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Abstract: Information on soil erosion and related sedimentation processes are very important for
natural resource management and sustainable farming. Plenty of models are available for studying
soil erosion but only a few are suitable for dynamic soil erosion assessments at the field-scale. To
date, there are no field-scale dynamic models available considering complex agricultural systems
for the simulation of soil erosion. We conducted a review of 51 different models evaluated based on
their representation of the processes of soil erosion by water. Secondly, we consider their suitability
for assessing soil erosion for more complex field designs, such as patch cropping, strip cropping
and agroforestry (alley-cropping systems) and other land management practices. Several models
allow daily soil erosion assessments at the sub-field scale, such as EPIC, PERFECT, GUEST, EPM,
TCRP, SLEMSA, APSIM, RillGrow, WaNuLCAS, SCUAF, and CREAMS. However, further model
development is needed with respect to the interaction of components, i.e., rainfall intensity, overland
flow, crop cover, and their scaling limitations. A particular shortcoming of most of the existing
field scale models is their one-dimensional nature. We further suggest that platforms with modular
structure, such as SIMPLACE and APSIM, offer the possibility to integrate soil erosion as a separate
module/component and link to GIS capabilities, and are more flexible to simulate fluxes of matter in
the 2D/3D dimensions. Since models operating at daily scales often do not consider a horizontal
transfer of matter, such modeling platforms can link erosion components with other environmen-
tal components to provide robust estimations of the three-dimensional fluxes and sedimentation
processes occurring during soil erosion events.

Keywords: erosion and sedimentation processes; model categorization; complex cropping systems;
governing equations; application

1. Introduction

Soil erosion is a significant problem worldwide for most of the agro-ecosystems [1]
because it is one of the primary causes of soil degradation as a result of detachment and
loss of topsoil layer and soil organic matter, which are essential for plant development.
Quantification of soil loss related to soil and crop management, climate, and soil conditions
has, therefore, become a serious concern for water and soil conservation practitioners,
as well as decision-makers concerned with food security and agricultural policies [2].
Soil erosion is the process of detachment and transportation of soil particles involving
various erosive agents from the earth’s surface. Categorized into wind and water erosion,
water erosion is a much more complex process and leads to substantial loss of soil and
sedimentation [3]. Water erosion is mainly affected by rainfall/runoff intensity, vegetation
cover, soil erodibility, topography, and land use management practices [4].
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Due to the rapid advancement in data computing techniques in the last three decades,
there is a substantial enhancement in the analysis of soil erosion through the development of
computer models [5]. However, these models strongly differ in terms of data requirement,
application scales, and complexity, along with uncertainties in the individual factors of
the respective models [6]. Water erosion modeling is about 60 years old, but has become a
key factor in our understanding of the complexity of erosion processes and for predicting
future scenarios. Yet, most of the models are still inadequate due to multiple sources of
uncertainty [7,8].

Many different algorithms and relations have been proposed to define and predict soil
erosion by water and associated sediment yield, varying noticeably in their objectives, time
scale at the plot level, and in their conceptual basis as well. The choice of the most suitable
model is a logical process affected by many factors including land use, the characteristics
of the catchment being considered, and the data available [9]. Physically based models, for
example, mainly depend on the principal approach of mass and energy conservation to
simulate runoff and sedimentation. In addition, physically based models are based on the
concept of physics using transfer of momentum as a governing equation [10].

Remote Sensing and GIS have huge potential for analysis and mapping of parameters
influencing soil erosion and degraded lands in quantitative and qualitative manners.
However, the use of GIS for soil erosion modeling requires facilitations such as multiple
data resources, data scaling, and increased complexity in data integration and algorithms.
Climate, land use/land cover, topography, and slope data can be assessed using LIDAR
or Satellite imageries and can be integrated with GIS for soil erosion, transport, and
sedimentation modeling [11–14].

There is an increasing interest in more complex field designs and crop diversification
on the same field, e.g. alley cropping systems, as one of the most popular type of agro-
forestry, patch cropping, strip cropping, and uncultivated drylands, wherein rotational
grazing livestock are moved to a part of the pasture, while the other portions rest, which
can impact modeling outcomes. Consequently, a need for suitable soil erosion models that
can handle and consider more complex field designs is raised.

The key objective of this study is, therefore, to categorize an extensive amount of
available soil erosion models, review the underlying concepts, data requirements, and
sources of uncertainty. We especially consider their suitability to simulate soil erosion at
the sub-field scale and their application for more complex field designs. More specifically,
we aim to

i. Provide a review of a large number of existing soil erosion models with respect to
(a) the challenges for simulating field-scale erosion processes and (b) consideration
of more complex cropping systems like alley cropping, patch cropping, and strip
cropping, and based on these findings,

ii. Provide suggestions on a way forward for corresponding model improvements.

2. Materials and Methods

We performed a systematic model review with the reviewed soil erosion models being
based on the outcome of a thorough literature screening, identification of suitable models,
and model classification (Figure 1). This review paper is structured in the following way.
A brief explanation of soil erosion, transportation, and sedimentation principles is made
in Section 3.1. In this review, more than 60 models were reviewed and 51 models were
retained in Section 3.2. The shortlisted models are reviewed in terms of their objective,
model structure, model components, as well as their application, ease of model calibration,
and parameter requirements. Models are categorized in terms of their ability to explain
the soil erosion processes, governing equations, their spatial and temporal resolution,
their capabilities, and their limitations. These models have a wide range of applications
from point scale to catchment scale. The focus of this review primarily considers models
having abilities to simulate soil erosion process at the field scale and in complex cropping
systems. The selected models are described in Section 3.3. in which it is noted that many
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field scale models are implemented for catchment-scale soil erosion simulations. From a
wider point of view, some of these models are described under their respective categories.
In Section 4, a discussion summarizes descriptions of models to sort out which model
fits which conditions and problems identified and leads to clear guidelines to select the
appropriate model. This discussion is used to identify key points that would enhance the
quality of the modeling output and the nature of additional components to enhance model
capability in most environmental and management conditions. Section 5 provides a way
forward on how to improve and extend existing models to simulate erosion processes at a
small spatial scale in complex agriculture systems.
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3. Results
3.1. Principle for Erosion Modelling

Sedimentological and hydrological processes involved in the modeling of soil erosion
by water are explained mainly by two principles representing these processes (Table 1).
Every erosion model can be considered as a unique permutation of these two principles [15].

Table 1. Principles driving process representation in soil erosion models (modified after [15]).

Principle Summary

A model must represent all factors significantly contributing to the
erosion process at the spatial, temporal, and locality levels for which the
model is applied.

What to represent

A model may apply different weights to the individual processes or it
may represent these processes directly, indirectly, or using a hybrid
approach. [16].

How to represent

One of the critical aspects of the first principle (Table 1) is that every erosion model
operates at different temporal and spatial scales [17]. Therefore, a plot-scale model must be
able to represent a different combination of erosion processes as compared to those devel-
oped for the landscape (i.e., watershed or regional) scale (Table 2). Further, if simulating
single events, the processes represented in the model may differ from those considered in
models for long-term simulations or the weighting factors for each of the processes may
be different. Similarly, erosion processes vary depending on the climatic conditions (i.e.,
humid, arid, etc.) and models developed for these specific regions must vary in terms of
the number and type of erosion processes that are considered [16].

Table 2. Spatial scale sizes for soil erosion modeling.

Category Spatial Scale Size

Large scale

Basin >500 km2

Catchment 50–500 km2

Watershed 1–50 km2

Small scale
Field/hillslope <1km2

Plot 0.6–23 m2

3.2. Soil Detachment and Sedimentation Assessment Model Approaches

A wide range of modeling approaches has been developed for simulating soil erosion
and sedimentation over the last decades, differing in their representation of processes
involved in soil erosion, the complexity of these processes, data requirements and output
uncertainties, model calibration and use, and their temporal and spatial scale limitations.
In general, the model selection depends on the intended application and characteristics of
the landscape. Therefore, several factors must be considered before the model selection i.e.,
objective, data requirements, data availability, accuracy, validity, etc.

