version of V-QCD, so that
there is a sizable jump in the stiffness of the EOS at the
matching point. Using only more regular hybrid EOSs
would push the lower bound close to 300 (see Table I).
Interestingly, these lower bounds are close to the value
(∼300) obtained by analyzing the electromagnetic signal
from the GW170817 event in [87]. Notice that for transition
densities between 1.4 ≤ ntr=ns ≤ 2.2, even without con-
straints from the maximum mass, Λð1.4 M⊙Þ≳ 150 for all
hybrid EOSs. As is well known the tidal deformabilityΛ (at
fixed mass) depends on the EOS to a rough approximation

FIG. 5. NS radii at M ¼ 1.4 M⊙ (left) and at M ¼ 2.0 M⊙ (right) as a function of ntr . Notation of curves as in Fig. 2.

6Notice that in Table I we restricted ntr < 2.2ns whereas the
plots of Fig. 6 use the whole range of constructed hybrids up to
ntr ¼ 2.6ns. Therefore some numbers in the table differ from
those obtained from the plots.
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only through the radius. We can see this from Fig. 6: The
spread of the curves in all panels is relatively small. Also,
tidal deformability decreases fast with increasing mass.
As we commented above, one of the clearest outcomes

of the our analysis for NSs is that quark matter cores are
always unstable, i.e., dM=dR > 0 by a wide margin for
solutions containing quark matter. Moreover, we do not
find EOSs supporting additional stable branches, i.e., twin
stars. The instability of the quark matter cores also limits
the maximum mass of the NSs, shown in Fig. 2 (right),
which marks roughly the point on the M − R curve
where the star becomes unstable. For hybrid EOSs with

potentials 5b and 7a, Mmax is set by the star where the
central density reaches the phase transition density, so that
the instability of the star around M ¼ Mmax is driven
by the phase transition. For potentials 8b, however,
the maximum mass is reached within the nuclear matter
phase, at densities slightly lower than the transition
density. We also notice that the upper limit for
Λð1.4 M⊙Þ limits the highest masses in the model. For
example, for HLPSs, we notice that for potential 5b the
highest maximum mass of around 2.1 solar masses is
achieved by ntr=ns ≈ 1.4 and for potential 8b the corre-
sponding values are Mmax ≈ 2.4 and ntr=ns ≈ 1.5.

FIG. 6. The dependence between NS radii and the tidal deformability Λ at M ¼ 1.4 M⊙ (top left), M ¼ 1.8 M⊙ (top right), and
M ¼ 2.0 M⊙ (bottom). Notation of curves as in Fig. 2.

TABLE I. Ranges for different parameters for NSs of fixed masses obtained from the hybrid EOSs satisfying the
astrophysical constraints, with the matching density ntr=ns ranging from 1.3 to 2.2. Rholo=R denotes the relative
radius of the holographic core compared to the total radius R of the NS. Note that the upper bound for Λð1.4 M⊙Þ is
determined by constraint (1).

(a) M ¼ 1.4 M⊙ (b) M ¼ 2.0 M⊙

Low-density model HLPSs APR SLy HLPSi IUF HLPSs APR SLy HLPSi IUF

min R½km� 10.9 11.7 12.0 12.3 12.7 10.2 10.9 11.0 11.7 12.0
max R½km� 12.6 12.7 12.7 12.6 12.8 12.9 12.9 12.9 12.9 12.8
min Rholo=R 0.85 0.69 0.64 0.48 0.46 0.8 0.84 0.81 0.73 0.72
max Rholo=R 0.85 0.80 0.76 0.78 0.6 0.93 0.89 0.87 0.87 0.80
min Λ 232 326 366 458 530 9 14 14 26 31
max Λ 580 580 580 580 580 68 66 65 66 57
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Features of the electromagnetic signal related to
GW170817 suggest that the remnant collapsed into a black
hole soon after the merger. It has been estimated that this
sets an upper bound of around 2.2 M⊙ to the maximal mass
Mmax of nonrotating NS [88–91]. SinceMmax is sensitive to
the parameters of the holographic model, such a bound
would severely constrain these parameters. It would
exclude most (but not all) hybrid EOSs using the stiffest
version of V-QCD considered in the article defined using
potentials 8b; see Fig. 2 (right). Almost all the hybrids with
potentials 5b and 7a would however pass this bound.
For slowly rotating compact stars there exist approx-

imately universal relations between the moment of inertia I,
the quadrupole moment Q, and the Love numbers, called
the I-Love-Q relations [92], which arise due to all of these
three parameters being most sensitive to the star structure
far from the core, where all the realistic EOSs are relatively
similar. To specify the relations one first defines the
dimensionless combinations

