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Scientists’ research interests are often skewed toward char-
ismatic organisms, but quantifying research biases is chal-
lenging. By combining bibliometric data with trait-based 
approaches and using a well-studied alpine flora as a case 
study, we demonstrate that morphological and colour traits, 
as well as range size, have significantly more impact on spe-
cies choice for wild flowering plants than traits related to ecol-
ogy and rarity. These biases should be taken into account to 
inform more objective plant conservation efforts.

Throughout human history, plants have played the role of silent 
partners in the growth of virtually every civilization1. Humans have 
exploited wild plants and crops as sources of food2, used trees as 
combustible material and to craft manufactured goods1,3 and taken 
inspiration from the beauty of flowers for poetic and artistic endeav-
ours4,5. Since the birth of modern science, plants have also become 
the subjects of intense investigation. As scientists systematically 
studied the natural history of plants6, they soon realized that many 
of these species could function as model organisms to address fun-
damental scientific questions7. Edward O. Wilson famously stated 
that ‘[…] for every scientific question, there is the ideal study sys-
tem to test it’ and thus, the choice of a researcher to study one spe-
cies or another is often driven by functional criteria (for example, 
ploidy level for genetics studies and ease of growth under controlled 
conditions). Still, outside of the laboratory or the greenhouse, field 
scientists may be challenged in their choice of focus organisms 
by concerns that exceed strictly scientific research interests. As a 
result, when plant scientists select to study a specific wild plant 
among the pool of species available in a given study region, it may 
be that factors unrelated to the biological question end up influenc-
ing species choice and introducing biases in the research outcome. 
Whereas this is not a problem per se, a disparity in scientific atten-
tion towards certain species may become a concern in conservation 
biology, where it is paramount to ensure a ‘level playing field’ in 
selecting conservation priorities8,9.

Given their global diversity10 and ecological importance11,12, 
plants should be prominent in conservation biology’s effort to curb 
species loss under mounting anthropogenic pressures13–15. Yet, it is 
well documented that plants receive less attention and consequently 
less funding in conservation than do animals16,17. This particular 
case of taxonomic bias has been connected to ‘plant blindness’18 
or ‘plant awareness disparity’19, two terms proposed to indicate the  
lack of awareness for plants. Associated with both the evolutionary 

history of human cognition and the effect of cultural, scientific and 
educational tendencies, this disparity translates into serious real-life 
impacts, as it affects the knowledge base of conservation and its 
policies. As addressing this bias is urgent but also often outside the 
scope of plant sciences, we want to identify more specific biases that 
can be addressed from within the scientific community dedicated to 
plants, thereby informing better research practices.

With this goal in mind, we chose a well-defined case study in 
which to consider specific traits and factors that could influence the 
choice of species studied. By combining the strengths of bibliomet-
rics and trait-based approaches, we asked what kind of biases might 
operate in plant sciences, resulting in some species being more stud-
ied than others. To resolve this question, we chose a model system 
of 113 species typical of the Southwestern Alps, one of the largest 
biodiversity hotspots within the Mediterranean region20 (Fig. 1a). 
By focusing on a well-known flora in a delimited area, this study 
design allowed us to control for several confounding factors related 
to sampling biases, trait heterogeneity and research interest.

We tested whether there is a relationship between research focus 
on a plant species (measured using bibliometric indicators) and 
species-specific traits related to ecology, morphology and rarity 
(Fig. 1a). In the Web of Science, we sourced 280 papers focusing on 
the selected plant species (average (±s.d.) of 2.15 ± 2.96 scientific 
papers per plant), published between 1975 and 2020. Given that the 
number of publications, their average annual number of citations 
and average h-index were all reciprocally correlated (all Pearson’s 
r > 0.7; Supplementary Fig. 1), we expressed research attention 
simply as the total number of publications. By means of variance 
partitioning analysis21, we ruled out the relative contribution of 
ecology, morphology and rarity in determining the observed pat-
tern of research attention. This analysis indicated how the choice of 
investigated species across the literature in the last 45 years has been 
strongly influenced by plant traits related to aesthetics. Using mar-
ginal R2, we observed how morphological and colour traits explain 
the greater proportion of variance (15.0%), whereas the contribu-
tion of ecology and rarity was negligible (Fig. 1b). However, 75.6% 
of model variance remained unexplained. When reassessing vari-
ance partitioning using conditional R2, which describe the propor-
tion of variance explained by both fixed effect and random factors 
(species taxonomic relatedness), we found that 54% of unexplained 
variance was due to the random effect. This reveals that certain clus-
ters of closely related plants are more studied than others and share 
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more similar traits than expected from a random pool (examples  
in Fig. 2a).