Each model has been designed for a specific spatial scale and purpose and thus is not
appropriate and suitable for every application. Based on the complexity and the level of
dynamic physical processes that are implemented, models can be categorized into three
different groups, namely empirical, conceptual, and physically based models. Due to
the increasing application of geospatial data, we further distinguish a fourth category:
Remote Sensing and GIS-based modeling approaches. However, most of the models might
be composed of different model categories. For example, the runoff-rainfall component
of the USLE model [18] may be physically based but an empirical relationship has been
developed for the estimation of soil erosion and sediment yield with little computational
efforts. An example of so-called “hybrid models” is the Unit Stream Power-based Erosion
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Deposition and Automated Geospatial Watershed Assessment. The model structure is
conceptual in nature considering the number of storages, while the configuration of these
storages is determined through a statistical identification process for each catchment. The
accuracy of these models is mainly dependent on the parameters selected and their primary
implications. Alewell et al. [19] noted the primarily different nature of gross (modeled) vs
net (measured) soil erosion.

3.2.1. Empirical Models

Empirical models are primarily based on observation data and the relationships
between different factors and soil erosion levels that were derived from these data sets.
The computational and input data requirements for empirical models are lower than
those required for conceptual or physically based models. Hence, empirical models are
comparatively flexible, have a simple structure, are easily implemented, and useful in
identifying the source of sedimentation generation as a first step. The most critical limitation
of empirical models for soil erosion is their inadequate level of accuracy in analyzing large
data sets which would require processing and analysis using special complex mathematical
approaches [20].

Empirical models have proven to be robust since they are mathematically simple,
but their application is limited to the extent of area for which they have been devel-
oped and calibrated for the fact that users will not get benefit from complex models
if incomplete input data is available. They are often based on standard runoff plot
schemes for uniform slopes [21]. At regional scales, with the identification of sediment
settlement and delivery patterns, empirical models can be applied to predict average
sedimentation, soil erosion rates, and surface runoff using the SCS curve number. If soil
characteristics spatially do not vary and if spatially explicit meteorological data is not
available, the application of robust empirical models can provide more reliable results
as compared with more complex and dynamic models. However, empirical models
work on the concept of stationarity, which makes them less powerful for predicting soil
erosion for complex terrains characterized by heterogeneous soil characteristics and
climatic conditions. Hence, empirical models are often applied when the availability of
model input data is limited. Most of the empirical models do not provide information
regarding sediment deposition and stream sedimentation generation, which restricts
their application for simulating mass balances.

There are a few field-scale models such as EPM, TCRP, and SLEMSA which simu-
late soil detachment, transportation, and sedimentation using predominantly empirical
approaches at field-scale (Table 3). The PSIAC model has the ability to estimate soil
erosion and sedimentation at both field and catchment scales. These models are contin-
uous simulation models that are useful for predicting the effects of field management
practices and the effects of hydrological variations at daily time steps (Table 3). There
are a few empirical models available to study the soil erosion processes under agro-
forestry systems such as WaNuLCAS, SCUAF, and HyPAR. Most of the models contain
process-based sub-models to simulate the crop growth based on their vegetative and
generative stages under specific field conditions [22] including all soil processes that
may affect agricultural systems, such as C, P, N dynamics, and soil erosion [22]. Models
such as USLE, MUSLE, RUSLE, and MOSES have long-term simulation capabilities at
both hillslope and catchment scale. Models are distinguished on the basis of spatial and
temporal scale as detailed in Table 3.
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Table 3. Empirical soil erosion models.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

1 USLE
Universal Soil
Loss
Equation

[23] Annual Catchment/
Hillslope High

Climate data,
topography,
Land use/Land
cover, field
management
practices, crop
management
factor

Universal
Soil Loss
Equation

Erosion

Does not
quantify the

events that are
likely to result
in large-scale

erosion

No Yes No No [24]

2 MUSLE

Modified
Universal Soil
Loss
Equation

[25] Annual Catchment/
Hillslope High

Volume flow
rate, peak flow
rate,
erosion control
practices, crop
management
factor, Climate
data,
topography,
Land use/Land
cover, field
management
practices,

Modified
Universal
Soil Loss
Equation

Erosion,
prediction of
sediment
yield,
simulation of
individual
storm events

Calibration is
complex, shows

significant
difference with

measured
sediment yield

in many
watersheds

No Yes No No [26]

3 RUSLE

Revised
Universal
Soil Loss
Equation

[27] Annual Catchment/
Hillslope High

Climate data,
topography,
Land use/Land
cover, field
management
practices,
crop
management
factor

Revised
Universal
Soil Loss
Equation

Erosion,
process-based
auxiliary
components
(e.g.,
time-variable
soil
erodibility,
plant growth,
residue
management)

Slope length
factor may not
be suitable for
more than 25◦ ,

does not
estimate gully-

or
stream-channel
erosion caused
by raindrops

No Yes No No [28]

4 MOSES

Modular Soil
Erosion
System
project

[29] Annual Catchment/
Hillslope High

Climate data,
topography,
Land use/Land
cover,
field
management
practices, crop
management
factor

Enhanced
Revised
Universal Soil
Loss
Equation
(RUSLE2),
Wind Erosion
Prediction
System
(WEPS)
model

Wind erosion,
water erosion
sediment
yield,
runoff

Does not
consider gully

erosion
No Yes No No [29]
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Table 3. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

5 SEDD
Sediment
Delivery
Distributed

[30] Annual Basin, large
catchment High

DEM, a land
use
Map, climate,
human
influence

Universal Soil
Loss
Equation

Basin
sediment
yields

Model
reliability

decreases from
the annual scale

to the event
scale

No Yes No No [30]

6 EPM
Erosion
Potential
Method

[31] Annual Field High

Climate data,
topography,
area of
catchment,
stream network,
soil erodibility
coefficient

Analytical
equation for
spatial and
temporal
variation
measurement

Retention
coefficient
Erosion
intensity,
sediment
production,
sediment
transport

Performance
subjected to the

specific
characteristics

and
sedimentary
regime of the

study area

No Yes No No [32]

7 TCRP

Tillage-
Controlled
Runoff
Pattern
model

[33] Event/
Annual Field Low

DEM, a land
use map, and
the major tillage
direction on
each field

Incorporated
with LISEM
model,
Generalized
erosion-
deposition
mass balance,
Dynamic
Erosion
concept
eqn.

Runoff
pattern,
erosion
patterns,
runoff
network

Local
depressions that

may exist in a
DEM need to be

removed
making runoff
pattern more
complicated

No No No No [33]

8 TMDL
Total
Maximum
Daily Load

USA EPA
(1991) Annual Catchment High

Channel
network,
Groundwater
exchange,
Topography,
unit discharge
rate, soil
cropping factor,
conservation
factor

Modified
Kilinc-
Richardson
equation for
soil erosion,
advection-
dispersion
equation for
in-channel
sediment
transporta-
tion, general
transport
equation for
overland
sediment
transport

Multi-
dimensional,
Provides
amount of
sediment and
nutrients

Transport
capacity must
be converted
into erosion
coefficient.

determining the
interdependent

factors is
difficult.

No No No No [34]
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Table 3. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

9 SLEMSA

Soil Loss
Estimation
Model
for Southern
Africa

[35] Annual Field High

Climate data,
topography,
vegetation,
human
influence

ELWELL
equation
Z = K *X* C
Where K
(Mean annual
soil loss
index,
X
(Topographic
Factor), C
(Crop cover/
management
factor)

Soil erosion,
decision on
land
management
techniques

High
sensitivity to

the input
factors

No Yes No No [24]

10 PSIAC

Pacific
Southwest
Inter-agency
Committee
Method

[36] Annual Catchment/
Field High

Surface geology,
soil types,
Climate, slope,
stream
network, land
cover/land use

Gravelius
Equation,
Horton
Equation,
Kiripich
Equation,
Drainage
Density
Equation,
upland
erosion =
0.25SSF (SSF:
soil surface
factor),
Channel
erosion =
1.67SSFg
(SSFg: Gully
erosion
factor)

Upland
erosion,
Channel
erosion,
sediment
deposition

Model
sensitivity to
changes of

different factors
under different

conditions

Yes Yes Yes Yes [37]

11 E30
Soil Erosion
at 30o slope [38] Annual Watershed Low

Land use/Land
cover maps,
topography

E = E30 *
(S/S30)0.9

E: rate of soil
erosion;
E30: rate of
soil
erosion at 300

slope; S30:
300 slope

Soil Erosion

Model applies
only to hilly

regions having
undulant

topography and
steep slopes.