Ī ¼ c4

G2M3
I; Q̄ ¼ −

M
I2

Q
Ω2=c2

; ð5Þ

where Ω is the angular velocity of the star. The dimension-
less combination corresponding to the Love number is the
tidal deformability Λ. The three relations between the
possible pairs from the set fĪ; Q̄;Λg are then obtained
as polynomial fits in log-log scale. We use the fit param-
eters from [93].
In Fig. 7 we show the relative deviation of the con-

strained hybrid EOSs at ntr ¼ 1.9ns from the universal
I-Love-Q relations. We note that the deviations from
universality are small, with the largest deviation in the
I −Q relation being around 0.6%, again with the combi-
nation of potential 8b with HLPSs. For more regular hybrid
EOSs the deviation from universality is even smaller.
Therefore, the hybrid EOSs do not lead to larger deviations
than, e.g., various traditional nuclear matter models for
which the relations were checked in [92]. Even though we
present the results here at ntr ¼ 1.9ns, the agreement with

the universal relations is generic for all the constrained
hybrid EOSs over all the transition densities ntr.
Finally we also show in Table I how large a fraction of

the NS is described by holographic nuclear matter, i.e., has
density above the matching density. This is given in terms
of the minimal and maximal values for the ratio of the
radius of the “holographic core” to the radius of the whole
star. We see that typical numbers for this ratio are around
0.7 at M ¼ 1.4 M⊙ and around 0.8 or a bit above at
M ¼ 2.0 M⊙.

D. Frequencies of gravitational waves
from neutron star mergers

In this subsection we discuss some of the key properties
of the signal from mergers of NSs described by using the
hybrid EOSs: the characteristic frequencies of the merger
and postmerger parts of the signal. Such frequencies
include the peak frequencies f1, f2, and f3 of the power
spectral density of the postmerger signal, as well as the
value of the instantaneous frequency at the time of the
merger fmrg [94,95]. Here we will restrict to the frequency
of the most prominent peak f2, which is linked the rotation
frequency of the hypermassive NS formed in the merger, and
the merger frequency fmrg. Notice that f2 is, however, absent
if the binary promptly collapses into a black hole after the
merger. Based on numerical simulations, it has been found
that whether or not prompt collapse happens depends, to a
good approximation, only on the parameter [96]

κT2 ≡ 3
MBM4

AΛA þMAM4
BΛB

ðMA þMBÞ5
; ð6Þ

where the subscripts A and B refer to the two components of
the merger. We follow here [97] and set the following
threshold to single out the cases of prompt collapse to a BH:

κT2 > 70: ð7Þ

This limit excludes the mergers with the heaviest masses,
including allmergerswith averageNSmass above∼1.5 M⊙.

FIG. 7. The deviation from the I-Love-Q relations for the hybrid EOSs at ntr ¼ 1.9ns. Notation of curves as in Fig. 6.
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For equal NSmasses,MA ¼ MB, we have κT2 ¼ 3Λ=16, and
the limit becomes Λ≳ 370, i.e., a value well below the
LIGO/Virgo bound of (1).
Comparison of static properties of NSs and the results of

numerical merger simulations has shown that the frequen-
cies can be estimated to a good accuracy by using universal
relations involving the masses and tidal deformabilities of
the individual stars [94,95,97–99]. We use here the rela-
tions for the frequencies f2 and fmrg from [97], where they
are fitted as rational functions of the variable

ξ ¼ κT2 þ cð1 − 4νÞ; ð8Þ

where ν ¼ MAMB=ðMA þMBÞ2 is the symmetric mass
ratio and c is also a fit parameter. The results for our hybrid
EOSs are shown in Figs. 8 and 9.
Figure 8 shows the predictions for the frequencies f2 and

fmrg for equal mass binaries as a function of the mass of an
individual star. Notation is as in Fig. 1: We show the bands
spanned by all hybrid EOSs (striped band) and those

passing the astrophysical constraints (1) and (2) (light
red band) compared to the band for polytropic interpola-
tions satisfying the same constraints, as well as examples of
results for hybrid EOSs with ntr ¼ 1.9ns. We also required
the bound of (7) for f2 which explains the sharp cutoff at
large masses in the left plot. Notice that the bound contains
a sizable uncertainty [96], which is not shown. We did not
apply the cutoff for fmrg, which is also well defined in the
case of prompt collapse. The fits of [97] however used data
with κT2 ≳ 70, so that the results for large masses and
frequencies in the right plot are based on extrapolation. We
did not include the uncertainty of the universal relations in
the plots—this uncertainty is less than 10% at 90% con-
fidence level [97]. The simulations carried out in [17]
typically found frequencies that were a bit smaller than
those predicted by the universal relations. These deviations
were also less than 10% in all cases. However this suggests
that the bands in Fig. 8 (and also below in Fig. 9)
systematically slightly overestimate the frequencies for
the hybrid EOSs.

