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In the analysis of neutron-antineutron oscillations, it has recently been argued in the literature that the use
of the iγ0 parity npðt;−x⃗Þ ¼ iγ0nðt;−x⃗Þ, which is consistent with the Majorana condition, is mandatory
and that the ordinary parity transformation of the neutron field npðt;−x⃗Þ ¼ γ0nðt;−x⃗Þ has difficulties.
We show that a careful treatment of the ordinary parity transformation of the neutron works in the analysis
of neutron-antineutron oscillations. Technically, CP symmetry in a mass diagonalization procedure is
important and the two parity transformations iγ0-parity and γ0-parity are compensated for by the Pauli-
Gürsey transformation. Our analysis shows that either choice of parity gives the correct results for neutron-
antineutron oscillations if carefully treated.
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I. INTRODUCTION

Motivated by the possible baryon number violation in
some unification schemes, many authors have discussed
neutron-antineutron oscillations in the past [1–9] (see also
Refs. [10,11]) and, in spite of the phenomenon not yet
having been observed, experimental bounds have been
established [12]. Experiments are planned to continue in
the near future [13]. Interest in the theoretical aspects of
discrete symmetries in the context of neutron-antineutron
oscillations was recently stimulated by Ref. [14], which
was then followed by several related works [15–21].
Historically, it appears that researchers did not pay much

attention to the existence of different definitions of the
parity operation or simply used conventional γ0-parity in
analyses of neutron oscillations. In [18], for example, two
definitions of parity were used in the analysis of two
different aspects of neutron oscillations and iγ0-parity was
used in [19]. Recently, Berezhiani and Vainshtein [21]
performed a detailed analysis of neutron-antineutron oscil-
lations using a two-component spinor notation and iγ0-
parity. They showed consistency in the use of iγ0-parity in
their analysis of neutron-antineutron oscillations. They also
commented that ordinary γ0-parity presents difficulties in
analyses of neutron oscillations. In this paper, however, we
will show that the γ0-parity for the initial neutron field is
perfectly consistent if the neutron oscillations are properly

formulated using CP symmetry for the characterization of
the emergent Majorana fermions. Our analysis justifies the
common use of γ0-parity in neutron-antineutron oscilla-
tions in the past. Combined with the analysis of iγ0-parity
in [21], one can thus use either definition of parity in an
analysis of neutron oscillations. We emphasize that the
known physics related to the neutron—namely, the hadron
scattering and the entirety nuclear physics, is based on
the use of γ0-parity (i.e., intrinsic parities of neutron
and antineutron �1). Thus the consistent description of
neutron-antineutron oscillations by γ0-parity is in fact
gratifying.
To fix the ideas and conventions, we start from the

quadratic effective Hermitian Lagrangian for the neutron
field nðxÞ with general small ΔB ¼ 2 terms added:

L ¼ n̄ðxÞiγμ∂μnðxÞ −mDn̄ðxÞnðxÞ

−
1

2
½mnTðxÞCnðxÞ þm†n̄ðxÞCn̄TðxÞ�

−
1

2
½m5nTðxÞCγ5nðxÞ −m†

5n̄ðxÞCγ5n̄TðxÞ�; ð1Þ

where mD is chosen to be a real positive parameter and m
and m5 are complex parameters, very small in absolute
value, which break the baryon number symmetry.
Our notational conventions follow [22]; in particular, the
charge conjugation matrix is defined by C ¼ iγ2γ0. The
parity-violating and fermion number preserving term
nðxÞðiγ5δmÞnðxÞ is eliminated by a chiral transformation
within the framework of Eq. (1). We analyze the full
implications of Eq. (1) without any further constraints,
except for the assumption that the magnitudes of jmj and
jm5j are very small compared to the neutron mass mD. It is
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known [10,11] that the main aspects of the possible
neutron-antineutron oscillations are described by the above
Lagrangian.
We define the basic discrete transformation operations

based on the free neutron which is assumed to be a Dirac
field:

Z
d4xLD ¼

Z
d4xfn̄ðxÞiγμ∂μnðxÞ −mDn̄ðxÞnðxÞg: ð2Þ

We define the charge conjugation C, which is given by the
representation theory of the Clifford algebra, by

nðxÞ → ncðxÞ ¼ CnðxÞT; ncðxÞ → nðxÞ; ð3Þ

and the parity P is defined as the mirror symmetry for a
Dirac fermion by the customarily used “γ0-parity”

nðt; x⃗Þ → npðt;−x⃗Þ ¼ γ0nðt;−x⃗Þ: ð4Þ

Both C and P, thus defined, preserve the Dirac
Lagrangian (2) invariant. The CP transformation rules
are defined by

nðt; x⃗Þ → PCnðt; x⃗ÞC†P† ¼ ncpðt;−x⃗Þ ¼ ðncÞpðt;−x⃗Þ
¼ −γ0ncðt;−x⃗Þ;

nðt; x⃗Þ → CPnðt; x⃗ÞP†C† ¼ npcðt;−x⃗Þ ¼ ðnpÞcðt;−x⃗Þ
¼ γ0ncðt;−x⃗Þ; ð5Þ

where we use ðncÞpðt;−x⃗Þ ¼ Cγ0nðt;−x⃗ÞT . Thus the
ordering is important, but when operating on fermionic
fields in a general Lagrangian, which is quadratic in
fermions, the ordering is not important. The parity trans-
formation of the charge conjugated fields is

ncðxÞ → ðncÞpðt;−x⃗Þ ¼ −γ0ncðt;−x⃗Þ: ð6Þ

This definition of parity amounts to assigning an intrinsic
parity þ1 to the neutron and −1 to the antineutron.
On the other hand, in the original work of Majorana

[23], the free Majorana fermion was defined by the same
action as the Dirac fermion in Eq. (2) but with purely
imaginary Dirac gamma matrices γμ. Then the free Dirac
equation

½iγμ∂μ −m�ψðxÞ ¼ 0 ð7Þ

is a real differential equation, and one can impose the
reality condition on the solution

ψðxÞ⋆ ¼ ψðxÞ; ð8Þ

which implies the self-conjugation property under the
charge conjugation.1 The conventional parity transforma-
tion ψðxÞ → ψpðt;−x⃗Þ ¼ γ0ψðt;−x⃗Þ cannot maintain the
reality condition (8) for the purely imaginary γ0. Thus the
“iγ0-parity”

