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Abstract

A wide variety of 1) parametric regression models and 2) co-expression networks have

been developed for finding gene-by-gene interactions underlying complex traits from

expression data. While both methodological schemes have their own well-known benefits,

little is known about their synergistic potential. Our study introduces their methodological

fusion that cross-exploits the strengths of individual approaches via a built-in information-

sharing mechanism. This fusion is theoretically based on certain trait-conditioned depen-

dency patterns between two genes depending on their role in the underlying parametric

model. Resulting trait-specific co-expression network estimation method 1) serves to

enhance the interpretation of biological networks in a parametric sense, and 2) exploits the

underlying parametric model itself in the estimation process. To also account for the sub-

stantial amount of intrinsic noise and collinearities, often entailed by expression data, a tai-

lored co-expression measure is introduced along with this framework to alleviate related

computational problems. A remarkable advance over the reference methods in simulated

scenarios substantiate the method’s high-efficiency. As proof-of-concept, this synergistic

approach is successfully applied in survival analysis, with acute myeloid leukemia data, fur-

ther highlighting the framework’s versatility and broad practical relevance.

Author summary

Here we built up a mathematically justified bridge between 1) parametric approaches and

2) co-expression networks in light of identifying molecular interactions underlying com-

plex traits. We first shared our concern that methodological improvements around these

schemes, adjusting only their power and scalability, are bounded by more fundamental

scheme-specific limitations. Subsequently, our theoretical results were exploited to over-

come these limitations to find gene-by-gene interactions neither of which can capture

alone. We also aimed to illustrate how this framework enables the interpretation of co-
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expression networks in a more parametric sense to achieve systematic insights into com-

plex biological processes more reliably. The main procedure was fit for various types of

biological applications and high-dimensional data to cover the area of systems biology as

broadly as possible. In particular, we chose to illustrate the method’s applicability for

gene-profile based risk-stratification in cancer research using public acute myeloid leuke-

mia datasets.

This is a PLOS Computational Biology Methods paper.

Introduction

Gene-by-gene interactions are known to underlie phenotypes in a variety of systems [1, 2]. A

huge amount of research has been devoted to robust identification of such components from

high-throughput biological data [3–5]. The development of this methodology is mainly

focused on exhaustive search approaches and implementing algorithms that alleviate their

computational complexities [4, 6, 7]. Typically, these methods are restricted into parametric

models consisting of overly simplified interactions types (e.g. product terms) contributing

additively to the phenotype [8]. However, gene-by-gene interactions are interpreted biologi-

cally more broadly than parametric models often allow, such as functional interactions

between genes in biological pathways [1, 2, 8, 9].

To identify functionally related genes or members of the same pathway from omics data,

one could benefit from the vast scheme of co-expression network analysis [10]. In co-expres-

sion networks, each node represents a single gene, and is connected with another nodes if the

expression values of the corresponding genes are dependent. In particular, there has been a

growing interest on estimating simultaneously two co-expression networks, such that the esti-

mation process accounts for some external state of interest [11–17]. For instance, in transcrip-

tional interactions, where a transcription factor binds to promoter regions of a particular gene

to regulate its expression levels, can be disrupted in cancers [12, 18]. Then co-expression net-

works estimated separately over case and control samples are expected to have interesting dif-

ferences due to the cancer-specific dysregulations in transcriptional mechanisms.

Co-expression networks can be estimated from data (in both case-control and single popu-

lations) either with unconditional or conditional dependency metrics. A popular uncondi-

tional approach is to measure, in all its simplicity, just a pairwise correlation/covariance

between genes [19–21]. However, this simple metric has received a lot of criticism for evaluat-

ing direct dependencies—false positive edges between genes might occur in the presence of

confounding factors [22, 23]. For this problem, inverse-covariance matrix based Gaussian

graphical models (GGMs) [24, 25] provide a complete solution, as they are capable of distin-

guishing direct relationships from indirect ones [26, 27].

These network comparison procedures are often motivated by the deficiencies of the

exhaustive search approaches. On the other hand, the current network approaches are lacking

some very crucial properties of the parametric interaction models in turn. These include, for

instance, an explicit connection with the trait of interest, intuitive parametric interpretations,

various options for hypothesis testing, and a possibility to account for the main effects. Despite

the popularity of differential co-expression network analyses, these critical issues have

remained unresolved.
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Little is also known about their synergistic potential in the search of molecular interactions

and pathways underlying complex traits. That is, a mathematical presentation, that would for-

malize the relationship between co-expression networks and parametric interaction models

remains undefined. Here we consider the issues above and characterize the relationship

between these methodological schemes. Finally, a methodological fusion is provided to cross-

exploit all scheme-specific strengths via a built-in information-sharing mechanism. As proof-

of-concept, the framework is applied for searching prognostically important gene-by-gene

interactions in acute myeloid leukemia (AML).

Results

Our approach combines the benefits of two popular methodological schemes, co-expression

networks [10], and parametric gene-by-gene interaction models [3, 4], to find molecular inter-

actions and pathways regulating complex traits neither of which can capture alone (Fig 1).

This is based on three simple steps:

• Step 1: A pre-defined underlying parametric regression model for trait variation is first used

to estimate such effects of genes that are not identifiable with co-expression networks (e.g.

the main effects). The remaining unexplainable variation is then subtracted from the original

trait variable and used as a new response variable for the next step.

• Step 2: The provided trait-specific co-expression network estimation method is then applied

to estimate network structures that can explain the trait variation remained from the first

step. A novel dependency metric is also provided to account for certain collinearities in data

that are generally considered problematic with the parametric methods used in the first step.

• Step 3: The underlying parametric model is then used again to provide a parametric inter-

pretation for the estimated co-expression network elements, which is not possible standalone

from the co-expression networks.

While a high number of co-expression techniques have been introduced over the last 20

years, and parametric regression model type approaches even longer, the synergistic potential

of these different schemes has remained unnoticed. The above three steps fuses these two

schemes into a one, easy-to-use model guided co-expression network estimation procedure, to

overcome the limitations of each. In particular, these model guided co-expression networks

are always response variable specific by the construction. This means that all relationship

between genes, whose interplay is not important for the response variable of interest, are

excluded from the resulting network. In advance of illustrating its usage in the simulated and

real examples, we briefly summarize these two schemes and outline the proposed fusion itself.

