
 1 

Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-

onset mitochondrial myopathy  

 

Eija Pirinen1*, Mari Auranen2,3#, Nahid A. Khan2#, Virginia Brilhante2, Niina Urho3, Alberto 

Pessia4, Antti Hakkarainen5,6, Juho Kuula5, Ulla Heinonen3, Mark S. Schmidt7, Kimmo 

Haimilahti1, Päivi Piirilä8, Nina Lundbom5, Marja-Riitta Taskinen1, Charles Brenner7, Vidya 

Velagapudi4€, Kirsi H. Pietiläinen9,10 and Anu Suomalainen2,11* 

 

1Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of 

Helsinki, FIN-00290 Helsinki, Finland 

2Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of 

Helsinki, FIN-00290 Helsinki, Finland 

3Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland 

4Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), FIN-00290 Helsinki, 

Finland 

5Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki 

University Hospital, Helsinki, Finland 

6Department of Neuroscience and Biomedical Engineering, Aalto University School of 

Science, FIN-12200 Espoo, Finland   

7Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 

52242, USA 

8Unit of Clinical Physiology, Helsinki University Hospital and University of Helsinki, Helsinki, 

Finland 

9Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty 

of Medicine, University of Helsinki, FIN-00290 Helsinki, Finland 

10Obesity Centre, Abdominal Centre, Endocrinology, Helsinki University Hospital and 

University of Helsinki, Helsinki, Finland 

11Lead Contact 

#equal contribution 

€current affiliation: Biopharmaceuticals R&D, Discovery Sciences, Astra Zeneca, 

Gothenburg, Sweden 

 

*Correspondence:  

anu.wartiovaara@helsinki.fi, eija.pirinen@helsinki.fi 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/429675024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:anu.wartiovaara@helsinki.fi


 2 

Summary  

 
NAD+ is a redox-active metabolite, the depletion of which has been proposed to promote 

aging and degenerative diseases in rodents. However, whether NAD+ depletion occurs in 

patients with degenerative disorders and whether NAD+ repletion improves their symptoms, 

has remained open. Here, we report systemic NAD+ deficiency in adult-onset mitochondrial 

myopathy patients. We administered an increasing dose of NAD+-booster niacin, a vitamin-

B3 form (to 750-1000 mg/day; clinicaltrials.gov NCT03973203) for patients and their matched 

controls for 10 or 4 months, respectively. Blood NAD+ increased in all subjects, up to 8-fold, 

and muscle NAD+ of patients reached the level of their controls. Some patients showed 

anemia tendency, while muscle strength and mitochondrial biogenesis increased in all 

subjects. In patients, muscle metabolome shifted towards controls and liver fat decreased 

even 50%. Our evidence indicates that blood analysis is useful in identifying NAD+-deficiency 

and points niacin to be an efficient NAD+-booster for treating mitochondrial myopathy. 
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Introduction 

 
NAD+ metabolite and its derivatives are fundamental orchestrators of daily homeostasis in 

our tissues. The relative amounts of NAD forms (NAD+, NADH, NADP, NADPH) and their 

cofactor functions to drive metabolism to either catabolic or anabolic direction, deciding 

whether nutrients are broken down to synthesize ATP, the cellular energy currency (Nunnari 

and Suomalainen, 2012), or used as building-blocks for growth and repair. The different NAD 

forms, their ratio and derived metabolites regulate lipid, nucleotide, glutathione synthesis and 

membrane homeostasis (Belenky et al., 2007a; Canto et al., 2015). A decreased 

NAD+/NADH ratio is a signal for a low nutrient state activating cellular fasting responses 

(Canto et al., 2015). These responses have been associated with health benefits and 

longevity. Not surprisingly, NAD+ metabolism has been a key interest of aging biology and 

therapeutic strategies for degenerative diseases. However, evidence of NAD+ deficiency and 

effects of NAD+ repletion in degenerative conditions relies on data in rodents and cell culture 

models, but human evidence is lacking. 

Mitochondrial activity is the key regulator of NAD+/NADH ratio, raising the question 

whether mitochondrial dysfunction and disease can affect intracellular NAD+ concentration. 

Mitochondrial disorders are exceptionally variable in manifestations, ranging from severe 

childhood brain disorders to adult-onset mitochondrial myopathies (Suomalainen and 

Battersby, 2017), the latter being the most common manifestation of the disease group in 

adults. Mitochondrial myopathy manifests typically as progressive weakness of the eye 

muscles [progressive external ophthalmoplegia (PEO)], generalized muscle weakness and 

fatigability (Ylikallio and Suomalainen, 2012). PEO is often caused by single heteroplasmic 

mitochondrial DNA (mtDNA) deletions or multiple mtDNA deletions, the former being 

sporadic and latter caused by mutations in nuclear-encoded proteins of mtDNA maintenance 

(Holt et al., 1988; Kaukonen et al., 2000; Spelbrink et al., 2001; Suomalainen et al., 1992; 
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Van Goethem et al., 2001; Zeviani et al., 1989). Despite recent advances in diagnostics and 

understanding of molecular mechanisms of PEO, curative interventions do not exist.  

 Mouse models for some progressive muscle diseases, including mitochondrial 

myopathy, manifest NAD+ depletion (Khan et al., 2014; Ryu et al., 2016; Zhang et al., 2016). 

Such a disease-modified, nutrient-independent NAD+ deficiency may disturb nutrient 

signaling in tissues and contribute to disease progression (Nunnari and Suomalainen, 2012). 

Therefore, the finding that increasing NAD+ levels remarkably improved disease hallmarks, 

mitochondrial mass and biogenesis in mitochondrial myopathy mice was highly interesting 

considering therapeutic approaches (Cerutti et al., 2014; Khan et al., 2014). Intracellular 

NAD+ concentrations can be increased by various approaches, such as decreasing NAD+ 

consumption (inhibition of poly(ADP-ribose) polymerases and cluster-of-differentiation-38) 

(Canto et al., 2015; Pirinen et al., 2014), NAD+ precursor supplementation (Bieganowski and 

Brenner, 2004; Canto et al., 2015), or by inhibition of aminocarboxymuconate semialdehyde 

decarboxylase (Katsyuba et al., 2018), which results in increased de novo synthesis of NAD+ 

from tryptophan. Vitamin B3 is an NAD+ precursor, and exists in several forms: nicotinic acid 

(niacin), nicotinamide (NAM), and nicotinamide riboside (NR) (Belenky et al., 2007b; Canto 

et al., 2015). In two mouse models for mitochondrial myopathy, NR remarkably improved 

mitochondrial function and mass, and delayed disease symptoms (Cerutti et al., 2014; Khan 

et al., 2014). However, studies of the effects of NAD+ boosters on human diseases are in 

their infancy.  

 Here, we determined NAD+ metabolome and the effects of niacin on NAD+ levels and 

disease signs in mitochondrial myopathy patients and controls. Our main question was 

whether NAD+ levels are depleted in mitochondrial dysfunction, as mitochondria are 

regulating NAD+ concentrations, and if so, whether NAD+ deficiency can be restored in the 

tissues of the patients. Niacin was employed, because it has been used in large doses to 
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treat hypercholesterolemia patients for the past 50 years, and has a proven safety record in 

humans (Guyton and Bays, 2007). Despite the long use of niacin for dyslipidemia, the 

mechanism of action of niacin is not clear and it was only recently proposed to involve 

elevation of NAD+ (Belenky et al., 2007a). Here we show that mitochondrial myopathy 

patients have depressed systemic NAD+ metabolism that can be functionally addressed with 

a high dose of niacin.  