ψðxÞ → ψpðt;−x⃗Þ ¼ iγ0ψðt;−x⃗Þ ð9Þ

is chosen as a natural parity transformation rule for the
Majorana fields [23,24].
In a generic representation of the Dirac matrices [22], the

iγ0-parity satisfies the condition

iγ0ψðt;−x⃗Þ ¼ Ciγ0ψðt;−x⃗ÞT ð10Þ

for the field which satisfies the classical Majorana
condition

ψðxÞ ¼ CψðxÞT; ð11Þ

and thus iγ0-parity is also a natural choice for the parity of
the Majorana fermion in this generic representation (as well
as in any other). See [25] for the phase freedom in the
definition of the parity operation. iγ0-parity can be used for
free Dirac fields as well, with the comment that the intrinsic
parity assigned to the corresponding particle and antipar-
ticle is the same, i.
For the Dirac fermion with Uð1Þ fermion number free-

dom, these two definitions of parity are equivalent, but their
equivalence is not obvious for theories with broken
fermionic number such as Eq. (1). One may suspect that
the conventional γ0-parity is inconsistent in theories where
Majorana fermions appear. In the analysis of neutron-
antineutron oscillations described by Eq. (1), one visualizes
a virtual process where the initial neutron turns into a
superposition of nondegenerate Majorana fermions which
after oscillation ends up being an antineutron. If one uses
the γ0-parity operation for the starting neutron, one may
thus suspect that a contradiction appears for the intermedi-
ate states with Majorana fermions. On the other hand,
iγ0-parity is consistent with both Dirac and Majorana
fermions and thus intuitively more natural for neutron-
antineutron oscillations.
In this paper, however, we will show that the use of the

conventional γ0-parity for the starting neutron field gives
a logically consistent description of neutron-antineutron
oscillations if a proper treatment and interpretation is
applied. The basic idea leading to this statement is that
C and P defined for the free Dirac Lagrangian (2) described
above are not generally well defined after the mass dia-
gonalization of the general Lagrangian (1) (see, however,

1The pure imaginary condition ψ⋆ðxÞ ¼ −ψðxÞ is also an
allowed solution, but we take Eq. (8) as the primary definition in
this paper.
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Appendix A), but the CP symmetry is defined for the
general Lagrangian (1) after the diagonalization of
the mass terms; the mass diagonalization is, after all,
required to define Majorana fermions. The proposal in
[26] is then to characterize the emergent Majorana fermions
by CP symmetry.2 A formal proof of the canonical
equivalence of the two choices of parity operation in the
analysis of neutron-antineutron oscillations will be given in
Appendix A using the Pauli-Gürsey transformation.

II. NEUTRON-ANTINEUTRON OSCILLATIONS
WITH γ0-PARITY

A. Consistent description of Majorana fermions

We first rewrite the Hermitian Lagrangian (1) in terms of
chiral notations as

L¼nLðxÞiγμ∂μnLðxÞþnRðxÞiγμ∂μnRðxÞ−mDnLðxÞnRðxÞ

−
1

2
mLnTLðxÞCnLðxÞ−

1

2
mRnTRðxÞCnRðxÞþH:c:; ð12Þ

with nR;LðxÞ ¼ ½ð1� γ5Þ=2�nðxÞ, for an effective use of the
CP transformation to characterize the Majorana fermions.
In terms of the mass parameters in Eq. (1),

mD; mL ¼ m −m5; mR ¼ mþm5: ð13Þ

Namely, we define the complex mass parameters mL and
mR, while mD is chosen to be real.
We recall the transformation laws of chiral fermions

derived from the chiral projection of the Dirac fermionic
field:

C∶nLðxÞ→ CnRðxÞT; nRðxÞ→ CnLðxÞT;
P∶nLðxÞ→ γ0nRðt;−x⃗Þ; nRðxÞ→ γ0nLðt;−x⃗Þ;

CP∶nLðxÞ→ −γ0CnLðt;−x⃗ÞT; nRðxÞ→ −γ0CnRðt;−x⃗ÞT:
ð14Þ

The minus signature in the CP transformation shows that
we are using the ncpðt;−x⃗Þ convention from Eq. (5). The
baryon-number-violating mass terms in the Lagarangian
(12) are transformed under C, P, and CP transformations in
Eq. (14) as

C∶ −
1

2
mLnTLðxÞCnLðxÞ −

1

2
mRnTRðxÞCnRðxÞ þ H:c:

→ −
1

2
m†

Rn
T
LðxÞCnLðxÞ −

1

2
m†

Ln
T
RðxÞCnRðxÞ þ H:c:;

P∶ −
1

2
mLnTLðxÞCnLðxÞ −

1

2
mRnTRðxÞCnRðxÞ þ H:c:

→ þ 1

2
mLnTRðxÞCnRðxÞ þ

1

2
mRnTLðxÞCnLðxÞ þ H:c:;

CP∶ −
1

2
mLnTLðxÞCnLðxÞ −

1

2
mRnTRðxÞCnRðxÞ þ H:c:

→ þ 1

2
m†

Ln
T
LðxÞCnLðxÞ þ

1

2
m†

Rn
T
RðxÞCnRðxÞ þ H:c:

ð15Þ

Namely, in the Lagrangian (12), C is a good symmetry for
mL ¼ m†

R and P is a good symmetry for mL ¼ −mR; CP is
a good symmetry for

mL ¼ −m†
L and mR ¼ −m†

R; ð16Þ

which can hold without any relation between mL and mR.
We emphasize, however, that these symmetry properties
of the “bare parameters” have no definite meaning after
the mass diagonalization in general, since the canonical
transformation parametrized by the matrix U which
diagonalizes the mass terms to define the Majorana
fermions carries away these discrete symmetries from
the sector of the fermion mass terms to the interaction
terms, as in the Standard Model. The actual discrete
symmetries are better analyzed based on the Lagrangian
after the mass diagonalization. On the other hand, one
may want to know the more detailed direct physical
implications of the starting Lagrangian based on direct
diagonalization. This aspect is briefly mentioned in
Appendix B.
We next diagonalize the Lagrangian (12) by writing the

mass term as

ð−2ÞLmass ¼ ð nR ncR Þ
�
m†

R mD

mD mL

��
ncL
nL

�
þ H:c:;

ð17Þ

where we define

ncL ≡ CnRT; ncR ≡ CnLT: ð18Þ

We diagonalize the complex symmetric mass matrix using
a 2 × 2 unitary matrix (Autonne-Takagi factorization)
[29,30]

UT

�
m†

R mD

mD mL

�
U ¼ i

�
M1 0

0 M2

�
; ð19Þ

2It has been recently shown [27] that the use of either γ0-parity
or iγ0-parity for chiral fermions gives a consistent equivalent
description of emergent Majorana fermions in Weinberg’s model
of neutrinos [28] in an extension of the Standard Model when CP
is used to characterize the Majorana neutrino formed of chiral
fermions.
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where M1 and M2 are positive real numbers which can be
chosen as characteristic values.3 This form of diagonaliza-
tion makes the Lagrangian with diagonal mass matrix CP
invariant.
When one defines