Does not take
into account soil
factors (crirtical

for erosion
processes)

No Yes No No [38]
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Table 3. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

12 WaNuLCAS

water,
nutrient and
light capture
in
agroforestry
system

[39] Annual Watershed
/field High

Land use/Land
cover, Climate
data

USLE Soil erosion,
crop yield

The erosion
component is

not well
developed and
integrated with

crop yield

Yes No No No [40]

13 SCUAF
Soil Changes
Under
Agroforestry

[41] Annual/
Seasonal

Watershed
/field High

Crop, soil
physical and
chemical
properties

USLE

Predict soil
changes
under
different
agroforestry
systems

Erosion
component
is not well

tested

No No No No [41]

G *: Generation; T *: Transportation; D *: Deposition; Developer/year *: references for model manuals and first research articles describing the respective model.
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3.2.2. Conceptual Models

Conceptual models are based on the sediment and runoff continuity equations, and
basically take a position between physically based and empirical models [42]. Unlike
empirical models, conceptual models reflect the process governing the system behavior.
The primary focus of conceptual models has been to estimate sediment yield based on
the concept of unit hydrograph [43]. Therefore, they typically consider the most critical
catchment characteristics and corresponding soil erosion processes, however, without
describing the details of these processes and interactions that would require data on
temporal and spatially distributed catchment details [44]. As a result, conceptual models
can be used to simulate quantitative and qualitative impacts of land use changes on soil
erosion and sediment yields without having to be parametrized with detailed catchment
information.

Jakeman et al. [45] noted that conceptual models tend to have issues related to the
identifiability of their parameter values since those values were generally obtained during
model calibration with observed values [46]. Sorooshian et al. 1991 [44] identified the
direct relationship between conceptual model complexity and model identification. The
calibration procedure for medium complex models can find only the local best fit although
there may be many other local conditions with optimum parameter sets. This problem
can be resolved by reducing the number of parameters that have to be estimated through
calibration and increasing the number of parameters that can be estimated based on prior
knowledge of the system [47]. Such an approach will reduce the goodness of fit to the
calibration data. The lack of parameter values for conceptual models means limiting the
physical interpretability of parameters [48]. Though more complex models tend to offer a
better fit to calibration data they also carry the risk of over-fitting when calibration data are
limited [49].

Most of the conceptual models use equations from empirical approaches (Table 5).
The empirical models USLE and MUSLE, for example, are implemented in conceptual
models such as APSIM (modeling framework), SWIM, RillGrow, SWRRB, LASCAM for
estimating soil erosion. These conceptual models can predict the temporal and spatial
distribution of soil detachment and sedimentation at a field scale depending on crop
and soil management at daily time steps. Among these models, APSIM and IQQM are
continuous simulation models predicting both overland and channel sediment generation,
transportation and deposition, as well as rainfall-runoff associated nutrient loss and soil
changes. A few models such as APSIM, AGNPS, AGNPS-UM are event-based models to
predict soil erosion under complex agriculture systems from smaller scales (hill-slopes) to
large (catchment) scales (Table 5).
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Table 4. Conceptual soil erosion models.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

1 APSIM
Agricultural
Production
Simulator

[50] Daily Field High

Climate,
topography,
land use, crop,
field
management
practices

Modified
USLE, soil
water balance
equation

Erosion, *

Intensive
calibration and
validation
required

Yes Yes Yes No [51]

2 RillGrow RillGrow [52] Abstract Plot High
Meteorology,
Digital Terrain
Model

S-Curve
stream
power based
equations

Formation
and
simulation of
rill network

Depends on
single storm
events; Low
potential for
integration with
GIS

Yes Yes Yes No [52]

3 SWAT

Soil and
Water
Assessment
Tool

[53] Daily Regional to
watershed Medium

Climate, soil
characteristics,
topography,
land use / Land
cover

MUSLE,
Manning’s
equation, SCS
Curve
Number,
Bagnold’s
stream power
Concept,
Continuity
equation

Hydrological
assessments,
pollutant loss
studies,
water erosion,
sediment
yield

Weak in stream
channel
degradation
and sediment
deposition
analysis,
inadequate data
availability for
calibration and
validation

Yes Yes Yes Yes [54]

4 SWIM

Soil and
Water
Integrated
Model

[55] Daily Watershed Medium

Climate, soil
characteristics,
land
cover, crop
types

water balance
equation,
MUSLE, SCS
Curve
Number,

Simulation of
runoff,
soil erosion,
sedimenta-
tion
*

relatively
complex, no
simulation of
gully erosion

Yes No No No [56]

5 IQQM

Integrated
Water
Quality and
Quantity
Model

[57] Daily Watershed Medium

Topography,
river system
configuration,
evapotranspira-
tion

conceptual
Sacramento
model,
QUAL2E
model

Rainfall-
runoff
generation, *

No erosion or
sediment
generation
simulation

Yes No No Yes [57]

6 CAESAR

Cellular
Automaton
Evolutionary
Slope and
River
model

[58] Annual Catchment High

DEM, Rainfall,
flow
parameters,
slope processes,
bedrock depth,
value of
Manning
coefficient

Einstein
equation,
Wilcock
& Crowe
equations

Erosion,
sediment
transport &
deposition

No
rainfall-runoff
interactoin

Yes Yes Yes Yes [59]
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Table 4. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

7 TOPMODEL

Topography
based
hydrological
MODEL)

[60,61] Daily Hillslope Medium

DEM, landform
features, soil
characteristics,
geology,
vegetation, and
hydrological
characteristics

Sediment
transport
capacity,
continuity
equation

Soil moisture
deficit,
rainfall-
runoff,
Simulation of
surface/
subsurface
hydrology;
sediment
yield
and transport

Suitable only
for shallow
homogenous
soil watersheds

Yes No No No [62]

8 WILSIM

Web-based
Interactive
Landform
Simulation
Model

[63] Abstract Watershed High

DEM,
Topography,
Rainfall, flow
parameters,
slope

Cellular
automata
(CA)
algorithm

simulation
offers an ideal
tool for un-
derstanding
the complex
effects of a
variety of
physical and
geological
processes and
erosion

Many details of
the physical
process are not
included in the
model.

Yes No No Yes [64]

9 SWRRB

Simulator for
Water
Resources in
Rural Basins

[65] Daily Catchment High

Rainfall data,
soil
characteristics,
Land use

MUSLE,
Sediment
balance
equation

Simulation of
Stream flow,
Rainfall-
runoff,
Sedimentation
and plant
growth on
daily time
steps

Uncertainties in
model
parameter
estimations,
based on many
assumptions
leading to
uncertainties

Yes No No Yes [65]

10 LASCAM
Large Scale
Catchment
Model

[66] Daily Catchment High
Sediment load,
runoff, salt
fluxes

USLE, Stream
sediment
capacity

Simulation of
hydrology,
erosion,

During
calibration low
quality of
sediment and
nutrient
predictions

Yes Yes Yes Yes [67]

11 AGNPS

Agricultural
Non-Point
Source
pollution
model

[68] Daily

Small- to
medium-

sized
watersheds

High

Climate,
topography, soil
characteristics,
Land use

SCS Curve
Number,
USLE,
Foster
equation

Soil erosion,
sediment
transport and
depositing,

Does not
simulate
sub-surface
flow, only
suitable to
small-medium
catchments

Yes No No Yes [37]
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Table 4. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

12 ACRU
Agricultural
Catchment
Research Unit

[69] Daily
Small

catchments
(<10 km2 )

Low Climate, soil,
land use crop

SCS equation,
catchment
curve
number,

Simulate
runoff,
erosion and
sediment
yield, land
use and
climate
impacts,
seasonal crop
yield

Require
extensive GIS
pre-processing

Yes No No Yes [70]

13 STREAM

Sealing,
Transfer,
Runoff,
Erosion,
Agricultural
Modification
model

[71] Event
Catchment

to
watershed

High

rainfall,
temperature,
topography, soil
(water holding
capacity), land
cover

USLE

Simulates
land use
impacts,
erosion, sedi-
mentation

applicable to
single rainfall
events

Yes Yes Yes Yes [72]

14 AGNPS-
UM

Agricultural
Non-Point
Source
pollution
model,

[73] Daily
Catchment

to
watershed

High

Climate,
topography, soil
characteristics,
Land use

USLE-M

Management
decisions on
water and
sediment
yields

Rely on
single storm
event; data
intensive

Yes No No Yes [73]

* additional model capabilities besides soil erosion; G: Generation; T: Transportation; D: Deposition; Developer/year: references for model manuals and first research articles describing respective model.



Land 2021, 10, 422 14 of 35

3.2.3. Physically based Models

In general, physically based soil erosion models are based on the fundamental con-
cepts of physics using conservation of momentum, energy, and mass as governing equa-
tions [74,75] that are solved by various numerical techniques. Thus, these models consist
of multiple equations and algorithms and a large number of parameters to simulate and
predict the dynamics of soil erosion and sedimentation rates. They explicitly simulate the
water fluxes, e.g., overland flow based on the kinematic wave theory [76], and apply the
kinematic wave theory based on continuity and momentum equations. The continuity
equation refers to the balance between inflow into the system and change in system storage
and the momentum equation represents the pressure gradient between energy gradient
and surface slope. Other most famous approaches for simulating the water fluxes include
the Manning’s and Chézy’s equations in large watersheds (Table 5).