Fig 1. Schematic overview. A diagram of the conceptual entities of the proposed fusion (model guided co-expression

networks) combining two schemes—parametric interaction models and co-expression networks. The most central

methodological benefits (green checkmarks) and deficiencies (red X marks) are listed method-specifically.

https://doi.org/10.1371/journal.pcbi.1008960.g001
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Gene-by-gene interaction model

In a regular gene-by-gene interaction model, normally distributed (with zero means) expres-

sion levels of individual genes Xi1, . . ., Xip as well as the pairwise interactions between them are

associated additively with the quantitative phenotype Yi for an individual i as follows:

Yi ¼ mþ
Xp

j¼1

Xijbj þ
X

k>j

XijXikbjk þ εi; ð1Þ

where εi �
i:i:d N ð0; s2Þ for all i = 1, . . ., n. Here μ is the population intercept and later assumed

to be zero, βj is the main effect of jth gene Xj and βjk is the effect of gene-by-gene interaction

term between genes Xj and Xk. A subindex i in each gene represents the expression value of the

corresponding gene measured from an individual i. In particular, we will refer to the interac-

tion terms of the model (1) as type I interactions.

Despite its popularity, this model ignores completely the complex gene-gene interactions

effects that do not contribute linearly to the phenotypic variation, e.g., through functional

interactions between genes in biological pathways [1, 2, 8, 9]. Therefore we formulate an exten-

sion of the model (1) involving more complex activation/deactivation patterns between gene-

expression levels that are associated only with either low or high phenotype values and less effi-

ciently identifiable with parametric interaction model (1). To model such effects, we use an

additional mapping Dð�; �Þ : R2
! R which refers to an arbitrary gene activation/deactivation

function yielding the following extension of the interaction model (1):

Yi ¼
Xp

j¼1

Xijbj þ
X

k>j

XijXikbjk þ
X

k>j

ajkDjkðXij;XikÞ þ εi: ð2Þ

For instance, in transcriptional interactions where a transcription factor binds to promoter

regions of a particular gene to regulate its expression levels can be disrupted in cancers [12,

18]. Such gene-gene interactions Δjk(Xij, Xik) will be referred as type II interactions.

Co-expression networks

Generally, a probabilistic network G refers to a pair (V, E) of nodes V≔ {1, . . ., p} and the col-

lection E of edges connecting these individual nodes [24]. In co-expression networks, nodes

denote a set of random variables {X1, X2, . . ., Xp} that correspond to the expression levels of p
individual genes. The collection E of edges, in turn, represents a desired type of dependencies

between individual genes. The aim of the co-expression network inference is to estimate these

dependencies from data with a case-specifically chosen co-expression measure. For instance,

simple covariance or correlation coefficients are the most popular co-expression measures for

constructing co-expression networks as they are easy to estimate from data [10]. Alternatively,

if a random vector, representing the expression levels of p individual genes {X1, X2, . . ., Xp} (or

its normalized version) follows a multivariate normal distribution N ð0;SÞ, co-expression net-

works are often modeled with the inverse covariance matrix S−1 [24]. The latter is closely

related to Gaussian graphical models (GGMs) which are capable of distinguishing direct rela-

tionships between genes from indirect ones [24], and are referred as such in the forthcoming

sections.

Problems in interaction search and new perspectives

Since popular exhaustive search methods [3–5] focus on the model (1), they are incapable of

identifying type II interactions. These approaches are also often struggling with identifiability
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issues caused by strongly co-expressed genes. Such deficiencies may cause highly incomplete

and distorted conclusions about the role and proportion of gene-gene interactions in overall

trait regulation mechanisms. Consequences might be particularly adverse in medical applica-

tions, e.g., when designing personalized treatments based on gene expression profiling. Never-

theless, both of these deficiencies are stemming from the fact that exhaustive search

approaches are inefficient to account for the dependencies between genes.

In this regard, one could benefit from the vast co-expression network estimation methodol-

ogy [19–21, 24, 25] designed exactly for such purposes. On the other hand, co-expression net-

works, in turn, are not well-suited for explicitly modeling various types of effects on

phenotypic variation (e.g. the main or interaction effects) in comparison to the parametric

regression models. As such, an appropriately implemented hybrid perspective is required for

revealing interactions underlying complex traits efficiently. In the materials and methods sec-

tion, we contribute to this area by fusing the parametric interaction model (2) into the co-

expression network estimation in accordance to the following outline:

• Objective A: Incorporating the phenotypic information into the network estimation such

that the network represents only phenotypically important gene relationships.

• Objective B: Determining an explicit link between the concept of co-expression networks

and the generalized interaction model (2).

• Objective C: Exploiting the above link to derive a network estimation method in which type

I and type II interactions are separated in the estimation process.

• Objective D: Introducing an estimation metric that accounts for the common characteristics

of phenotype regulating mechanisms and expression data.

Now we have a framework for trait-specific co-expression network estimation based on

parallel consideration and exploitation of the underlying interaction model (2). Particularly,

this network provides evidence of gene-by-gene interactions (type I and II) in relation to the

underlying parametric interaction model, while the co-expression networks generally repre-

sent only associations between genes. Thus, the estimated network connections are referred as

interactions rather than associations in this context.

A technical overview of the procedure

Here we give an overview of each step of the proposed method (see also Fig 2) which is pre-

sented and explained comprehensively in the materials and methods section.

Step 1. Estimate the residual vector from the main effect model

As a partial solution to the objective (D), the main effects are first estimated in the model

(2) without the interaction terms to get the residual estimates

ε̂i ¼ Yi � m̂ �
Xp

j¼1

Xijb̂j : ð3Þ

Individuals are then divided into the high and low groups based on the empirical quantiles

Qε̂iðaÞ and Qε̂ið1 � aÞ (a 2 ]0, 0.5]) of the estimated residual values ε̂i and two separate

networks are estimated corresponding to these groups in the next step.

Step 2. Estimate the high and low networks

In this step, we first estimate two networks: A high network is constructed over individuals

in a high group, i.e., to whom ε̂i � Qε̂ið1 � aÞ and a low network is estimated over

PLOS COMPUTATIONAL BIOLOGY Model guided trait-specific co-expression network estimation
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individuals to whom ε̂i � Qε̂iðaÞ holds, respectively. To estimate the corresponding edge

weights by accounting for the objective (D), we propose a novel correlation measure and

compute the corresponding matrices Fa and F1−a in the low and high groups. These matri-

ces are then used to define a novel differential network structure Qa = |F1−a −Fa|, referred

as differential part-correlation co-expression network (dPCCN), which links this frame-

work to the objective (A).

Step 3. Link the estimated networks structures to the underlying parametric model

To further identify and separate type I and II interactions in the estimation process (objec-

tive C), we formulate its sign-adjusted version Qsgn,a, that uses a set of rules to characterize

each differential network element as negative, zero or positive. Each of them denotes a spe-

cific parametric interpretation, and builds up a connection between the differential network

elements and the effects in the parametric interaction model (2) as follows:

• (L1): If an individual network edge weight Qsgn,a(j, k)> 0, then the associated type I inter-

action effect βjk is non-zero in the model (2).

• (L2): If an individual network edge weight Qsgn,a(j, k)< 0, then the associated type II inter-

action effect αjk is non-zero in the model (2).