 

Results  

Niacin is well tolerated by study subjects 

We recruited phenotypically similar mitochondrial myopathy patients for our study, as our 

previous expertise indicated that similar presenting phenotypes predict uniform physiological 

responses to interventions, despite varying genetic backgrounds (Ahola et al., 2016). Five 

patients with variable disease duration were carefully confirmed to manifest a pure 

mitochondrial myopathy, with PEO, ptosis, muscle weakness and exercise intolerance. They 

all carried either heteroplasmic single or multiple mtDNA deletions in their muscle. Table S1 

shows the clinical symptoms and signs, and underlying genetic defects. Two sex- and age-

matched healthy controls were recruited for each patient, and all subjects were enrolled to 

niacin supplementation (clinicaltrials.gov NCT03973203; primary end point, change in 

concentrations of NAD+ and related metabolite levels in blood and muscle; for list of 

secondary endpoints see 

https://clinicaltrials.gov/ct2/show/record/NCT03973203?view=record]. Figure 1A and Figure 

S1 present the study design and procedures for selection of study subjects and data 

analyses, respectively. All the subjects were supplemented with a slowly increasing dose of 

niacin, from 250 mg/day up to 750 or 1000 mg/day for four months, and we continued the 

follow-up of treatment effect up to 10 months in patients. These doses have been reported 
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previously to elevate HDL cholesterol in patients with hypercholesterolemia (Vosper, 2009). 

Known niacin side-effects (hot flushes, tingling sensation of extremities) (Guyton and Bays, 

2007) were experienced by all study subjects when the dose exceeded 500 mg/day. These 

symptoms were, however, ameliorated upon continued use. The subjects also reported 

flatulence, gastrointestinal irritation and skin drying. One male patient reported transiently 

enhanced signs of gout. Two control subjects discontinued the study after two months due to 

gastrointestinal irritation; the remaining participants tolerated niacin well.  

 

PEO patients have disturbed NAD+ metabolism 

To elucidate baseline NAD+ metabolism, we quantified muscle NAD+ levels from the 

study subjects. Targeted liquid chromatography–mass spectrometry analysis of biopsy 

samples from vastus lateralis muscle demonstrated a ~2-fold decrease of muscle NAD+ 

concentrations in PEO patients compared to their matched controls (Fig. 1B). To understand 

the mechanism of muscle NAD+ depletion in our patients, we analyzed expression of genes 

encoding the main NAD+ biosynthetic pathway components (salvage and Preiss-Handler) 

and consumption enzymes in the muscle (Liu et al., 2018). Signs of impaired nicotinamide 

(NAM) utilization in the salvage pathway (downregulated mitochondrial NAM-nucleotide 

adenylyltransferase-3; p<0.05) and enhanced NAM elimination (trend of upregulated NAM 

N-methyltransferase; p=0.064) were found (Fig. S2A). In line with the latter finding, muscle 

NAM levels were significantly lowered in patients (Fig. S2B). Expression of poly(ADP-ribose) 

polymerase 1-2 isoforms, cluster-of-differentiation-38 and sirtuins was unaltered (Fig. 

S2A,C). Overall, our data show that muscle NAD+ deficiency is characteristic for adult-onset 

mitochondrial myopathy. 

We then asked whether the low muscle NAD+ concentration was also reflected 

systemically, as altered circulating NAD+ metabolome (Trammell and Brenner, 2013). 

Remarkably, patients had 2-fold lower blood NAD+ concentration than controls, with NADP 
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concentration trending downwards, low NAM mononucleotide (NMN), but NAM riboside (NR) 

levels were similar (Fig. 1C-F). NAM and ADP-ribose, the metabolites produced by non-redox 

NAD+-dependent enzymes, were significantly higher than those of controls, suggesting 

increased NAD+ consuming activities in patients (Fig. 1G-H). These results indicate that the 

primary muscle disease affected also systemic NAD+ levels, suggesting that blood NAD+ 

analysis has potential as a diagnostic and follow-up test for NAD+ booster therapy for 

mitochondrial myopathy.  

 

Niacin restores NAD+ concentrations in PEO patients 

Niacin supplementation increased muscle NAD+ content 1.3- and 2.3-fold in patients 

compared to baseline after four and 10 months, respectively, and in the later timepoint NAD+ 

levels had reached the healthy control values (Fig. 1B). In controls, muscle NAD+ content did 

not change, suggesting that steady-state NAD+ levels are tightly controlled in skeletal muscle 

(Fig. 1B). Niacin supplementation also remarkably elevated whole blood NAD+ 

concentrations both in patients (7.1-fold compared to baseline) and controls (5.7-fold) after 

four months (Fig. 1C). The blood NAD+ concentrations reached an 8.2-fold increase 

compared to baseline after 10 months of supplementation in patients (Fig. 1C). The 

concentrations of all NAD+ metabolites increased in the blood of both patients and controls 

(Fig. 1C-H). Given that niacin increased the levels of muscle and blood NAM (Fig. 1G, S2B) 

and ADP-ribose (Fig. 1H), niacin was likely metabolized as NAM via salvage pathway instead 

of Preiss-Handler pathway and it was effectively utilized by NAD+ consuming enzymes. The 

evidence indicates that niacin is a powerful NAD+ booster in humans, both healthy and 

diseased. 

 

Niacin improves body composition 
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We next examined the impact of niacin on body composition. The baseline 

characteristics of the subjects are shown in Table S2. Niacin supplementation decreased 

whole-body fat percentage in controls and increased muscle mass both in controls and 

patients after 4-month supplementation, without a marked effect on intramyocellular lipid 

content or body weight (Fig. 2A-C, Fig. S3A). Strikingly, niacin supplementation reduced the 

patients’ hepatic and visceral fat - the “unhealthy” fat depots increasing risk to metabolic 

syndrome - by 50% and 25%, respectively, after 4 months of treatment (Fig. 2D-E). However, 

subcutaneous adipose tissue mass was unchanged in patients (Fig. 2F), indicating specificity 

in the regulatory role of NAD+ and its derivatives in controlling fat deposits in mitochondrial 

disease. In healthy controls, with small overall fat depots, niacin did not significantly affect 

liver or visceral fat, but trended to decrease subcutaneous fat (Fig. 2D-F). Niacin has been 

previously observed to ameliorate diet-induced hepatic steatosis in rats (Ganji et al., 2014) 

and dyslipidemic humans (Hu et al., 2012). The decreasing fat-depots in our study subjects 

could be explained by increased oxidative metabolism (trend of increased energy 

expenditure after 4-month niacin supplementation (Fig. 2G); unchanged fasting free fatty 

acids despite of possible niacin-induced free fatty acid rebound (Guyton and Bays, 2007)) 

(Fig. S3B)). Food diaries showed no marked changes in eating habits or food consumption 

during supplementation (Fig. S3C-D), supporting the findings to be niacin-induced. 

Niacin has been previously found to affect circulating levels of adiponectin (Plaisance 

et al., 2009; Westphal et al., 2007), an adipokine known to promote hepatic fatty acid 

oxidation (Giby and Ajith, 2014). We found the biologically active high-molecular weight form 

of adiponectin to be robustly increased in plasma in all niacin-treated subjects (Fig. 2H) and 

to correlate negatively with liver fat content (Fig. 2I). These results suggest that NAD+ 

contributes to adiponectin signaling, the activation of which could explain the effects of niacin 

on liver fat content in mitochondrial disease patients. 



 9 

Niacin effects on lipoproteins and erythropoiesis 

When entering the study, the patients showed lower levels of HDL and anti-atherogenic 

large HDL2b particles than controls (Fig. S4B-C). Niacin had no effect on total cholesterol but 

it increased HDL2b particles and decreased apolipoprotein B in controls and patients (Fig. 

S4A-D). Apolipoprotein B containing LDL and VLDL particles, the latter being reflected by 

circulating triglyceride levels, were reduced in patients after 10 months of niacin (Fig. S4E-F). 

No marked effects on other HDL subfractions, and apolipoprotein A or CIII levels were 

observed (data not shown). Of glucose metabolic effects, niacin increased fasting glucose 

levels both in controls and patients after 4-month supplementation, whereas insulin and C-

peptide were elevated only in controls at this time point (Fig. S4G-I). Glycosylated 

hemoglobin, reflecting long-term glucose levels, remained unchanged (the baseline 

glycosylated hemoglobin, insulin and C-peptide in the patients were higher than in controls, 

but remained within normal range except in one patient; Fig. S4H-J), as did liver function tests 

(Fig. S4K-L). These results indicate that niacin improved lipoprotein metabolism especially in 

mitochondrial myopathy patients. 

We found niacin to slightly reduce hemoglobin concentration of patients after 4-month 

supplementation, but hemoglobin did not decrease beyond normal range during the study, 

except in one patient who showed anemia and iron deficiency already at baseline (Fig. S5A). 

