SparkBeagle: Scalable Genotype Imputation from Distributed
Whole-Genome Reference Panels in the Cloud

Altti Ilari Maarala

Department of Computer Science, University of Helsinki

Helsinki, Finland
ilari.maarala@helsinki.fi

Javier Nufnez-Fontarnau
Finnish Institute for Molecular Medicine
Helsinki, Finland
javier.nunez-fontarnau@helsinki.fi

ABSTRACT

Massive whole-genome genotype reference panels now provide
accurate and fast genotyping by imputation for high-resolution
genome-wide association (GWA) studies. Imputation-assisted geno-
typing can increase the genomic coverage of genotypes and thus
satisfy the resolution required in comprehensive GWA studies in a
cost-effective manner. However, the imputation of missing geno-
types from large reference panels is a compute-intensive process
that requires high-performance computing (HPC). Although HPC
uses extremely distributed and parallel computing, current imputa-
tion tools, and existing algorithms have not been developed to fully
exploit the power of distributed computing. To this end, we have
developed SparkBeagle, a scalable, fast, and accurate distributed
genotype imputation tool based on popular Beagle software. Spark-
Beagle is designed for HPC and cloud computing environments
and it is implemented on top of the Apache Spark distributed com-
puting framework. We have carried out scalability experiments
by imputing 64,976,316 variants of 2504 samples from the 1000
Genomes reference panel in the cloud. SparkBeagle shows near-
linear scalability while increasing the number of computing nodes.
A speedup of 30x was achieved with 40 nodes. The imputation time
of the whole data set decreased from 565 minutes to 18 minutes
compared to a single node parallel execution. Near identical impu-
tation accuracy was measured in the concordance analysis between
the original Beagle and the distributed SparkBeagle tool.

KEYWORDS

bioinformatics, computational genomics, genotyping, parallel com-
puting, distributed systems, big data

ACM Reference Format:

Altti Ilari Maarala, Kalle Parn, Javier Nufiez-Fontarnau, and Keijo Heljanko.
2020. SparkBeagle: Scalable Genotype Imputation from Distributed Whole-
Genome Reference Panels in the Cloud. In Proceedings of the 11th ACM

This work is licensed under a Creative Commons Attribution-ShareAlike
International 4.0 License.

BCB °20, September 21-24, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7964-9/20/09.
https://doi.org/10.1145/3388440.3414860

Kalle Parn
Finnish Institute for Molecular Medicine
Helsinki, Finland
kalle.parn@helsinki.fi

Keijo Heljanko

Department of Computer Science, University of Helsinki

Helsinki Institute for Information Technology, HIIT
Helsinki, Finland
keijo.heljanko@helsinki.fi

International Conference on Bioinformatics, Computational Biology and Health
Informatics (BCB °20), September 21-24, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3388440.3414860

INTRODUCTION

Determining genotype-phenotype associations can contribute to
our understanding of complex diseases and foster the develop-
ment of precision medicine for personalized treatments, patient
risk stratification, and targeted drugs [32]. Genotyping is a routine
method for detecting genomic variation and is a fundamental pro-
cess for studying the association of genetic variation with traits
or diseases. Advances in high-throughput sequencing technology
have enabled large-scale genome-wide association (GWA) studies
that require comprehensive detection of single-nucleotide poly-
morphisms (SNPs) in a sample population, which can consist of
more than 100,000 samples where each sample may contain more
than 100,000 SNPs [26]. In addition, whole-genome sequencing
(WGS) based high-coverage reference panels now allow accurate
large-scale genotyping by imputation [22, 24].

Imputation is performed with computational methods by esti-
mating missing SNPs from a reference panel and already genotyped
SNPs. Genotype imputation from a subset of genotyped SNPs is
an efficient method for discovering the rest of the variants in a
genome, in addition to direct genotyping. Imputation assisted geno-
typing can significantly reduce the time and cost used for direct
genotyping with DNA microarrays [24]. Currently, reference panel
sizes are growing while more genomes are sequenced, which in
turn, enables a more accurate imputation of low-frequency and
rare variants [16, 23]. However, imputing missing genotypes of
multiple study samples from thousands of reference genotypes is
computationally demanding and can take days to weeks even with
the most powerful workstation.

While Moore’s law is repealing, the sequential CPU performance
gain has slowed down dramatically [18] and therefore the high-
performance computing needs to scale to a high number of cores
distributed across a large computing cluster in order to cope with
ever-growing data volumes. This trend is realized in increasing the
concurrency at multiple levels: the number of computing cores in a
single processor, the number of processors in a computer, and the
number of computers in a computing cluster. In contrast, traditional
bioinformatics algorithms and pipelines are typically developed on

https://doi.org/10.1145/3388440.3414860
https://doi.org/10.1145/3388440.3414860
https://creativecommons.org/licenses/by-sa/4.0/

BCB 20, September 21-24, 2020, Virtual Event, USA

demand by the researchers largely relying on existing sequential
algorithms or algorithms that use shared-memory to parallelize
computing inside a single computer. This has led to pipelines that
utilize a mixture of command-line tools making them poorly scal-
able, inflexible, and not easily able to exploit the computing capacity
available in large computing clusters. Thus, bioinformatics com-
puting frameworks and algorithms need to change to efficiently
exploit all the parallelism available in a distributed computing clus-
ter relying on parallel programming models.

Inspired by our previous results on large-scale genomics data
processing using big data platforms with Hadoop-BAM [25], Vi-
raPipe [21], and SeqPig [29], we anticipate that similar distributed
and parallel computing methods are ideal for solving scalability
problems in large-scale genotype imputation as well. We develop
and implement an Apache Spark [36] accelerated distributed paral-
lelization of the widely adopted Beagle imputation tool, SparkBea-
gle, to boost and to scale genotype imputation from deep coverage
reference panels in the cloud. We conduct experiments in a high-
performance cloud computing cluster to evaluate the scalability
and accuracy of SparkBeagle from 1000 Genomes and HapMap
reference panels. Finally, we discuss the results and conclude the
paper with a brief summary.