FIG. 8. Characteristic frequencies of the gravitational wave signal as functions of mass for equal mass binaries M ¼ MA ¼ MB.
Example curves are presented at ntr ¼ 1.9ns. We also applied the prompt collapse limit of κT2 > 70 in the left plot, which explains the
sharp cut in the upper limit. The area shaded in blue is formed by polytropic interpolations with astrophysical constraints applied. The
area shaded in light red contains the hybrid EOSs with astrophysical constraints and with stripes without the constraints.

FIG. 9. Characteristic frequencies of the gravitational wave signal as functions of q ¼ MA=MB for fixed average mass M̄ ¼ 1.35 M⊙.
Notation as in Fig. 8.
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We note that the hybrid EOSs in general favor smaller
frequencies than generic polytropic interpolations, because
the hybrid EOSs are stiffer. This is in agreement with the
results of [17] where mergers were simulated by using the
hybrid EOS with the SLy model and V-QCD with poten-
tials 7a, and it was found that the characteristic frequencies
for the hybrid EOS were significantly lower than for the
pure SLy EOS. Notice however that, compared to the
polytropic results, our construction also excludes a bunch
of stiff EOSs producing lower characteristic frequencies
than the hybrid models. The excluded polytropic EOSs are
very stiff at low densities but can still meet the LIGO/Virgo
bound due to their softness at high densities, well above the
saturation density. The hybrid construction does not allow
for such softening: All hybrid EOSs are relatively stiff at
high densities due to the input from holography.
Notice that at the average mass M̄ ¼ 1.4 M⊙, corre-

sponding roughly to the gravitational wave event
GW170817, only a restricted set of hybrid EOSs passes
the constraint (7), producing a frequencies f2 in a narrow
interval in Fig. 8 (left). That is, the binaries with softest
hybrid EOSs (including typical EOSs using the soft variant
of the HLPS models) are predicted to lead to prompt
collapse, whereas stiffer hybrids lead to a (possibly short-
lived) remnant NS. It has been estimated based on the
observed electromagnetic signal from GW170817 that a
hypermassive NS was formed, which collapsed into a black
hole about 100 ms after the merger [100] (see also [101]).
Consequently, this observation favors a hybrid EOS with
one of the stiffer nuclear matter models, which (as we have
argued above) are more regular than those obtained by
using the soft HLPS model and are also favored by the
direct radius measurements using the x-ray channel.
Figure 9 shows the results similarly at fixed average

mass M̄ ¼ 1.35 M⊙ varying the mass ratio q ¼ MA=MB.
The merger frequency fmrg shows much stronger depend-
ence on q than f2. Notice that the upper edges of both the
light red and light blue bands are determined by the bound
(7) for q≲ 1.4 in the left plot and therefore they coincide.

IV. DISCUSSION

In this article we explored a framework where “tradi-
tional” models of nuclear matter were combined with
predictions from a holographic model. In this approach,
the low-density (weakly coupled) EOS was given by a
selection of well-established models of nuclear matter,
whereas the EOS for both the dense nuclear and quark
matter was given by the holographic V-QCD model.
The “hybrid” EOSs for cold QCD matter were confronted
with known constraints from the measurements of NS
masses and radii, as well as gravitational wave and
electromagnetic observations of the GW170817 NS binary
merger. We found that all known astronomical bounds can
be satisfied if the nuclear matter becomes strongly coupled

at one-to-two nuclear saturation densities as described by
holography.
The essential new ingredient in the EOSs studied in this

article was the holographic modeling of nuclear matter,
which was carried out by using a homogeneous approach in
V-QCD [15,17]. We adopted a method where the EOS of
the homogeneous holographic nuclear matter was contin-
uously matched with the low-density nuclear matter mod-
els. Effectively, this meant taking as an input intensive
thermodynamic functions (e.g., the speed of sound) from
the holographic model, while determining the normaliza-
tion of the extensive thermodynamic potentials from the
continuity conditions. We explored the model dependence
(remaining after the fit to lattice data [14]) of the speed of
sound and showed that qualitative features were similar in
all models (see Fig. 3): The speed of sound squared was
seen to be an increasing function of the density with a
roughly fixed slope and would rise well above the con-
formal value 1=3. In other words, we demonstrated that the
model has strong predictive power.
The shape of speed of sound curves in the dense nuclear