�
ncL
nL

�
¼ U

�
Nc

L

NL

�
;

�
nR
ncR

�
¼ U⋆

�
NR

Nc
R

�
ð20Þ

the mass term of the Lagrangian (12) becomes

ð−2ÞLmass ¼ iðNR Nc
R Þ

�
M1 0

0 M2

��
Nc

L

NL

�
þ H:c:

ð21Þ

The total Hermitian Lagrangian is then written as

L¼ 1

2
fNLðxÞi=∂NLðxÞþNc

LðxÞi=∂Nc
LðxÞþNRðxÞi=∂NRðxÞþNc

RðxÞi=∂Nc
RðxÞg− ði=2ÞðNR Nc

R Þ
�
M1 0

0 M2

��
Nc

L

NL

�
þH:c:

¼NLðxÞi=∂NLðxÞþNRðxÞi=∂NRðxÞ− ði=2ÞfNRCM1nRT −NT
RCM1NR−NLCM2NL

T þNT
LCM2NLg

¼ 1

2
ψþðxÞðiγμ∂μ−M1ÞψþðxÞþ

1

2
ψ−ðxÞðiγμ∂μ−M2Þψ−ðxÞ; ð22Þ

where we define the Majorana fields by

ψþðxÞ ¼ eiπ=4NRðxÞ − e−iπ=4CNRðxÞT;
ψ−ðxÞ ¼ eiπ=4NLðxÞ þ e−iπ=4CNLðxÞT; ð23Þ

which satisfy the classical Majorana conditions

ψþðxÞ ¼ −CψþðxÞT; ψ−ðxÞ ¼ Cψ−ðxÞT ð24Þ

identically, in the sense that these conditions are satisfied
regardless of the choice of NRðxÞ or NLðxÞ; one may
replace NRðxÞ with an arbitrary fermion field fRðxÞ in
Eq. (23), for example, and the resulting ψþðxÞ will still
satisfy the condition (24). We take the relations (24)
combined with the Dirac equations

ðiγμ∂μ −M1ÞψþðxÞ ¼ 0; ðiγμ∂μ −M2Þψ−ðxÞ ¼ 0

ð25Þ

as the definition of Majorana fermions based on an analysis
of the Clifford algebra. One may try to define the Majorana
fermion defined in Eq. (23) using a nontrivial charge
conjugation operator, but such an attempt generally fails
[31]. See, however, Sec. II C and Appendix A.

The transformation (20) preserves the form of the kinetic
term in the Lagrangian and thus the canonical anticommu-
tators; the transformation thus constitutes a canonical
transformation. The discrete symmetry rules (14) are thus
applied to new variables every time after the canonical
transformation [32–34].4 As explained in Appendix A, the
Uð2Þ transformation (20) is related to the Pauli-Gürsey
transformation.
The Lagrangian (22) is not invariant under the C or P

transformation defined conventionally in Eq. (14) sepa-
rately for M1 ≠ M2, as shown below, while the Lagrangian
is invariant under the CP transformation in Eq. (14),
NLðxÞ → −γ0CNLðt;−x⃗ÞT and NRðxÞ→−γ0CNRðt;−x⃗ÞT ,
for any M1 and M2. We can also confirm this by using the
formal operator notations for the transformations (14)

ðPCÞfeiπ=4NRðxÞ−e−iπ=4CNRðxÞTgðPCÞ†¼iγ0ψþðt;−x⃗Þ;
ðPCÞfeiπ=4NLðxÞþe−iπ=4CNLðxÞTgðPCÞ†¼−iγ0ψ−ðt;−x⃗Þ:

ð26Þ

We thus characterize these Majorana fields by CP sym-
metry in Eq. (14),

ðPCÞψþðxÞðPCÞ† ¼ −iγ0Cψþðt;−x⃗ÞT ¼ iγ0ψþðt;−x⃗Þ;
ðPCÞψ−ðxÞðPCÞ† ¼ −iγ0Cψ−ðt;−x⃗ÞT ¼ −iγ0ψ−ðt;−x⃗Þ;

ð27Þ

3The relation (19) may be regarded as the ordinary Autonne-

Takagi factorization of the matrix ð−iÞ
�
m†

R mD

mD mL

�
. Also, the

relation (19) written in terms of a unitary matrix Ue−iπ=4 will be
discussed in Appendix A in connection with the Pauli-Gürsey
transformation. Mathematically, the Autonne-Takagi factoriza-
tion with a suitable unitary matrix gives rise to characteristic
values. ThusM1 andM2 can be chosen to be real and positive for
a suitable Ue−iπ=4 in Eq. (19). A crucial difference between the
Autonne-Takagi factorization and the conventional unitary trans-
formation is that one can change the phase of the diagonal
elements freely by choosing a suitable U as in Eq. (19).

4We also apply the same transformation rules to the old
variables. Thus the C, P, and CP transformations of the old
variables do not reproduce in general those symmetries of the
new variables after the canonical transformation, which changes
the forms of the mass terms and interaction terms. The classic
Kobayashi-Maskawa analysis of CP violation illustrates an
example of the use of a canonical transformation [35].
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where the first equalities are the operator relations and the
second equalities are the classical Majorana conditions
(24); combined, these two operations reproduce Eq. (26). It
is crucial that these CP transforms are consistent with the
classical Majorana conditions in the sense that

ψþðxÞ ¼ −CψþðxÞT → iγ0ψþðt;−x⃗Þ ¼ −Ciγ0ψþðt;−x⃗Þ;
ψ−ðxÞ ¼ Cψ−ðxÞT → −iγ0ψ−ðt;−x⃗Þ ¼ C−iγ0ψ−ðt;−x⃗Þ;

ð28Þ

which is a counterpart of the crucial consistency of the iγ0-
parity (9) and the classical Majorana condition (11). In this
formulation, we do not specify the parity transformation for
the Majorana field, but rather the CP parity. One can see
that, while the CP transformation (27) is specified and
leaves the Lagrangian invariant, we have for the γ0-parity

PψþðxÞP† ¼ Pfeiπ=4NRðxÞ − e−iπ=4CNRðxÞTgP†

¼ eiπ=4γ0NLðt;−x⃗Þ − e−iπ=4Cγ0NLðt;−x⃗ÞT

¼ γ0½eiπ=4NLðt;−x⃗Þ þ e−iπ=4CNLðt;−x⃗ÞT �
¼ γ0ψ−ðt;−x⃗Þ;