MATERIALS AND METHODS
Related work

Current imputation tools are based on machine learning and related
statistical methods such as Hidden Markov Models (HMM) but are
not designed for distributed computing [35]. However, genotype
data can be partitioned at the chromosomal level and for specific
regions (i.e. loci), enabling decomposition of the data for distributed
imputation. That is, SNP data for imputation is parallelizable at
chromosome locus as nearby variants are known to inherit together
considering linkage disequilibrium [31]. Arguably, one reason be-
hind the absence of distributed imputation tools is the data struc-
tures of genomics file formats that are not designed for distributed
file systems. Especially, compressed variant data formats such as
BCF (bgzip compressed VCF!), and BED are not distributable with-
out additional external libraries. The Hadoop-BAM [25] was the
first library to support the parallel processing of distributed SAM,
BAM, VCF, and BCF files in the Hadoop Distributed File System
(HDFS) [30]. More recently, Hadoop-BAM has been developed un-
der Disq? and Spark-BAM3 projects for better Spark integration.
Apache Spark [36] and Hadoop-BAM is leveraged in many bioin-
formatics tools and pipelines such as widely used Genome Analysis
Toolkit (GATK)* and ADAM? for more scalable genomic data anal-
ysis in the cloud. Zhou et al. [38] propose MetaSpark for distributed
read mapping on reference genomes. Ferraro et al. [11] demonstrate
Spark enhanced FastKmer for analyzing k-mer statistics from a large
collection of genomic sequences and FASTdoop [10] for managing
FASTA and FASTQ files with Hadoop MapReduce. Huang et al. [17]
propose the Sparkhit framework for scalable genome analytics by

!https://samtools.github.io/hts-specs/VCFv4.3.pdf
Zhttps://github.com/disq-bio/disq
3http://www.hammerlab.org/spark-bam/
“https:/github.com/broadinstitute/gatk
Shttps://github.com/bigdatagenomics/adam

Maarala and Parn, et al.

harnessing the Spark MLIib machine learning library and integrat-
ing existing genomic data processing tools in the cloud. O’Brien et
al., demonstrate VariantSpark [27], a scalable Spark-based variant
analysis tool for variant visualization and annotation. Linderman
et al. [20] propose DECA for scalable exome copy-number variant
calling based on ADAM and Spark. Halvade [8] and Crossbow [14]
demonstrate scalable Hadoop MapReduce based sequence align-
ment methods. CloudBrush [4] is a distributed De Novo assembler
developed on the Hadoop MapReduce framework while Reflexiv®
exploits Spark for scalable genome assembly in the cloud.

Beagle utilizes Li and Stephens Hidden Markov Model (HMM)
based algorithm for enabling accurate parallel imputation on a
single node over adjacent SNP marker windows [3]. In addition to
Beagle, other multithreaded single node shared memory imputation
tools such as Minimac [12] and Impute [15] have been developed.
Minimac3, Minimac4, and Impute4 have been compared with Beagle
in [3] demonstrating that Beagle 5.0 overcomes the latest versions
of Minimac and IMPUTE in terms of both imputation speed and
accuracy. However, being based on single node shared memory
computing none of them is capable of massive parallelization over
multiple computing nodes with distributed memory in a distributed
computing cluster. Imputation is typically distributed in batches
of chromosomal chunks to multiple nodes with Slurm’ or similar
workload managers. Without a distributed computing framework
and data storage, data chunks are typically distributed to targeted
nodes and batch jobs are run in parallel on corresponding nodes [19].
Such systems may suffer from a lack of robustness, low level of
parallelism, load imbalance, and lack of fault tolerance.

CloudAssoc [5] is the first massively distributed implementation
of genotype imputation tools reported at the present utilizing a dis-
tributed filesystem. CloudAssoc is implemented in MapReduce on
the Hadoop framework using Impute2 for the imputation algorithm
and Hadoop Distributed File System for distributed data storage.
However, the implemented CloudAssoc software is not currently
publicly available. Minimac3 has been lately deployed on Michi-
gan Imputation Server®, which exploits Hadoop MapReduce for
distributing the imputation jobs [6]. SparkBeagle exploits Apache
Spark [36] which is a modern big data processing engine based on
distributed in-memory computing for accelerating the execution of
distributed computing tasks. SparkBeagle is open source software
and freely available at https://github.com/NGSeq/SparkBeagle.

Implementation

Storing and processing of rapidly accumulating genomic data re-
quires a large amount of high-performance storage space, work-
ing memory, computing power, and network capacity. Big data
infrastructures, cloud computing frameworks, distributed filesys-
tems, and databases have been evolving while the price of DNA
sequencing, data storage, and computing memory has been decreas-
ing. Moreover, distributed computing frameworks, such as Apache
Spark [36], enable scalable, reliable, efficient, and relatively low-
cost computing in the cloud. Parallel data analysis with multiple
distributed computing nodes brings a huge performance advantage

®https://rhinempi.github.io/Reflexiv/index.html
"https://slurm.schedmd.com/
8https://imputationserver.sph.umich.edu/

SparkBeagle: Scalable Genotype Imputation from Distributed Whole-Genome Reference Panels in the Cloud

compared to single workstations. Moreover, cloud services provide
infrastructure for deploying computing clusters in a flexible and
cost-effective manner.

Apache Spark [36] is a general framework for processing big
data workloads in the cloud. Spark accelerates distributed data
analysis with in-memory processing where working sets of data
can be reused and pipelined in-memory from one pipeline stage
to another for the analysis job. Computation in Spark is based on
Resilient distributed data sets (RDD) [37], which are distributed
and cached to the working memory of multiple computing nodes
in a cluster to be processed as parallel tasks by Spark executors.
Moreover, Hadoop Distributed File System (HDFS) [30] enables
distributed data processing with data-parallel paradigms, such as
MapReduce and Spark, by minimizing data transfer between the
nodes [7]. This is achieved by dividing each computing task into
partitions and each Spark executor process locally stored blocks of
the data whenever available. HDFS replicates data blocks to three
separate nodes as default for improving fault tolerance and data
locality. If the needed data block is not available locally, its location
is requested from the HDFS NameNode and the NameNode returns
the closest location of the block replica.