Also, the number of erythrocytes decreased and thrombocytes trended downwards in 

patients, but leukocytes were unaffected (Fig. S5B-D). These results suggest that niacin 

treatment suppressed slightly erythropoiesis or iron metabolism. Folate and vitamin B12 are 

essential for erythropoiesis. Folate was lower in patients than controls at baseline, and it was 

unaffected by niacin treatment (Fig. S5E). Vitamin B12 decreased in patients during the first 

four months of niacin treatment – still remaining in normal range - but at 10-month time point 

returned to baseline (Fig. S5F). One patient with baseline vitamin-B12 deficiency was 
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supplemented with vitamin B12 and iron (Fig. S5F). Our patients showed normal mean 

volumes of erythrocytes (Fig. S5G-H), excluding the possibility that the reduction in 

erythrocyte number was attributable to vitamin B12 deficiency. Unchanged plasma bilirubin 

concentration in all study subjects suggested that the reduced number of erythrocytes in 

patients was not explained by hemolysis, but was linked to mitochondrial disease physiology 

(Fig. S5I). These findings underscore the whole-organismal effects of niacin, and the 

necessity for follow-up of the patient blood counts when using NAD+ boosters, with special 

attention to hemoglobin concentration and blood counts.  

 

Niacin increases muscle strength  

Given that niacin as an NAD+ booster had remarkable metabolic effects, we explored 

whether it affected performance of the study subjects. After 10 months of niacin, patients 

showed improved muscle strength, differentially in different muscle groups: on the average 

10-fold in abdominal muscles, 2-fold in back muscles, 2.5-fold in upper extremities (shoulder 

and elbow flexion strength), but little in lower extremities (knee extension strength 1.1-fold) 

as well as a slight improvement in the six-minute walking test (patients do not have ataxia, a 

symptom compromising six-minute walking test, and therefore the test results reflect walking 

performance) (Fig. 3A-F). Figure S6A-F shows the performance of the individual patients and 

Table S2 the baseline results of the six-minute walking test. Ocular muscle weakness, 

however, did not improve, which is consistent with severe atrophy of these early-affected 

muscles (Suomalainen et al., 1992) and the close-to-complete ophthalmoplegia of the 

patients. In controls, niacin improved muscle strength of upper (shoulder muscle strength) 

and lower (knee extension strength) extremities (Fig. 3D-F). In cardiopulmonary exercise 

testing, maximal oxygen uptake or maximal exercise capacity showed no significant changes 

after niacin supplementation (data not shown). However, the subjects reached quite variable 
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maximal exercise capacity levels, which may have reflected their result as a group (data not 

shown). The levels of lactate, which were increased at baseline (Fig. 3G), decreased after 

exercise compared to baseline values in patients (Fig. 3H-I). The results suggest overall 

improvement of muscle metabolism in patients. Individual patients reported improved 

capacity to run or exercise, decreased frequency of muscle cramps and improved sleep. 

However, the questionnaires revealed that on the average, the muscle symptoms, quality of 

sleep, mood or the general quality of life of the subjects remained quite stable during niacin 

supplementation (Fig. S6G-N). These results indicate objective improvement of muscle 

strength in controls and patients after niacin supplementation.   

 

Niacin boosts mitochondrial biogenesis 

In mice, NAD+ boosting improved morphological and molecular hallmarks of 

mitochondrial myopathy (Cerutti et al., 2014; Khan et al., 2014) when measured by 

histochemical in situ activities of the respiratory chain enzyme complexes cytochrome c 

oxidase (COX; respiratory chain complex IV, partially mtDNA-encoded) and succinate 

dehydrogenase (SDH; complex II, encoded by nuclear genes) in frozen muscle sections. In 

our patients, the number of COX-deficient, SDH-positive muscle fibers, as well as fibers with 

lowered complex I amount in vastus lateralis muscle decreased significantly after 10 months 

on niacin (Fig. 4A-B, Fig. S7A-B). Mitochondrial total COX activity and mass in muscle fibers 

increased both in controls and patients, indicating mitochondrial biogenesis induction (Fig. 

4C-D; Fig. S7C-D). Table S2 shows the baseline results of COX activity and mitochondrial 

mass. However, the mtDNA deletion amount (Fig. S7E) or the ultrastructural abnormalities 

of mitochondria (distorted cristae, paracrystalline and electron-dense inclusions) were not 

corrected by niacin (Fig. 4E-F). These data indicate that morphological and genetic changes 
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in mitochondria persisted in patients, but niacin induced mitochondrial biogenesis and 

respiratory chain activities in all study subjects. 

Transmission electron microscopy indicated subsarcolemmal and intermyofibrillar 

glycogen accumulation in study subjects after niacin treatment (Fig. 4G-H), which was 

confirmed by glycogen staining on muscle sections (Fig. S7F). Muscle glycogen synthase 

(GYS1) expression was not elevated (patients: 0.93-fold increase at 10-month niacin; 

controls: 0.95-fold at 4-months), but the enzyme is also regulated by substrate and 

phosphorylation, and thereby we cannot exclude the induction of glycogen synthesis.  

Of blood biomarkers of mitochondrial disease (Lehtonen et al., 2016; Suomalainen et 

al., 2011), serum fibroblast growth factor 21 (FGF21) or growth/differentiation factor 15 

(GDF15) or their RNA levels in the skeletal muscle did not change after niacin treatment (Fig. 

S8A-B; Fig. 6E). However, niacin restored elevated plasma concentration of alanine, a 

biomarker for mitochondrial disorders, as well as plasma levels of the mitochondrially 

catabolized branched chain amino acids (valine and isoleucine) in patients (Fig. S8C). The 

plasma creatine kinase and myoglobin concentrations were unaffected, indicating no muscle 

damage in the study subjects (Fig. S8D-E), and muscle histology showed no signs of 

inflammatory cell infiltration. As a whole, NAD+ repletion restored blood amino acid levels, 

but had little effect on cytokine biomarkers of mitochondrial myopathy.  

 

Niacin regularizes PEO muscle metabolism 
 

Considering the central role of NAD+ and its derivatives as redox-regulators and gate-

keepers to metabolic pathways, we performed targeted blood and muscle metabolomics 

analysis of 100 metabolites, covering well different biosynthetic pathways, in patients and 

controls. Unsupervised clustering of muscle metabolome revealed a clear shift of the global 

metabolite profile of patients towards controls after 10-months on niacin (Fig. 5A). Niacin and 

NAM metabolism was among the most significantly changed pathways, as a proof of 
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principle, as were the biosynthetic pathways for purine, pyrimidine, methionine, and glycine 

metabolism, and bile acid and protein biosynthesis (Fig. 5B). PEO patient muscle has 

imbalanced nucleotide precursor amounts (Nikkanen et al., 2016), of which inosine 

monophosphate and adenosine of purine synthesis were brought back to control level by 

niacin treatment (Fig 5C, E). NAD+ regulates conversion of hypoxanthine towards xanthine 

and allantoin, of which the two latter increased after niacin, and hypoxanthine decreased. 

Levels of pyrimidine nucleosides cytidine and deoxycytidine were also replenished by niacin 

in PEO muscle (Fig. 5C, E).  

Niacin supplementation increased most amino acids in patients’ muscle (Fig. 5D), 

whereas in the plasma they decreased (Fig. S8F), suggesting their increased 

synthesis/uptake in the muscle, instead of degradation of muscle protein. Muscle 

concentrations of creatine, an amino acid used for energy production, and its degradation 

product creatinine reached control levels after 10 months of niacin supplementation in 

patients (Fig. 5C, E). The increased availability of creatine drives the synthesis of high energy 

phosphates and recycling of ATP (Brosnan and Brosnan, 2007), which could contribute to 

the improved muscle performance of patients. Muscle strength could also be improved by 

significant increase of taurine levels (Fig. 5D-E), an amino acid essential for Ca2+-dependent 

muscle excitation-contraction, antioxidant defense and cellular signaling (Spriet and 

Whitfield, 2015). The data suggest that niacin also diminished the utilization of S-adenosyl 

methionine, the primary methyl donor molecule, for polyamine biosynthesis: the high levels 

(up to 10-fold) of spermidine and 5′-methylthioadenosine, a polyamine biosynthesis 

byproduct, in the patient muscle were reduced close to that of the controls’ mean after niacin 

supplementation (Fig. 5C, E). These changes restore cellular methylation capacity, the 

largest user of which is muscle creatine synthesis (Mudd et al., 2007). Overall, our results 
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highlight marked NAD+-dependent effects of 10-month niacin for muscle nucleotide and 

amino acid metabolism and methyl cycle in mitochondrial myopathy.  