• (L3): If an individual network edge weight Qsgn,a(j, k) = 0, then both αjk and βjk are zero in

the model (2).

The R-code for this whole procedure and a step-by-step guidance for its usage is available

in S2 Appendix (See also Fig 2). In particular, the only parameter (by default) left for users to

be specified case-specifically is the threshold parameter r. This is considered later in more

detail.

Fig 2. Procedural workflow diagram. A schematic representation of the logical structure underlying the provided

algorithmic implementation. The first panel from the top represents the empirical density function of the residual

vector estimated from the main effect model. Here Q(�) is a quantile function of this distribution and a 2 [0.5, 1[ is a

user-defined cut-off point. The second panel from the top illustrates how the differential networks are computed from

the low and high networks using the sign-adjusted version. Different edge colors represent the edge weights of

opposite signs, but equal magnitudes, for simplicity. The bottom panel demonstrates how different sign-combinations

can be interpreted as type I or II interactions in the underlying parametric model. Moreover, the most important

arguments of the provided model_diffnet R-function are explained in the right panel to indicate their role in this

procedural flow.

https://doi.org/10.1371/journal.pcbi.1008960.g002
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Simulation studies

The proposed method is evaluated and compared to the exhaustive search and GGM based

approaches through simulated scenarios. These examples are based on data provided by

DREAM9-challenge (organized in June 2014). This dataset [28] consists of 191 patients diag-

nosed with acute myeloid leukemia (AML) with measured expression levels of 231 proteins

and phosphoproteins probed by reverse-phase protein array analysis each of which is following

a standard normal distribution. New phenotypes are simulated conditionally on the expression

levels of these proteins to have a known phenotype regulation mechanism and realistic depen-

dencies between protein expression levels. We will use numeric subindexes 1, . . ., 231 to indi-

cate a specific protein in the DREAM-challenge dataset starting from the ACTB.

Model without the main effects. The simplest part of our simulation model contains

arbitrarily chosen six type I interaction terms controlling the variation of a normally distrib-

uted phenotype Y without any main effects. Also, more complex interactions of two different

types are incorporated into the model. First, we add two rectified linear unit (ReLU) terms

Δjk(Xij, Xik), defined to be equal to Xj Xk if Xj Xk�median(Xj Xk) and zero otherwise. At this

point, the simulation model is of the form:

Model A : YA ¼ X75X150 þ X100X200 þ X125X215 þ X25X52

þX33X66 þ X88X144 þ DðX12;X183Þ þ DðX109;X54Þ þ ε:

Ten replicates of the phenotype vector were simulated based on the above model with the pop-

ulation intercept of zero. The common residual variance s2
ε was fixed to 1.752 for independent

and normally distributed (zero-centered) residual terms ε1, . . ., ε191 for each individual (the

simulated replicates are available at the Additional file 2).

We also use another interaction function Cþ=� ðXj;XkÞ to mimic disrupted interactions in

pathways among individuals with high or low phenotype values. These type of interactions are

simulated with respect to the variables Xj and Xk backward as follows: We first compute the

phenotype values Y = (Y1, . . ., Y191) for each individual based on the simulation model A. For

individuals with the phenotypic values larger than the 4/5 empirical quantile of Y, we overwrite

the expression values of the protein Xj as a function of the protein Xk to induce correlation

between them such that

Xik ¼ �Xij þ ε
�
i ; where ε�i � N ð0; 0:252Þ; ð4Þ

only if Yi� QY (2/3) and kept as original otherwise. In other words, such strong correlations

are present only among individuals with high phenotype values. A subindex in Cþ=� ðXj;XkÞ

denotes whether the induced correlation is positive or negative with reference to the

symbol ± in the Eq (4). We used this rule to generate the following interaction set over individ-

uals with phenotype values larger than the 4/5 empirical quantile of the phenotype vector

resulted from the simulation model A:

fC� ðX2;X170Þ; C� ðX50;X115Þ; C� ðX44;X99Þ; CþðX12;X180Þ; CþðX60;X125Þ; CþðX211;X222Þg:

Furthermore, we overwrite the expression values of the proteins X125 and X75 as a function of

the proteins X215 and X75 to induce strong correlation between them before the phenotypic

truncation such that

X125 ¼ X215 þ ε; where ε � N ð0; 0:252Þ;

X75 ¼ X150 þ ε; where ε � N ð0; 0:252Þ:
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The magnitudes of the induced correlations were approximately 0.95. These mimic the prob-

lematic collinearities between genes the interaction of which are important with respect to the

phenotype.

Applied methods. To evaluate the efficiency of the proposed dependency metric, we begin

by applying only the non-residual adjusted dPCCN approach: high and low groups are defined

with respect to the empirical median value of the original phenotype Y. As a comparison, we

estimate the sign-adjusted differential correlation co-expression networks (dCCN) in each sce-

nario also by using the simple correlation matrices instead of the proposed part-correlation

matrices. The same high and low groups are also used in the GGM based approach: The fused

graphical LASSO algorithm via the JGL R-package [12] is used to estimate the high and low

GGM networks and we refer to their difference as a differential GGM network (see [12] for

details and S1 Appendix for the tuning parameter selection). In the exhaustive search

approach, the interaction effects are estimated with the LASSO estimator [29] in which the

penalty parameter is chosen by the cross-validation criteria. As will be explained in the materi-

als and methods section, type I and II interactions are separated from each other by evaluating

from data whether or not |Fj,k| = 0 by using a user-specific threshold r> 0. Here we apply a

relatively small threshold r = 0.1 such that |Fj,k| is deemed to be zero if |Sj,k|< r.
Benchmarking. The evaluation and comparison are done by using the receiver operating

characteristics (ROC) curves [30]. The decision threshold value a is shifted over the range of

estimated network elements (or coefficient vector elements in exhaustive search) to produce

the true positive rate (TPR) and false positive rate (FPR) for each value of a such that

TPR ¼
The number of true positives

The number of positives
and FPR ¼

The number of true negatives
The number of negatives

:

Truncated (at 0.2 FPRs) and non-truncated areas under the ROC curves (AUCs) averaged

over the simulated replicates are displayed in Table 1 for each method (Model A columns).

Results. The most worrisome part of these results is a poor performance of the differential

GGM approach which deserves to be noted given its popularity and trending usage in gene-

gene interaction search—see e.g. [31]. The averaged non-truncated AUC is only 0.709. We like

to highlight that interpreting results in terms of typical parametric forms should be done with

caution when the differential GGM approach is applied. We argue that this problem is due to

the conditioning property, which in fact, is the main reason for GGMs’ popularity. A support-

ive example is given in S1 Appendix implying that their role in the differential network estima-

tion scheme should be characterized more specifically. Another concern is that the exhaustive

search approach does not have desired efficiency even though the model is relatively simple.

The averaged AUCs and truncated AUCs were 0.761 and 0.713.