In general, the equations of individual model components in physically based models
are based on a large number of assumptions that may not be relevant in the real world [77].
These governing equations were often developed under controlled conditions using con-
tinuous data observed at single observation points or small spatial scales [78]. In practice,
these equations are applied for grid cells representing much larger areas of watersheds
with varying physical conditions. Corresponding assumptions required for upscaling
point-based observations may compromise the physical significance of models [79]. Mer-
ritt et al. [5] pointed out that there is not enough evidence on the suitability of these
equations for modeling water erosion beyond a small field scale. Pechlivanidis et al. [48],
therefore, suggested applying simplified computation techniques to represent individual
processes which avoid unwanted deflection from real field scenarios and additional un-
certainties. In practice, parameters used in physically based models should be calibrated
with observed data that, on the other hand, creates a lack of identifiability analysis of
optimum parameters and distinctiveness of best fit to the veracity of modeling outputs [80].
Model comparisons illustrate that the application of physically based models (e.g., AGNPS
or PESERA) does not necessarily result in lower uncertainties compared to more simple
structured empirical models such as USLE-type algorithms.

Physically based field-scale models such as EPIC, EGEM, CREAMS, EROSION 2D/3D,
GUEST, GLEAMS, MEFDIS, MEDALUS, PERFECT, PEPP-HILLFLOW, etc., are more
capable of responding to event-based or continuous storms to simulate surface runoff,
soil detachment, transportation, and sediment yield (Table 5). The EPIC model considers
the effect of several best management practices (BMPs) related to crop, soil, and nutrient
management on soil erosion and soil productivity. CREAMS is another model that is used
for describing the hydrology, erosion, and sediment size distribution as well as changes in
soil depth, chemical, nutrient, and sediment yield for field-scale croplands. Productivity,
Erosion and Runoff, Functions to Evaluate Conservation Techniques (PERFECT) is a
dynamic model suitable for event-based analysis of soil erosion and surface runoff over a
small scale. This model can also be integrated with a GIS tool for visualization of results.
The main disadvantage of this model is that it overestimates the outputs of surface runoff
and surface water retention capacity as influenced by complex tillage patterns and tillage
directions.
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Table 5. Physically based soil erosion models.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

1 ANSWERS

Areal
Nonpoint
Source
Watershed
Environment
Response
Simulation

[81] Event
Regional to

small
catchment

High

Climate, soil
characteristics,
topography,
land
use, drainage
network, field
management
practices

USLE,
steady-state
sediment
continuity
equation,
Modified
Yalin
equation,
Foster
equation

Erosion,
sediment
yield, runoff,
peak flow
rate,
nutrients, *

Relies on single
storm
Event, consider
erodibility as
time constant
parameter

Yes Yes Yes No [82]

2 EPIC

Erosion-
Productivity
Impact
Calculator

[83] Daily
Plots to

field-sized
areas

High

Hydrology,
meteorology,
erosion,
nutrients, plant
growth, soil
temperature,
and tillage.

curve number
equation,
Onstad-
Foster
equation,
USLE,
MULSE

Surface
runoff,
sediment
yield, soil
erosion *

Applicable to
only field scale,
less
incorporation
with GIS tools

Yes Yes Yes Yes [84]

3 ANSWERS-
continuous

Areal
Nonpoint
Source
watershed
Environment
Response
Simulation-
Continuous

[82] Event
Regional to

small
catchment

High

Climate, soil
characteristics,
topography,
land
use, drainage
network, field
management
practices

USLE,
Modified
Yalin
equation,
Foster
equation,
Manning’s
equation

Erosion,
sediment
yield, *

No simulation
of channel
sediment

Yes Yes Yes No [82]

4 EGEM
(Ephemeral
Gully Erosion
Model

[85] Event
Field to
small

catchment
Medium

Rainfall, soil
characteristics,
Topography

Physical-
process
equations
CREAMS
empirical
relationship

Annual
estimation of
Transient
gully erosion

Requires
intensive
watershed
information

Yes No No Yes [86]

5 DWSM

Dynamic
Watershed
Simulation
Model

[87] Event Catchment High

Stream network,
watershed
hydrology,
water quality,
land use

continuity
equation

Simulation of
erosion,
runoff,
erosion,
sediment
yield *

Slow
computing
speed,
uncertainties in
input parameter
data

Yes Yes Yes Yes [87]

6 CREAMS

Chemicals,
Runoff and
Erosion from
Agricultural
Management
Systems

[88] Monthly Plot to
Field High

Climate,
vegetation,
cultural
practices

Foster
equation,
MUSLE, SCS
Curve
Number,
Yalin’s
equation

Erosion,
sedimentation,
runoff, from
agricultural
area

suitable only
for field scale,
low potential
for
GIS integration

Yes Yes Yes No [65]
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Table 5. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

7 EROSION-
2D/3D EROSION [89] Event

Field /
small

catchment
High

Climate, soil
characteristics,
topography

Mass balance
equation

Simulation of
erosion

Requires
extensive
computational
efforts

Yes Yes Yes Yes ([90]

8 EUROSEM
European Soil
Erosion
Model

[91] Event Catchment High

Climate, soil
characteristics,
land
use, topography

Dynamic
mass balance
equation

Simulation of
erosion,
sediment
yield,
deposition
and runoff

Lower accuracy
for large
catchments

Yes Yes Yes No [92]

9 GUEST

Griffith
University
Erosion
System
Template

[93] Steady
State Plot High

Climate,
watershed soil
characteristics,
runoff,
topography

Mass balance
equation,
Deposition
Equation,
Rose
equation

Simulation of
runoff, sedi-
mentation

Low potential
for GIS
integration,
high data
requirement

Yes Yes Yes No [94]

10 IDEAL

Integrated
Design and
Evaluation of
loading
Models

[95] Event Catchment High

Climate, soil
characteristics,
land
Use and land
cover

MUSLE
Sedimentation
yield, erosion,
*

Rely on single
storm
events

Yes Yes Yes Yes [95]

11 GLEAMS

Groundwater
Loading
Effects of
Agricultural
Management
Systems
modelling
system

[96] Daily
Field scale
and small
catchment

High

Climate, land
use, field
management
and cultural
practices

MUSLE,
Foster
equation

Simulation of
erosion,
sediment
yield, *

Uncertainties in
parameter
estimations and
model
validation

Yes Yes Yes No [97]

12 KINEROS

KINematic
runoff and
EROSion
model

[98] Event

Small
Catchment,

hillslope
areas

High

Rainfall, soil,
topography,
land cover,
drainage
network and
channel
geometry

Bennett Mass
balance
equation,
sediment
transport
approach,
Kinematic
wave
equations

Erosion,
sediment
yield, peak
runoff rate,
runoff

Runoff
estimations are
based on single
storm events
without
considering
sub-surface
flows

Yes Yes Yes No [99]

13 LASCAM
Large Scale
Catchment
Model

[100] Daily Catchment High

Climate,
Surface
topography,
DEM,
streamflow and
sediment data

USLE

Erosion,
sediment
yield,
nutrients

Uncertainties in
the model
outputs

Yes Yes Yes Yes [67]



Land 2021, 10, 422 17 of 35

Table 5. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

14 MEFIDIS

Modelo de
ErosaoFIsico
e
DIStribuido

[101] Event
Field scale
and small
catchment

High

Climate,
topography,
Surface
topography,
DEM,
catchment
characteristics,
streamflow and
sediment data

Diffusive
wave
equation,
Foster
equation
Kinetic
rainfall
energy
equation,
sediment
transport
capacity
approach

Erosion,
runoff

Soil erosion
based on
extreme rainfall
events, low
potential for
GIS integration

Yes Yes Yes Yes [101]

15 MEDALUS

Mediterranean
Desertifica-
tion and Land
Use research
programme
Model

[17,102] Event
Field scale
and small
catchment

High

Climate, soil,
Land cover/
land use,
Topography

Mass
momentum
approach

Erosion,
impact of
land use
changes

Rely only on
recent data for
inputs

Yes Yes Yes Yes [103]