 

Niacin downregulates mTOR signaling pathways 

 We then asked how niacin affected gene expression. The pathway enrichment 

analysis of RNA sequencing data indicated that serine/glycine/one-carbon pathways (de 

novo serine biosynthesis, purine degradation, glutathione metabolism) were among the most 

significantly changed in PEO (Fig. 6A; Table S3 shows individual transcripts). The finding is 

intriguing, as these pathways were also found to be modified in mitochondrial myopathy mice, 

as part of the mitochondrial integrated stress response (ISRmt) (Khan et al., 2017; Nikkanen 

et al., 2016; Tyynismaa et al., 2010), indicating high conservation of the stress responses in 

species. Compared to controls, PEO-muscle showed macrophage and innate immunity 

pathway activation (“phagosome formation”), less significant after niacin supplementation 

(Fig. 6A; Tables S3-5). Only five and two of the disease associated pathways remained 

significantly changed after 4- and 10-month supplementation, respectively, in patients as 

compared to controls (Tables S4-5). The most prominent niacin-related transcriptomic 

change in PEO patients’ muscle (PEO 10-months on niacin vs PEO baseline) was wide-

spread downregulation of mammalian target of rapamycin (mTOR)-dependent cytoplasmic 

translation, involving a large number of cytoplasmic ribosome subunits as well as translation 

initiation factor eIF1 (Fig. 6B and Table S6). This was intriguing, as the major translation 

activator mTORC1 was also activated in mitochondrial myopathy mice, in COX-

negative/SDH-positive fibers, and rapamycin (mTOR inhibitor) rescued their disease signs 

(Khan et al., 2017). In patients, niacin activated the peroxisome proliferator-activated receptor 

signaling pathway, known to induce mitochondrial biogenesis (Fig. 6B, Table S6), which we 

find to occur in our subjects’ muscle. Niacin also led to decreased atherosclerosis signaling 

including lowered apolipoprotein expression in patients (Fig. 6B, Table S6). The healthy 
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control muscles showed only few changes after 4-months of niacin (Fig. 6C, Table S7), 

emphasizing the importance of NAD+ metabolic changes in mitochondrial myopathy.  

 To examine in detail the effects of NAD+ booster niacin in the mitochondrial integrated 

stress response (ISRmt), the main stress response in mitochondrial myopathy muscle in mice 

and human cell lines (Bao et al., 2016; Khan et al., 2017; Kuhl et al., 2017; Nikkanen et al., 

2016), we studied the effects NAD+ boosting for the expression of 24 ISRmt target genes in 

patients’ muscle. The analysis confirmed wide-spread induction of these genes, but their 

expression was unaffected by niacin (activating transcription factor 5 (ATF5) and its targets 

asparagine synthetase; tribbles pseudokinase 3, FGF21, GDF15, methylene-tetrahydrofolate 

dehydrogenase 2 and 1L; de novo synthesis of serine; phosphoserine aminotransferase 1, 

phosphoglycerate dehydrogenase and serine hydroxymethyltransferase 2; glutathione 

metabolism; glutathione peroxidase 3 and glutathione reductase; and unfolded protein 

response endoplasmic reticulum; C/EBP homologous protein; Fig. 6D-G). Our data show that 

niacin serves as a metabolic “by-pass” therapy, providing functional benefits through 

suppression of mTOR signaling, cytoplasmic translation and metabolism, but without 

affecting the primary gene defects, disease-related stress signals or ISRmt. This finding 

indicates that it is possible to improve tissue metabolism and function without curing 

transcriptome or stress responses and emphasizes the importance of metabolomics as a 

readout of therapy effects, instead of the widely used transcriptomics.  

 

Discussion  

The revelation of disturbed NAD+ homeostasis in muscle and metabolic diseases 

(Gariani et al., 2016; Khan et al., 2014; Ryu et al., 2016; Trammell et al., 2016; Yoshino et al., 

2011; Zhang et al., 2016) in animals has generated a high interest whether NAD+ metabolism 

aberrations occur in degenerative diseases in humans and whether progression of such 
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disorders can be improved by NAD+ boosters (Rajman et al., 2018). NAD+ deficiency has been 

found to occur in congenital malformation syndromes or fatal febrile children’s disorders 

caused by genetic defects in NAD+ metabolic enzymes (Shi et al., 2017; Van Bergen et al., 

2019) and sarcopenia in aged humans (Migliavacca et al., 2019), but no data of secondary 

NAD+ deficiency caused by metabolic insult in other adult-onset degenerative disorders exist. 

Here, we show that mitochondrial muscle disease causes NAD+ deficiency, a myopathy-

induced vitamin B3 deficiency, a metabolic pellagra. Furthermore, we show that NAD+ levels 

can be rescued by a potent NAD+ booster niacin, a vitamin B3 form. We demonstrate that 

niacin remarkably restores muscle and systemic NAD+, and provides metabolic and functional 

benefits for patients with mitochondrial myopathy, indicating that NAD+ deficiency contributes 

to disease progression. In the healthy subjects, niacin did not increase muscle NAD+, despite 

the 5-fold increase in the blood. These results suggest that in healthy muscle the NAD+ 

amounts are close to the homeostatic maximum. Our data implicate the potent effects of 

vitamin B3 forms on metabolism and present blood NAD+ analysis as a powerful tool to identify 

patients and individuals with NAD deficiency. Metabolism of our different patients responded 

to niacin supplementation similarly, indicating that uniform disease manifestations share 

underlying molecular pathophysiology, despite different genetic background and disease 

duration. Future studies are needed to tell whether early treatment immediately after diagnosis 

might delay disease progression even further. Surprisingly, restoring NAD+ levels resulted in 

metabolic and functional benefits in patients, without considerable effects on mtDNA deletion 

load or mitochondrial ultrastructure, suggesting that “metabolic by-pass” of the primary cause 

of disease may have benefits. In mitochondrial myopathy mice, NAD+ boosting by NR (another 

vitamin B3 form) rescued both metabolism and disease signs (Cerutti et al., 2014; Khan et al., 

2014). Whether the difference is explained by species-specific differences in muscle repair or 
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turnover, or by distinct properties of the vitamin B3 forms as modifiers of mitochondrial 

metabolism, remains to be explored. 

Our pilot study is a proof-of-principle of niacin effects on mitochondrial myopathy. Our 

data implicate niacin as a promising treatment for mitochondrial myopathy patients who show 

NAD+ deficiency, but effects for other patient groups are still unknown. Furthermore, the dose 

we chose for niacin supplementation was based on experience of its efficacy in 

hypercholesterolemia (Vosper, 2009), but the optimal dose for mitochondrial myopathy needs 

to be determined. As potential adverse effects that require attention and follow-up we report 

mildly decreasing hemoglobin concentration and erythrocyte counts, as well as increased 

muscle glycogen in the study subjects. Previously, NR treatment decreased hemoglobin and 

hematocrit in healthy subjects (Airhart et al., 2017). These findings suggest modifying 

functions of NAD+ boosters for iron metabolism or erythropoiesis and need for hemoglobin 

monitoring during vitamin B3 supplementation. The glycogen amounts can reflect storage or 

flux; the latter being supported by improved mitochondrial biogenesis and muscle strength of 

our patients. Glycogen flux has been reported to be simultaneous and separable from 

glucose utilization (Hardin and Kushmerick, 1994). However, as increased glycogen storage 

can have long-term harmful effects, it requires special attention in follow-up studies.   

In conclusion, our data 1) underscore the potent role of micronutrient vitamin B3 as 

a metabolic modifier; 2) identify NAD+ deficiency as a contributor to mitochondrial myopathy 

progression; 3) point to usefulness of niacin therapy for PEO-patients; 4) introduce blood 

NAD+ test as a tool to identify and follow-up NAD+ deficiency; 5) indicate that correction of 

metabolome and function can occur without correction of transcriptional stress responses, 

emphasizing importance of metabolomic analysis in follow-up of treatment efficacy. 