Let us now consider the proposed sign-adjusted dPCCN. The improvement in performance

is tremendous in comparison to the reference methods—the non-truncated and truncated

Table 1. Simulation studies. Averaged areas under the truncated and non-truncated ROC curves (AUCs) over ten rep-

licates in the simulated scenarios without simulated main effects (Model A) and with additional main effects (Model

B). These datasets are analyzed using the proposed dPCCN procedure and dCCN method as well as the exhaustive

search and GGM model based approaches as reference methods.

Method A: AUC (0.2 FPR) A: AUC (1.0 FPR) B: AUC (0.2 FPR) B: AUC (1.0 FPR)

Sign dPCCN 0.869 0.915 0.793 0.835

Sign dCCN 0.631 0.600 0.534 0.500

Exh. search 0.713 0.761 0.537 0.597

dGGM 0.707 0.709 0.618 0.620

https://doi.org/10.1371/journal.pcbi.1008960.t001
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AUCs were 0.915 and 0.869. Firstly, this indicates that traditional interaction search

approaches suffer for more fundamental limitations than the lack of power and scalability that

are often the subjects of interest. In addition to a more flexible model in the parametric sense,

the use of tailored metrics to account for the inherent characteristics of gene-phenotype regu-

lation mechanisms is clearly of high importance. For instance, the sign-adjusted dCCN is con-

siderably less efficient in the above examples than the sign-adjusted dPCCN as expected.

Namely, the non-truncated AUCs for the sign-adjusted dCCN and dPCCN were 0.631 and

0.915. Of course, the sign-adjusted dCCN, by the definition would be more efficient for identi-

fying if a standard correlation coefficient is zero in the low group and non-zero in the high

group, or vice versa. However, it becomes inefficient for more challenging scenarios involving,

e.g., complex activation/deactivation patterns between genes. Thus, the proposed part-correla-

tion metric is an indispensable additional element if we want to identify interactions in the

estimation process.

Model with the main effects. In this example, the phenotype replicates are simulated oth-

erwise in the same way as in the previous example (using different replicates) but we also

incorporate six strong main effects into the model i.e.,

Model B : YB ¼ YA þ
Xp

j¼1

Xijbj þ ε:

Here βj = 2 if j 2 {10, 30, 50, 70, 90, 100} and zero otherwise. In this case, we apply the residual

adjusted version of the sign-adjusted dPCCN method to account for the main effects. To esti-

mate the main effects, we used the elastic net estimator with α = 1/3 (a default value in the pro-

vided R-code) using the cross-validation based selection of the penalty parameter λ. Then,

high and low groups are defined with respect to the median of the estimated residual vector.

Results. The results of this analysis are also displayed in Table 1 (Model B columns). It

appears that the exhaustive search with truncated AUC of 0.537 and non-truncated AUC of

0.597 becomes unusable in this type of, fairly realistic, scenarios while the proposed residual-

and sign-adjusted dPCCN method remains remarkably efficient with truncated AUC of 0.793

and non-truncated AUC of 0.835 despite the simulated main effects. The differential GGM

approach is only slightly better than the exhaustive search—truncated AUC is 0.618 and non-

truncated AUC is 0.620. These simulated scenarios reveal huge benefits that could be achieved

with the proposed hybrid approach in comparison to the reference methods. This type of

hybrid approaches could truly open new avenues for interaction search and, as an additional

proof of concept, we illustrate its usage in a real acute myeloid leukemia example in the next

section.

Real data analysis—Acute myeloid leukemia

Acute myeloid leukemia (AML) is a hematological cancer of the myeloid line of blood cells

and the prognosis of this disease is poor with an extremely low 5-year survival rate [28]. The

recent advancements in high-throughput technologies have contributed to progress in leuke-

mia research and especially to predict survival times from gene expression profiles [32–34].

However, the majority of these studies have focused only on single genes or their additive

effects [4]. Although genetic interactions may help us better understand cancer biology and

the development of new therapeutic approaches [35], the effects of gene-by-gene interaction

on the survival times are not well known in cancers.

Survival time analysis. We apply the proposed framework for searching prognostically

valuable type I and II gene-by-gene interactions in AML. The same DREAM9 protein expres-

sion dataset is used as in the simulated examples but now the response variable represents real
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patients’ survival times after diagnosis. Out of these 191 patients, 142 died during the follow up

with 77 weeks median survival time (quartile interval: [25, 103]).

We chose this survival analysis example to show that this method provides reasonable

results even with problematic/incomplete datasets. In this case, difficulties arise from the most

frequently appearing aspect of survival analysis, the right-censoring. This means that a patient

has left the study before death, i.e. Ci< Yi, where Ci denotes the time of censoring and Yi is the

actual survival time for an individual i [36]. There are 49 censored observations in the

DREAM9 dataset the most of which are above the median survival time (74 weeks) measured

from non-censored observations.

We must note that revealing the most hidden and important features of this data is not the

primary task here, and we are fully aware that some aspects might seem unreasonable from

that perspective. This example serves to provide one kind of practical example of cross-exploit-

ing the strengths of individual schemes to overcome the deficiencies of one and another.

Therefore, we chose to use intentionally a particularly problematic dataset, which also might

seem controversial on occasion.

In this case, for instance, we have to remove the censored observations for the network con-

struction step. This clearly induces bias to the results [36] if one aims to estimate the exact

effects of certain covariates on survival time. However, in this step, we aim to identify the most

important interaction terms associated with the survival time. As we are interest on the effects

sizes only on a relative level, we could tolerate a much higher amount of bias if we can ensure

that the overall procedure is conservative enough. This is done by switching back to the

parametric models, in which case the censored observations can be accounted for without

technical problems, e.g., via the log-rank test [36]. Thus, this validation step(s) is used to filter

out the false positives findings caused by the induced bias in the network estimation step.

In this example, we only apply the residual- and sign-adjusted version dPCCN method. The

main effects are estimated with the elastic net estimator [37] using α = 1/3 to obtain the esti-

mated residual vector with the penalty parameter λ chosen by the cross-validation (λ� 0.403).

Individuals are then divided into the high and low groups based on the median value of this

estimated residual vector (71 observations in each group). As explained in the materials and

methods section, type I and II interactions are separated from each other by evaluating from

data whether or not |Fj,k| = 0. To that end, we apply a relatively small threshold r = 0.1 such

that |Fj,k| is deemed to be zero if |Sj,k| < r.
The estimated differential network structures are displayed in Fig 3 where the interaction

types I and II are separated by green (type I) and red (type II) edges. Since the method itself is

unpenalized, we used a hard-thresholding procedure to produce sparsity into the resulting dif-

ferential network. For simplicity, the threshold value was chosen such that the number of net-

work edges is less than 70 for both interaction types. Yet, how to define the most optimal

threshold value is beyond the scope of this work.