Pψ−ðxÞP† ¼ γ0ψþðt;−x⃗Þ; ð29Þ

which is not a symmetry of the Lagrangian (22) for
M1 ≠ M2, which is required for neutron oscillations.
We emphasize that the relations (29) correspond to the

“parity doubling theorem” that we discussed before—
namely, the γ0-parity invariance of the Lagrangian after
mass diagonalization leads to degeneracy of the emergent
Majorana fermions M1 ¼ M2 and thus to no neutron-
antineutron oscillations [18]. In this sense, γ0-parity is a
criterion for discrimination between the Lagrangians which
may lead to oscillations and those that do not: γ0-parity
violation of the baryon-number-violating Lagrangian writ-
ten in terms of the original neutron field is a necessary
condition for oscillation [see Eq. (42)]. Note that this is a
technical criterion and that it does not indicate a physically
observable parity violation in oscillation, as explained
in [18].
The charge conjugation is not a symmetry either:

CψþðxÞC† ¼ Cfeiπ=4NRðxÞ − e−iπ=4CNRðxÞTgC†
¼ eiπ=4CNL

TðxÞ − e−iπ=4NLðxÞ
¼ i½eiπ=4NLðxÞ þ e−iπ=4CNLðxÞT �
¼ iψ−ðxÞ;

Cψ−ðxÞC† ¼ −iψþðxÞ: ð30Þ

Namely, it is not the symmetry of the Lagrangian (22)
for M1 ≠ M2.

B. Neutron-antineutron oscillations

The starting neutron field, which is understood to be the
neutron produced by strong interactions, is related to the
“mass eigenstate” NðxÞ by Eq. (20) that is in turn expressed
in terms of Majorana fields. We define the new fields

n̂ðxÞ≡ eiπ=4nðxÞ; N̂ðxÞ≡ eiπ=4NðxÞ ð31Þ

in terms of which the Majorana fields [23] are written as

ψþðxÞ ¼ N̂RðxÞ − CN̂RðxÞT;
ψ−ðxÞ ¼ N̂LðxÞ þ CN̂LðxÞT; ð32Þ

and we have

n̂ðxÞ ¼ n̂R þ n̂L

¼ ðÛ⋆
11ψþðxÞR − Û21ψþðxÞLÞ

þ ðÛ⋆
12ψ−ðxÞR þ Û22ψ−ðxÞLÞ;

n̂cðxÞ ¼ n̂cR þ n̂cL

¼ ðÛ⋆
21ψþðxÞR − Û11ψþðxÞLÞ

þ ðÛ⋆
22ψ−ðxÞR þ Û12ψ−ðxÞLÞ: ð33Þ

We defined the matrix elements of a new 2 × 2 unitary
matrix

Û≡
�
e−iπ=4 0

0 eiπ=4

�
U

�
eiπ=4 0

0 e−iπ=4

�

¼
�
e−iπ=4 0

0 eiπ=4

��
U11 U12

U21 U22

��
eiπ=4 0

0 e−iπ=4

�
;

ð34Þ

which satisfies, instead of Eq. (20),

�
n̂cL
n̂L

�
¼ Û

�
N̂c

L

N̂L

�
;

�
n̂R
n̂cR

�
¼ Û⋆

�
N̂R

N̂c
R

�
: ð35Þ

The external fields n̂ðxÞ and n̂cðxÞ are treated as analogs of
“flavor” fields in these neutron-antineutron oscillations.5

When one uses the (valid) CP symmetry of Majorana
fermions in Eq. (27), it is confirmed that the relations (33)
show that CP symmetry is broken for Û ≠ Û⋆ in the sense
that

5If one adjusts the phase conventions of the starting neutron
fields nðxÞ and ncðxÞ suitably in Eq. (1), one can avoid the use of
fields with the hat notation. We prefer, however, to keep the
present notational convention to emphasize that we start with a
generic Lagrangian (1) and examine what happens if one applies
the conventional γ0 parity operation.
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CPn̂ðxÞðCPÞ† ≠ −iγ0n̂cðt;−x⃗Þ: ð36Þ

Namely, the operations of CP at the level of Majorana
fermions do not agree with the expected operations ofCP at
the level of the neutron n̂ðxÞ produced by strong inter-
actions [using the definition of Eq. (31) and the trans-
formation rules (14)].
The unitary matrix U in Eq. (20) [or the matrix Û (34)

among the variables with a hat] transfers the CP-violating
effects to the interaction terms, which contains the coupling
to other particles such as the proton depending on the
detailed specification of the effective model, leaving the
CP invariant Lagrangian (22) for the sector of Majorana
fermions. Unlike the CP analysis of the seesaw model in an
extension of the Standard Model [31,36–38], which is
described by a Lagrangian closely related to Eq. (12), this
effective theory is not designed to analyze the CP sym-
metry breaking, since the weak current which describes the
transition between nðxÞ and pðxÞ is not purely left-handed

and nL is a superposition of mass eigenstates NL and Nc
L

with approximately equal weight factors. This case is very
different from the Standard Model. A realistic analysis of
CP symmetry breaking related to the transition between
nðxÞ and pðxÞ would require a study of the fundamental
quark level dynamics.
On the other hand, this effective theory is useful for

understanding a general qualitative aspect of CP symmetry
such as the question of whether CP symmetry can be
measured in neutron-antineutron oscillations by treating
nðxÞ and ncðxÞ as analogs of flavor fields. We discuss this
aspect of CP symmetry here.
As for the neutron-antineutron oscillations, assuming a

sudden projection treatment (“sudden” in the sense of the
change of the description in terms of a neutron to the
description in terms of nondegenerate Majorana fermions),
we have, by defining the neutron state at t ¼ 0 as
jnð0; p⃗Þi ¼ n̂†ð0; p⃗ÞT j0i and similarly the antineutron state
at the time t as hn̄ðt; p⃗Þj ¼ h0jn̂cðt; p⃗ÞT ,

hn̄ðt; p⃗Þjnð0; p⃗Þi ¼ ðÛ⋆
21Û11Þ½hψþRðt; p⃗ÞjψþRð0; p⃗Þi þ hψþLðt; p⃗ÞjψþLð0; p⃗Þ�i

þ ðÛ⋆
22Û12Þ½hψ−Rðt; p⃗Þjψ−Rð0; p⃗Þi þ hψ−Lðt; p⃗Þjψ−Lð0; p⃗Þi�

¼ ðÛ⋆
21Û11Þhψþðt; p⃗Þjψþð0; p⃗Þi þ ðÛ⋆

22Û12Þhψ−ðt; p⃗Þjψ−ð0; p⃗Þi: ð37Þ

If one notes the relation Û21Û
⋆
11 þ Û22Û

⋆
12 ¼ 0 arising from the unitarity of Û, one obtains

jhn̄ðt; p⃗Þjnð0; p⃗Þij2 ¼ jðÛ21Û
⋆
11Þj2j½hψþðt; p⃗Þjψþð0; p⃗Þi − hψ−ðt; p⃗Þjψ−ð0; p⃗Þi�j2