SparkBeagle aims to provide easily scalable and robust genotype
imputation in the cloud while minimizing user intervention such
as transferring, compressing, splitting, and merging files manu-
ally. SparkBeagle distributes the imputation workload in Beagle to
multiple nodes in the cloud and is designed to scale automatically
while increasing the computing cluster size. Beagle I/O routines
are rewritten to support distributed computing with Spark and
Hadoop Distributed File System extensively. Figure 1 represents
the abstraction of SparkBeagle architecture.

HDFS Spark HDFS
— ||] eeeemeaaaaao
< ’ RDD N
! [interval<start,end>) | ! |
Target Node 1 ’ l B 0 Node 1
genotypes Block 1.2.3 | T Bxecutor 123 | i
(BCF) | .
' l Interval<startend>) | | I
0 § Node 2
N . Imputed
Blygfgvge v l : I| Execuior 456 I intorvals
— . '
L i [[imerval<startend>) | i Nodes |
Reference anodes o 1 : =1 Executor 7.8.9 I Imputed
haplotypes lock 7.8 ! ' ntervals
&ch) | (Tnterval<startend>) | | Node 4
1 (Interval<startend) | © jode
+Tabix index o H L des | —
Block 10,11,12 ' [: ' 101112] intervals
N | |
[, J

Figure 1: Architectural abstraction of the implementation.

Distributed imputation algorithm. In SparkBeagle, the genotypes
are imputed over chromosomal regions in parallel on distributed
computing nodes utilizing resources of a computing cluster effi-
ciently, thus giving a great performance advantage compared to
parallel imputation tools developed for single node multiprocessor
execution. A parallel imputation example scenario is illustrated in
the Figure 2. The reference panel of each chromosome is distributed
automatically to Hadoop Distributed File System (HDFS) in block
compressed (BGZF)® VCF format (BCF). Both the reference panel
and the target data set are stored to HDFS for improving parallel

http://www.htslib.org/doc/bgzip.html

BCB 20, September 21-24, 2020, Virtual Event, USA

Marker 1 2 3 4 5 6 7 8
1 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1
0 0 1 1 0 1 1 0
0 1 1 0 0 0 1 0 [Reference
1 0 1 1 0 0 0 0 haplotypes
1 0 1 1 1 0 1 0
0 0 1 0 1 0 1 1
1 1 0 0 0 0 1 o _
0 ?=2 1 2 0 ? ? 17
0 ? 2 ?=2 2 0 ?=2 1
1 2 1 ? 1 ? ? 0 [Target
1 ? 1 0 1 ? ? 1 genotypes
? 2 2 ? 0 1 ? 0
1 ?=0 1 ?=1 0 ? ? o _
\ Interval 1 (Chr N:1-5) |_overlap | Interval 2 (Chr N:4-8) J
Y
Executor 1 Executor 2
Impute Impute
Interval 1 Interval 2

Figure 2: Parallel imputation scenario over overlapped
marker intervals. Homozygous major allele = 0, homozy-
gous minor allele = 1, heterozygous allele = 2, missing tar-
get genotype = ?. Marker numbering here is artificial (in a
real scenario, the numbers would represent physical posi-
tions of reference alleles). The genotypes in a target sample
are imputed from reference haplotypes highlighted in the
same color. Allele encoding is following: 0|0 = 0, 1/1=1, 0|1=2,
1/0=2. In practice, genotype likelihoods of corresponding al-
leles are used for genotype prediction.

I/O performance. Also, an uncompressed VCF format is supported.
Distributed reference panel is read from HDFS blocks on each node
in parallel, thus reducing the time to read the panel into Spark work-
ing memory. The target data set is read once per chromosome into
working memory and broadcasted to all the Spark executors. Spark-
Beagle exploits imputation in intervals of chromosomal regions,
which enables highly parallel imputation on distributed panel data
while still preserving accuracy.

Figure 3 presents the distributed imputation task at the software
component level inside the SparkContext instance. SNP data is dis-
tributed at chromosomal regions, thus enabling parallel imputation
in intervals without parallelizing the HMM algorithm itself. Each
chromosome is processed individually and adjacent reference mark-
ers are partitioned to overlapping intervals while data is read in
from the HDFS. The intervals are mapped to Spark executors for
distributed imputation.

BGZF compressed input data is partitioned to overlapping inter-
vals utilizing Tabix (http://www.htslib.org/doc/tabix.html) index
(Figure 4). Intervals include markers within genomic regions where
the size of the region is given in units of centimorgans. Given inter-
val is mapped to genomic positions defined in PLINK genetic map
format (http://zzz.bwh.harvard.edu/plink/data.shtml#map) and the
markers within the interval range are read from the HDFS blocks
of the distributed VCF file in parallel. If the VCF file is BGZF com-
pressed (BCF), the Tabix index is used to find the corresponding
byte positions in the compressed blocks. Tabix index maps the
physical starting position of a marker interval to the correspond-
ing block offset in a BCF file (Figure 4). The offset and the length
of the marker interval are queried from the Tabix index and the
actual data is accessed by seeking the BGZF block offset in the
block compressed HDFS input data stream and reading the bytes

BCB 20, September 21-24, 2020, Virtual Event, USA

SparkContext

RDD<Interval<start,end>> =
SparkContex.parallelize(

SparkContex .createIntervals
- broadcast (cM, PlinkGeneticMap(Chr_i))
(targetBCF) RDD.map(Interval<start,end>)

L5

Executors

ey

Executor X, Node N

<offset,length> = TabixReader.query
(interval, refTabixIndex)

bytes = BlockCompressedInputStream(
SeekableStream(DFSInputStream
(refHDFSPath)))

.seek(offset, length).readBytes

impute(bytes, targetBCF)
.writeToHDFS(chr_i_interval)

Figure 3: Distributed execution of an imputation task inside
the SparkContext instance.