Type I interactions. To show the explicit connection between the proposed framework

and an exhaustive search we parametrically test all genes connected with green edges. This is

done in accordance to the Aiken-West test [38]: A gene pair (Xk, Xl) is tested by regressing the

survival time Y on both individual genes and their interaction term, i.e., Y = Xk βk + Xl βl + Xk

Xl βkl over non-censored observations. At first, when testing the null-hypothesis of zero regres-

sion coefficients, the p-value associated with the interaction term should be relatively small.

Then, the interaction term is deemed relevant if the corresponding p-value is smaller than the

p-values associated with the main effects βk and βl.
Now 56 out of 67 interactions (� 84%) were also “positive findings” in terms of the Aiken-

West test. Note that we used this test to only illustrate the connection between the proposed

framework and an exhaustive interaction search. However, only two interesting type I
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interactions (highlighted in Fig 3) are considered in more detail as an example: Interactions

between RAC-alpha serine/threonine-protein kinase (AKT1) and cyclin E1 (CCNE1) as well

as between asparagine synthetase (ASNS) and the antibody phospho-gab2 (Tyr452) of

GRB2-associated-binding protein 2 (GAB2). The Aiken-West test results for these findings are

given in S1 Table.

Validation in an independent TCGA dataset. The validation of these two interaction

terms is based on the current literature and survival analysis performed in an another indepen-

dent AML cohort. This cohort includes RNA-sequencing for 173 AML patients with measured

expression levels of around 20 000 genes provided by The Cancer Genome Atlas (TCGA;

LAML data available at https://cancergenome.nih.gov/). RNA and protein expression levels

are expected to have a high correlation, but significant variation in correlation among genes

[39]. Thus, the validation of interaction terms derived from protein expression data of

DREAM9 in RNA expression level of TCGA is conservative, and suggests that the same inter-

actions are discovered using either one. However, the lack of congruence would not necessarily

invalidate the results derived from the other type of dataset due to different biological control

mechanisms of RNA and protein level expression.

To evaluate the prognostic power of these findings, all patients in TCGA dataset (including

censored observations) are classified into distinct gene-expression profile based risk-groups as

follows: If the expression value of the interaction term (CCNE1, AKT1) is below its qth quan-

tile, the patient is classified into the low-risk group (low-expression) and otherwise into the

high-risk group (high-expression). Note that the effects of gene-by-gene interactions (CCNE1,

AKT1) and (ASNS, GAB2.pY452) are of opposite signs. Thus, if the value of the interaction

Fig 3. Estimated differential networks. Estimated differential networks with the proposed residual- and sign-adjusted dPCCN approach in the

DREAM9-challenge protein expression dataset using the patients’ non-censored survival times (142 observations) as response. The interaction types I

and II are separated by green (type I) and red (type II) edges (plotted separately). A hard-thresholding was used to provide sparsity into the network

structures such that the number of network edges is less than 70 for both interaction types. The estimated network structures are displayed only for

connected nodes (with MiMI names) and the highlighted nodes indicate which network structures are discussed in detail.

https://doi.org/10.1371/journal.pcbi.1008960.g003
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term between (ASNS, GAB2.pY452) is above its (1 − q)th quantile, the patient is classified into

the low-risk group (high-expression) and otherwise into the high-risk group (low-expression).

We chose q to be 2/3 in order to emphasize the high-risk profiles. These gene-expression pro-

files are then analyzed via Kaplan-Meier analysis (Fig 4).

AKT1 and CCNE1. Constitutive phosphoinositide 3-kinase (PI3K) and AKT signaling are

repeatedly reported in AML studies [40]. However, there is considerable variation in the effect

of these pathway inhibitors among AML patients [41]. However, it might be that the prognos-

tic importance of AKT1 becomes crucial through the interaction with CCNE1 (Fig 4, left

panel) which plays a key role in cell proliferation [42]. Even though few studies [43, 44] has

mentioned the possible prognostic value of the expression of CCNE1, the accurate prognostic

role regarding CCNE1 has remained unclear. However, once we consider the interaction term

(AKT1 and CCNE1), high expression values (red curve) reduce median survival times clearly

in the TCGA dataset (Fig 4): Median survival times were 22 months in the low-risk group and

12 months in the high-risk group, respectively.

ASNS and GAB2. When the same expression profile based risk classification is done based

on the interaction term between ASNS and GAB2, median survival times were 26 months in

the low-risk group (high expression) and 12 months in the high-risk (low expression) group

using the TCGA dataset. However, it has been shown in [45] that high ASNS expression values

reduce survival times. In light of this example, it appears that we should be careful with such a

conclusion. Namely, already in the Aiken-West test performed in the DREAM9 dataset, we get

an indication that its prognostic importance in AML may be in its interactive nature with

GAB2 rather than as an independent prognostic factor (see S1 Table).

Combined risk classifier. We also illustrate how accurately these two interaction terms

together classify patients into high- and low-risk groups. Patients that are in the low-risk

group based on both interaction terms (AKT1, CCNE1) and (ASNS, GAB2) are classified into

the combined low-risk group. Respectively, patients that are in the high-risk group based on

both interaction terms are classified into the combined high-risk group. Other individuals are

removed. This classifier has remarkable accuracy even though it is based only on two interac-

tion terms. In the combined high-risk group (orange curve in Fig 4, right panel), the median

survival time is only 11 months in contrast to 46 months in the combined low-risk group (pur-

ple curve in Fig 4, right panel). Nearly three years difference in median survival times between

Fig 4. Survival analysis using type I interactions. Kaplan-Meier curves and the 95% confidence intervals for three

different classifiers in the TCGA dataset (173 observations). The first two panels represent the (AKT1, CCNE1)

interaction term based classifier and the (ASNS, GAB2) interaction term based classifier. Red and blue survival curves

correspond to high and low expression values. The last panel is a combined classifier; the low-risk group patients based

on both interaction terms (AKT1, CCNE1) and (ASNS, GAB2) are classified into the combined low-risk group (purple

curve) and into the combined high-risk group (orange curve) with the same logic. The p-values of the corresponding

log-rank tests are also reported.

https://doi.org/10.1371/journal.pcbi.1008960.g004
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the high- and low-risk groups (p-value� 0.00016) indicates that these findings have prognos-

tic value in AML.

Type II interactions. Type II interactions in Fig 3 cannot be tested explicitly using the

same parametric interaction test similar to the type I interactions. In general, the effects of

these type II interactions on a patient’s outcome can be relatively complex. Therefore, their

proper validation should be done always from the biological point of view which is beyond the

scope of this paper. Thus, we will rely on the current literature and select a few representative

examples that happen to share the same parametric form by which they can be used to separate

individuals into different risk groups.