16 PERFECT

Productivity,
Erosion and
Runoff,
Functions to
Evaluate
Conservation
Techniques

[104] Daily Field High
Climate, soil,
crop,
tillage

MUSLE
Erosion,
runoff, crop
yield

Detailed
information on
crop
management
and tillage
practices

No No No No [105]

17 PEPP-
HILLFLOW

Process
orientated
Erosion
Prediction
Program

[106] Event
Field scale
and small
catchment

High

Climate, soil
characteristics,
Land cover/
land use,
Topography,
nutrients

Sediment
continuity
equation,
Foster
equation,
Yang’s unit
stream power
method

Runoff,
Erosion

Rely on single
storm
Event, intensive
data
requirement

Yes Yes Yes Yes [106]

18 RUNOFF RUNOFF [87] Event Small
Catchment Low

Rainfall, soil
characteristics,
topography,
land cover,
drainage
network and
channel
geometry

Splash
erosion, flow
rate
equations

Erosion,
runoff,
sediment
yield

Uncertainties in
input parameter
estimations and
model
validation

Yes Yes Yes No [87]
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Table 5. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

19 PESERA

Pan-
European Soil
Erosion Risk
Assessment

[107] Annual Regional Medium

Climate, soil
characteristics,
land
cover,
topography

Mass and
momentum
balance
equations,

Runoff,
erosion,
sediment
yield, crop
yield

Flow routing is
not well
developed

Yes Yes Yes No [19]

20 SHE/
SHESED

Systeme Hy-
drologique
Europian/-
Systeme Hy-
drologique
Europian
Sediment

[46] Event Hillslope to
Catchment High

Rainfall, soil
characteristics,
topography,
land cover

Mass and
momentum
balance
equations,
Yalin’s
equation

Erosion,
sediment
transport,
sediment
yield

No simulation
of gully erosion Yes Yes Yes No [46]

21 WEPP
Water Erosion
Prediction
Project

[108] Daily Hillslope to
Catchment High

Climate, soil,
topography,
land use, field
management
and cultural
practices,
channel
network

Steady-state
sediment
continuity
equation,
Foster
equation

Runoff,
erosion,
sediment
yield

Large number
of input
parameters,
neglect the
simulation in
permanent
channels

Yes Yes Yes Yes [109]

22 WESP

Watershed
erosion
simulation
program

[110] Event Small
Catchment Medium

Climate, soil,
topography,
channel
network

Kinematic
wave
equations,

Simulation of
runoff and
erosion *

Intensive
computation of
input
parameters

Yes Yes Yes Yes [110]

23 WATEM/
SEDEM

Water and
Tillage
Erosion
Model/Sediment
Delivery
Model

[111] Annual Field Low

Climate, soil
characteristics,
land
cover, flow
network

RUSLE

Erosion,
tillage
erosion,
sedimentation

Require high
quality detailed
watershed
information

Yes Yes Yes Yes [112]

24 SEMMED

Soil Erosion
Model for
Mediterranean
Areas

[112] Annual Regional
scale Medium

DEM, climate,
soil
characteristics,
channel
network and
geometry

Distributed
transport
capacity

Simulate the
distributed
character of
the erosion
process,
predicts soil
loss

Sensitive to
storage capacity,
soil moisture,
soil
detachability
index

Yes Yes Yes No [113]

25 SIMWE Simulation of
Water Erosion [34] Event Catchment High

Rainfalls,
surface
roughness,
DEM

Saint Venant
equation for
continuity of
flow,
Manning’s n
value.

Erosion, gully
Formation,
sediment
transport and
deposition *

Require high
quality detailed
watershed
information

Yes Yes Yes No [114]
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Table 5. Cont.

Sr. No. Model Description Developer
/Year *

Scale Input Governing
Equations

Model
Capabilities

Model
Limitations

Overland
Sedimentation

Channel
Sedimentation

Generation
Source

Temporal Spatial Demand Variables G * T * D *

26 RHEM

Rangeland
Hydrology
and Erosion
Model

[115] Event
Field scale
and small
catchment

High

Climate, soil
characteristics,
watershed
characteristics

Sediment
transport
equation

uRnoff,
erosion,
sediment
yield

less suitable for
simulation of
rangeland
surfaces

Yes Yes Yes No [116]

27 TOPOG TOPOG [117] Daily Hillslope to
Catchment High

Climate, soil,
topography,
Land cover

Equations for
sediment
transport in
channels

Erosion

Extensive input
data
requirements
and a high
number of
physical
parameters
(complex)

Yes Yes Yes No [118]

* additional model capabilities besides soil erosion; G: Generation; T: Transportation; D: Deposition; Developer/year: references for model manuals and first research articles describing respective model.
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3.2.4. Remote Sensing (RS) and GIS-based Soil Erosion Modeling

Remote Sensing data combined with GIS tools provide the powerful capabilities for
mapping soil characteristics and soil resources over high spatial and temporal resolution
in a timely and cost-effective way [119]. Soil erosion models can be incorporated into
GIS tools and combined with RS data. RS derived climate data, land use/land cover
information, and their integration with GIS can be used for soil erosion modeling [120].
Remote sensing based digital elevation/terrain model (DEM/DTM) is an important tool
to provide inputs to the soil erosion models, catchment rainfall/runoff relationship devel-
opment, and sedimentation processes [121–123]. Various GIS techniques (QGIS, ArcGIS)
use Digital Elevation Models (DEM) and can derive multiple variables for topographical
parameterization such as slope, aspect ratio, drainage, stream and catchment delineation,
surface flow, and soil erodibility factor [124].

Many well-known soil erosion models i.e., USLE (Universal Soil Loss Equation,
1965) [3], RUSLE (Revised Universal Soil Loss Equation, 1997) [125], SEMMED (Soil Erosion
Model for Mediterranean Regions, 1999) [113], PESERA (Pan-European Soil Erosion Risk
Assessment, 2003) [37], EUROSEM (European Soil Erosion Model, 1993) [126], and EGEM
(Ephemeral Gully Erosion Model, 1999) [86], integrated with RS and GIS techniques, have
been widely used.

The use of GIS and RS for soil erosion and sedimentation modeling may involve
certain consequences including multiple data sources based on vast data requirements,
computing expertise for model re-scaling and data reliability issues, and complex verifica-
tion algorithms of model outputs [127].

3.3. Description of Selected Models with Respect to Plot Scale Simulations

A list of different soil erosion models is presented in Section 3.3. These models
vary in their range of complexity, data requirements, the scale of application, and key
limitations. This section aims to provide a brief introduction to models selected on their
applicability to a plot/field scale. The shortlisted models are reviewed in terms of their
objective, model structure, components, and their assimilation, and model calibration ease
and parameter requirements are presented in this section. The review of models is limited
to those models with strict consideration of soil erosion generation at a plot or field scale.
Therefore, many other commonly applied models, for example SWAT, EUROSEM, etc.,
are not discussed in this section (Table 6). In order to assess the model capabilities to
simulate soil erosion, application examples of selected models in different climatic zones
were reviewed and summarized in Table 6. The Nash–Sutcliffe efficiency method was the
most commonly used method for evaluation of model performance. Further, Root mean
square error, coefficient correlation, average absolute error, and coefficient of determination
were commonly applied measures.

Most studies report a sensitivity of simulated sediment deposition to different environ-
mental and management factors, such as rainfall, crop management factors, soil physical
properties, and vegetation cover. Selected models were tested at field or plot scales under
different cropping systems and field conditions. Calibration of field scale models based
on data from fields, that are characterized by a high spatial heterogeneity of topography
and soil types, is more accurate than using spatial averaged data from larger catchment
areas. Most of the field scale models are based on one-dimensional equations (Saint Venant
equation or Kinematic wave theory) for estimation of overland flows, thereby limiting their
capabilities for spatially distributed modeling. Only a few models, such as WEPP, TCRP,
and CREAMS, also represent the water movement through the unsaturated part of the soil
profile which influences the runoff on hillslopes (Table 6).
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Table 6. Examples of applications of some selected field scale soil erosion models.