1000G phased ref.
panel
(BGZF)

Spark executors

Interval 10 20 30 40 5pcM
Query Tabi)i index H

63543 565466 856754 11153043 bp
BGZF
Read

3458495 6765674 9750697 14728348 Bytes

' .. b .. h 39..50

Impute 0..10 9..20 19..30 ; 29..40
3&,&5 0..10cM 10..20 cM 20..30 cM 30..40 cM 40..50 cM

Figure 4: Overall schema of the data-parallel decomposition.
Imputation is done in parallel in overlapping allele marker
intervals. The physical size of imputation interval depends
on the number of markers included in a genomic region de-
fined in units of centimorgans (cM). The imputation inter-
val size of 10 cM and an overlap size of 1 cM is used in the
experiments.

by the length of the interval. DFSInputDataStream class takes care
of reading the corresponding blocks from the HDFS inside a Spark
executor (Figure 3). Eventually, the target SNPs are imputed within

Maarala and Parn, et al.

the reference panel interval executing the Beagle’s original imputa-
tion method in parallel on multiple cores on distributed computing
nodes. That is, Spark creates as many imputation tasks as there are
the chromosomal intervals and processes each interval in parallel
with Spark executors. The number of parallel imputation intervals
is dependent on the size of the regions, the smaller the regions the
more intervals there are. Overlapping markers are imputed twice,
but only the genotypes at the end of the interval are persisted as
imputation accuracy increases with distance from the beginning of
the partition (Figure 4).

Data sets and test data preparation

1000 Genomes [33] phase 3 data set including 2504 haplotypes
(81,214,785 variants, 769 GB) is used as a reference panel in both the
scalability and the accuracy evaluations. 1000 Genomes datal® is
already phased and provided with Tabix indexes. Only autosomes
(chromosomes 1-22) are included in the evaluations and GRCh37
based data is used in all the evaluations. The target data for the
scalability test is derived from the 1000 Genomes reference panel
by filtering every fifth marker by simply storing header lines and
every fifth line after the header (16,238,469 variants, 154 GB). Thus,
we uncompress, filter, and reindex the reference panel with Tabix
to generate the target panel for the scalability test (shell script avail-
able in GitHub!!). The genetic map files are downloaded from!?,
uncompressed and stored to HDFS.

The accuracy test target data set is derived from the HapMap [13]
phase 3 genotype data including 861 individuals (880,104 variants).
The original HapMap phase 3 target data used in the concordance
analysis is available at ftp://ftp.ncbinlm.nih.gov/hapmap/phase_3.
The concordance analysis workflow is presented in the Figure 5.
We use PLINK 1.9 to convert the HapMap genotype files to binary
PLINK format e.g., with the following command (for each popula-
tion separately):
$ plink —file hapmap3_r1_b36_fwd. ASW.qc.poly.recode —make-bed
—out ASW
The binary output files of each population are merged with PLINK
"—bmerge" option. Then, genotype call rate filter with 10% missing-
ness is applied to exclude such positions which are only present in
a few samples e.g., with the following command:
$ plink —bfile hapmap_merged —geno 0.1 —make-bed —out hapmap_gt09
Next, we convert data to VCF with PLINK "-recode vcf" option and
recalculate allele count fields with the Beftools plugin "fill-AN-AC".
Finally, we apply quality control (QC) methods described by Ander-
son et al. [1] and presented in the section "1.3.2 Minimum quality
control” of Pirn et al. [28]. One-fourth of the markers (220,017 vari-
ants) in the HapMap panel is filtered for the imputation target data.
After pre-processing steps, the HapMap VCF data is compressed us-
ing bgzip and indexed with Tabix for imputation with SparkBeagle.
The analysis-ready quality controlled and masked HapMap data
set is available in GitHub!3,

WOftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/
Uhttps://github.com/NGSeq/SparkBeagle/tree/master/test/preprocess.sh
2http://bochet.gec.biostat. washington.edu/beagle/genetic_maps/
Bhttps://github.com/NGSeq/SparkBeagle/tree/master/test/data/

SparkBeagle: Scalable Genotype Imputation from Distributed Whole-Genome Reference Panels in the Cloud

GT call rate
>=90%

Yes

Recalculate allele
counts

<«—— Convert to VCF

Is SNP or
INDEL?

Split multiallelic
to biallelic

Is duplicate or
multiallelic?

Align to GRCh37

1000G
reference
panel

1000G
reference
panel

1/4 subset 1/4 subset

Imputation ready
HapMap data

Beagle Impute

Recalculate allele
frequencies

Group by AF bins

|

GATK
GenotypeConcordance

//\\
RN

/ N
_~ Calculate

Calculate
<_ NRS/NRD) NRS /NRD
_ perbin per bin

y
Ay

Figure 5: Concordance analysis workflow.

Computing environment

The experiments are run on the Apache Spark cluster in a cloud
computing environment maintained by CSC Finland. The cluster
consists of Spark worker nodes having 44 GB of RAM and 10 cores
(Intel(R) Xeon(R) CPU Gold 6148, with hyper-threading) in each
and two Spark master nodes having 86 GB of RAM and 20 cores
in each. The whole cluster comprises 520 CPU cores, 1.15 TB of
RAM, 25 GB/s network, 15 TB of HDD storage space in total. The
Spark cluster is deployed with Hortonworks Data Platform (HDP)
3.1 distribution on virtual machines running CentOS 7 operating
system. Spark 2.3.2 and Hadoop 3.1.0 versions are deployed for
our experiments. HDP software stack provides YARN [34] resource
manager which is used for scheduling Spark jobs and allocating

BCB 20, September 21-24, 2020, Virtual Event, USA

CPU and memory resources dynamically amongst queued jobs.
YARN uses containers as resource pools for sharing resources to
Spark executors of the queued job. The number of physical CPU
cores sets the limit for the maximum number of CPU cores per
container and the amount of available memory limits the number
of concurrently running executors in a node. The Yarn job queue is
configured to use fair ordering policy and size based weighting for
allocating resources fairly based on the computational burden of
each job i.e. physically larger imputation intervals will have more
resources. This configuration maximizes the uniform workload
distribution in our experiments and performs the best.