Validation. It was interesting that the major parts of the signaling pathways known to

have a major impact on AML progression [46–49] are overlapping with the estimated network

structures. Based on these previously reported AML-related pathways, we select a smaller rep-

resentative subnetwork to be analyzed in more detail (highlighted in Fig 3).

Signal transducers and activators of transcription STAT3 and STAT5 are both downstream

effectors of several tyrosine kinase oncogenes including proto-oncogene tyrosine-protein

kinase SRC each of which are central nodes in the estimated network [50]. Interestingly, a par-

ticular kinase inhibitor drug based treatment (sorafenib) for AML has been shown [51] to

block SRC kinase-mediated STAT3 phosphorylation. The STAT5 activation, on the other

hand, is regulated by an interplay between SRC family kinases and the mammalian target of

rapamycin (MTOR) via AKT/MTOR signaling pathway [52]. These terms are closely related

in the estimated network through caspase-9 (CASP9) and integrin beta-3 (ITGB3). Moreover,

we like to bring forth that both ITGB3 and tripartite motif containing 62 (TRIM62) are bind-

ing the densest clusters together in the estimated network. This is particularly interesting due

to their possible interplay [53].

Further, STAT5 can interact with mediators of the PI3K/AKT signaling cascade which

plays a central role in the cancer cell survival [54]. This might explain other connections in the

estimated network. For instance, the downstream targets of the signaling pathway PI3K-AKT

include the BCL2-associated agonist of cell death (BAD) and CASP9 [55]. Furthermore, AML-

specific down-regulation of BAD/BCL2 plays a critical role in NOTCH-mediated apoptosis in

AML [56]. In our study, phosphorylated BAD (pS112) were associated with neurogenic locus

notch homolog protein 3 (NOTCH3) in the estimated network. The role of entire NOTCH

family, including NOTCH3, in AML is not well-understood and there have been conflicting

studies about its role in AML [56]. However, since the neighborhood of NOTCH3 appears to

be quite dense, it would be worth for further consideration.

We proceed by considering two STAT5 related examples more closely. To that end, we use

RNA sequencing expression data from the TCGA database via GEPIA [57] to illustrate the

prognostic power of these selected/representative pairs in an independent dataset.

Signal transducer and activator of transcription 3 and 5. STAT3 and STAT5 are both

members of the STAT protein family. STAT5 is consisting of two related proteins, STAT5A

and STAT5B, that share about 90% identity at the amino acid level [58]. As they are separated

in the validation dataset but not in the DREAM9 dataset, we analyze and validate all identified

interactions with respect to STAT5A and STAT5B separately.

STAT5 and SMAD3. SMAD family member 3 (SMAD3) is one of the receptor-regulated

effector proteins (R-Smads) in the transforming growth factor beta (TGFβ) signaling pathway

[59]. In particular, it is shown that ligand-induced activation of SMAD3 by the protein com-

plex activin and TGFβ leads to a direct inhibition of STAT5 transactivation [60]. Our results

suggest that this interplay between STAT5 and SMAD3 contains highly valuable prognostic

information. Using 20% and 80% cut-off points to classify high- and low expression ratio

groups in GEPIA, high STAT5/SMAD3 TPM ratios (Transcripts Per Million) were associated
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with more severe prognosis than low STAT5/SMAD3 TPM ratios with the p-value of 2.8 � 10−5

for STAT5B and 6.1 � 10−3 for STAT5A in the log-rank test (Fig 5). It also seems that this inter-

action term could not been found by typical parametric interaction tests. The parametric

Aiken-West test in the DREAM9 dataset gave a p-value of 0.476 when testing the null-hypoth-

esis of zero-valued effects.

STAT5 and PIM1. Expression levels of proto-oncogene serine/threonine-protein kinase

(PIM1) is known to be regulated by the JAK/STAT pathway involving both STAT3 and

STAT5 proteins [61]. When the interaction terms between PIM1 and STAT5 are tested with

GEPIA, high PIM1/STAT5B TPM ratios levels were more common with short survivals than

low PIM1/STAT5B TPM levels with p-value of 0.0025 in the log-rank test. Respectively, indi-

viduals with high PIM1/STAT5A TPM ratios had shorter survival times than with low PIM1/

STAT5A TPM ratios with the p-value of 0.083 in the log-rank test. Also in this case the

DREAM9 dataset was not conflicting with the null-hypothesis of zero-valued interaction effect

in the Aiken-West test (p-value of 0.326).

Discussion

The examples of this paper reveal a remarkable advance of the proposed approach over the

commonly used reference methods. However, even more important is to observe that the tra-

ditional exhaustive search approach and popularity gained GGM based differential networks

show a considerable lack of efficiency in the presence of typical attributes of gene/protein

expression data. In particular, the representative real prognostic analysis showed how impor-

tant interaction types might remain unidentified due to the limitations of common

approaches. The message of these results is therefore dual; we shared our observation about

the weaknesses of the mainstream methods but also provide a tailored alternative that has a

huge potential to open new avenues for interaction search with a significant impact on many

Fig 5. Survival analysis using type II interactions. Results from survival analysis including survival curves (and 95%

confidence intervals) and statistics using GEPIA software with 20% and 80% cut-off points to classify high- and low

expression ratio groups (21 individuals in both groups). In each panel, p-values of the log-rank tests are reported for

hypothesis tests of no differences between groups.

https://doi.org/10.1371/journal.pcbi.1008960.g005
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important fields like prognostic analysis. Due to the method’s ease of usage and flexibility for a

variety of biological data, we foresee the wide applicability of this method with immediate

practical relevance.

However, the proposed method is based on an explicit link between the elements of differ-

ential co-expression networks and parametric interaction models (presented in the materials

and methods section) only of the form (2) and relies heavily on zero-centered scaling of the

explanatory variables. By using this same framework, it would be interesting to see how a dif-

ferent kind of scaling of the explanatory variables would reflect the form of the underlying

model. Especially, it is an open question whether some scaling of the explanatory variables

would enable higher than second-order type I interactions to be identified in this framework

and what kind of dependency metric (in place of the proposed part-correlation metric) is

required for such purpose. These issues are beyond the scope of this paper and left for future

studies.

It is also noteworthy that we based the proposed approach on sample correlation/covari-

ance type matrices instead of popularity gained inverse correlation/covariance matrices i.e.

GGMs. However, this should not be considered as criticism against GGMs since they can obvi-

ously recover the co-expression networks much more efficiently than dCCNs exactly due to

the ability to distinguish these direct dependency from indirect ones. This is rather a matter of

purpose—the aim in the common differential network studies is to recover the gene co-expres-

sion patterns in two or more classes and compare the overall network dynamics in a more

causal sense between them. Here the focus is on mapping the parametric interaction model

into the pairwise dependencies between genes regardless of their conditional dependency

structure.