¼ jðÛ21Û
⋆
11Þj2j½eiE1thψþð0; p⃗Þjψþð0; p⃗Þi − eiE2thψ−ð0; p⃗Þjψ−ð0; p⃗Þi�j2

¼ 4jðÛ21Û
⋆
11Þj2j sin2ðΔEt=2Þ; ð38Þ

where ΔE ¼ E1 − E2, with Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

i

p
; i ¼ 1, 2,

and where we use hψþð0; p⃗Þjψþð0; p⃗Þi ¼ hψ−ð0; p⃗Þ×
jψ−ð0; p⃗Þi ¼ 1. It is significant that the amplitude
hn̄ðt; p⃗Þjnð0; p⃗Þi is expressed in terms of the well-defined
hψþðt; p⃗Þjψþð0; p⃗Þi and hψ−ðt; p⃗Þjψ−ð0; p⃗Þi without
any chiral projection operators in this treatment. Hence,
the use of chiral fermions is a matter of mathematical
convenience.
Equation (38) shows that the effect of CP breaking

does not appear in the oscillation probability in this
effective theory, although the absolute values of the
amplitude depend on the possible CP breaking, which
is in agreement with the conclusion drawn in [18]. This
has been confirmed by a detailed calculation using a
quantum field theoretical procedure using a method of
unitarily inequivalent representations in the Hamiltonian
formalism [20].
For the sake of completeness, we present here an exact

mass difference after the mass diagonalization (19). We
first rewrite Eq. (19) in the form

U†
�

m2
DþjmRj2 mDðmRþmLÞ

mDðm†
Rþm†

LÞ m2
Dþ jmLj2

�
U¼

�
M2

1 0

0 M2
2

�
:

ð39Þ

From the considerations of the trace and the determinant of
this relation, we have

M2
1þM2

2 ¼ 2m2
Dþ jmRj2þjmLj2;

M2
1M

2
2 ¼ ðm2

DþjmRj2Þðm2
Dþ jmLj2Þ−m2

DjmRþmLj2;
ð40Þ

and thus

ðM2
1 −M2

2Þ2 ¼ 4m2
DjmR þmLj2 þ ðjmRj2 − jmLj2Þ2

¼ 16m2
Djmj2 þ 4ðmm⋆

5 þm⋆m5Þ2; ð41Þ
which implies jM2

1 −M2
2j ¼ 4mDjmj for mD ≫ jm5j for an

arbitrary m ≠ 0. Finally,
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jM1 −M2j ¼ 2jmj ð42Þ

for mD ≫ jmj. In the same approximation, one has M1;2 ¼
mD � jmj when choosing M1 > M2.
The complete absence of CP breaking implies Û ¼ Û⋆

in Eq. (36)—namely, one may choose a real unitary Û in
Eq. (34) which is a generic orthogonal matrix:

Û ¼
�

cos θ sin θ

− sin θ cos θ

�
: ð43Þ

Thus in the absence of the CP violation contained in Û, we
have the standard formula for the neutron-antineutron
oscillation probability [for nonrelativistic neutrons with
mD ≫ jmj as in Eq. (42)]:

jhn̄0ðt; p⃗Þjn0ð0; p⃗Þij2 ¼ sin2ð2θÞ sin2ðΔEt=2Þ: ð44Þ

C. Deformed symmetry generated by CM and PM

One may wonder whether it is possible to define C and P
symmetries valid for the emergent Majorana fermions in
this formulation. It is possible to define a formal deformed
symmetry generated by [27,34]

CM ¼ 1; PM ¼ PC; ð45Þ
which is a symmetry of Eq. (22) and

CMψþðxÞC†M ¼ ψþðxÞ; PMψþðxÞP†
M ¼ iγ0ψþðt;−x⃗Þ;

CMψ−ðxÞC†M ¼ ψ−ðxÞ; PMψ−ðxÞP†
M ¼ −iγ0ψ−ðt;−x⃗Þ;

ð46Þ

as given in Eq. (27). The nontrivial part of this deformation
is the CP symmetry and, in this sense, this deformation is
essentially equivalent to the formulation of the Majorana
fermion with PC ¼ PMCM as described above. It is
assuring that the “parity” defined in Eq. (46) corresponds
to �iγ0-parity and is thus consistent with the classical
Majorana condition. The classical Majorana condition
ψþðxÞ ¼ −CψþðxÞT or ψ−ðxÞ ¼ Cψ−ðxÞT in Eq. (24),
which determines whether a given fermionic field is a
Majorana field, carries the same physical information as the
trivial operation CMψ�ðxÞC†M ¼ ψ�ðxÞ applied to the field
ψ�ðxÞ, which is assumed to be the Majorana fermion
ψþðxÞ ¼ −CψþðxÞT or ψ−ðxÞ ¼ Cψ−ðxÞT, respectively.
Physicswise, those modified C and P symmetries do not
add new ingredients to the analysis of neutron-antineutron
oscillations.

III. DISCUSSION AND CONCLUSION

We have shown that the use of the conventional γ0-parity
for the starting neutron field gives rise to a consistent

description of the emergent Majorana fermions in the
oscillation process and thus a consistent description of
neutron-antineutron oscillations. Physically, this choice is
warranted by the fact that the neutron produced in strong
interactions is viewed as a Dirac particle, with the oscil-
lation-inducing Majorana mass terms being the effective
expression of some (thus far hypothetical) additional
interaction. The crucial observation is that the emergent
Majorana fermions are characterized by CP symmetry and
are consistent with the classical Majorana condition, as in
Eqs. (27) and (28). Technically, the C and P defined for the
starting neutron are not good symmetries of the emergent
Majorana fermions in the chiral description (22) for
M1 ≠ M2, which is required for neutron-antineutron oscil-
lations, and thus the choice of γ0-parity or iγ0-parity for the
initial neutron does not make a decisive difference (see also
Appendix A).
Although the general Lagrangian (1) is physically P and

