
Exploring the Complexity of Crowdsourced Programming
Assignments

Nea Pirttinen
University of Helsinki

Helsinki, Finland
nea.pirttinen@helsinki.fi

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

ABSTRACT
CrowdSorcerer is a tool in which students can create their own
programming assignments according to teacher’s instructions,
and later review their peers’ assignments. In this lightning
paper, we take a brief look into the level of complexity of
assignments novice programmers create with the tool.

Author Keywords
crowdsourcing, learnersourcing, assignment creation

INTRODUCTION
Crowdsourcing has been used in computer science education
mostly for student-based assignment creation. For example,
PeerWise [1] allows students to create multiple-choice ques-
tions and revise course topics using questions created by their
peers. In a similar way, computer science education tools
like CodeWrite [3] and CrowdSorcerer [7] assist students in
creating their own programming assignments according to
guidelines given by the instructor.

Education tools like these allow students to approach the
course topics from a different perspective than usual. If the
tool also incorporates peer reviewing, which most of the tools
do [1, 7] in some way, the students can also revise the course
concepts through the review process. At the same time, collect-
ing small assignments, programming-related or not, can help
teachers to build a database of suitable exercises for quizzes
or drill practice.

Peer review is widely used and often accurate enough in terms
of coverage or quality [2, 4, 8, 6], at least for cases where the
reviews will not directly affect the students’ grades. However,
since students are most often novices in the course topics, it
is important to ensure that the quality of the collected assign-
ments is reasonable, even after peer review. In this paper,
we take a brief look into the complexity of programming as-
signments created by students during the second week of an
introductory programming course.

Seventh SPLICE Workshop at SIGCSE 2021 “CS Education Infrastructure
for All III: From Ideas to Practice”, SPLICE’21, March 15-16, 2021, Virtual
Event

Our research question is What types of programming assign-
ments do novice students create? To answer this, a set of 91
assignments was categorized according to their types and fea-
tures. The categorization identified seven different categories
based on the complexity of the assignments.

CROWDSORCERER

Figure 1. The basic assignment creation view of CrowdSorcerer. The
assignment field contains a student-written assignment handout. The
source code field has a student-written code with the model solution
marked with the checkboxes on the left (blue lines). The lines in gray
form a template that cannot be edited by students.

The data was collected using CrowdSorcerer [7], an embed-
dable tool used for programming assignment creation. The
user interface of CrowdSorcerer is built with React1. The
backend2 is a Ruby on Rails application and holds most of
the system’s functionality and storage. The student-created
assignments are sent to a Test My Code programming assign-
ment evaluator server [9]3 to assess whether the assignments
pass the student-created test cases.

The user interface for basic assignment creation can be seen in
Figure 1. First, the user writes an assignment handout accord-
ing to specifics given by the instructor. These instructions may
1https://github.com/rage/crowdsorcerer
2https://github.com/rage/crowdsorceress
3https://github.com/testmycode



require, for example, usage of conditional statements. Then,
the user programs a model solution (blue lines in Figure 1) and
code template for the assignment (everything else in the source
code). The model solution is a full, working answer to the
assignment, while the code template only contains the basic
structure of the program without the crucial implementation
lines. In order to help the student to recognize the relevant
lines of code for the code template, and to keep the source code
functional, parts of the code can be locked by the instructor so
that the students are not able to edit these lines (gray lines in
Figure 1). The user is also required to create test cases. The
program code is automatically tested for compilation errors,
and the user-given tests make sure that the program works as
expected [5].

The data was collected from 91 students on an introductory
Java programming course who gave their permission for using
their data for scientific purposes, and completed an assignment
using CrowdSorcerer. The instruction for the CrowdSorcerer
assignment was: “Create an assignment that requires a student
to create a program that reads an integer from the user, uses
a conditional statement to inspect the integer and then prints
a string. For tests, give an example input and the output the
program will print with this input.”

RESULTS AND DISCUSSION
Category Students
Only printing 2
Single if 2
Multiple ifs 2
Simple if-else 54
Intermediate if-else 16
Advanced if-else 8
Loops (+ if-else) 7

Table 1. Categorized assignments, 91 in total.

The student-created programming assignments were cate-
gorized according to their features. Since the instructions
prompted for an assignment that asks the user for an integer
input, uses a conditional statement and prints a string output,
the simplest expected assignments should have at least one
if-statement.

The categorized assignments are found in Table 1. The cate-
gories can be described as follows:

• Only printing: The assignment does not include any condi-
tionals or other relevant structures – the program only prints
hard-coded statements. The Scanner, declared and locked
in the source code as a hint for the students, is not used.

• Single if: The assignment has a singular if-statement. The
simplest acceptable assignment for the instructions given.

• Multiple ifs: The assignment uses multiple if-statements
one after another, but not nested or if-elses.

• Simple if-else: If-else with one relational expression.
• Intermediate if-else: Slightly more complicated assign-

ment, such as using more complicated combinations of
relational expressions, or multiple if-elses. See example
assignment at the end of the section.

• Advanced if-else: The assignment uses complicated com-
binations of relational expressions, and nested conditionals.

• Loops (+ if-else): The assignment uses some kind of loop
in addition to conditional expressions.