Moreover, the estimation of the inverse covariance matrix S−1 via maximum likelihood is

not possible when the empirical correlation matrix S is singular (for example when n< p since

rank(S)� n − 1). Some penalized estimators have been made for estimating the inverse covari-

ance matrix S−1 in the high-dimensional settings enabling non-singular, and even sparse

results. For example, applying the LASSO-penalty to the elements of Θ = S−1 leads to convex

optimization problem proposed in the paper of [62] enabling the inverse covariance matrix to

be estimated even if n< p. However, this increases computational complexity which is

between Oðp3Þ and Oðp4Þ for a row-by-row block coordinate method. Thus, one benefit of

using correlation co-expression networks instead of GGM based alternatives is their extremely

low computational complexity of learning.

Methods and models

Here we provide a synergistic framework based on parallel consideration of gene-by-gene

interaction models and novel quantitative trait-specific co-expression networks. In particular,

we address the following issues: (1) What is the explicit link between the co-expression net-

works and different types of parametric interaction terms? (2) How this link can be used to

derive an efficient and flexible trait-specific co-expression network estimation metric? (3)

How do we properly account for the inherent characteristics of gene-to-phenotype architec-

tures (e.g. strong main effects and collinearities between genes) in our network construction?

Co-expression network estimation schemes

There exist two major paradigms for constructing linear co-expression networks based on

unconditional (indirect) and conditional (direct) dependencies. The co-expression networks

representing unconditional relationships between genes are often defined by the covariance

(or correlation) matrix S. Such networks are referred as covariance/correlation co-expression
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networks (CCNs). For conditional co-expression network estimation, a popular option is to

use a inverse covariance/correlation matrix S−1 which is known and later referred as GGMs. It

has been shown that under the assumption of normality an element of S−1, say S� 1

j;k ; is zero, if

and only if genes Xj and Xk are conditionally independent given the rest of the genes [25].

However, we have shown that GGM based methods lack of efficiency for our purposes exactly

due to the conditioning property they are favored in the first place (see S1 Appendix). Thus,

our method is formulated only for the correlation/covariance co-expression networks.

Trait specific co-expression networks

Let us assume that the phenotype Y is regulated by the interaction model (2). We begin by

defining high and low groups of individuals based on the observed values Y1, . . .,Yn of the

quantitative phenotype Y such that:

• A high-group is consisting of individuals, whose phenotype values Yi fall into a critical

region, defined to be the top (1 − a) × 100% (a 2 ]0, 0.5]) highest values of phenotype among

all individuals, i.e., Yi� QY (1 − a), where QY (�) is a quantile function of the phenotype

distribution.

• For a low-group, a critical region corresponds the a × 100% lowest phenotype values i.e. a

control group is consisting of individuals to whom Yi� QY (a) holds.

The high and low groups are thereby conditioned to the corresponding tails of the pheno-

type distribution such that the magnitude of this conditioning depends on the a value. Note

that unless a equals to 0.5, individuals/samples between high and low groups are omitted from

the analysis so we prefer that a = 0.5. Let us proceed by introducing so-called truncated net-

work structures corresponding to the high and low groups:

• A high network G1−a = S1−a is constructed over individuals in a high group, i.e., to whom Yi

� QY (1 − a).

• A low network Ga = Sa is estimated over individuals, to whom Yi� QY (a) holds,

respectively.

However, we are not interested in the high and low networks as such but rather on the dis-

similarities between them as in [11, 12]. We therefore define a differential correlation co-

expression network (dCCN) structure as Ca = |S1−a − Sa| where the absolute value is taken

over the covariance/correlation matrix element-wise. The main idea will be first illustrated

with additional naive assumptions regarding the underlying model (2). When these assump-

tions are relaxed towards more realistic scenarios, new metrics are derived to modify data such

that these naive assumptions hold again.

Identifying interactions of type I and II

Determining a one-to-one correspondence between the type I interactions in the model (2)

and the differential networks is based on the following observation. Under certain conditions,

the dependencies in the high and low groups between two genes Xj and Xk are of different

signs with equal magnitudes if they form an important type I interaction term Xj Xk in the

model (2). Conversely, if Xj Xk is not an important interaction term of type I or type II, the

dependencies between Xj and Xk are equal to each other in the low and high groups. This

implies that there exists an edge between genes Xj and Xk (assuming that αjk = 0) in the corre-

sponding differential network only if the term Xj Xk is relevant type I interaction in the model

(2) (see the example (1) in S1 Appendix).
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Respectively, correlation/covariance dependency-metric (CCN) specific type II interactions

of the model (2) are identified by distinguishing certain dependency patterns between genes in

the high and low groups (see also the example (2) in S1 Appendix) which is self-evident by

their definition. The following proposition (proposition 1—proved in S1 Appendix) character-

izes these statements more precisely.

Proposition 1 Let Sa
j;k and S

1� a
j;k denote the correlations between variables Xj and Xk in the

low and high groups. Let us use a specifying notation a�jk for the type II interaction effect of genes
Xj and Xk that contribute to the phenotypic variation through a linear co-expression relationship
which is associated only with high (or low) phenotypic values. We also assume that Xk and Xj are
independent before the phenotypic truncation (Assumption A) and that the main effects βk and
βj are zero in the model (2) (Assumption B). Then we have that:

• Invariant property: If the interaction term Xj Xk and the response variable Y are independent
then Ca ¼ jS

a
j;k � S

1� a
j;k j ¼ 0.

• Property A1: If the interaction effect βjk in the model (2) is non-zero, and all type II interac-
tions among genes Xj and Xk are zero, then Sa

j;k ¼ � S
1� a
j;k 6¼ 0.

• Property B1: If the effect βjk in the model (2) is zero and a�jk > 0 then jSa
j;kj > 0 and S1� a

j;k ¼ 0

or vice versa if a�jk < 0.

This proposition forms the basis for the explicit link between the model (2) and a new kind

of differential network estimation method introduced in the next section.

Sign-adjusted estimation

Here we present a sign-adjusted dCCN which exploits the properties A1 and B1 in the proposi-

tion (1) to categorize interaction types I and II in the estimation process based on the standard

correlation/covariance dependency metric. Let us consider a dCCN Ca = |S1−a − Sa| where the

truncated correlation matrices Sa and S1−a represent the low and high networks for some

truncation point a 2 ]0, 0.5] in relation to the model (2). Then the sign-adjusted dCCN Csgn,a

is defined as Csgn,a = Ca�P(S1−a, Sa) where� is an element-wise matrix multiplication oper-

ator. The element-wise function P(�, �) is defined such that

PðS1� a
j;k ;S

a
j;kÞ ¼

1 if sgnðSa
j;kÞ ¼ � sgnðS

1� a
j;k Þ;

� 1 if jSa
j;kj > 0 and jS1� a

j;k j ¼ 0;

� 1 if jS1� a
j;k j > 0 and jSa

j;kj ¼ 0;

0 if jSa
j;kj ¼ 0 and jS1� a

j;k j ¼ 0:

8
>>>>>>>><

>>>>>>>>:

ð5Þ

The (j, k)th element of the sign-adjusted dCCN is denoted by Csgn,a(j, k). To evaluate from

data whether or not |Sj,k| = 0, we can perform a simple hypothesis test with an appropriate

Bonferroni correction [63] to account for the multiple testing problem. Alternatively, we could

simply apply a relatively small threshold r> 0 such that |Sj,k| is deemed to be zero if |Sj,k|< r
which is known as a hard-thresholding procedure [25].