 

Limitations of the study 
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 We report a pilot study of the effects of NAD+ booster niacin to muscle function and 

molecular physiology in mitochondrial myopathy patients and their matched healthy controls. 

The open study setting may compromise some results of patient performance and need to 

be followed up in a larger controlled trial. The study subjects volunteered to two to three thick-

needle muscle samplings, yielding material sufficient for histologic and omics analyses, but 

not for representative western blot analyses of specific nutrient sensors or respirometry 

analyses. However, downstream targets of nutrient sensors and histochemical respiratory 

enzyme activities are reported. Whether blood NAD+ levels can be used more generally as a 

biomarker of disease, needs to be studied in future.  
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Main Figure Titles and Legends 

 

Figure 1. PEO patients show systemic and muscle NAD+ depletion which can be 

rescued by niacin. 

(A) The schematic diagram of the study design. The daily niacin dose was gradually 

escalated from 250 mg/day by 250 mg per every four weeks to achieve the final treatment 

dose, 1 g/day. At the end of the study, the dose was decreased by 250 mg per every four 

weeks. Clinical examinations and collection of muscle biopsies were performed in patients at 

the time points 0, 4 and 10 months and in controls at 0 and 4 months. Fasting blood samples 
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were collected every second week until 4 months and thereafter every six weeks until the 

end of the study.  

(B) Muscle NAD+ content before and after niacin supplementation in controls (n=8) and 

patients (n=5).  

(C-H) Whole blood NAD+ metabolite levels; NAD+ (C), NADP (D), NAM mononucleotide (E), 

NAM riboside (F), NAM (G) and ADPR (H) before and after niacin supplementation in controls 

(n=8) and patients (n=3-5).   

Data are median  lowest/highest value. *P< 0.05; **P≤ 0.01; ***P≤ 0.001. Baseline 

differences between controls and patients were analyzed using Mann-Whitney non-

parametric test. Friedman non-parametric ANOVA was used to determine the effect of 

treatment on patients’ values at different time points whereas control values before and after 

niacin supplementation were compared using Wilcoxon non-parametric test. See also Fig. 

S1 and Fig. S2. NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; NAM, 

nicotinamide and ADPR, ADP ribose. 

 

Figure 2. The effect of niacin on body composition, energy expenditure and different 

fat depots.  

(A-H) Body weight (A), whole body fat percentage (B) muscle mass (C), liver fat (D), visceral 

fat (E), subcutaneous fat (F), energy expenditure (G) and plasma high molecular weight 

(HMW), the biologically active form, of adiponectin (H) compared to baseline in controls (n=8) 

and patients (n=5). Results are expressed as fold change (FC) compared to pretreatment 

stage.  

(I) Correlation of liver fat percentage with plasma HMW adiponectin after 4-month niacin 

supplementation in all study subjects (n=13).  



 21 

Data are median  lowest/highest value. Friedman non-parametric ANOVA was used to 

determine the effect of treatment on patients’ values at different time points whereas control 

values before and after niacin supplementation were compared using Wilcoxon non-

parametric test. Correlation between adiponectin levels and liver fat content was assessed 

with a Spearman nonparametric rank test. *P< 0.05; **P≤ 0.01; ***P≤ 0.001. See also Table 

S2. and Fig. S3. 

 

Figure 3. Niacin improves muscle strength and performance.  

(A-F) Distance travelled during 6 min walk test (A), back muscle (B), abdominal muscle (C), 

repetitive shoulder muscle lift (D), elbow flexion (E) and knee extension (F) strength 

compared to baseline in controls (n=8) and patients (n=4-5). For isometric tests, the highest 

value from three repetitions was recorded. Results are expressed as fold change (FC) 

compared to pretreatment stage. One patient was excluded from the 6 min walk test due to 

a recent foot injury at 10-month time point. 

(G-I) Lactate levels during resting, exercise and post-exercise recovery in a cardiopulmonary 

exercise test at baseline (G) in controls (n=8) and patients (n=5), and pre and post niacin in 

controls (H) n=8 and patients (I) n=5. 

Data are median  lowest/highest value. Friedman non-parametric ANOVA was used to 

determine the effect of treatment on patients’ values at different time points whereas control 

values before and after niacin supplementation were compared using Wilcoxon non-

parametric test. The baseline difference between groups and the effect of niacin on lactate 

levels in controls and patients were determined with two-way ANOVA with Dunnett’s multiple 

comparison test. *P< 0.05; **P≤ 0.01; ***P≤ 0.001. See also Table S2 and Fig. S6. 

 

Figure 4. Niacin alleviates muscle histology and increases mitochondrial biogenesis.  
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(A-B) Immunohistological assessment of cytochrome c oxidase (COX) negative/succinate 

dehydrogenase (SDH) positive (A) and complex I (CI) negative (B) muscle fibers compared 

to baseline in patients (n=4-5). Three and seven subunits of COX and CI are encoded by 

mtDNA subunits, respectively, and thereby mtDNA deletions cause COX and CI-deficiency, 

whereas, complex II is completely nuclear-encoded, and not affected by mtDNA deletions. 

Results are expressed as fold change (FC) compared to pretreatment stage. Individual 

patient values are shown in small inserts. Samples from one patient were excluded from the 

assessment of COX negative/SDH positive muscle fibers due to poor sample quality.  

(C-D) Immuhistochemical analysis of COX activity (C) and mitochondrial mass (D) compared 

to baseline in controls (n=8) and patients (n=5).  

(E-F) Electron micrographs of subsarcolemmal mitochondria (M) in one patient (E) and one 

control (F) at different time points. Scale bar, 1000 nM. Enlargements of the subsarcolemmal 

mitochondria are shown on the right-hand side for the patient sample at the time points 0 and 

10 months.  

(G-H) Electron micrograph image of one PEO patient (G) and one control (H) showing 

glycogen (G) deposition (marked with arrow) in muscle fiber (MF) after niacin. Scale bar, 

1000 nM.  

Results are expressed as fold change (FC) compared to pretreatment stage. Data are median 

 lowest/highest value. *P< 0.05; **P≤ 0.01. Friedman non-parametric ANOVA was used to 

determine the effect of treatment on patients’ values at different time points whereas control 

values before and after niacin supplementation were compared using Wilcoxon non-

parametric test. See also Table S2, Fig. S7 and Fig. S8. 

 

Figure 5. Niacin shifts muscle metabolite profile of patients towards controls.  
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(A) Principal component analysis (PCA) of muscle metabolites in controls (n=8) and patients 

(n=5) at different time points.  

(B) The most significantly changed metabolite pathways in patients (n=5) upon 10-month 

niacin supplementation compared to baseline in muscle.  

(C-D) The effect of niacin on muscle metabolites in patients (n=5) as compared to controls 

(n=8) in following pathways; purine, pyrimidine and polyamine metabolism (C), creatine (C), 

and amino acids (D). Data are median  lowest/highest value.  

(E) One-carbon metabolism and associated pathways in patient muscle pre and post 10-

month niacin. Colored text, changed at baseline; red, increase and green: decrease. Circled 

metabolites, changed upon niacin; red, increase and green: decrease. SAH, S-adenosyl 

homocysteine; SAM, S-adenosyl methionine; IMP, inosine monophosphate; AMP, adenosine 

monophosphate; cAMP, cyclic adenosine monophosphate; GAA, guanidino-acetic acid; 

MTA, 5’methylthioadenosine; ROS, reactive oxygen species; THF, tetrahydrofolate, MTHFD, 

methylenetetrahydrofolate dehydrogenase; dTMP, deoxythymidine monophosphate. 

Baseline differences between controls and patients were analyzed using Mann-Whitney non-

parametric test. Two-way ANOVA with Dunnett’s multiple comparison test was used to 

determine the effect of treatment on patients’ metabolite values at different time points. #p≤ 

0.06, *P< 0.05; **P≤ 0.01; ***P≤ 0.001.  

 

Figure 6. The effect of niacin on muscle transcriptomic signatures.  

(A) Transcriptomic pathways changed in patients compared to control baseline based on 

Ingenuity Pathway Analysis analysis (controls n=8 and patients n=4-5).  