matter region makes it easy to pass the well-known bounds
coming from the Shapiro delay measurements of NS
masses and the LIGO/Virgo event GW170817. More
precisely, the LIGO/Virgo deformability bound for NSs
having a relatively low mass of 1.4 M⊙ requires the low-
density EOS to be soft, whereas the bound of the maximal
NS mass being at least around 2.0 M⊙ requires, on average,
the EOS at a bit higher densities to be stiffer. Consequently,
for a speed of sound increasing rapidly with increasing
density, such as the speed of sound predicted by V-QCD,
these bounds constrain the EOS only weakly. This leaves,
however, constraints due to the functional form of the EOS
and more generally from the “regularity” of the EOSs:
Using a selected model both in the low- and high-density
regions guarantees that the EOS, as well as the speed of
sound, is (except in some cases which we discuss below) a
relatively smooth, regular, monotonic function apart from
features induced by physical reasons such as the nuclear to
quark matter transition or the transition from weakly to
strongly interacting nuclear matter with increasing density.
The EOS as a whole depends on both the traditional

nuclear matter models (at low density) and the holographic
models (at high density). After imposing the astrophysical
bounds on the maximum NS mass and deformability at
1.4 M⊙, we found a family of viable hybrid EOSs, which
spans the light red bands in Fig. 1. As we have pointed out,
however, this family also contains some EOSs that are not
so regular and smooth. In particular, many of the hybrids
formed using the soft variation of the HLPS model have a
sizable jump of the speed of sound at the matching point,
whereas other models (such as SLy, the intermediate
version of HLPS, and IUF) typically produce more regular
EOSs. Interestingly, we noticed that such more regular
EOSs are also slightly favored by x-ray measurements of
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NS radii (included in the left plot of Fig. 1) and the study of
the electromagnetic signal related to GW170817 which
appears to be consistent with a short-lived hypermassive
NS remnant [100]. The NSs produced by these regular
EOSs have larger radii, around 12 km and even above; see
Table I. Note also that the examples of hybrid EOSs
constructed in [17], which were used in the merger
simulations in the same article, belong to the latter class
of regular EOSs favored by the data.
We also verified the expectation [14–17] that the

deconfinement transition continues to be strongly first
order, and the NS cores are void of quark matter: The
latent heat is over 700 MeV=fm3 for all viable EOSs,
making quark matter cores unstable. Because both dense
nuclear and quark matter phases were modeled by V-QCD,
the instability of quark matter cores (as well as other
properties of the phase transition in Fig. 4) is mainly a
prediction of the holographic model. Details in Fig. 4
depend on the low-density model only weakly through the
matching procedure.
The absence of quark matter in NS cores seems to be at

odds with the recent work [23] which found strong
evidence for the existence of sizable quark matter cores
(see also [102]). This evidence was based on studying
analytic interpolations for the EOSs between regions
having low and extremely high density, where nuclear
matter models and perturbative QCD give reliable predic-
tions for the EOS, respectively. One should note, however,
that the latent heat of the nuclear to quark matter phase
transition in V-QCD is well above the limiting value of
130 MeV=fm3, above which quark matter cores were
indeed found to be unstable in [23]. Nevertheless, we find
examples of hybrid EOSs which pass the astrophysical
constraints but do not reach extremely high speeds of
sound. The lowest maxðc2sÞ ≈ 0.41 of such EOSs is
obtained from the hybrid EOS with the IUF model and
V-QCD with potentials 5b at ntr ≈ 1.85ns. This EOS does
not meet the regularity conditions of [23] though due to the
jump in the speed of sound at the IUF to V-QCD matching
point. However, in the hybrids with the intermediate HLPS
model and V-QCD with potentials 5b the jump is absent for
ntr ≈ 2.05ns, and the EOS still passes the bounds and has
maxðc2sÞ ≈ 0.42. These numbers are considerably lower
than those reported in [23]. The reason for this is apparently
that V-QCD predicts somewhat lower values of the adia-
batic index γ (see Appendix B) just below the deconfine-
ment transition than what is classified as nuclear matter in
this reference.
Apart from the properties of the phase transition, some

other important observables such as the maximum mass of
the NS in Fig. 2 are more sensitive to the physics of the core
than the crust and hence more to the holographic part of the
hybrid EOSs than the nuclear model part. But there are also
observables, such as the radii (Fig. 5) and deformabilities
(Fig. 6), in particular at low mass, as well as the frequencies

of Figs. 8 and 9, which are more sensitive to the low-
density nuclear matter model than the holographic model.
However, interestingly the hybrid construction also adds
information about the observables in the latter class: By
determining with improved certainty how the models
should be extrapolated to higher densities, we are able
to study the effects of the astrophysical bounds on the low-
density region more reliably. In particular, the stiffness of
the V-QCD EOS at higher densities means that the LIGO/
Virgo deformability bound more severely restricts the stiff
low-density EOSs than one might think based on the
studies of polytropic interpolating EOSs, for example.
As a concrete example we obtain the lower bound of
230 for the tidal deformability at 1.4 M⊙ in (4), which is
pushed up to about 300 if only more regular hybrid EOSs
are considered (i.e., excluding those with the soft HLPS
model and a huge jump in speed of sound at the match-
ing point).
It is important to notice that all results discussed