While the regular dCCN (a simple difference of two correlation networks) captures the

effects in spurious form, the sign-adjusted dCCN characterizes the link between the differen-

tial network elements and the effects in the model (2) as follows:
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• (L1): If Csgn,a(j, k)> 0 then the associated type I interaction effect βjk is non-zero in the

model (2).

• (L2): If Csgn,a(j, k)< 0 then the associated type II interaction effect a�jk is non-zero in the

model (2).

• (L3): If Csgn,a(j, k) = 0 then both a�jk and βjk are zero in the model (2).

Note that the links L1-L3, at this point, rely on the naive assumption of the propositions (1-

2). Moreover, as dCCNs are based on standard correlation matrices, they are only capable of

identifying if genes are linearly dependent in one group but not in another. In the next sec-

tions, we generalize these ideas to be suitable in more realistic and complex scenarios.

Violation of the independence assumption

Let us consider the violation of the assumption (A) in the propositions (1-2). Differential co-

expression network type approaches including [11, 12, 31] are poorly capable of finding inter-

action terms Xk Xl when genes Xk and Xl are strongly correlated before the phenotypic trunca-

tion. This is due to fact that the high and low group construction cannot “break” the strong

dependency between two genes and therefore the property A1 in the proposition (1) does not

hold anymore as shown in S1 Appendix

Therefore, interaction terms are not identifiable if the correlation between genes is already

strong before the phenotypic truncation. The dependencies between genes before truncation

should be therefore accounted for by removing these dependencies in the estimation process.

A novel part-correlation metric

We propose a so-called truncated part-correlation matrix Fa
j;k ¼ corðXa

k ; ε
a
jjkÞ to remove linear

dependencies between genes Xj and Xk before the phenotypic truncation. Here εj|k is the resid-

ual resulting from regressing Xj against Xk in the non-truncated data. Each matrix element

F
a=1� a
j;k is then calculated as pairwise correlations between Xa=1� a

j and εa=1� a
jjk (or Xa=1� a

k and

εa=1� a
kjj ) for all 1� j, k� p (a/1 − a refers to high and low groups simultaneously). We call these

matrices as truncated part-correlation matrices to make clear difference to the partial correla-

tion/covariance matrices in which the conditioning is performed over all genes excluding the

pair Xj and Xk.

This seems rather counter-intuitive at first since the correlation between two variables after

removing the linear relationship between them is zero. However, now the assumption (A) in

the proposition (1) holds again and the systematic dependency behaviour described in the

property A1 remains between Xj and εj|k (or Xk and εk|j) when constructing the high and low

groups. Nevertheless, letFa and F1−a denote the truncated part-correlation matrices in the

low and high groups for some truncation point a 2 ]0, 0.5]. Then the part-correlation matrix

based differential network Qa (dPCCN) and its sign-adjusted version Qsgn,a with the truncation

point a 2 ]0, 0.5] are defined as

Qa ¼ jF
1� a � Faj and Qsgn;a ¼ Qa �PðF

1� a;FaÞ: ð6Þ

The (j, k)th elements of the dPCCN and sign-adjusted dPCCN are denoted by Qa(j, k) and Qa,

sgn(j, k). The following properties (the proof of which is given in S1 Appendix) are analogous

to the invariant and A1 properties in the proposition (1), except it only assumes that genes

involved in any phenotypically important interaction term do not have significant main effects

in the model (2).
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Proposition 2 LetFa
j;k and F

1� a
j;k denote the part-correlations between variables Xj and Xk in

the low and high groups. Let us assume that the corresponding main effects βk and βj are zero in
the model (2). Then we have that:

• Invariant property: If the interaction term Xj Xk and the response variable Y are independent
thenFa

j;k ¼ F1� a
j;k ¼ 0:

• Property C1: If βjk 6¼ 0 and αjk = 0 in the model (2) then Fa
j;k ¼ � F

1� a
j;k 6¼ 0:

In comparison to the dCCN version, the dPCCN method accounts for more complex acti-

vation/deactivation patterns between genes. However, the parametric forms of this kind of

type II interaction effects are more implicit (see S2 Appendix) than type II interaction effects

a�jk in the property B1, and need to be specified always case-specifically. Now the statements

L1-L3 hold for the sign-adjusted dPCCN elements Qa,sgn even if the assumption (A) does not.

However, so far the main effects of individual genes have not been accounted for. This signifi-

cantly undermines the possibility for interaction terms to be found for several reasons dis-

cussed in the next section.

Violation of the main effect assumption

Let us assume that some important type I interaction term Xj Xk is consisting of genes with

large main effects βj and βk in the model (2). In other words, the main effect assumption of the

previous propositions does not hold. However, it is required for the property A1 (see proof for

the proposition (1) in S1 Appendix) to be true that EðXa
j Þ ¼ EðXa

kÞ ¼ EðX1� a
j Þ ¼ EðX1� a

k Þ ¼ 0:

However, genes with strong main effects are linearly related to the phenotype by which high

and low groups are formed implying that this equality is not valid anymore. Another problem

is that the proportion of the phenotypic variation explained by the gene-gene interaction

might be insufficient for the interaction terms to be identifiable with small sample sizes [64–

66].

Residual step. The parallel consideration of the underlying parametric model (2) enables

an additional residual step to be used [64–66] by which the network estimation could be done

independently on the main effects: The main effects βk (k = 1, . . ., p) are first estimated in the

model (1) without the interaction terms to get the residual estimates

ε̂i ¼ Yi � m̂ �
Xp

j¼1

Xijb̂j : ð7Þ

The estimated residual vector ε̂i is independent of the main effects and considered as a new

response variable for the interaction terms such that

ε̂i ¼
X

k>j

XijXikbjk þ
X

k>j

ajkgðXij;XikÞ þ ε
�

i : ð8Þ

Here the random error ε�i;j of order two is assumed to follow a normal distribution with a

mean of zero and variance equal to s2
�
:Now instead of dividing individuals into the high and

low groups based on the original phenotype Yi we use the estimated residual values ε̂i : This

yields that the main effect assumption in the previous propositions can be assumed if the esti-

mated residual vector ε̂i is used as a response variable. Networks estimated by using this resid-

ual step are referred as residual-adjusted networks.
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