Sr. No. Model Description Spatial
Dimension Model Type Study Area Objective Input Data

Used
Method Used
for Evaluation Conclusion Remarks Reference

1 EPM
Erosion
Potential
Method

1D Dynamic
Alfenas
Municipality,
(437 ha)

Simulation of
surface runoff,
soil erosion,
comparing
results with
RUSLE of SLT

DEM, climate
data, soil
characteristics

Sediment
retention
coefficient,
RMSE,
correlation-
coefficient

Correlations of the
potential values of soil
erosion between EPM
and RUSLE showed a
similar pattern for the
different land
management types and
land uses despite the
different orders of
magnitude

For calibration,
EPM requires
experimental
validation,
which would be
subjected to
heterogeneity of
crop and soil in
the field

[128]

2 TCRP

Tillage-
Controlled
Runoff Pattern
model

2D Dynamic Multiple sites

Sediment
fluxes,
deposition
processes in a
2-D spatial
context

sediment
deposition
equations

Correlation
coefficient

Model is capable of
simulating both spatial
pattern and size
selectivity of deposition
pattern in tilled fields

Understanding
and
representation of
sediment
delivery and
deposition need
to be improved

[129]

3 WEPP

Watershed
Erosion
Prediction
Project

2D Dynamic

Demonstration
farm,
Ratchaburi
province,
Thailand

Performances
of the WEPP
under
conservation
cropping
system

Monthly
rainfall, Land
use map, Soil
map, DEM,
Daily
Sediment

NSE

WEPP model predicted
lower values of runoff
and sediment yield.
WEPP coupled with
MIKE SHE/MIKE 11
capable to simulate soil
losses in different
conservation practices

Satisfactory
Performance for
sediment yield
estimation at
small scale

[130]

4 APSIM
Agricultural
Production
Simulation

1D Dynamic

16 plots, 52 m2

(4 m × 13 m)
in area each
plot

Modeling
effects of
tillage on soil
water
dynamics

Daily
temperature,
daily rainfall,
Tree zoning

R2, NSE, RSR
APSIM is adequate for
agroforestry system

APSIM requires
modification in
soil erosion
component

[131]

5 EPIC

Erosion-
Productivity
Impact
Calculator

1D Dynamic South-central
Chile

Simulation of
soil erosion

DEM, climate
data, soil
characteristics

correlation
coefficient,
RMSE

Calculated rates of soil
erosion was
overestimated as slope
segment is relatively
difficult to decide

EPIC predicts
two times more
soil erosion
under wheat and
conventional
tillage
comparing to
WEPP and USLE

[132]
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Table 6. Cont.

Sr. No. Model Description Spatial
Dimension Model Type Study Area Objective Input Data

Used
Method Used
for Evaluation Conclusion Remarks Reference

6 CREAMS

Chemicals,
Runoff and
Erosion from
Agricultural
Management
Systems

2D Dynamic Finland

Predicting
field-scale
runoff
and erosion,
modify the
model for
Finnish
conditions

Mean daily
temperatures
and rainfall,
Evapotranspi-
ration, surface
albedo, leaf
area index,

AERR, RMSE,
NSE

Snow accumulation and
snowmelt description,
adjustable albedo
introduction into
CREAMS improved
simulations of runoff
volumes

SCS curve
number can be
introduced for
more physically
based
representation of
runoff in alley
cropping system

[133]

7 GUEST

The Griffith
University
Erosion
System
Template

1D Dynamic Tilting flume
(6 x 1) m.

Evaluation of
GUEST and
WEPP for
determining
sediment
transport
capacity

Soil samples,
tilting flume ME, R2, RMSE

GUEST model predicted
higher values of erosion
than WEPP, this
difference can be due to
the particle size
distribution and rill
morphology

GUEST tends to
overestimate
sediment yield
in heterogeneous
soil condition

[134]

8 PERFECT

The
Productivity,
Erosion and
Runoff,
Functions to
Evaluate
Conservation
Techniques

1D Dynamic Plot scale,
Queensland

Simulates
interactions
between soil
type, climate,
and fallow
management
strategy and
crop sequence.

Initial soil
moisture, soil
characteristics,
topography,
Landuse

R2

PERFECT does not
consider rainfall intensity
and represents less
accurate soil erosion on
daily time steps.

The validated
model can be
coupled with
soil and
long-term
climate
databases to
simulate
probabilities of
production and
erosion risks due
to climatic
variability.

[135]

R2: Coefficient of determination, NSE: Nash-Sutcliffe efficiency, RSR: RMSE-observations standard deviation ratio, RMSE: Root Mean Square Error, ME: Model efficiency, AERR: average absolute error.
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3.3.1. Erosion Potential Method, EPM

Erosion Potential Method (EPM) is an empirical model to simulate water erosion from
fields to small catchments, using input data related to meteorology and the matrix of the
catchment physical characteristics. The model has been widely applied worldwide. It
contains an advanced classification procedure using four characteristics including erosion
coefficient, land use coefficient, soil erodibility, and mean slope in different land units [32].
Kouhpeima et al. [136] state that EPM is a method for easy and rapid analysis of erosion risk
and sedimentation. The accuracy of results depends on the values of erosion coefficients.
Moreover, EPM considers only four factors for erosion assessment and can be applied
to small areas where database layers are limited. EPM integration with GIS and remote
sensing could be a useful technique in the identification of soil loss and sedimentation in
areas with insufficient sediment gauging stations [137]. The over-/under-prediction limits
of EPM simulations are within 13 percent from the measured values and are considered to
have acceptable accuracy for soil loss simulations at the catchment scale [138,139].

3.3.2. Tillage-Controlled Runoff Pattern Model, TCRP

The TCRP model has been evaluated in different environments globally, mainly for
the prediction of runoff patterns with the flow along the direction of plow lines in tilled
fields within a catchment. This model requires a digital elevation model, land use maps,
and tillage orientation as inputs. The model creates a tillage-controlled runoff pattern
along with a topographic controlled runoff pattern. The use of the first one in event-based
deterministic models results in a much better level of accuracy for runoff and erosion
patterns with field observations. Model simulations show that tillage information should
be included when estimating runoff directions if erosion pattern accuracy is under question.
Souchere et al. [140] proposed that to analyze the tillage impact on runoff in a spatially
distributed water model, each cell must be assigned to a tillage direction. This results
in complexities as flow lines may cross each other and ditches may exist on the field.
Souchere et al. [141] solved these problems by changing the runoff direction manually and
assuming the runoff is always in the direction of tillage. However, it would be laborious
for large catchments to be modeled.

The TCRP model was developed using raster language to specifically integrate with
the GIS tool [142]. The model requires surface physical characteristics, DEM, land use
maps, and tillage direction information as inputs. The maps should have an area larger
than that of the catchment to be modeled because catchment boundaries can be defined
after only the assessment of runoff patterns.

3.3.3. Soil Loss Estimation Model for Southern Africa, SLEMSA

SLEMSA was developed by [35] in Zimbabwe as a framework for estimating local
soil losses by using details of local environmental conditions driving soil erosion process
i.e., climate, soil types, topography, soil cover, and field management practices [143,144].
The SLEMSA modeling approach consists of four major steps: (1) identify major control
variables (rainfall energy, interception, etc.), for which the values are easily measured and
have a rational physical explanation, (2) develop a relationship, called submodels, between
selected variables and soil losses, (3) formulate the model to relate these submodels, (4)
test the model [143]. Heydarnejad et al. [130] examined SLEMSA in series of tests, with
careful monitoring of controlled variables on selected plots; errors of 9 to 18 percent were
noted. SLEMSA claims to be simpler relatively to the USLE as it is less data demanding
with high extrapolation capabilities [24]. GIS can be used to calculate SLEMSA control
variables that upon formulation provide potential soil losses within the catchment [145]. A
study of SLEMSA in mountainous terrain by [146] indicates the sensitivity of potential soil
loss to both slope steepness and rainfall erosivity resulting in an overestimation of soil loss
with steep slopes and high rainfall intensities [28].
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3.3.4. Agricultural Production Simulation, APSIM

APSIM, a dynamic conceptual modeling platform, was developed by the Agricultural
Production Systems Research System Unit (APSRU) in Queensland. APSIM modeling
platform has been evaluated worldwide in different environmental conditions ranging
from interpretation of on-farm experiments to risk assessment of a range of alternative
management options [147] mainly to simulate the crop production in relation to climate,
soil erosion, and field management practices while identifying long-term solutions for
natural resource management issues at field scale using input data provided at daily time
steps [50,148]. Since APSIM offers many modules (generally categorized as biological
and environmental modules), the erosion model is capable to simulate the impact of
erosion on the soil profile as soil loss occurs. The erosion module remains unaware of the
impact of other modules on the profile. The estimation of daily soil loss is performed by
either of two submodels (1) Freebairn and (2) Rose [50]. The lateral one uses the USLE
equation [104,149]. The module was revised to consider runoff and land cover, which can
be affected by management within the APSIM model. The soil erosion measurements
required for calibration are based on the runoff volume, soil cover, soil erodibility, and
slope-length factor along with management practices. A different module within APSIM
provides the values of these factors i.e., the surface cover is provided by the soil organic
matter module, and the SWIM module provides surface runoff. Basche et al. [51] have
successfully calibrated and validated the APSIM model to predict runoff and sediment yield.
Further, the tested APSIM model was implemented for soil loss based risk management
and supporting practices. However, the use of this model is only recommended when
sufficient data is available. Notably, APSIM has high input demand; most uses require
extensive field investigations.