(B-C) The effect of 10- (B) or 4-month (C) niacin on transcriptomic pathways in patients (n=4-

5) and controls (n=8) compared to baseline, respectively.  
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(D-G) The effect of niacin on mitochondrial integrated stress response (ISRmt); activating 

transcription factor (ATFs) (D), and genes involved in ATF regulated ISRmt (E), serine 

biosynthesis (F), and glutathione and unfolded protein response mitochondrial and 

endoplasmic reticulum (G) (n=8) in patients (n=4-5) compared to control baseline at time 

points 4 and 10 months. Results are expressed as fold change (FC) compared to 

pretreatment stage. Data are shown as mean  SEM. #p≤ 0.06, *P< 0.05; **P≤ 0.01; ***P≤ 

0.001. Statistical analyses are described under transcriptomics analysis section. GP6, 

glycoprotein 6; LXR, liver X receptor; RXR, retinoid X receptor; EIF, eukaryotic initiation 

factor; ILK, integrin-linked kinase; mTOR, mammalian target of rapamycin; PPAR, 

peroxisome proliferator-activated receptor; NO, nitric oxide; ROS, reactive oxygen species; 

PI, phosphatidylinositol; ATF, activating transcription factor; ASNS, asparagine synthetase; 

TRIB3, tribbles pseudokinase 3; FGF21, fibroblast growth factor 21; GDF15, 

growth/differentiation factor 15; MTHFD, methylene-tetrahydrofolate dehydrogenase; 

PSAT1, phosphoserine aminotransferase 1; PHGDH, phosphoglycerate dehydrogenase;  

SHMT, serine hydroxymethyltransferase; GXP3, glutathione peroxidase 3; GSR, glutathione 

reductase; CHOP, C/EBP homologous protein; LONP1, lon peptidase 1; CLPP, caseinolytic 

mitochondrial matrix peptidase; HSP, heat shock protein and mt, mitochondrial. 
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o Targeted quantitative metabolomics analyses 

o Transcriptomics analysis 
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o Statistical Analysis 
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Experimental Model and Subject details 

 

Study participants 

This study was approved by the ethics committee of the hospital district of Uusimaa and 

Helsinki (the protocol number 110/13/03/01/14) and the study was conducted according to 

the principles of the Declaration of Helsinki. The study was registered at clinicaltrials.gov 

entry NCT03973203. Written informed consent was obtained from all subjects. Five patients 

with mitochondrial myopathy (one male, four females) and ten healthy controls (two males, 

eight females) aged between 17 and 70 years participated our long-term niacin 

supplementation study (Table S1). None of them had participated treatment studies 

previously. One patient had cholesterol lowering medication (simvastatin, 10mg once per 

day) and in addition, two patients were supplemented with iron and/or vitamin B12 due to 

deficiency of these antianemic substances from the early stages of the trial. Detailed inclusion 

criteria were as follows: (i) manifestation of pure mitochondrial myopathy, with no major other 

symptoms or manifestations, caused by single or multiple deletions of mtDNA; (ii) agreed to 

avoid vitamin supplementation or nutritional products with vitamin B3 forms 14 days prior to 

the enrollment and during the study; (iii) written, informed consent to participate in the study; 

(iv) successful recruitment of age and gender matched healthy controls for each patient.  

The exclusion criteria were: (i) inability to follow study protocol; (ii) pregnancy or breast-

feeding at any time of the trial; (iii) malignancy that requires continuous treatment, (iv) 

unstable heart disease; (v) severe kidney disease requiring treatment; (vi) severe 

encephalopathy; (vii) regular usage of intoxicants; (viii) previous participation to intervention 

studies. 

 

Method Details 
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Subject recruitments and study design 

 Patients and controls were recruited by national network of adult neurologist (treating 

patients with mitochondrial myopathy) and via our local community through advertisement, 

respectively. The procedures for the selection of study participants is described in Figure S1. 

One-to-one phone conversations were conducted at least once a month to follow up 

compliance to the study and potential symptoms or side-effects. All participants were 

instructed to continue their normal routine and not make any changes to their physical activity 

and diet.  

 The examination protocol of this non-randomized, open-label study is described in 

Figure 1A. The niacin dose, 1 g/day, was selected on the basis of previous studies showing 

a favourable effect on lipid profiles in humans (Bruckert et al., 2010). To avoid the well-known 

side-effect of niacin, cutaneous flushing, controls and patients were supplemented with slow-

released form of niacin. The niacin dose was gradually escalated from 250 mg/day up to 1 

g/day (Fig. 1A), except for the lightest study subject up to 750 mg/day. The final dose was 

calculated based on body weight to be between 14 to 18 mg/kg. The total intervention time 

was 4 and 10 months for controls and patients, respectively. Study subjects were advised to 

take niacin orally with a light meal in the evening.  

 

Body composition and energy expenditure  

 Magnetic resonance imaging (MRI)/ magnetic resonance spectroscopy (MRS) 

experiments were performed on a 3.0 Tesla clinical imager (Verio, Siemens, Erlangen, 

Germany). Point resolved spectroscopy (PRESS) sequence was used for volume selection 

in hepatic and muscle MRS. For determination of intramyocellular lipids, a 6x6x20 mm3 MRS 

voxel was placed in the soleus muscle and both water-suppressed (48 averages) and 
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unsuppressed (4 averages) spectra were obtained with time of repetition (TR) of 4000 ms 

and echo time (TE) of 30 ms. Signal intensities from intramyocellular lipids were determined 

from water-suppressed spectra with LCModel v6.3 software using unsuppressed water signal 

as an internal reference. In hepatic MRS, a 25x25x25 mm3 voxel was placed in the middle of 

the right liver lobe and liver spectra with TE of 30 ms and four averages were collected. Signal 

acquisition was triggered to end exhalation using navigator belt to eliminate motion artifacts 

due to respiratory motion so that TR was kept >4000 ms. Liver spectra were analyzed with 

jMRUI 6.0 software (Stefan et al., 2009) and intensities of methylene and water resonances 

were determined using the AMARES algorithm (Vanhamme et al., 1997). Signal intensities 

were corrected for relaxation effects and liver fat determined as an intensity ratio of 

methylene/(methylene+water). Ratios were further converted to mass fractions as described 

previously (Kotronen et al., 2009). Briefly, since signal intensities are proportional to the 

number of resonating protons inside the voxel, the following experimentally determined 

factors, which have been previously used and validated by Longo et al. (Longo et al., 1995) 

and Szczepaniak et al. (Szczepaniak et al., 1999,) could be used to convert intensity ratios 

into weight fractions: (1) the ratio of the number of lipid protons in the fitted (CH2)n-2 signal 

to the total number of lipid protons is 0.633230; (2) proton densities of fat and water are 111 

and 111 mol/L, respectively; (3) 1 g liver tissue contains 711 mg water; (4) densities of the 

liver tissue, fat in the liver, and water are 1.051 g/mL, 0.900 g/mL, and 1.000 g/mL; 

respectively. 

 A stack of abdominal T1-weighted MR images (16 slices, slice thickness 10 mm, TR 

of 91 ms, TE of 5.2 ms and flip angle of 80°) were obtained from 8 cm above to 8 cm below 

the L4/5 lumbar intervertebral disks using frequency selective fat excitation. Areas of visceral 

and subcutaneous adipose tissue depots were determined from each slice using SliceOmatic 

(TomoVision, Quebec, Canada) 5.0 segmentation software utilizing region growing routine.  
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 Whole body fat percentage, muscle mass and energy expenditure were measured via 

bioelectrical impedance analysis using Tanita MC-980 device. 

 

Muscle strength and performance 

 Study subjects’ exercise capacity and muscle strength were tested via 6-min walk test, 

static strength of back muscles, and dynamic strength of abdominal and shoulder muscles. 

In addition, isometric muscle strength including elbow flexion and extension and knee 

extension was analyzed using Good strength Metitur adjustable dynamometer chair (Metitur 

Oy, Finland) (Era et al., 1992). Muscle symptoms were assessed via muscle questionnaire, 

focusing on the main symptoms of PEO patients such as muscle pain, numbness, tiredness, 

weakness and cramps in different muscle groups. The general quality of life was determined 

via RAND-36 questionnaire. The quality of sleep and depression was evaluated via the Basic 

Nordic Sleep and the Beck Depression Inventory questionnaires, respectively. 