- Ideal
——SparkBeagle

#-Per chromosome

8 16 22 24 32 40 48
Worker nodes

Figure 6: Speedup with increasing cluster size compared to
Beagle running in parallel per chromosome on 22 nodes.
Dashed line denotes an ideal speedup.

RESULTS

Performance and scalability

The scalability experiment imputes 64,976,316 masked variants of
2504 samples from phased 1000 Genomes reference panel while
increasing the number of Spark worker nodes. As a baseline, we run
an imputation test with Beagle version 5 on the same data set on a
single node having 10 cores resulting in 565 minutes. In addition,
we distribute the same data per chromosome on 22 nodes and run
imputation with Beagle on each node resulting in 57 minutes and
10x speedup (Single point in Figure 6). Finally, we impute with
SparkBeagle over all chromosomes with different amount of Spark
worker nodes. All tests are run three times and the result is based
on the average execution time. The results (Figure 6) show that total
imputation speedup increases almost linearly up to 40 worker nodes.
With 40 nodes and 400 cores, the speedup of 30x was achieved and
the imputation wall-clock time decreased to 18 minutes. From 40 to
48 nodes, the speedup does not increase significantly anymore as
the maximum parallel execution is limited by the amount of data
partitions in practice (number of distributed intervals is 365 and
each interval is imputed using one core out of the 480 total cores).

Accuracy

Near identical imputation accuracy with both implementations can
be seen from non-reference sensitivity (NRS) and non-reference dis-
crepancy (NRD) rates in Figure 7. Thus the parallelization does not

BCB 20, September 21-24, 2020, Virtual Event, USA

m SparkBeagle NRD x Beagle NRD SparkBeagle NRS Beagle NRS

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

0,1

N N S S S N
[N\ N\ N NN
4

050% 5.0-10.0% 10.0-20.0% 20.0-30.0% 30.0-40.0% 40.0-50.0%
Minor allele frequency

Figure 7: Concordance analysis compares non-reference sen-
sitivity (NRS, the proportion of recovered variants) and non-
reference discrepancy (NRD, the proportion of incorrectly
imputed variants) across different minor allele frequency
(MAF) bins.

affect the observed imputation accuracy. This result was obtained
by comparing the possible changes in imputation accuracy between
the original Beagle and SparkBeagle. We create a subset of 220,017
variants from the publicly available HapMap panel which we thor-
oughly QC-d (861 individuals) to mimic a genotyping chip data
set. We then impute this data set with the publicly available 1000
Genomes reference panel using both of the imputation approaches.
We filter the imputed data based on the HapMap position list and
observed the results. The outcome is compared with the all 880,104
QC-d variants in the HapMap panel by running the concordance
analysis (Figure 5) with the GATK GenotypeConcordance module.
We perform the concordance analysis by applying the comparison
methods from the genotype imputation protocol presented in Pérn
et al. [28].

The results of the concordance analysis are summarized by two
values: the proportion of variants that the imputation manages
to recover compared to the reference data set, (measured by non-
reference sensitivity, NRS), and the proportion of variants which are
imputed incorrectly (measured by the non-reference discrepancy,
NRD) [9]. We compare these values across multiple minor allele
frequency (MAF) bins ranging from 3-50%. There are no lower MAF
bins (MAF<3%) available for us due to the combined HapMap panel
being a merge of multiple smaller populations, each with a separate
allele count filter.

Discussion

SparkBeagle processes all chromosomal intervals massively parallel
on multiple distributed computing nodes utilizing resources of each
node more fairly, thus improving usability, load balancing, and CPU
utilization. The best benefit is achieved when the reference panel
or the target set contains at least thousands of samples and millions
of markers, that is when the panel data is too large to be processed
in memory on a single machine. SparkBeagle reads and writes VCF
data both in compressed (BGZF) and uncompressed formats directly
from/to HDFS.

Maarala and Parn, et al.

Processing tends to be highly I/O bound and the performance is
highly dependent on the underlying storage and network, thus the
30x speedup with 40 nodes can be considered very high with the
underlying HDD storage. As the chromosomal imputation interval
is the minimal unit of work that can be executed in parallel with
our approach, the 18 minutes running time is close to the minimum
as the largest chromosomal interval (629,203 markers in the region
of 100-110 ¢cM in chromosome 3) was imputed in 15 minutes. Three
minute overhead is mostly due to reading, writing, decompressing,
and compressing the data. The peak memory usage depends highly
on the maximum number of markers within the imputation inter-
val. 4 GB memory per interval of size 10 cM was found enough for
running all 365 intervals in parallel. The peak memory usage per
executor seems to grow near linearly in proportion to the number
of reference markers within the interval which is in line with the
memory usage of Beagle reported in [2]. However, the maximum
number of the markers does not have a linear relation in the in-
terval size, thus peak memory usage can not be estimated directly
from the interval size. The maximum number of markers amongst
the intervals can be calculated e.g., from the genetic map file for
estimating the memory usage.

Imputation data produced 365 intervals in total, thus with 40
nodes (400 cores), every interval was imputed in parallel (one in-
terval per core). That is, the speedup stops increasing after 40
nodes (Figure 6). A negligible increase in speedup is assumed to be
produced by variation in cloud computing cluster performance be-
tween the runs. To achieve even better scalability with the test data
set, shorter chromosomal intervals should be used, but this would
potentially lead to decreased imputation accuracy. In contrast, chro-
mosomally distributed Beagle can only speed up to the time taken
to impute the chromosome containing the largest number of SNPs
which is demonstrated in our experiments: on chromosome 2 the
imputation takes 57 minutes, while with the SparkBeagle the im-
putation takes only 18 minutes with the same data set (Figure 6).
Obviously, panel data could be split manually to overlapping in-
tervals and distributed to several nodes for achieving better per-
formance with the original Beagle. However, this would require
writing additional tools for splitting, coordinating, and merging the
results, effectively replicating large parts of SparkBeagle functional-
ity while losing data locality and fault tolerance provided by HDFS,
and advantage of Spark’s cached in-memory data processing.