in this article are functionals of the EOS only. Therefore,
based on these results, it is difficult to point out “smoking
gun” observables supporting the holographic (or hybrid
holographyþ nuclear matter model) approach. Namely, it
is always possible that some other model produces a very
similar EOS based on a completely different approach and
therefore almost identical results for the NSs, which are
therefore “masquerading” [103] as holographic (hybrid)
NSs. Indeed, as we have pointed out, the functional renorm-
alization group methods seem to lead to strikingly similar
results to holography in both the dense nuclear and quark
matter phases [27–29]. In principle it could be possible to
differentiate between different setups by studying observ-
ables which cannot be directly derived from the EOS, such as
transport properties. The key fact to recall from the holo-
graphic approach is that certain computations are relatively
easy to perform, which are otherwise out of reach from
“traditional”methods, and transport properties are exactly in
this class of observables. In particular, all relevant transport
coefficients for NS mergers in the (heated up) spatially
homogeneous quark matter phase of V-QCD recently
appeared [104].
A key ingredient in the analysis of this article was the

implementation of nuclear matter in V-QCD, which was
done by using a very simple approach following [15] where
the nuclear matter is dual to a homogeneous bulk field. This
approach depends, among other things, on the Chern-
Simons term discussed in Appendix Awhich is not known
for general backgrounds. One future project will explore
the freedom in determining this term. Another direction
would be to go beyond the homogeneous approximation
and implement the baryons in terms of inhomogeneous
solitonic gauge field configurations in the bulk. A first step
would be to solve for the soliton dual to a single baryon,
and further steps would consider interactions between the
solitons.
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Besides improvements in describing the nuclear matter
phase, there are several other interesting issues that will
require further study. In the current article we set the quark
masses to zero, which presumably is a reasonable
assumption at not-so-high densities. The generalization
of the present work to nonzero flavor-independent quark
masses is straightforward [105] albeit somewhat tedious.
A more challenging and ambitious improvement would be
the inclusion of flavor dependence and in particular the
strange quark mass. It may affect the comparison to lattice
data carried out in [14], also leading to changes in the
predictions of the holographic model at high density.
Carefully studying this effect is an important future project.
When the chemical potential is increasing and one is

creeping toward the deconfinement transition densities,
one might also ask if some form of pairing between the
quarks [106] could also manifest in V-QCD, possibly
through a mechanism recently revealed in [107,108] (see
also [109–113] for earlier work in this direction). The
details of the pairing mechanism is highly sensitive to the
differences of the bare quark masses, especially those for
the down and strange quarks.
Apart from the effects of the strange quarkmass, there are

other ways to refine the comparison of the holographic
model with lattice and other data. The simple analysis of
[14] omitted higher cumulants of the dependence of the
lattice EOS on chemical potential, which are already known
to a rather good precision [114,115]. The RHIC beam
energy scan has also produced data which can be used to
constrain the dependence on chemical potential [116]. One
could also check if the available lattice data for magnetic
effects [117] and conductivities [118] helps to reduce the
uncertainties in the model parameters. Moreover, the phys-
ics in the low-temperature confining phase should be
carefully compared to experimental QCD data, in particular
to the spectra of low-lyingmesons and their decay constants.
Finally, at very high densities, the Lorentz invariance of

QCD could be spontaneously broken. Famous candidates
include the spontaneously generated currents in a phase
with a nonzero kaon condensate [119,120], the sponta-
neously broken translational symmetry in the crystalline
color-flavor locking phase [121–123], and in particular in
the large-Nc limit the chiral density wave [124,125]. We
similarly expect that the Lorentz invariance might not be
intact at very low temperatures in V-QCD, as suggested by
several holographic flavor models [126–130]; hence a
detailed study of the global phase structure as well as of
the transport coefficients of the ordered phases [131,132] is
direly needed.
In this article we considered only the physics at zero

temperature, apart from possible indirect effects due to
finite temperature through the use of universal relations in
the analysis of the frequencies of the gravitational waves in
NS mergers. In order to be able to directly describe the
physics of NS mergers, where QCD matter is heated up to

temperatures comparable to the characteristic scale of
strong interactions ΛQCD, it would be important to extend
our description in all phases to include realistic finite
temperature effects. We plan to report on this and also
on other previously mentioned extremely interesting topics
in future works.
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APPENDIX A: THE HOLOGRAPHIC
V-QCD MODEL