Cardiopulmonary exercise test was performed on a bicycle ergometer with the initial workload 

of 30–40 W for patients, 40 W for control women, and 50 W for control men (Ollila et al., 

2017). The work load was then increased by 40 or 50 W, respectively, at 3‐min intervals until 

level 17–19/20 on the Borg scale for perceived exertion was reached and respiratory quotient 

RQ (=VCO2/VO2) >1·0. Blood samples were collected for lactate measurement during rest, 

light exercise and maximum exercise, and 2 min, 4 min, 6 min, 10 min, 20 min, 30 min and 

40 min post-exercise. Lactate levels were analyzed using standardized methods at the 

HUSLAB laboratories. 

  

Blood laboratory examinations 

 Blood samples were collected after overnight fasting. Whole blood, and separated 

plasma and serum samples were frozen at -80°C. Blood count, alanine aminotransferase, 
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asparate aminotransferase, creatine kinase, myoglobin, glucose, insulin, c-peptide, 

glycosylated hemoglobin, total cholesterol, LDL and triglycerides were analyzed using 

standardized methods at the HUSLAB laboratories. Plasma HDL was measured as 

cholesterol after precipitation of other lipoproteins with heparin–Mn2+ (Bachorik and Albers, 

1986). HDL subspecies including HDL2b were determined with native gradient gel 

electrophoresis (Blanche et al., 1981). Gels were scanned with Epson scanner and analyzed 

with ImageQuant TL software. For each subspecies, the relative area under the densitometric 

scan curve was reported. Free fatty acids were determined using Wako Chemicals NEFA kit 

while apolipoprotein B levels were assessed with ApoB Konelab kit. FGF21 was analyzed 

using BioVendor human FGF21 ELISA kit, whereas serum GDF15 and plasma HMW 

adiponectin levels were measured using ELISA kits from R&D systems. 

 

Muscle sampling and histology 

 A Bergström needle biopsy from vastus lateralis was collected from controls at 0 and 

4 months and from patients at the time points 0, 4 and 10 months (Fig. 1A). The muscle 

sample for RNA, DNA and metabolite analyses were snap frozen in liquid nitrogen and 

samples for muscle histology were snap frozen in liquid nitrogen cooled isopentane. Twelve 

micrometer thick frozen muscle sections were used to measure cytochrome c oxidase (COX) 

and succinate dehydrogenase (SDH) activities using standard immunohistochemical activity 

assays (Forsstrom et al., 2019). Buffer composition used for the assay were; COX: 0.05 M 

phosphate buffer (pH 7.4) with 3,3 –diaminobenzidine (DAB), catalase, cytochrome c and 

sucrose and for with incubation time of 60 minutes (RT) and for SDH: 0.05 M phosphate 

buffer (pH 7.4) with nitro-blue tetrazolium and sodium succinate; incubation time 90 minutes 

for SDH (+37°C). Frozen muscle sections were also stained for NADH:ubiquinone 

oxidoreductase 1 subunit B4, complex I subunit, and mitochondria, by standard 
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immunohistochemical procedures, as published previously (Ahola et al., 2016). After 

stainings the slices were dehydrated in ascending alcohols, xylene-treated and mounted. 

Details about the key chemicals and antibodies used are listed in Key resource table. 

Approximately 170-1050 cells per subject were counted to assess COX-negative/SDH-

positive muscle fibers and CI-negative muscle fibers at each time point of sample collection. 

For total COX activity and mitochondria mass 50-100 muscle fibers for each subject were 

quantified using image J software. Glycogen content in muscle was assessed with standard 

Periodic acid–Schiff staining from 8 um paraffin fixed muscle sections according to well-

established protocols. 

 For transmission electron microscopy (TEM) analysis muscle samples were fixed in 

2.5% glutaraldehyde. For plastic embedding they were then treated with 1% osmium tetroxide 

dehydrated in ethanol and embedded in epoxy resin. One mm section was used for stained 

with ethyl blue (0.5% w/v) and boric acid (1% w/v). The methyl blue sections were used to 

mark the interesting areas for the ultrastructural analyses by analyzing the sections with light 

microscope. For further analysis with transmission electron microscopy, ultrathin (60–90 nm) 

sections were cut on the grids and stained with uranyl acetate and lead citrate and viewed 

with JEOL 1400 Transmission Electron Microscopy (Ahola et al., 2016).  

 

mtDNA analyses and quantification 

 DNA was extracted from the snap frozen muscle samples using standard phenol–

chloroform extraction and ethanol precipitation method. MtDNA deletion analysis was 

performed by long-range PCR by amplifying a 8.3 kb region of mtDNA from nucleotide 

position 8232-16496 using Expand Long Template Enzyme and 10 ng total DNA from each 

individual. The PCR amplification was done with an annealing temperature of 63 °C, with the 

extension times of 30 s or 3 min. The short extension time efficiently amplifies short, deletion-
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containing mtDNA fragments (Hakonen et al., 2007). The mtDNA deletions were semi-

quantified by densitometry using a short mtDNA fragment amplified from cytb gene, after 

electrophoresis on 1% agarose gel and image-analysis using ChemiDoc™ XRS+ System 

(Bio-Rad). Cytb gene was amplified using Phusion high-fidelity DNA polymerase and GC 

buffer: initial denaturation of 30 s at 98°C; 20 cycles of 10 s at 98°C and 3 min at 72°C; final 

extension step of 10 min at 72°C. The PCR primers are provided in key resource table. 

 

Targeted quantitative metabolomics analyses 

 The measurement of complete whole blood NAD+ metabolome was carried out after 

dual extractions as recently described (Trammell and Brenner, 2013; Trammell et al., 2016a). 

Briefly, for analysis of NR, NAM, niacin, MeNAM, Me2PY and Me4PY (group A analytes), 

samples were spiked with 400 pmol of [18O1]-NAM and [d4]- niacin, as well as 200 pmol of 

[18O1]-NR, [d3]-Me4PY, and [d3, 18O1]-MeNAM (internal standard A). For analysis of NAD+, 

NADP, NMN, NAR, NAAD and ADPR, samples were dosed with 13C-yeast extract (internal 

standard B) as described (Trammell and Brenner, 2013; Elhassan et al., 2019). 

 To quantify NR, NAM, niacin, MeNAM, NAM oxide, Me2PY and Me4PY (group A 

analytes), 75 µl of whole blood was added to 20 µL group A internal standard and 500 µl of 

3:1 4% trichloroacetic acid (TCA):acetonitrile was added. The mixture was allowed to sit on 

ice for 20 min, after which samples were sonicated twice for 20 seconds and centrifuged at 

+4°C for 13 minutes at 16.1 rcf. Next supernatant was removed and dried under vacuum 

overnight at room temperature. The samples were reconstituted in 2% acetonitrile/water 

immediately prior to the analytical run. To quantify NAD+, NADP, NMN, NAR, NAAD and 

ADPR (group B analytes), 75 µl of whole blood was added to 20 µL group B internal standard 

prepared in water and mixed with 500 µl of 3:1 4% (TCA):acetonitrile with vortexing. After 

resting on ice, the samples were centrifuged as described above. Next supernatant was 



 33 

removed and dried under vacuum overnight, and reconstituted in 2% acetonitrile/water. After 

reconstitution, samples were transferred to Waters polypropylene plastic total recovery vials 

and stored in a Waters Acquity H class autosampler maintained at +8°C until injection. In all 

cases, 8 µl of extract was loaded onto the column. For one set of samples, group B analytes 

plus Me4PY were extracted as for the group B analytes. One hundred µL of blood was used 

and 200 pmol d3-Me4PY was added to the internal standard mix. All analytes in this group 

except NAAD have a corresponding stable labeled internal standard. Labelled NAD+ was 

used as the internal standard for NAAD. In group A Nam oxide used 18O-NAM as its internal 

standard and Me-2-py used d3-Me-4-py as internal standard. 