Near identical accuracy was obtained comparing SparkBeagle
with Beagle and the negligible difference in the accuracy is due to
heuristics of imputation algorithm, that is, the imputation result
fluctuates slightly every time the sequential Beagle imputation is
run. Panel data partition and imputation interval sizes must be
considered when deciding the Spark runtime configuration: the
more samples, the larger the physical size of the imputation interval
grows, and thus, more memory per executor is allocated. In contrast,
a smaller imputation interval can increase the speedup but reduce
the imputation accuracy.

SparkBeagle can be run on public cloud infrastructures with
minimal effort when using pre-installed platforms such as Amazon
EMR, Google Dataproc, and Azure HDInsight for deploying and
managing the Spark cluster. Spark provides connectors for support-
ing various cloud storage systems such as hdfs, s3a, wasb, abfs, and
gs. However, the experiments have been run on HDFS, and using

SparkBeagle: Scalable Genotype Imputation from Distributed Whole-Genome Reference Panels in the Cloud

different storage system may slow down the runtime performance
and decrease the fault tolerance. To use a different storage system,
the corresponding connector protocol is supplied via the SparkBea-
gle application parameter e.g., hdfs:// or s3a://. Authentication may
be required with public cloud storages and more detailed informa-
tion is given in Spark documentation!®. SparkBeagle supports VCF
formatted genotype data (reference panel is assumed to be already
phased) at the moment, thus PLINK formatted HapMap data was
pre-processed when preparing the experiments. The tests were
based on human genomes, thus genotyping other species would
require adjusting the number of chromosomes in the application
parameters.

As a further study, we will investigate how the imputation inter-
val size affects the imputation accuracy, speedup, and scalability
with different data sets and computing cluster sizes. We are planning
to integrate quality control methods to the SparkBeagle imputation
workflow in the near future.

CONCLUSIONS

Genotype imputation with the whole genome-based reference pan-
els offers a cost-efficient alternative for time-consuming and ex-
pensive microarray-based genotyping. Reference panel sizes are
growing as whole-genome sequencing becomes more cheap and
rapid enabling more accurate imputation for comprehensive GWA
studies [16]. However, the current genotype imputation algorithms
are computationally complex and widely used imputation tools
scale only to multiple cores on a single machine. In this work, we
have developed a scalable imputation tool, SparkBeagle, that dis-
tributes the imputation workload to multiple nodes in the cloud
without user intervention and manual processing steps. SparkBea-
gle processes chromosomes in parallel chromosomal regions on
multiple nodes utilizing resources of computing cluster efficiently,
thus imputing multiple times faster than parallel imputation tools
developed for single node multiprocessor execution.

Our experiments show that SparkBeagle scales near linearly with
the increasing number of nodes in the cloud whilst preserving high
accuracy and performance. 30x speedup was achieved on 40 Spark
worker nodes (imputation time 18 minutes) compared with Beagle
running on a single node (imputation time 565 minutes). Near
identical imputation accuracy was observed in the results of both
implementations. Thus, SparkBeagle can potentially respond to the
computational requirements in the near future and foster genome-
wide association studies by imputing ever-growing data sets more
rapidly and with high precision. SparkBeagle can be deployed on
most public cloud infrastructures and big data platforms with a little
effort. Moreover, our Spark-based distributed imputation method
can be applied to other imputation tools with a relatively small
amount of effort, as far as they are able to impute over chromosomal
regions. SparkBeagle and the test scripts are available online in
GitHub'®.

ACKNOWLEDGMENTS

This work is supported by The Nordic Information for Action
eScience Center (NIASC) [Grant No 62721] and Helsinki Institute for

https://spark.apache.org/docs/latest/cloud-integration.html
Dhitps://github.com/NGSeq/SparkBeagle

BCB 20, September 21-24, 2020, Virtual Event, USA

Information Technology program Foundations of Computational
Health (FCHealth).