The assignments in the first category are automatically faulty
from the review point of view, as they do not follow the given
instructions. All of the assignments that included loops were
either intermediate- or advanced-level regarding the use of
conditionals and relational expressions. In total, 60 of the 91
assignments are categorized as simple if-else or simpler. As
the majority of the students on the course are novices, this
corresponds to the level of programs they are expected to be
able to write at this point. Also, there are only so many ways
one can implement the assignment according to the instruc-
tions with the tools the students have learned during the first
two weeks of the course. Since completing CrowdSorcerer
assignments did not award any points during this iteration of
the course, it is also likely that students would rather use their
effort on exercises that affect their grade. Thus, students who
might have been able to create more complicated programming
assignments may have chosen to implement simpler programs.

The topics of the assignments range from copies of previous
course assignments to novel ideas that show students’ interests
outside of computer science, relating to, for example, music.
There were no sanctions for re-implementing previously used
code, as it was deemed better that the students at least try the
tool and practice input-output testing in the process.

The following assignment is an example of a typical, relatively
simple program, categorized as intermediate if-else. The as-
signment has been translated from Finnish to English by the
authors. Java package imports and class declarations have
been omitted for the sake of brevity.

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("How many cats do you have? ");

int cats = Integer.valueOf(sc.nextLine());

if (cats == 0) {
System.out.println("What a pity!");

} else if (cats >= 1 && cats <= 4) {
System.out.println("Exemplary work!");

} else if (cats > 4) {
System.out.println("Wow, what a clowder!");

}
}

Altogether, these preliminary results indicate that students
mostly follow instructions given when creating crowdsourced
programming assignments. The quality of these assignments
could be evaluated, for example, through peer review, and after
enough assignments have been collected, the best ones can be
used to build a database of small programming assignments.
These can be reused in future courses, not only in our context,
but shared with the computer science education community.
In our future work, we are interested in studying assignment
quality in more detail, and exploring whether students from
different demographics create different kinds of assignments.



REFERENCES
[1] Paul Denny, Andrew Luxton-Reilly, and John Hamer.

2008. The PeerWise System of Student Contributed
Assessment Questions. In Proceedings of the Tenth
Conference on Australasian Computing Education -
Volume 78 (ACE ’08). Australian Computer Society, Inc.,
AUS, 69–74. DOI:
http://dx.doi.org/10.5555/1379249.1379255

[2] Paul Denny, Andrew Luxton-Reilly, John Hamer, and
Helen Purchase. 2009. Coverage of Course Topics in a
Student Generated MCQ Repository. In Proceedings of
the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science
Education (ITiCSE ’09). ACM, New York, NY, USA,
11–15. DOI:http://dx.doi.org/10.1145/1562877.1562888

[3] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero,
and Jacob Hendrickx. 2011. CodeWrite: Supporting
Student-driven Practice of Java. In Proceedings of the
42Nd ACM Technical Symposium on Computer Science
Education (SIGCSE ’11). ACM, New York, NY, USA,
471–476. DOI:
http://dx.doi.org/10.1145/1953163.1953299

[4] John Hamer, Helen C. Purchase, Paul Denny, and
Andrew Luxton-Reilly. 2009. Quality of Peer
Assessment in CS1 (ICER ’09). Association for
Computing Machinery, New York, NY, USA, 27–36.
DOI:http://dx.doi.org/10.1145/1584322.1584327

[5] Vilma Kangas, Nea Pirttinen, Henrik Nygren, Juho
Leinonen, and Arto Hellas. 2019. Does Creating
Programming Assignments with Tests Lead to Improved
Performance in Writing Unit Tests?. In Proceedings of

the ACM Conference on Global Computing Education
(CompEd ’19). ACM, New York, NY, USA, 106–112.
DOI:http://dx.doi.org/10.1145/3300115.3309516

[6] Juho Leinonen, Nea Pirttinen, and Arto Hellas. 2020.
Crowdsourcing Content Creation for SQL Practice
(ITiCSE ’20). Association for Computing Machinery,
New York, NY, USA, 349–355. DOI:
http://dx.doi.org/10.1145/3341525.3387385

[7] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik
Nygren, Juho Leinonen, and Arto Hellas. 2018a.
Crowdsourcing Programming Assignments with
CrowdSorcerer. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2018). ACM, New York, NY,
USA, 326–331. DOI:
http://dx.doi.org/10.1145/3197091.3197117

[8] Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho
Leinonen, and Arto Hellas. 2018b. Analysis of Students’
Peer Reviews to Crowdsourced Programming
Assignments. In Proceedings of the 18th Koli Calling
International Conference on Computing Education
Research (Koli Calling ’18). Association for Computing
Machinery, New York, NY, USA, Article 21, 5 pages.
DOI:http://dx.doi.org/10.1145/3279720.3279741

[9] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen,
and Martin Pärtel. 2013. Scaffolding Students’ Learning
Using Test My Code. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’13). Association for
Computing Machinery, New York, NY, USA, 117–122.

DOI:http://dx.doi.org/10.1145/2462476.2462501

http://dx.doi.org/10.5555/1379249.1379255
http://dx.doi.org/10.1145/1562877.1562888
http://dx.doi.org/10.1145/1953163.1953299
http://dx.doi.org/10.1145/1584322.1584327
http://dx.doi.org/10.1145/3300115.3309516
http://dx.doi.org/10.1145/3341525.3387385
http://dx.doi.org/10.1145/3197091.3197117
http://dx.doi.org/10.1145/3279720.3279741
http://dx.doi.org/10.1145/2462476.2462501

	Introduction
	CrowdSorcerer
	Results and Discussion
	References 