CP violating, the definitions of γ0- or iγ0-parities still have
their respective merits in the analysis of neutron oscilla-
tions: the γ0-parity produces a criterion, in the form of the
parity doubling theorem, for the existence of oscillations
for particular choices of the mass parameters in Eq. (1) (see
Ref. [18]), while iγ0-parity emphasizes the P and CP
invariance of the oscillation probability (see Refs. [18,21]).
This formulation supports past analyses of neutron-

antineutron oscillations using the ordinary γ0-parity con-
ducted, for example, in [15,18] from a different theoretical
perspective.
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APPENDIX A: PAULI-GÜRSEY
TRANSFORMATION

We show that the different choice of the parity operation,
iγ0 or γ0, is compensated for by the Pauli-Gürsey trans-
formation [32–34] in the diagonalization process of the
mass matrix. We thus formally understand the canonical
equivalence of the two choices of parity operation in an
analysis of neutron-antineutron oscillations on the basis of
an effective Lagrangian (1).
In the formulation with iγ0-parity as given in [21], one

may choose the Autonne-Takagi factorization of a complex
symmetric matrix [instead of Eq. (19)]

U0T
�
m†

R mD

mD mL

�
U0 ¼

�
M1 0

0 −M2

�
ðA1Þ

and define
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�
ncL
nL

�
¼ U0

�
Nc

L

NL

�
;

�
nR
ncR

�
¼ U0⋆

�
NR

Nc
R

�
: ðA2Þ

Note that the Autonne-Takagi factorization is very different
from the conventional diagonalization of a Hermitian

matrix by a unitary transformation: the Autonne-Takagi
factorization basically gives rise to characteristic values
(i.e., real and positive M1 and M2), but the phase freedom
of the diagonal elements is still left free. The total
Hermitian Lagrangian (12) is then written as

L ¼ 1

2
fNLðxÞi=∂NLðxÞ þ Nc

LðxÞi=∂Nc
LðxÞ þ NRðxÞi=∂NRðxÞ þ Nc

RðxÞi=∂Nc
RðxÞg

− ð1=2Þ
�
NR Nc

R

��
M1 0

0 −M2

��
Nc

L

NL

�
þ H:c:

¼ NLðxÞi=∂NLðxÞ þ NRðxÞi=∂NRðxÞ − ð1=2ÞfNRCM1NR
T þ NT

RCM1NR − NLCM2NL
T − NT

LCM2NLg

¼ 1

2
ψþðxÞðiγμ∂μ −M1ÞψþðxÞ þ

1

2
ψ−ðxÞðiγμ∂μ −M2Þψ−ðxÞ; ðA3Þ

where we define the Majorana fields by

ψþðxÞ ¼ NRðxÞ þ CNRðxÞT;
ψ−ðxÞ ¼ NLðxÞ − CNLðxÞT; ðA4Þ

and they satisfy the classical Majorana conditions

ψþðxÞ ¼ CψþðxÞT; ψ−ðxÞ ¼ −Cψ−ðxÞT ðA5Þ

identically in the sense that these conditions are satisfied
regardless of the choice ofNRðxÞ orNLðxÞ. The Lagrangian
(A3) is invariant under the CP symmetry

NLðxÞ → iγ0CNLðt;−x⃗ÞT; NRðxÞ → iγ0CNRðt;−x⃗ÞT
ðA6Þ

defined by iγ0 parity for any realM1 andM2, and the same
CP gives

ðPCÞψþðxÞðPCÞ† ¼ iγ0ψþðt;−x⃗Þ;
ðPCÞψ−ðxÞðPCÞ† ¼ −iγ0ψ−ðt;−x⃗Þ; ðA7Þ

which are consistent with the classical Majorana conditions
(A5). According to the iγ0 modification of the transforma-
tions (14) which treatNL andNR as the chiral components of
a Dirac field, we note, however, that neither C

CψþðxÞC† ¼ NLðxÞ þ CNLðxÞT;
Cψ−ðxÞC† ¼ −NRðxÞ þ CNRðxÞT ðA8Þ

nor P (iγ0-parity)

PψþðxÞP† ¼ iγ0½NLðxÞ þ CNLðxÞT �;
Pψ−ðxÞP† ¼ iγ0½NRðxÞ − CNRðxÞT � ðA9Þ

are good symmetries of Eq. (A3) forM1 ≠ M2 [i.e., jmj ≠ 0
in Eq. (42) using a fact mentioned below]. Nevertheless the
Lagrangian (A3) is physically P and C invariant, upon a
redefinition of these transformations which complies with
the Majorana condition (A4), using the deformed symmetry
generators as in Eq. (45).
When one remembers that the starting mass matrix and

the neutron field are common and that the mass eigenvalues
M1 and M2 are common for either choice of the parity
operation, as is directly confirmed by deriving the relations
(39) and (40) for the relation (A1) also with U → U0, one
can confirm that the matrix U0 in Eq. (A1) is written using
the U in Eq. (19) as

U0 ¼ UU0; ðA10Þ

with

U0 ¼ e−iπ=4
�
1 0

0 i

�
¼

�
e−iπ=4 0

0 eiπ=4

�
: ðA11Þ

The mass eigenstates in Eq. (A2) and the mass eigenstates
in Eq. (20) are then related by

U0

�
Nc

L

NL

�
iγ0

¼
�
Nc

L

NL

�
γ0
; U0

⋆
�
NR

Nc
R

�
iγ0

¼
�
NR

Nc
R

�
γ0
;

ðA12Þ

with U0 ∈ Uð2Þ of the Pauli-Gürsey canonical transforma-
tion [32–34]. In this sense, the two different definitions of
parity are canonically equivalent. The secret of the appear-
ance of this relation is traced to the hidden freedom in the
definition of classical Majorana fermions; the definition of
Majorana fermions in Eq. (A4) is extended to the definition
of Majorana fermions in Eq. (23) with a phase freedom
which is precisely related to this freedom of the canonical
transformation. To be precise, it is confirmed that
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fψ�ðxÞgiγ0 ¼ ð−iÞfψ�ðxÞgγ0 ðA13Þ

in this phase convention, which is consistent with the
classical Majorana conditions (24) and (A5). It is confirmed
that the same oscillation formula as in Eq. (38) is valid for
the description with iγ0-parity by noting that jðÛ21Û

⋆
11Þj2 ¼

jðU21U⋆
11Þj2 ¼ jðU0

21U
0⋆
11Þj2. The CP invariance corre-

sponds to U0 ¼ U0⋆.
Finally, we would like to add a comment on the

formulation in [21] from our point of view. We recall
the use of a specific Pauli-Gürsey transformation in the
context of a seesaw model of neutrinos [26], which is
relevant to this problem. As for a related use of the
Bogoliubov transformation; see [31,39]. One may apply
the Pauli-Gürsey Uð2Þ transformation

�
Nc

L

NL

�
¼ O

�
ñcL
ñL

�
;