REFERENCES

[1] Carl A Anderson, Fredrik H Pettersson, Geraldine M Clarke, Lon R Cardon,
Andrew P Morris, and Krina T Zondervan. 2010. Data quality control in genetic
case-control association studies. Nature Protocols 5 (08 2010), 1564-1573. https:
//doi.org/10.1038/nprot.2010.116
Brian L Browning and Sharon R Browning. 2016. Genotype Imputation with
Millions of Reference Samples. The American Journal of Human Genetics 98, 1
(2016), 116 - 126. hitps://doi.org/10.1016/j.ajhg.2015.11.020
Brian L. Browning, Ying Zhou, and Sharon R. Browning. 2018. A One-Penny
Imputed Genome from Next-Generation Reference Panels. The American Journal
of Human Genetics 103, 3 (2018), 338 — 348. https://doi.org/10.1016/j.ajhg.2018.
07.015
[4] Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen, and Jan-Ming Ho. 2012.
A de novo next generation genomic sequence assembler based on string graph
and MapReduce cloud computing framework. BMC Genomics 13, 7 (2012), S28.
https://doi.org/10.1186/1471-2164-13-57-528
[5] Weidi Dai, Qiuwen Wang, Meng Gao, and Lu Zhang. 2012. CloudAssoc: A pipeline
for imputation based genome wide association study on cloud. In Proceedings of
2012 2nd International Conference on Computer Science and Network Technology.
1435-1438.
Sayantan Das, Lukas Forer, Sebastian Schonherr, Carlo Sidore, Adam E Locke,
Alan Kwong, Scott I Vrieze, Emily Y Chew, Shawn Levy, Matt McGue, David
Schlessinger, Dwight Stambolian, Po-Ru Loh, William G Iacono, Anand Swaroop,
Laura J Scott, Francesco Cucca, Florian Kronenberg, Michael Boehnke, Gongalo R
Abecasis, and Christian Fuchsberger. 2016. Next-generation genotype imputation
service and methods. Nature Genetics 48, 10 (2016), 1284-1287. https://doi.org/
10.1038/ng.3656
[7] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107-113. https://doi.org/10.
1145/1327452.1327492
[8] Dries Decap, Joke Reumers, Charlotte Herzeel, Pascal Costanza, and Jan Fostier.
2015. Halvade: Scalable sequence analysis with MapReduce. Bioinformatics 31,
15 (2015), 2482-2488. https://doi.org/10.1093/bioinformatics/btv179
[9] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R Maguire,
Christopher Hartl, Anthony A Philippakis, Guillermo del Angel, Manuel A Rivas,
Matt Hanna, Aaron McKenna, Tim] Fennell, Andrew M Kernytsky, Andrey Y
Sivachenko, Kristian Cibulskis, Stacey B Gabriel, David Altshuler, and Mark J
Daly. 2011. A framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nature Genetics 43, 5 (2011), 491-498. https:
//doi.org/10.1038/ng.806
Umberto Ferraro Petrillo, Gianluca Roscigno, Giuseppe Cattaneo, and Raffaele
Giancarlo. 2017. FASTdoop: a versatile and efficient library for the input of
FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications.
Bioinformatics 33,10 (01 2017), 1575-1577. https://doi.org/10.1093/bioinformatics/
btx010
Umberto Ferraro Petrillo, Mara Sorella, Giuseppe Cattaneo, Raffaele Giancarlo,
and Simona E. Rombo. 2019. Analyzing big datasets of genomic sequences: fast
and scalable collection of k-mer statistics. BMC Bioinformatics 20, 4 (2019), 138.
https://doi.org/10.1186/s12859-019-2694-8
Christian Fuchsberger, Gongalo R. Abecasis, and David A. Hinds. 2014. Minimac2:
Faster genotype imputation. Bioinformatics 31, 5 (10 2014), 782-784. https:
//doi.org/10.1093/bioinformatics/btu704
Richard A. Gibbs and John W. et al. Belmont. 2003. The International HapMap
Project. Nature 426, 6968 (2003), 789-796. https://doi.org/10.1038/nature02168
[14] James Gurtowski, Michael C. Schatz, and Ben Langmead. 2012. Genotyping
in the Cloud with Crossbow. Current Protocols in Bioinformatics 39, 1 (2012),
15.3.1-15.3.15. https://doi.org/10.1002/0471250953.bi1503s39
Bryan N. Howie, Peter Donnelly, and Jonathan Marchini. 2009. A Flexible and
Accurate Genotype Imputation Method for the Next Generation of Genome-Wide
Association Studies. PLOS Genetics 5, 6 (06 2009), 1-15. https://doi.org/10.1371/
journal.pgen.1000529
Jie Huang and Bryan Howie. 2015. Improved imputation of low-frequency and
rare variants using the UK10K haplotype reference panel. Nature Communications
6 (14 09 2015), 8111 EP -. https://doi.org/10.1038/ncomms9111
Liren Huang, Jan Kriiger, and Alexander Sczyrba. 2017. Analyzing large scale
genomic data on the cloud with Sparkhit. Bioinformatics 34,9 (12 2017), 1457-1465.
https://doi.org/10.1093/bioinformatics/btx808
[18] Hennessy John L. and Patterson David A. 2019. A new golden age for computer
architecture. Commun. ACM 62, 2 (2019), 48-60. https://doi.org/10.1145/3282307
[19] Max Lam, Swapnil Awasthi, Hunna] Watson, Jackie Goldstein, Georgia Panagio-
taropoulou, Vassily Trubetskoy, Robert Karlsson, Oleksander Frei, Chun-Chieh
Fan, Ward De Witte, Nina R Mota, Niamh Mullins, Kim BrAijgger, S Hong Lee,
Naomi R Wray, Nora Skarabis, Hailiang Huang, Benjamin Neale, Mark J Daly,

[2

3

l6

=
S

[11

[12

[13

[15

[16

(17

https://doi.org/10.1038/nprot.2010.116
https://doi.org/10.1038/nprot.2010.116
https://doi.org/10.1016/j.ajhg.2015.11.020
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.1186/1471-2164-13-S7-S28
https://doi.org/10.1038/ng.3656
https://doi.org/10.1038/ng.3656
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1093/bioinformatics/btv179
https://doi.org/10.1038/ng.806
https://doi.org/10.1038/ng.806
https://doi.org/10.1093/bioinformatics/btx010
https://doi.org/10.1093/bioinformatics/btx010
https://doi.org/10.1186/s12859-019-2694-8
https://doi.org/10.1093/bioinformatics/btu704
https://doi.org/10.1093/bioinformatics/btu704
https://doi.org/10.1038/nature02168
https://doi.org/10.1002/0471250953.bi1503s39
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1038/ncomms9111
https://doi.org/10.1093/bioinformatics/btx808
https://doi.org/10.1145/3282307

BCB 20, September 21-24, 2020, Virtual Event, USA

[20

[21

[22]

[23]

[24]

[25]

[26]

[27

[28]

Manuel Mattheisen, Raymond Walters, and Stephan Ripke. 2019. RICOPILI: Rapid
Imputation for COnsortias PlpeLIne. Bioinformatics 36, 3 (08 2019), 930-933.
https://doi.org/10.1093/bioinformatics/btz633

Michael D. Linderman, Davin Chia, Forrest Wallace, and Frank A. Nothaft. 2019.
DECA: Scalable XHMM exome copy-number variant calling with ADAM and
Apache Spark. BMC Bioinformatics 20, 1 (2019), 493. https://doi.org/10.1186/
512859-019-3108-7