This first result was surprising, as species rarity and scientific 
interest for narrow-range endemics or International Union for 
Conservation of Nature (IUCN) listed taxa did not emerge as signif-
icant drivers. Moreover, a preference for species with particular eco-
logical features seemed likely, as some of the endemic species of the 
Southwestern Alps are adapted to stressful habitats characterized by 
a narrow range of environmental conditions, such as rocky lands 
and xerophilous grasslands22,23. While these adaptations might be 
desirable for studies on evolution, ecological niche theory, ecophysi-
ology and conservation, the lack of correlation between variables 
related to ‘rarity’ and ‘ecology’ highlights the absence of cross-study 
guidelines to help plant scientists prioritize such research areas in 
their choice of species studied.

To obtain a more nuanced understanding of which specific 
traits are driving research attention, we explored the relationships 
between traits and number of published papers with a Poisson gen-
eralized linear mixed model (GLMM) that accounted for taxonomic 
non-independence among species24 (Supplementary Table 1). Using 
backward model selection, we identified a best-performing model 
that included colour, range size, flower size and stem size as fixed 
terms (Fig. 2b,c). All other variables introduced in the model had no 
significant effects and were therefore removed during model selec-
tion (Supplementary Table 3). We observed a significant relation-
ship between the number of published papers and flower colour, 
with blue-coloured flowers being the most studied and white and 
red/pink significantly more studied than the baseline (brown/green 
flowers that stand out the least from the environmental background). 
Moreover, there was a significant positive effect of plant stem height 
and a (rather weak) negative effect of flower size on research inter-
est. A greater stem height implies that species are more conspicuous 

but also taller; thus their inflorescences are more easily accessible 
without investigators having to stoop to the ground. Furthermore, 
several plants with small flowers in the Maritime Alps may have 
intrinsic human appeal, for example flowers constituting conspicu-
ous inflorescences (such as Gymnadenia corneliana and Saxifraga 
florulenta) that are more striking than single large flowers, intro-
ducing an ‘inflorescence effect’. Finally, there was a positive effect of 
range size on research interest. Tentatively, this is because a broader 
distribution could make a species accessible to more researchers and 
thus more likely to be studied. It is interesting to note that, inciden-
tally, broad geographical ranges generally make species less prone to 
extinction, in line with our finding that species with greater IUCN 
extinction risk are not subject to more research interest.

The statistical relevance of similar trends across our dataset, 
where morphological traits such as bright colours, accessible inflo-
rescences and conspicuousness are shown to drive research atten-
tion, highlight what we call an aesthetic bias in plant research. While 
aesthetics is today used to refer to art and beauty (often in direct 
opposition to scientific values like objectivity), the Greek root of the 
word refers to sensory perception (as evident in its cognates ‘anaes-
thetic’ and ‘synaesthetic’). As such, the term highlights sensorial 
perception, both in its physiological, evolved cognitive structures 
and in its learned sociocultural articulations. Here it is interesting to 
note that humans have evolved trichromacy, that is the separate per-
ception of wavelength ranges corresponding to blue, red and green 
regions through specialized structures25. It has been speculated that 
the evolutionary acquisition of colour vision in humans and other 
primates led to an increased ability to locate ripe fruits against a 
green background26,27. The human eye is thus optimized to perceive 
green, red and blue which, according to colour psychology theory28, 
also greatly impacts people’s affection, cognition and behaviour. 
The evolved and physiological aspect of human perception is also 