The holographic model we use (V-QCD) [20] is obtained
through a fusion of two building blocks: The first is
improved holographic QCD (IHQCD) [18,19] which is a
holographic model for pure Yang-Mills theory, loosely
based on five-dimensional noncritical string theory. The
second is a method for adding flavor and the physics of
chiral symmetry breaking in such setups [53,55], which is
realized through Sen-like tachyonic Dirac-Born-Infeld
(DBI) actions [53–58] for a pair of space filling D4–D4-
branes (see also [57,58] for an analysis of this setup in a
different geometry). The gluon and quark sectors are fully
backreacted in the Veneziano limit, where one takes both
the number of colors Nc and the number of flavors to
infinity keeping their ratio fixed.
The action of the model has two terms modeling the

gluon and quark sectors:

SV-QCD ¼ Sg þ Sf; ðA1Þ

where, including terms which are relevant in the quark
matter phase and the confined vacuum,

Sg¼M3N2
c

Z
d5x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p �
R−

4

3

ð∂λÞ2
λ2

þVgðλÞ
�
; ðA2Þ

Sf ¼ −M3NfNc

Z
d5xVfðλ; τÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ κðλÞ∂μτ∂ντ þ wðλÞFμνÞ

q
: ðA3Þ
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That is, the gluon sector is described via five-dimensional
Einstein-dilaton gravity and the flavor sector is described
via the generalized tachyonic DBI action. The potentials
VgðλÞ, Vfðλ; τÞ, κðλÞ, and wðλÞ as well as the value of the
five-dimensional Planck mass M will be specified below.
The dilaton field λ is dual to the TrF2 operator and its
leading non-normalizable term near the UV boundary is
identified as the ’t Hooft coupling [18,19]. The “tachyon”
field τ is dual to the quark bilinear q̄q and the coefficient of
the non-normalizable term near the UV boundary is there-
fore the quark mass the boundary (which in this formu-
lation is assumed to be flavor independent). It therefore
controls the physics of chiral symmetry breaking
[19,20,53,55]. In this work we will simply set the quark
mass to zero. The quark chemical potential is realized by
turning on a temporal componentΦ for the gauge field such
that the only nonzero components of the field strength
tensor are Frt ¼ −Ftr ¼ Φ0ðrÞ and the chemical potential
is given by μ ¼ Φð0Þ, where r is the bulk coordinate.
In addition, we consider nuclear matter in a simple

approximation scheme where it is dual to a homogeneous
non-Abelian gauge field configuration. To be precise, we
restrict to SUðNf ¼ 2Þ and choose an ansatz for the spatial
components of the non-Abelian gauge fields [15,41,42]:

Ai
L ¼ −Ai

R ¼ hðrÞσi; ðA4Þ

where AL (AR) are the gauge fields on theD4 (D4) -branes,
the function hðrÞ controls the dependence on the bulk
coordinate, and σi are the Pauli matrices. This effectively
gives rise to the following additional terms in the
Lagrangian (see [15] for details):

SDBI ¼ −2cbM3Nc

Z
d5xVfðλ; τÞ

× e5A
ffiffiffiffi
Ξ

p �
1þ 6κðλÞτ2e−2Ah2 þ 6wðλÞ2e−4Ah4

þ 3

2
wðλÞ2e−4AfΞ−1ðh0Þ2

�
; ðA5Þ

SCS ¼ −
2cbNc

π2

Z
d5xΦ

d
dr

½e−bτ2h3ð1 − 2bτ2Þ�; ðA6Þ

where prime denotes derivatives with respect to r,

Ξ ¼ 1þ e−2AfκðλÞðτ0Þ2 − e−4AwðλÞ2ðΦ0Þ2; ðA7Þ

and the metric was taken to be

ds2 ¼ e2AðrÞðfðrÞ−1dr2 − fðrÞdt2 þ dx2Þ: ðA8Þ

The function AðrÞ is dual to the logarithm of the energy
scale in QCD [18] and the blackening factor fðrÞ is
nontrivial (i.e., it differs from the unit function) even at

zero temperature backgrounds in the presence of finite
baryon charge. The homogeneous ansatz is the source of
the Abelian gauge field Φ in the bulk due to the coupling
between Φ and h in the Chern-Simons term SCS [55]. This
term depends on the parameter b, which will be determined
by matching the EOS with the nuclear matter models as
explained in the main text. We also introduced a normali-
zation parameter cb which is also determined by matching
with the low-density nuclear matter models—such a
“correction factor” is needed for physically reasonable
predictions for the thermodynamic potentials [15], which
reflects the roughness of the homogeneous approximation.
This means that we take the speed of sound (rather than the
pressure) as a function of the chemical potential as the input
from holography in the nuclear matter phase. Notice that, as
we demonstrate in the main text (see Fig. 3), the predictions
for the speed of sound from the holographic model are
robust in the nuclear matter phase, which supports this
approach. Introducing such an extra parameter may also
make sense because, as explained in [15], the nuclear
matter was taken to have Nf ¼ 2 due to practical reasons
whereas the normalization of the quark matter sector was
determined using lattice data with 2þ 1 flavors.
The low-temperature phases of the model at zero quark