Altti I Maarala, Zurab Bzhalava, Joakim Dillner, Keijo Heljanko, and Davit
Bzhalava. 2017. ViraPipe: Scalable parallel pipeline for viral metagenome analysis
from next generation sequencing reads. Bioinformatics 34, 6 (11 2017), 928-935.
https://doi.org/10.1093/bioinformatics/btx702

Jonathan Marchini and Bryan Howie. 2010. Genotype imputation for genome-
wide association studies. Nature Reviews Genetics 11 (02 06 2010), 499 EP —.
https://doi.org/10.1038/nrg2796

Mario Mitt, Mart Kals, Kalle Pérn, Stacey B Gabriel, Eric S Lander, Aarno
Palotie, Samuli Ripatti, Andrew P Morris, Andres Metspalu, Tonu Esko, Reedik
Mégi, and Priit Palta. 2017. Improved imputation accuracy of rare and low-
frequency variants using population-specific high-coverage WGS-based imputa-
tion reference panel. European Journal of Human Genetics 25, 7 (2017), 869-876.
https://doi.org/10.1038/ejhg.2017.51

Sarah C Nelson, Kimberly F Doheny, Elizabeth W Pugh, Jane M Romm, Hua Ling,
Cecelia A Laurie, Sharon R Browning, Bruce S Weir, and Cathy C Laurie. 2013.
Imputation-based genomic coverage assessments of current human genotyping
arrays. G3 (Bethesda, Md.) 3, 10 (10 2013), 1795-1807. https://doi.org/10.1534/g3.
113.007161

Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemela, Eija Kor-
pelainen, and Keijo Heljanko. 2012. Hadoop-BAM: Directly manipulating next
generation sequencing data in the cloud. Bioinformatics 28, 6 (02 2012), 876—-877.
https://doi.org/10.1093/bioinformatics/bts054

Jo Nishino, Hidenori Ochi, Yuta Kochi, Tatsuhiko Tsunoda, and Shigeyuki Matsui.
2018. Sample Size for Successful Genome-Wide Association Study of Major
Depressive Disorder. Frontiers in Genetics 9 (2018), 227. https://doi.org/10.3389/
fgene.2018.00227

Aidan R. O’Brien, Neil F. W. Saunders, Yi Guo, Fabian A. Buske, Rodney J. Scott,
and Denis C. Bauer. 2015. VariantSpark: Population scale clustering of genotype
information. BMC Genomics 16, 1 (2015), 1052. https://doi.org/10.1186/s12864-
015-2269-7

Kalle Parn, Marita A. Isokallio, Javier Nufiez-Fontarnau, Aarno Palotie, Samuli
Ripatti, and Priit Palta. 2019. Genotype imputation workflow v3.0 V.2. https:

[29

[30

[31

[33

[34

[35

[37

[38

]

Maarala and Parn, et al.

//doi.org/10.17504/protocols.io.xbgfijw

André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija Kor-
pelainen, Gianluigi Zanetti, and Keijo Heljanko. 2013. SeqPig: Simple and scalable
scripting for large sequencing data sets in Hadoop. Bioinformatics 30, 1 (10 2013),
119-120. https://doi.org/10.1093/bioinformatics/btt601

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST). 1-10.

Matthew Stephens and Paul Scheet. 2005. Accounting for Decay of Linkage Dise-
quilibrium in Haplotype Inference and Missing-Data Imputation. The American
Journal of Human Genetics 76, 3 (2005), 449 — 462. https://doi.org/10.1086/428594
Vivian Tam, Nikunj Patel, Michelle Turcotte, Yohan Bossé, Guillaume Paré, and
David Meyre. 2019. Benefits and limitations of genome-wide association studies.
Nature Reviews Genetics (2019). https://doi.org/10.1038/s41576-019-0127-1

The 1000 Genomes Project Consortium and Adam et al. Auton. [n.d.]. A global
reference for human genetic variation. Nature 526 (30 09 [n.d.]), 68 EP —. https:
//doi.org/10.1038/nature15393

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,
and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource
Negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing.
New York, NY, USA, Article 5, 16 pages. https://doi.org/10.1145/2523616.2523633
Yining Wang, Guohui Lin, Changxi Li, and Paul Stothard. 2016. Genotype Imputa-
tion Methods and Their Effects on Genomic Predictions in Cattle. Springer Science
Reviews 4, 2 (01 Dec 2016), 79-98. https://doi.org/10.1007/s40362-017-0041-x
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ton Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (Boston, MA)
(HotCloud’10). Berkeley, CA, USA, 10-10.

Matei Zaharia and Mosharaf et al. Chowdhury. 2012. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and Im-
plementation. 2-2.

Wei Zhou, Ruilin Li, Shuo Yuan, ChangChun Liu, Shaowen Yao, Jing Luo, and
Beifang Niu. 2017. MetaSpark: A spark-based distributed processing tool to
recruit metagenomic reads to reference genomes. Bioinformatics 33,7 (01 2017),
1090-1092. https://doi.org/10.1093/bioinformatics/btw750

https://doi.org/10.1093/bioinformatics/btz633
https://doi.org/10.1186/s12859-019-3108-7
https://doi.org/10.1186/s12859-019-3108-7
https://doi.org/10.1093/bioinformatics/btx702
https://doi.org/10.1038/nrg2796
https://doi.org/10.1038/ejhg.2017.51
https://doi.org/10.1534/g3.113.007161
https://doi.org/10.1534/g3.113.007161
https://doi.org/10.1093/bioinformatics/bts054
https://doi.org/10.3389/fgene.2018.00227
https://doi.org/10.3389/fgene.2018.00227
https://doi.org/10.1186/s12864-015-2269-7
https://doi.org/10.1186/s12864-015-2269-7
https://doi.org/10.17504/protocols.io.xbgfijw
https://doi.org/10.17504/protocols.io.xbgfijw
https://doi.org/10.1093/bioinformatics/btt601
https://doi.org/10.1086/428594
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1007/s40362-017-0041-x
https://doi.org/10.1093/bioinformatics/btw750

	Abstract
	References