Endemic flora of a coherent
biogeographic area

Elevation range
Maximum elevation

Variance partition analysis
(marginal R2)

Flower colour

Continentality

EcologyMorphology

0.149

0.072

0

Rarity

Unexplained variance
0.76

0.220.54

Due to taxonomic
relatedness
(conditional R2)

Contribution of the
three factors in
explaining reseach
interest

Truly
unexplained

0.010

00.021

0.004

ba

Moisture

N

pH
Light

T°

Flower size

Stem height

M
or

ph
ol

og
y

E
co

lo
gy

R
ar

ity

Flowering duration

Web of Science

Research interest

113 species

Number of papers
Annual citations
Average h-index

Exinction risk category
(IUCN)

Taxonomic uniqueness
(Number of congenerics)

RED
LIST

IUCN

Range size
(MCP area;
range dispersion)

Ecological requirements
(PCA on Landolt
indicator values)

Fig. 1 | Study workflow and most important factors in explaining research interest. a, Schematic representation of the data collection and the subdivision of 
the plant traits in three categories of ecology, morphology and rarity. b, Outcomes of the variance partitioning analysis, whereby the relative contribution of 
traits related to ecology, morphology and rarity is ruled out, as well as the random effect of species’ taxonomic relatedness at family level. T°, temperature.

Nature Plants | VOL 7 | May 2021 | 574–578 | www.nature.com/natureplants 575

http://www.nature.com/natureplants


Brief Communication NaTure PlanTS

demonstrably affected by sociocultural factors, since education, 
class, gender, age, cultural background all shape how we perceive 
the world29. Yet, while these above speculations about the origin of 
the aesthetic bias are interesting, they are beyond the scope of this 
communication. What matters is that this bias affects the represen-
tativity of data used to ground research priorities and conservation 
policies and, as such, risks compromising efforts to effectively focus 
plant conservation activities and preserve plant biodiversity.

In conclusion, our analysis identified the traits a plant must pos-
sess to be attractive to a scientist, emphasizing the trade-off between 
aesthetic characteristics, research attention and conservation need. 
While many factors can determine the choice of studied plant spe-
cies, we showed how research interests and conservation concerns 
are less important than aesthetic characteristics in driving research 
attention. This apparently superficial preference has implicit and 
undesired effects, as it translates into an aesthetic bias in the data 
that form the basis for scientific research and practices. Whether 
this bias is grounded in an evolutionary adaptation of human cog-
nition or in cultural and learned preferences or is simply the effect 
of practical constraints in the field, it would be desirable to develop 
measures to counteract it, given the potentially negative impact 
on our understanding of the ecology and evolution of plants and  
the conservation of vital plant biodiversity such as species of high 

phylogenetic value or with unique ecological traits and ecosystem 
functions. Statistical modelling has been widely used in conserva-
tion ecology to predict ecological niches in space and time and to 
develop a practical conservation agenda30. Whereas many potential 
issues, including geographical-relatedness and sampling biases31 
or metrics selection32, have been routinely considered in model-
ling exercises, the well-known problem of observer-related biases33 
is largely overlooked34. Against this background, our study dem-
onstrates the need to consider aesthetic biases more explicitly in 
experimental design and choice of species studied. As Kéry and 
Greg35 stated: ‘although plants stand still and wait to be counted, 
they sometimes hide’. Often in plain view, we would add.

Methods
Species selection. We focused the analysis on the flora of the Italian and French 
Maritime alps, a plant biodiversity hotspot in the Southwestern Alps20. By 
restricting the analysis to a flora from a intensively studied and confined area, we 
were able to control for three confounding factors:

	(1)	 Since the Maritime Alps flora has been extensively studied for over two cen-
turies36, the number of described plant species in this area has already reached 
the asymptote37 compared with under-studied floras outside Europe38.

	(2)	 Narrow-range plants on similar substrates and localities are characterized 
by a restricted range of physicochemical features and would be expected to 
show similar adaptations. This excludes confounding factors that would occur 
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R. Vilm. & Chopinet (Gentianaceae, blue inflorescence and many published papers), Berardia lanuginosa (Lam.) Fiori (Asteraceae, small and single yellow 
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if a study was undertaken on species from different biomes and ecological 
regions.