3.3.5. RillGrow

The RillGrow model is capable to predict a realistic spatial pattern of the rill network
in response to a given rainfall event [52]. The erosion model series of RillGrow mainly
expresses the eroding hillslopes on a small scale as a self-organized dynamical system
producing a rill network [150]. Digital elevation models of the hillslopes used as an input
to the RillGrow simulates the rill network as a whole system which later on is compared
with the field and laboratory experiments for validation [151]. A logistic S-Curve, the
relationship between flow energy and sediment load, is considered to estimate erosion
resulting from the surface flow. Hillslope micro-topography could be responsible for the
observed vitality of rill competition and spatial pattern of overland flow initiating lowering
of the surface. Such modifications change the path of the soil erosion process as it creates its
own surface [152]. This simple relationship develops a complex rill network. However, this
simplicity results in limited model computational abilities as the flow process and erosion
have to be predicted on a microscale. Also, model data requirement creates issues. These
limitations make this model impractical for real-world erosion simulations. Simulations
have an immense demand of computation time if the area is larger than the hillslope plot or
laboratory experiment [153]. There are a few articles on GIS integration with the RillGrow
model in the latest versions. That needs to be worked out to improve the workability of
the RillGrow model in the future.

3.3.6. Erosion-Productivity Impact Calculator, EPIC

EPIC is a detailed model developed to simulate, simultaneously and realistically,
the physical processes involved by developing the relationship between soil losses and
soil productivity. EPIC mainly uses climate, land cover, tillage, and soil characteristics
as input variables. Many applications of EPIC have been studied in the United States
and worldwide under varying environmental conditions, for example, climate change
effects on crop yield and soil erosion [154,155], wind erosion [156], irrigation impacts
on crop yields [157,158], assessment of soil temperature [159], and soil carbon sequestra-
tion as a function of management and cropping systems [160,161]. The model has been
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extensively tested in many ways. The EPIC model has nine major components, namely,
weather, nutrients, plant growth, soil temperature, hydrology, environment, and economics.
Each component was tested [65,88,162–165] and the results were found to be acceptable
and reliable. [166] proposes that the EPIC model works more efficiently over small areal
extent (generally ~1 ha) because management practices and soils are considered homoge-
nous. However, the model can consider all kinds of soil properties. Traditionally, EPIC is
site-specific, but when integrated with GIS tools, regional crop growth and yield can be
simulated (e.g. the G-EPIC version [166]. GIS is used to produce model inputs for DEM,
land use/land cover, and soil maps. Due to EPIC’s extensive testing and high integration
with GIS, its application has been increased and has become famous among scientists.

3.3.7. Chemicals, Runoff, and Erosion from Agricultural Management System, CREAMS

The Chemicals, Runoff, and Erosion from Agricultural Management System model
was developed in the United States [167]. CREAMS is a physical, daily-based dynamic
model that simulates runoff, erosion, and sediment yield, having a capacity for assessment
of nutrient loss and chemicals from agricultural lands suitable at field scale [65]. Hydrology
is one of the components of CREAMS that is the principal element to simulate soil erosion
neglecting the deep percolation. With the daily rainfall data, the SCS curve number is
used to estimate surface runoff [168]. These component results provide the input to other
components of CREAMS to estimate nutrient and chemical losses. The erosion component
in CREAMS uses USLE along with sediment transport for overland flows. Studies show
that the CREAMS model performs better for field-scale but it can be applied to larger-scales
(~400 ha) [5]. This may be due to the fact that the model assumes uniform topography
and land use and it does not consider temporal variations in soil erodibility which is
highly unrealistic in the real world. Moreover, Govers et al. [169] observed that dynamic
simulation of water erosion may limit the accuracy of estimations because of their extensive
dependents on the validated input data. However, such limits can be reduced using
physically based models rather than empirical models such as CREAMS.

3.3.8. The Griffith University Erosion System Template, GUEST

The Griffith University Erosion System Template [93] is a physically based steady-state
sediment flux model developed to simulate single events of erosion resulting in temporal
variations in sediment yields at a plot scale. The model uses hydrological and surface
characteristics of uniform slope and relates rainfall-runoff rates to predict the yield of
eroded sediments [94]. The model algorithms explaining erosion, transport, and sediment
yield are based on single rainfall events at the plot scale. GUEST considers the erosion
process to mainly be due to rainfall impact and the effect of overland flow generated shear
stresses exerted on soil, making GUEST a comparatively complex process-based model
which requires a large number of input data. Huang et al. [170] noted the low accuracy in
predicted soil erosion by surface runoff when applied to the catchment scale and that it
was limited by the extent of data required at the plot scale.

3.3.9. The Productivity, Erosion and Runoff, Functions to Evaluate
ConservationTechniques, PERFECT

The PERFECT model [105] was developed by the Queensland Department of Primary
Industries and the QDPI/CSIRO Agricultural Production System Research Unit in Aus-
tralia. This model was developed to integrate with other physically based models such as
CREAMS for studying the impact of soil management factors i.e., field preparation prac-
tices and soil conservation techniques. CREAMS excludes the land cover variations caused
by tillage practices to estimate surface runoff. PERFECT model considers management
strategies to predict surface runoff, erosion (MUSLE), and crop production on daily time
steps at the field scale. As other models can be incorporated into the PERFECT model, it is
a mix of conceptual, empirical, and physically based models.

Littleboy et al. [171] suggested that the PERFECT model is more accurate than
CREAMS for estimating runoff, accounting for 77–89 % of the variation in measured [172]



Land 2021, 10, 422 26 of 35

daily runoff volume. However, this model does not consider the impact of rainfall inten-
sity thus resulting into over/underestimation of soil erosion based on a single rainfall
event. Sediment and nutrient components may be added for water quality modeling that
may provide an advantage with crop cover data and management components where it
is needed.

4. Discussion
4.1. Selection Criteria for Soil Erosion Models

Each soil erosion model has its predictive capabilities and modeling processes and its
applicability depends on its intended use, available input and calibration data, temporal
and spatial scale, and required accuracies. Based on the review work, the selection of a
suitable model for a distinct purpose at the field-scale should be guided by the following
criteria. (1) Problem recognition: Define the problem statement in a clear way to achieve a
maximum match between the problem to be solved and the model objectives. (2) Spatial
scale: the next criteria is to decide whether the model is compatible with the plot or field
scale. (3) Data availability: make a list of required input data (topography, climate, field
investigations) and their availability. (4) Temporal scales to be considered (event-based or
continuous) (5) Elements to be assessed; decide which elements of the catchment are to be
modeled i.e., overland erosion and sedimentation, hillslope erosion, or channel/stream
erosion and sedimentation. (6) Model sensitivity; the uncertainties within input data
should be identified that may impact the reliability of the simulated results before the
model evaluation. (7) Model validation; simulation results must be compared with field
observations that may also use for model calibration before the simulation process.

4.2. Capabilities and Limitations of Field Scale Models

Soil erosion models are bound to have certain strengths and limitations depending
on their different development objectives and often specific environmental processes and
conditions. Most of the available soil erosion models have been developed mainly for larger
scales (basin or watershed) where spatial variations in soil conditions (soil erodibility, soil
cover, slope, and tillage practices) and hydrological conditions (surface runoff, infiltration
rate, and rainfall intensity) are significant compared to those at small scales (field or plot).
Individual hydro-geomorphological processes and vegetation impact differently on soil
erosion process across various scales. Slope arguably is one of the major factors in the
erosion process. For models such as EPIC, WEPP, CREAMS, and GLEAMS that use USLE
to reflect the effect of slope length on soil erosion, the major problem (Table 6) is the suitable
selection of slope segments in fields with complex topography where slope characteristics
may vary drastically. EUROSEM is a model that uses a dynamic mass balance equation to
simulate the erosion process at a field scale for agricultural lands. EPIC predicts soil losses
from rill and inter-rill areas all together whereas EUROSEM, WEPP, and GLEAMS estimate
each separately.