�
NR

Nc
R

�
¼ O

�
ñR
ñcR

�
ðA14Þ

with an element

O ¼ 1ffiffiffi
2

p
�

1 1

−1 1

�
ðA15Þ

to the first line of the Lagrangian (A3), which corresponds
to a single generation model of the neutrino. One obtains

L ¼ 1=2fñðxÞi=∂ñðxÞ þ ñcðxÞi=∂ñcðxÞg
− 1=4fñðM1 þM2Þñþ ñcðM1 þM2Þñcg
− 1=4fñðM1 −M2Þñc þ ñcðM1 −M2Þñ; g; ðA16Þ

which is invariant under C, P (iγ0-parity), and CP. See
Eq. (45) and Eqs. (55)–(57) in [26]. If one setsM1 þM2 ¼
2M and M1 −M2 ¼ 2ϵ, this Lagrangian becomes

L ¼ ñðxÞi=∂ñðxÞ −Mñ ñ−
1

2
ϵ½ñCñT þ ñTCñ�; ðA17Þ

which has precisely the form of the Lagrangian discussed
in [21].
This shows that our starting Lagrangian (1), our

Lagrangians (22) and (A3), and the Lagrangian used in
[21] are related by the Pauli–Gürsey transformation and
thus canonically equivalent. This fact, however, does not
imply that our starting Lagrangian (1) is C, P (iγ0-parity),
and CP invariant since the Pauli-Gürsey unitary trans-
formations can carry these symmetries to the interaction
sector depending on the model. Let us note that, in the
context of neutron oscillations, the Lagrangian (A17) does
not make the analysis of discrete transformations more
transparent than the diagonal Majorana Lagrangian (A3).
Moreover, the parameter M in (A17) is not the neutron
mass mD, but rather a complicated relation between the
mass parameters in Eq. (1) (calculated exactly in [18]),

making the meaning of M phenomenologically less trans-
parent. There is no reason why one should adopt the
Lagrangian (A17), which is one of the canonically equiv-
alent Lagrangians, to describe the neutron-antineutron
oscillations.
Incidentally, one can confirm that the γ0-parity becomes

good symmetry forM1 ¼ M2 in either Eq. (22) or Eq. (A3)
[and also in Eq. (A16)] and thus leads to the parity-doublet
theorem—namely, no oscillations [18].

APPENDIX B: DIRECT PARITY ANALYSIS OF
THE ΔB= 2 LAGRANGIAN

The Lagrangian (1) was systematically analyzed in [18]
regarding the physical P, C, and CP symmetries before and
after diagonalization. Here we give a summary of those
results. One can easily take the Lagrangian (1) to the form

L ¼ n̄ðxÞiγμ∂μnðxÞ −mDn̄ðxÞnðxÞ

−
i
2
jmj½eiαnTðxÞCnðxÞ − e−iαn̄ðxÞCn̄TðxÞ�

−
i
2
jm5j½nTðxÞCγ5nðxÞ þ n̄ðxÞCγ5n̄TðxÞ�; ðB1Þ

wheremD and α are real parameters, by a redefinition of the
neutron field which absorbs the phase of m5. No other
redefinitions of the neutron field are permitted due to the
baryon number symmetry violation.
One can check directly to ensure that, under the γ0-parity

definition of the neutron field n, the jmj term in Eq. (B1) is
parity odd, while the jm5j term is even; under iγ0-parity, the
jmj term in Eq. (B1) is parity even, while the jm5j term is
odd. Actually, any definition of the parity with an arbitrary
phase, eiφγ0-parity, leads to a result of parity violation. The
charge conjugation is generally not conserved either. One
confirms that, irrespective of the value of α ≠ 0 in Eq. (B1),
theCP violation cannot be eliminated as long asm;m5 ≠ 0.
Consequently, for α ≠ 0 and mm5 ≠ 0 in Eq. (B1), parity
and CP are intrinsically violated.
Upon diagonalization, the Lagrangian (B1) is brought to

the form of a sum of two free Majorana Lagrangians,

L ¼ 1

2
ψþðxÞðiγμ∂μ −M1ÞψþðxÞ

þ 1

2
ψ−ðxÞðiγμ∂μ −M2Þψ−ðxÞ;

where

M1;2 ¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
D þ jm5j2

q
� jmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðjm̃j=jmjÞ2

q �
2

þ ðjm̃jÞ2
�

1=2
; ðB2Þ
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with jm̃j≡ϵ1 sinαsin2ϕ and sin2ϕ≡ jm5j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Dþjm5j2
p

.
On the other hand, the exact solution of the relation (43)
is written for the parameterization of mass parameters in
(B1) as

M2
1;2 ¼ m2

D þ jm5j2 þ jmj2 � 2jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ jm5j2cos2α
q

:

ðB3Þ
One can confirm that (B2) agrees exactly with (B3). This
shows that the characteristic values of the mass matrix are
invariant under the canonical transformation, and the
oscillation formula in [18] is exact and agrees with (38),
as it should be.
In terms of the original parameters in the Lagrangian

(1), we note that the mass splitting between the Majorana
fields, and consequently the oscillation, can occur only if
m ≠ 0. Taking into account that in the physically relevant
situation jmj; jm5j ≪ mD, one finds from Eq. (B2) in this
approximation that jM1 −M2j ¼ 2jmj [see also for-
mula (42)]—namely, the correction to the value of the
probability of oscillation due to the CP-breaking param-
eters α and m5, though not exactly vanishing, is imma-
terial. However, for any value of the parameters in the
Lagrangian (1), the probability of oscillation per se is P
and CP invariant. In other words, although the general

Lagrangian is P and CP violating, the oscillation
probability is not.
The choice of the conventional γ0-parity transformation

is as legitimate as the choice of the iγ0-parity trans-
formation advocated as the only sensible choice in
Ref. [21], since the general ΔB ¼ 2 Lagrangian (1) written
in terms of the original neutron field nðxÞ is not invariant
under any of them as long as mm5 ≠ 0, and in general it is
not invariant under any conceivable eiφγ0-parity trans-
formation (see [18]). As a result, the Lagrangian (1)
describes effectively mass-generating interactions which
break parity, and in general also CP [unless α is set to zero
in Eq. (B1) by hand or by physical arguments]. This
breaking is not observable in neutron-antineutron oscilla-
tions, which are based on the simple quadratic Majorana
Lagrangian (22), but it is carried over to the interaction
terms by the mixing matrix U. Moreover, as shown in [18],
if high-energy CP-violating interactions generate the m5

term in the Lagrangian (1), their effects would show up in
an enhanced electric dipole moment of the neutron com-
pared to the one generated by the QCD θ term. In short, no
single choice of the parity transformation of the original
neutron field nðxÞ gives more information than any other
when the total Lagrangian, with all the interactions
included, is taken into consideration.
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(Plenum, New York, 1980), p. 687.