	(3)	 Narrow-range species are primarily studied by local researchers (mostly from 
France, Italy and Switzerland), which are expected to share a similar cultural 
background and thus share cultural biases. This would not occur in the case 
of cosmopolitan plants studied by different researchers from mixed cultural 
backgrounds from around the world.

We selected a representative list of 113 plant species from checklists39,40. For 
the purpose of this analysis, we excluded subspecies and species of uncertain 
taxonomic status.

Bibliometric data. We obtained bibliometric data from the Web of Science41. 
We searched all published works focusing on each of the 113 species, using the 
accepted Latin names and synonyms reported in The Plant List42. For each species, 
we derived three values: number of published papers, their average number of 
citations per year and their average h-index. We acknowledge that our search for 
papers was not exhaustive: we have only included articles in English43, used a single 
bibliographic database and focused the bibliometric search to the abstract, title 
and keywords. This implies, for example, that species with no studies in the Web 
of Science (n = 43; 38%) may have actually been the focus of grey literature or of 
studies that did not mention the Latin name in the abstract of keywords. This is a 
common practice, for example, in multispecies studies. However, we assumed that 
this bias was homogeneously distributed across species and thus unlikely to affect 
the observed patterns.

Species traits. We derived flower colour, stem size, flowering duration and altitude 
data from Tela Botanica44, Actaplantarum (www.actaplantarum.org) and InfoFlora45. 
We obtained species’ ecological preferences using Landolt indicator values available 
in Flora Indicativa46. We extracted flower size from FlorAlpes (www.florealpes.
com/index.php) and conservation status from the IUCN red list47. We expressed 
taxonomic uniqueness of each species as the number of congeneric species, on the 
basis of ref. 42. Finally, we approximated species range size using species occurrences 
available in the Global Biodiversity Information Facility48. We calculated two 
measures: (1) the area of the minimum convex polygon (MCP) encompassing 
all localities (range area) and (2) the dispersion of points around the distribution 
centroid (range dispersion). The latter measure is a more robust measure of range 
if distribution data are biased, which is often the case with GBIF datasets where 
sampling effort is uneven (for example, refs. 49,50). We grouped species traits into 
three categories (Supplementary Table 2 and Fig. 1a): ecology (minimum altitude, 
altitude range, maximum altitude and Landolt Indexes), morphology (flower colour, 
flower diameter, stem size and flowering duration) and rarity (range area, range 
dispersion, IUCN category and number of congeneric species).

Data analysis. We performed all analyses in R51. We conducted data exploration 
following ref. 52. We checked homogeneity of continuous variables and log10- 
transformed non-homogeneous variables, when appropriate (Supplementary 
Table 2). We verified multicollinearity among predictors with pairwise Pearson’s 
r correlations (Supplementary Figs. 1 and 3). We visualized potential associations 
between continuous and categorical variables with boxplots. We summarized the 
main eight Landolt indicator values variations as the first two principal component 
(PC) axes of a Principal Component Analysis (PCA), describing the environment 
in which the different species live. PC1 explained 30.5% of the variance and PC2 
explained 17.1% of the variance. We excluded salinity tolerance in the calculation 
of PCA because it is not applicable in the analysed geographical and ecological 
context.

IUCN categories were compared with the other ‘rarity’ variables, revealing a 
strong association with range area and dispersion (extinction risk is often inferred 
on the basis of range size53) and a consistent association with the number of 
congeneric species. Also, collinearity analysis revealed a high correlation (|r | > 0.7) 
between minimum and maximum elevation, and range area and dispersion. We 
thus excluded the IUCN category, minimum elevation and range area from the 
analysis. Moreover, to balance the levels of the variable flower colour, we grouped 
together red with pink and brown with green coloured flowers. The category 
‘green/brown’ was used as a baseline in all analyses, being the least prominent 
colours from the background25,26.