mass are then the following [15,21,133]:
(i) Confining, chirally broken vacuum phase.—This

phase has a horizonless geometry ending in an IR
singularity, and a nontrivial background configura-
tion for the tachyon field, indicating that chiral
symmetry is broken for the boundary theory. The
gauge field Φ is constant and the baryon number
density is zero.

(ii) Confining nuclear matter phase.—This phase has
the same geometry as the vacuum phase, and a
nonzero tachyon field, but in addition a homo-
geneous non-Abelian bulk gauge field, which mod-
els nuclear matter. The non-Abelian field acts as a
bulk source for Φ due to the CS action (A5), so that
Φ has a nontrivial bulk profile and the baryon
number density is therefore nonzero.

(iii) Deconfined, chirally symmetric quark matter
phase.—This phase has a geometry with a (planar)
charged black hole, and the tachyon field is zero,
indicating that chiral symmetry is intact on the
boundary. The only source for the gauge field Φ
is the charge behind the horizon, so that the
“instanton density” due to (A5) is zero, but the
baryon number density is still nonzero. In the zero
temperature limit the IR geometry becomes
AdS2 × R3 [21].

For the results in this article, the two latter phases with
nonzero baryon number density are relevant.
The potentials Vg, Vf, κ, and w in the action (A2)

and (A3) are first constrained by requiring qualitative
agreement with QCD physics [14,18–20,105,134], which
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essentially fixes the UV (small λ) and IR (large λ)
asymptotics of the potentials. The remaining degrees of
freedom are then tuned to fit lattice data (at small density)
[14,59,135].
We use three sets of potentials 5b, 7a, and 8b in this

article, which were originally determined in [14] but
require some tuning to be compatible with the nuclear
matter setup of [15]. More precisely, [14] used lattice data
in the chirally symmetric, high-temperature phase where
the tachyon is zero. Therefore the fit only directly con-
strained the potentials Vg, Vf, and w, whereas the tachyon
kinetic coupling κ was tuned to set the critical temperature
to the desired value. In [15] it was noted that a slight tuning
of the potential κ (which keeps the critical temperature
unchanged) was required for some potential sets to obtain
physically reasonable nuclear matter configurations.
The choices of the potentials are the following. We take

Vfðλ; τÞ ¼ Vf0ðλÞe−τ2 and

VgðλÞ ¼ 12

�
1þ V1λþ

V2λ
2

1þ λ=λ0

þ VIRe−λ0=λðλ=λ0Þ4=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ λ=λ0Þ

p �
; ðA9Þ

Vf0ðλÞ ¼ W0 þW1λþ
W2λ

2

1þ λ=λ0
þWIRe−λ0=λðλ=λ0Þ2;

ðA10Þ

1

κðλÞ¼ κ0

�
1þ κ1λþ κ̄0

�
1þ κ̄1λ0

λ

�
e−λ0=λ

ðλ=λ0Þ4=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þλ=λ0Þ

p
�
;

ðA11Þ

1

wðλÞ ¼ w0

�
1þ w1λ=λ0

1þ λ=λ0
þ w̄0e−λ̂0=λ

ðλ=λ̂0Þ4=3
logð1þ λ=λ̂0Þ

�
:

ðA12Þ

Here the following UV parameters were fixed to the values
obtained by comparing to the UV RG flow of QCD
[18,105]:

V1 ¼
11

27π2
; V2 ¼

4619

46656π4
; κ0 ¼

3

2
−
W0

8
; ðA13Þ

κ1 ¼
11

24π2
; W1 ¼

8þ 3W0

9π2
; W2 ¼

6488þ 999W0

15552π4
;

ðA14Þ

while the remaining parameters were tuned to match with
the lattice data for thermodynamics at low density in
the deconfined phase. We take the same values for the
parameters of the gluon sector:

λ0 ¼ 8π2=3; VIR ¼ 2.05; ðA15Þ

which were determined by comparing to lattice data for
Yang-Mills thermodynamics at large Nc [60], for all fits.
The remaining fit parameters for the three potential sets are
given in Table II, where the AdS radius is given by

l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W0=12

p : ðA16Þ

In addition to the parameters appearing in the action, this
table also includes the dynamically generated UV scaleΛUV
which is defined through the UV expansions of the back-
ground (see, e.g., [14]). In particular the dilaton behaves near
the boundary, r → 0, as λ ∼ −1=ðb0 logðrΛUVÞÞ, where
b0 ¼ 9ðV1 −W1Þ=ð8ð12 −W0ÞÞ. Specifying the physical
value of this scale parameter determines the units of energy in
the model. It may therefore be viewed as a holographic
version of the QCD scale ΛQCD.
The parameters of Table II were grouped in four different

groups as follows:
(i) The parameter W0 was held fixed for each set of

potentials, roughly corresponding to a flat direction
in the fit.