[4] L. N. Chang and N. P. Chang, Phys. Lett. 92B, 103
(1980).

[5] R. N. Mohapatra and R. E. Marshak, Phys. Lett. 94B, 183
(1980).

[6] T. K. Kuo and S. Love, Phys. Rev. Lett. 45, 93 (1980).
[7] L. N. Chang and N. P. Chang, Phys. Rev. Lett. 45, 1540

(1980).
[8] K. G. Chetyrkin, M. V. Kazarnovsky, V. A. Kuzmin, and M.

E. Shaposhnikov, Phys. Lett. 99B, 358 (1981).
[9] S. Rao and R. E. Shrock, Phys. Lett. 116B, 238 (1982).

[10] R. N. Mohapatra, J. Phys. G 36, 104006 (2009).
[11] D. G. Phillips II et al., Phys. Rep. 612, 1 (2016).
[12] M. Baldo-Ceolin et al. (ILL Collaboration), Z. Phys. C 63,

409 (1994); J. Chung et al. (Soudan II Collaboration),
Phys. Rev. D 66, 032004 (2002); K. Abe et al. (Super-
Kamiokande Collaboration), Phys. Rev. D 91, 072006
(2015); B. Aharmim et al. (SNO Collaboration), Phys.
Rev. D 96, 092005 (2017).

[13] A. Addazi et al., arXiv:2006.04907.
[14] Z. Berezhiani and A. Vainshtein, arXiv:1506.05096.

[15] K. Fujikawa and A. Tureanu, arXiv:1510.00868.
[16] D. McKeen and Ann E. Nelson, Phys. Rev. D 94, 076002

(2016).
[17] S. Gardner and Xinshuai Yan, Phys. Rev. D 93, 096008

(2016).
[18] K. Fujikawa and A. Tureanu, Phys. Rev. D 94, 115009

(2016).
[19] K. Fujikawa and A. Tureanu, Phys. Lett. B 777, 240

(2018).
[20] A. Tureanu, Phys. Rev. D 98, 015019 (2018).
[21] Z. Berezhiani and A. Vainshtein, Phys. Lett. B 788, 58

(2019).
[22] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields

(McGraw-Hill, New York, 1965).
[23] E. Majorana, Nuovo Cimento 14, 171 (1937).
[24] B. Kayser, Phys. Rev. D 26, 1662 (1982).
[25] S. Weinberg, The Quantum Theory of Fields I

(Cambridge University Press, Cambridge, England,
1995).

[26] K. Fujikawa, Eur. Phys. J. C 80, 285 (2020).
[27] K. Fujikawa, Phys. Rev. D 102, 105001 (2020).
[28] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[29] L. Autonne, Ann. Univ. Lyon 38, 1 (1915).
[30] T. Takagi, Jpn. J. Math. 1, 83 (1925).
[31] K. Fujikawa and A. Tureanu, Eur. Phys. J. C 79, 752

(2019).

KAZUO FUJIKAWA and ANCA TUREANU PHYS. REV. D 103, 065017 (2021)

065017-10

https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1016/0370-2693(80)90314-7
https://doi.org/10.1016/0370-2693(80)90314-7
https://doi.org/10.1016/0370-2693(80)90853-9
https://doi.org/10.1016/0370-2693(80)90853-9
https://doi.org/10.1103/PhysRevLett.45.93
https://doi.org/10.1103/PhysRevLett.45.1540
https://doi.org/10.1103/PhysRevLett.45.1540
https://doi.org/10.1016/0370-2693(81)90117-9
https://doi.org/10.1016/0370-2693(82)90333-1
https://doi.org/10.1088/0954-3899/36/10/104006
https://doi.org/10.1016/j.physrep.2015.11.001
https://doi.org/10.1007/BF01580321
https://doi.org/10.1007/BF01580321
https://doi.org/10.1103/PhysRevD.66.032004
https://doi.org/10.1103/PhysRevD.91.072006
https://doi.org/10.1103/PhysRevD.91.072006
https://doi.org/10.1103/PhysRevD.96.092005
https://doi.org/10.1103/PhysRevD.96.092005
https://arXiv.org/abs/2006.04907
https://arXiv.org/abs/1506.05096
https://arXiv.org/abs/1510.00868
https://doi.org/10.1103/PhysRevD.94.076002
https://doi.org/10.1103/PhysRevD.94.076002
https://doi.org/10.1103/PhysRevD.93.096008
https://doi.org/10.1103/PhysRevD.93.096008
https://doi.org/10.1103/PhysRevD.94.115009
https://doi.org/10.1103/PhysRevD.94.115009
https://doi.org/10.1016/j.physletb.2017.12.034
https://doi.org/10.1016/j.physletb.2017.12.034
https://doi.org/10.1103/PhysRevD.98.015019
https://doi.org/10.1016/j.physletb.2018.11.014
https://doi.org/10.1016/j.physletb.2018.11.014
https://doi.org/10.1007/BF02961314
https://doi.org/10.1103/PhysRevD.26.1662
https://doi.org/10.1140/epjc/s10052-020-7855-4
https://doi.org/10.1103/PhysRevD.102.105001
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.4099/jjm1924.1.0_83
https://doi.org/10.1140/epjc/s10052-019-7245-y
https://doi.org/10.1140/epjc/s10052-019-7245-y


[32] W. Pauli, Nuovo Cimento 6, 204 (1957).
[33] F. Gürsey, Nuovo Cimento 7, 411 (1958).
[34] K. Fujikawa, Phys. Lett. B 789, 76 (2019).
[35] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652

(1973).
[36] M. Fukugita and T. Yanagida, Physics of Neutrinos and

Application to Astrophysics (Springer, Berlin, 2002).

[37] C. Giunti and C.W. Kim, Fundamentals of Neutrino
Physics and Astrophysics (Oxford University Press, Oxford,
2007).

[38] S. Bilenky, Introduction to the Physics of Massive and
Mixed Neutrinos, Lecture Notes in Physics Vol. 817
(Springer, Berlin, 2010).

[39] K. Fujikawa and A. Tureanu, Phys. Lett. B 767, 199 (2017).

PARITY OF THE NEUTRON CONSISTENT WITH NEUTRON- … PHYS. REV. D 103, 065017 (2021)

065017-11

https://doi.org/10.1007/BF02827771
https://doi.org/10.1007/BF02747705
https://doi.org/10.1016/j.physletb.2018.12.008
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1016/j.physletb.2017.01.069