Variance partitioning analysis. We used variance partitioning analysis21 to resolve 
the relative contribution of ecology, morphology and rarity in determining the 
observed pattern of research attention. We fitted seven GLMMs (modelling details 
in the next section), one for each individual set of variables (ecology, morphology 
and rarity) and their combined effects (ecology + morphology; ecology + rarity; 
morphology + rarity; ecology + morphology + rarity). In turn, we used the model 
pseudo R2 (both conditional and marginal)54 to evaluate the contribution of each 
variable and combination of variables the research attention each species receives, 
by partitioning their explanatory power using the modEvA55 and results visualized 
as a Venn diagram.

Regression model. We used regressions to explore relationships between the 
research attention each species receives and plant traits24. Given that number 

of published sources, average number of citations and average h-index were 
all reciprocally correlated (Pearson’s r > 0.7), we only selected the number of 
publications as a response variable (Supplementary Fig. 1). GLMM with lme4  
(ref. 56) were fitted to these data using a Poisson distribution and a log link function.  
The Poisson distribution is often used for count data (in our case, number of 
papers in the Web of Science) and the log link function ensures positive fitted 
values24. We scaled all variables and optimized GLMM with bound optimization 
by quadratic approximation to facilitate model convergence. We used the family 
taxonomic rank of each plant species as a random factor, to take into account data 
dependence under the assumption that species within the same family are more 
likely to share similar traits. Even though 38% of values in the response variable 
were zeros (that is, species never studied in scientific papers in the Web of Science), 
zero-inflation was considered as acceptable because these are ‘true zeros’57.

We built an initial GLMM using all the non-collinear variables and the 
non-associated factors (Supplementary Table 1) selected after data exploration (the 
equation is in R notation):

Number of Papers ∼ Flower colour + Flowering duration + Flower diameter

+Stem size + Landolt values PC1 + Landolt values PC2 + Maximum altitude

+Altitude range + Range size + Congeneric species + random (Family)

Once the initial model had been fitted, we performed model selection by 
backward elimination. We based model reduction on Aikaike information criterion 
values (Supplementary Table 3), to simplify the model and avoid overfitting58. We 
validated models with performance59 by checking overdispersion and standard 
residuals plots24 (Supplementary Fig. 2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data and R script to reproduce the analysis are available in figshare (https://doi.
org/10.6084/m9.figshare.13655456).
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Software and code
Policy information about availability of computer code

Data collection Trait data were manually collected by the first author (MA); species distribution data were extracted and calculated using "adehabitatHR" 
package v(0.1-29) and "rgbif" v(2.2.0) package in R.

Data analysis Data were analyzed using R v. 4.0.3 and R studio v. 1.4.1103
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings and the R script to generate the analysis are available on figshare database (doi: 10.6084/m9.figshare.13655456)
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Study description The study is based on plants typical to the Maritime Alps (n=111). For each plant we derived 16 standardized traits and we extracted 
all relevenat papers in Web of Science.

Research sample We listed 113 plant species available in the study area using most recent available checklists.

Sampling strategy We sampled the whole available population, namely the entire set of plants of the study area, which was obtained from the most 
recent available checklists. The entire population of relevant papers was also extracted from Web of Science.

Data collection All data were collected online by the first author (MA), using standardized bibliometric procedures. Traits data were compiled by MA, 
using different standard sources that are detailed in the paper' methods.

Timing and spatial scale In Web of Science, we sourced all published papers within the available temporal span (1975–2020).

Data exclusions As a result of data exploration, one outlier was removed from the dataset.

Reproducibility The study is fully reproducible being based on a standardize search of Web of Science and estimation of traits from different 
standard sources and a specified accesson data (IUCN, gbif, Flora Helvetica, etc.). The data that support the findings and the R script 
to generate the analysis are available on figshare database (doi: 10.6084/m9.figshare.13655456).

Randomization Not applicable. The only random stracture that could bias the reuslt is the taxonomic rank of species. The Family taxonomic rank of 
each plant species was used as a random factor in the regression models, to take into account data dependence under the 
assumption that species within the same family are more likely to share similar traits.

Blinding Not applicable. The study is based on bibliometric data.

Did the study involve field work? Yes No
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