(ii) The IR parameter of the flavor potentialWIR as well
as the parameters of the w potential were fitted
directly to the lattice data for the interaction measure
ðϵ − 3pÞ=T4 and the baryon number susceptibility
[136,137].

(iii) The parameters of the κ potential were tuned to
obtain the desired critical temperature and regular
nuclear matter configurations [15]. The parameters
are therefore slightly different from [14] for the
potentials 5b and 7a.

(iv) The global parameters ΛUV and M were fitted to the
lattice data for the interaction measure.

TABLE II. Fit to thermodynamics at small chemical potential:
values of various parameters. Here l is the UV AdS radius and
M3 was normalized such that the tabulated value gives the
deviation from the Stefan-Boltzmann law for the pressure at
high temperatures.

5b 7a 8b

W0 1.0 2.5 5.886
WIR 0.85 0.9 1.0
w0 0.57 1.28 1.09
w1 3.0 0 1.0
w̄0 65 18 22
8π2=λ̂0 0.94 1.18 1.16
κ̄0 1.8 1.8 3.029
κ̄1 −0.857 −0.23 0
ΛUV=MeV 226 211 157
180π2M3l3=11 1.34 1.32 1.22
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Apart from these parameters, the nuclearmatter sector [15]
contains two additional parameters: b and the normalization
of pressure cb, which are determined by matching the EOS
with the various nuclear matter models as explained in the
main text. We find that the value of b depends mostly on the
choice of potentials. For potentials 5b, we find values within
the range 9 < b < 10, for potentials 7a within the range
10 < b < 11, and for potentials 8b within the range
30 < b < 32. The values of 8b may appear unnaturally
large; notice however that, as seen from the definition (A5),
the relevant parameter is actually the scale of the tachyon
1=

ffiffiffi
b

p
. For potentials 8b this is 1=

ffiffiffi
b

p
≈ 0.18, i.e., still not

very small. The normalization parameter cb is most sensitive
to the value of ntr. The values which we find lie in the range
2.5≲ cb ≲ 5 for all models. The correction factor of the
pressure is therefore clearly larger than the preferred value
cb ∼ 1, but not by orders of magnitude.
We stress that, as explained in [14], the fit to the lattice

data is stiff: While the number of parameters seems large,

the results depend on them only weakly. Actually the
results are already determined at a qualitative level after
fixing the asymptotics of the various potentials, and fitting
the parameters, which control the potentials at intermediate
values of λ, amounts to small tuning of the results.
Moreover, we note that the lattice fit chooses such values
of the parameters that all the potentials are regular,
monotonic functions of λ. This in part explains why the
model still gives very constrained predictions for the EOS.

APPENDIX B: THE ADIABATIC INDEX

In this appendix, we briefly discuss the adiabatic index
γ ¼ d logp=d log ϵ of the hybrid EOSs. The results are
shown in Fig. 10. They should be compared to those for the
speed of sound in Fig. 3 as the quantities are related by
multiplication by p=ϵ. Notice that the adiabatic index is
roughly independent of the choice of potentials in V-QCD,
whereas c2s shows moderate dependence. The roughness of
the curves at low densities reflects the fact that our nuclear

FIG. 10. The dependence of the adiabatic index γ on the parameters of the hybrid EOS as a function of the normalized number density
n=ns. Top: γ for the hybrid EOS with various nuclear matter models, keeping the potentials of V-QCD and the matching density
ntr ¼ 1.9ns fixed. Bottom left: the dependence on the matching density. Bottom right: the dependence on the potential. The thick (thin)
curves are the results for EOSs which pass (violate) the astrophysical bounds of Fig. 2.
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matter EOSs were extracted from discrete data which was
somewhat sparse in some cases (but still dense enough to
make reliable predictions). The structure near n ¼ 0.5ns is
due to the change from the crust EOS (which has small

uncertainties) to the nuclear matter EOSs. Almost all
models show a high peak of γ right above the matching
density after which the index decreases fast, reaching
values near 1.5 at the first-order phase transition.
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