 Separation and quantitation of analytes were performed with a Waters Acquity LC 

interfaced with a Waters TQD mass spectrometer operated in positive ion multiple reaction 

monitoring mode as described (Trammell and Brenner, 2013) with minor modifications. MRM 

transitions monitored were: NAD+ 664.1>136.1; 13C10-NAD+ 674.1>136.1; NADP 

744.1>136.1; 13C10-NADP 754.1>136.1; NAAD 665.1>136.1; NMN 335>123: 13C5-NMN 

340>123; NAR 256>124; 13C5-NAR 261>124; ADPR 560>136.1; 13C10-ADPR 570>136.1; NR 

255>123; 18O-NR 257>125; NAM 123>80; 18O-NAM 125>80; MeNAM 137>94; 18O,d3-

MeNAM 142>97; NA 124>80; d4-NA 128>84; Me-4-py 153>136; d3-Me-4-py 156>139; Me-

2-py 153>110; NAM oxide 139>106. Separate Hypercarb columns (Thermo Scientific) were 

used for the separations. The conditions for group A were solvent A 10 mM NH4OAc with 

0.1% formic acid, solvent B acetonitrile with 0.1% formic acid, solvent D methanol, flow 0.30 

mL/min; gradient initial 98% A, 2% B; 2.25 min, 98% A 2% B; 11 min, 74.8% A 17.9% B 7.3% 

D; 11.1 min,10% A 90% B; 14.3 min 10% A 90% B; 14.4 min, 98.2% A 2% B; end 18.5 min. 

Conditions for Group B were solvent A 7.5mM NH4OAc with 0.05% NH4OH, solvent B 

acetonitrile with 0.05% NH4OH; flow 0.353 mL/min; gradient initial 97% A 3% B; 1.8 min, 
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97% A 3% B; 10 min 65.5% A 34.5% B; 11 min 10% A 90% B; 13.2 min, 10% A 90% B; 13.3 

min, 97% A 3% B; end 19 min. 

 Targeted metabolomic analysis of 100 metabolites was performed from muscle and 

plasma from each subject in the study group using Water Acquity ultra performance liquid 

chromatography (UPLC) and triple-quadrupole mass spectrometry analysis. The metabolite 

extraction protocol is described and validated in detail in (Nandania et al., 2018a; Nandania 

et al., 2018b). Approximately 20 mg of snap frozen muscle tissue was homogenized in 

Precellys homogenizing tubes containing 1.4 mm ceramic (zirconium oxide) beads with 20 

µL of labeled internal standard mix and 500 µL of extraction solvent [100% acetonitrile (ACN), 

1% formic acid (FA)] as extraction solvent using Precellys-24 homogenizer (Bertin 

Technologies, France) with following protocol; three cycles, 20 s each, at 5,500 rpm; 30 s 

pause between each homogenization interval (Khan et al., 2017). After homogenization, the 

samples were centrifuged for 10 min, 5000 rpm, at +4C in an Eppendorf 5404R centrifuge 

and the supernatant was collected. Same homogenization cycles were repeated after adding 

500 µL of 90/10% ACN/H2O + 1% FA to the remaining pellet in homogenization tubes, 

supernatants were pooled and filtered to OstroTM plate by applying vacuum at delta pressure 

of 300 psi for 3-5 min. The clean extract was collected to a 96-well plate and was centrifuged 

for 15 min, 4000 rpm, +4C and placed in auto-sampler of the liquid chromatography system 

for the injection. 

 For plasma samples, 100 µL of plasma samples was mixed to 10 µL of labeled internal 

standard mixture (Nikkanen et al., 2016). Metabolites were extracted with 1:4 

(sample:solvent) of 100% ACN + 1% FA solvent and the extracts were dispensed to OstroTM 

96-well plate (Waters Corporation, Milford, USA). The collected extracts were dispensed in 

and filtered by applying vacuum at a delta pressure of 300-400 mbar for 2.5 min on robot’s 

vacuum station. The clean extract was collected to a 96-well collection plate, placed under 



 35 

OstroTM plate. The collection plate was sealed and centrifuged for 15 min, 5000 rpm, +4C 

and placed in auto-sampler of the liquid chromatography system for the injection. Samples 

were analyzed on an ACQUITY UPLC-MS/MS system (Waters Corporation, Milford, MA, 

USA) with specific settings (Nandania et al., 2018a; Nandania et al., 2018b). Detection was 

performed on a Xevo TQ-S tandem triple quadrupole mass spectrometer (Waters, Milford, 

MA, USA), operated in both positive and negative polarities. Samples were ionized by electro 

spray ionization (ESI) and dwell time and subsequent data acquisition were automatically 

calculated by MassLynx 4.1 software and processed using TargetLynx software. 

Quantification was performed by internal standards and external calibration curves. The 

unsupervised principal component analysis (PCA) was used to study separation between the 

groups and treatments. The metabolite pathway analysis was done using MetaboAnalyst 

(Chong et al., 2018; Goeman and Buhlmann, 2007). 

 

Transcriptomics analysis 

 Total muscle RNA was extracted with standard TRIzol and chloroform method and 

purified with RNA purification kit (RNeasy; Qiagen). A total of 1ug of total RNA from five PEO 

patients at three time points of treatment and eight controls with two time points was used for 

global transcriptomics analysis by RNA sequencing which was performed by the Beijing 

Genomic Institute (BGI) using their standard protocols. For pathway analysis, the 500 most 

changed transcripts (log2 fold changes) were selected regardless of P-value and subjected 

to pathway analysis using Ingenuity Pathway Analysis (IPA).  

 Data analysis was performed as follows. High-throughput RNA sequencing short 

reads were obtained for 8 healthy control at all time points under a 50 bp single-end read 

strategy. In contrast, short reads were obtained for 13 out of 15 patient samples as 

sequencing of one patient sample both at time point 0 month and 10 month failed. The 
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resulting raw reads were preprocessed by the sequencing provider to filter out reads failing 

criteria for quality, unknown base and adaptor sequence content. Clean reads, specified in 

FASTQ format, amounted to approximately 26M per sample. The reads were aligned against 

the GRCh38 Human genome assembly – DNA primary assembly in FASTA format and gene 

annotation in GTF format from Ensembl release 92 – using STAR 2.5.0a (Dobin et al., 2013), 

giving read alignments in BAM format. Counting of reads mapping to genes was performed 

with htseq-count, HTSeq 0.10.0 (Anders et al., 2015), in union overlap resolution mode. The 

obtained read counts were then used for differential gene expression analysis with the 

Bioconductor DESeq2 1.18.1 package (Love et al., 2014). The differential expression 

analysis function in the package performs estimation of dispersion values across samples for 

each gene, estimation of size factors for normalization of differences in sequencing depth 

between the samples, and fitting of a negative binomial generalized linear model using both 

size factors and dispersion values to give estimates of fold change in gene expression. Fold 

changes in binary logarithmic scale and respective p-values were extracted for pairwise 

comparisons between a total of 5 experiment groups, namely, control individuals at baseline 

and at treatment time point 4 months, and patients at baseline and at treatment time points 

4 and 10 months. When comparing control groups, e.g. controls at treatment time point 4 

months to controls at baseline, or patient groups, e.g. patients at treatment time point 10 

months to patients at time point 4 months, the group-specific effect of treatment was 

estimated controlling for individual effects. 

 

Quantification and statistical analysis 

 

Statistical Analysis 
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 Statistical analyses were performed in GraphPad Prism version 6.00 for Mac. Due to 

low number of study subjects, non-parametric tests were used without data normality 

assessment. Baseline differences between controls and patients were analyzed using 

MannWhitney non-parametric test. Friedman test with Dunn’s multiple comparison test, a 

non-parametric equivalent of ANOVA with repeated measures, was used to determine the 

effect of treatment on patients’ values at different time points whereas control values before 

and after niacin supplementation were compared using Wilcoxon matched-pairs signed-

ranked non-parametric test. Correlation between adiponectin levels and liver fat content was 

assessed with a Spearman nonparametric rank test. The effect of niacin on multiple 

parameters such as plasma and muscle metabolites or plasma lactate levels at different times 

points was evaluated with two-way ANOVA with Dunnett’s multiple comparison test both in 

controls and patients. Data are expressed as median ± lowest/highest value and a P value 

0.05 was used as a threshold to mark a statistically significant result. The statistics can also 

be found in the figures and legends. 

 

Additional resources 

 

 Clinicaltrials.gov identifier NCT03973203 
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