The assumptions regarding the soil erodibility and tillage formation have a great
influence on predicting the volume and direction of surface runoff and subsequently soil
losses. TCRP is a 2-D empirical model, which simulates runoff patterns with the flow along
the direction of plow lines in tilled fields assuming runoff direction always in direction of
tillage (Table 6). TCRP can consider both tillage-controlled runoff patterns and topography-
controlled runoff patterns. EPIC runoff factor considers ridge heights between furrows
to estimate total runoff. EUROSEM and WEPP coupled with MIKE SHE/MIKE 11 can
simulate daily soil losses considering different conservation practices at the field scale.

Although the above mentioned problems are significant, calibration of field scale
models in fields characterized by spatial heterogeneity of topography and soil is more
accurate than for larger catchment areas. Furthermore, the accuracy of the simulation of
erosion rates depends on the spatial dimension taken into account, i.e. whether processes
are simulated at the soil profile scale (1D, point based assuming a field with homogeneous
soil and terrain conditions) and/or spatially distributed method (2D/3D) (Table 6). The
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quality and accuracy of the calibration of the erosion processes in heterogeneous fields
should increase with the dimension that is considered. However, a major bottleneck for the
multi-dimensional models is the availability and accuracy of soil information. On the other
hand, the accuracy and availability of topographic information has considerably improved
in the last decade (e.g. radar and laser based sensors carried by UAV or airplanes).

4.3. Model Comparison with Respect to Simulating Soil Erosion in Complex Cropping Systems

Conservation practices like strip and patch cropping or agroforestry systems are im-
portant management options to improve floristic and faunistic diversity in intensively used
agricultural landscapes. Tools are required to predict the impacts of such diverse cropping
systems on soil erosion processes. The Water Erosion Prediction Project (WEPP) for the
intercropping system, Water Nutrient and Light Capture in Agroforestry Systems (WaNuL-
CAS), and Agricultural Production Simulation (APSIM) models are capable of simulating
soil erosion in conventional and complex cropping systems at the field scale. WaNuLCAS
represents dynamic processes in the spatial domain. It was designed to simulate Tree-Soil-
Crop interactions under a wide range of agroforestry systems. It uses the Rose equation [40]
to simulate the erosion process in a simplified 2D approach. However, this component of
WaNuLCAS has not been tested extensively and requires further investigation. APSIM
offers many modules (generally categorized as biological and environmental modules).
The erosion model is capable of simulating the impact of erosion on the soil profile as soil
loss occurs under different management practice options such as strip cropping and alley
cropping systems, but it considers only one dimension in the field. Notably, APSIM has
high input demand, most of which requires extensive field investigations.

Another important aspect is the translation of rainfall to runoff under varying canopy
interception in complex cropping systems. A realistic representation of the role of canopy
cover in rainfall-runoff modeling is essential when predicting sediment transport in hetero-
geneous fields along hillslopes. A few models such as EPIC, WEPP, EUROSEM, CREAMS,
SCUAF, and WaNuLCAS account for the intercepted rainfall to estimate total runoff
(Table 6). However, to this date, there is no cropping model available at the field scale
that considers the impact of cropping systems like strip cropping and patch cropping and
their complex canopy arrangements affecting runoff induced soil erosion processes. EPIC,
WEPP, EUROSEM, and CREAMS models may have the capabilities to model complex
variations in cropping systems when integrated with GIS [11,84,88].

The review suggests that further studies have to be conducted to develop tools that
facilitate the integration of modeling components to lower the complexities of source codes
and to further improve existing models or develop new models that represent soil erosion
processes under complex cultivation patterns on the same field. Modeling capabilities
should be improved and tested with respect to the soil erosion process in strip and patch
cropping systems as well as agroforestry systems. Existing agroforestry models must
be improved to incorporate erosion processes in fields with high spatial heterogeneity
with respect to soil properties, slope inclination, and length, preferably considering three
dimensions. Such new developments might also support upscaling of soil erosion processes
to larger spatial scales (watershed to basin scale).

4.4. Summary and Conclusions

Soil erosion processes strongly differ with spatial and temporal scales and environ-
mental conditions. Thus, a large number of models have been developed that differ in
terms of the processes considered, temporal and spatial application scale, capabilities, and
limitations. Based on their processing concepts, these models were classified into three
categories (1) Empirical models, (2) Conceptual models, (3) Physically based models.

Most of the empirical models use the universal soil loss equation (USLE) and its
derivates RUSLE and MUSLE. Though these equations have been developed using data ob-
tained in the United States, these equations are applied worldwide for soil loss estimations.
Under variable conditions of spatial soil characteristics and insufficient meteorological
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networks, empirical models are less complex to operate which makes them a potential
choice for predicting soil erosion. Hence, the empirical models are more likely to be used
with limited availability of input data. Contrary to that, physically based models provide
a physical description of the erosion process. These models are comparatively complex
and less user-friendly because of their detailed depictions of processes and large data
requirements. However, physically based models are more capable when performing
event-based simulations. Conceptual models typically have been developed for catchment
and larger scales, requiring a general description of the catchment and involved soil erosion
processes, without describing the details of their interactions that would require big data
sets of temporal and spatially distributed catchment details. However, there is currently
no model available to represent soil erosion processes in more complex cropping at the
field scale like strip and patch cropping or alley cropping systems. There are some crop
models available to simulate alley cropping systems such as APSIM or WaNuLCAS, with
soil erosion components. However, these models have not been tested and validated for
erosion estimation and its impacts on subsequent crop yield.

The literature review indicated that most of the models developed for large agricul-
ture catchments using equations developed under specific conditions require site-specific
calibration before simulation. Models designed for small time steps perform better than
continuous scale modeling. Similarly, calibration at a field or smaller scale, where spatial
topographic and soil variations on erosion process greatly affect the simulation, is more
accurate than that of larger catchment areas. It is worth indicating that some models such
as EPIC, PERFECT, GUEST, EPM, TCRP, APSIM, and CREAMS were developed for soil
erosion assessment at plot/field scale at daily time steps. Limited workability of these
models was found for sediment transport, sediment deposit, and sediment yield. Models
such as EPIC, WEPP, EUROSEM, CREAMS, SCUAF, and WaNuLCAS have the capability
to account for rainfall interception but further improvements are required to deal with
complex cropping systems.

5. A Way Forward

Soil erosion modeling at a field scale is now facilitated by very high spatial and
temporal resolution remote sensing (RS) data, which allow for frequent estimation of
characteristics of crop cover and topsoil characteristics at the field scale. RS data can be
used as both model input (e.g., microtopography, within-field variability of oil and plant
characteristics) and validation data (e.g. based on LiDAR data [173]). In order to benefit
from RS data flexible data assimilation methods have to be developed for physically based
models whereas their integration into empirical and conceptual models is relatively straight-
forward. At larger scales, EU wide surveys of topsoil (LUCAS) and Land Use/Cover
Area (CORINE) are carried out every three years. Such harmonized open-access data are
currently not fully exploited by soil erosion models and might be used as input data for
urgently needed model intercomparisons in order to increase our confidence in predicted
erosion rates. Further, with increased concerns on future soil erosion rates under climate
change [174] the systematic evaluation of soil erosion models and ensemble soil erosion
models [175] using harmonized data sets might be used to support land use policies.

Models such as EPIC, WEPP, EUROSEM, and CREAMS may have the capabilities to
model complex cropping systems such as strip cropping and patch cropping, their spatial
arrangements, and their impact on soil erosion when integrated with GIS or into flexible
modeling frameworks. Integration or coupling of soil erosion components in a modeling
framework for dynamic simulation can provide an alternative to conventional erosion
modeling at a field scale and may facilitate upscaling to larger scales.

In the context of sustainable agriculture, there has been an increasing interest in the
application of novel crop arrangements within a field [176] in recent years. Since these novel
field designs, e.g. alley cropping or strip cropping, are assumed to support the delivery
of ecosystem services, such as a reduction of soil erosion, there is a need to quantify such
effects. A larger number of case studies, based on the combined use of high-resolution
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RS data with soil erosion models, are required in order to highlight the potential of novel
field designs to reduce the risk of soil erosion and to support corresponding changes in
agricultural policy. An important conclusion of this review is, therefore, the need for future
research and development with respect to modeling soil erosion under complex spatial
cultivation patterns.

The present study provides a clear description of individual models to sort out which
model fits which conditions and problems identified and leads to clear guidelines to select
the appropriate model. Future studies need to integrate modeling working components
to enhance the strength of models. There should be models developed for soil erosion
process in agroforestry systems and existing agroforestry models must be improved to
incorporate erosion process and yields. This review emphasizes enhancing the quality of
the modeling output and should have additional components to enhance their applicability
in most environmental and management conditions.
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