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Abstract—Ever more powerful mobile devices are nowadays
capable of collectively carrying out reasonably demanding com-
putational tasks without offloading the processing to an edge
server or a distant cloud-computing service. In this work, we
explore such distributed computing and study how it is affected
by the mobility as well as the number of nodes that collaborate.
We choose distributed counting of a number of nodes in an
enclosed area as application. Such application is useful for
estimating attendance at events and measuring occupancy for
facility management, as needed for monitoring of crowdedness
with respect to safety and evacuation, climate control and
comfort. For this application, we are interested in determining
the time until all nodes know the correct number of nodes in the
space where they reside.

Our study shows the effect of mobility on the distributed pro-
cess. We find that the process of collecting data opportunistically
from a closed set of nodes is well described by empirical laws
that we derive. We discuss the results and suggest further work
needed to understand opportunistic computation and to develop
it as a new model of computation among collectives of mobile
nodes.

Index Terms—opportunistic computing, distributed computing,
data collection, counting

I. INTRODUCTION

Mobile cloud computing and mobile crowd-sensing solu-
tions propose that mobile nodes act as sensors collecting and
reporting data, while the actual computation is offloaded to the
cloud. The results of the computation are afterward reported
back to those nodes that are interested in it. However, the
increase in computing power, available storage and communi-
cation capabilities of mobile devices enables local processing
and storage of data, rather than offloading it to remote servers.
This makes a collective of mobile nodes self-sufficient with
respect to many computational tasks, and it becomes inde-
pendent of any infrastructure. There are advantages to this in
terms of cost, privacy, and availability.

In this work, we apply the principle of opportunistic net-
working to the domain of distributed mobile computing. In
an opportunistic network, nodes exchange information when-
ever they come in a direct contact by some device-to-device
communication technology [1]. The underlying node mobility
contributes to the mixing of nodes, and thus to the spreading
of data. We here consider a node to be a person carrying
a device, such as a mobile phone, equipped with a wireless
communication interface [2]. In the context of distributed

computing, each node that participates in the opportunistic
network acts as a collector and processor of data, as well as the
disseminator of the result of the computation. The computing
is often iterative among the nodes.

Distributed computing in opportunistic networks is not
always straightforward, especially when dealing with open
systems with node churn, i.e., nodes that enter and leave the
space in which the distributed computations are performed.
As an example of distributed computing in open systems with
mobile nodes, we have previously evaluated the performance
of a distributed node-counting protocol and have shown that
the accuracy of the counting measure is strongly dependent
on the node density [3]. Moreover, when dealing with open
systems, there may be two different definitions of node count:
number of nodes present (1) over the lifetime of the system,
or (2) over a limited period. In the first case, the count is
cumulative across all unique nodes that have ever been in
the area. In the latter case, the count also needs to deduct
nodes that leave the system during the period for which
counting is being performed. As previously demonstrated
in [3], the second definition is more challenging, and providing
an accurate count is not trivial.

In closed systems, on the contrary, the number of nodes
is fixed but unknown and needs to be estimated. A use case
is to estimate attendance at an event where churn is low and
may be neglected. Thus, the counting measure is well-defined:
any distributed computation is finalized when all (interested)
nodes in the system have converged to the same computed
value. Closed systems often allow for better understanding of
distributed processes.

In this work, we study the performance of distributed
computing in the opportunistic network in the context of
closed systems. We allow nodes to exchange data opportunis-
tically via device-to-device communication and to perform
computations locally on the obtained data. We present results
for the use-case of aggregate counting as a simple example of
a distributed task. The ultimate goal for any distributed task
is two-fold: (1) each node, participating in the collective task,
can determine by itself the accuracy of its computed result at
any given point in time (e.g., that the process has converged),
and (2) an outside observer is able to determine the accuracy
of the result if requested from a randomly selected computing
node (i.e., if nodes are to report their estimates to a centralized



unit). We are predominantly interested in the second goal, and
to this end, we address the following questions:
• How does the computation time depend on the mobility

and number of nodes?
• How does the counts in the nodes converge towards a

unanimous value?
• Can the computation be modeled independently of the

mobility?
The remainder of this paper is organized as follows. In Sec-

tion II, we position our work concerning previous contributions
in the field of distributed aggregation. In Section III we out-
line a use-case of distributed aggregation, namely distributed
counting in mobile environments. Section IV presents a model
of the counting process for closed systems. Finally, we discuss
the results and conclude the study in Section V, and present
directions for further work.

II. RELATED WORK

The topic of data dissemination in opportunistic networks is
well-studied, both in the context of closed and open systems.
In [4], Wang et al. discuss the potential of mobile opportunistic
networks in the context of time and location sensitive infor-
mation dissemination. Vatandas et al. [5] focus on modeling
the characteristics of opportunistic networks to represent data
dissemination realistically. In [6], Passarella et al. present an
analytical model that describes the dependence between the
node inter-contact times and the aggregate inter-contact times
in mobile opportunistic networks. Hernández-Orallo et al. [7]
present an analytical model based on population processes
to characterize opportunistic data dissemination in the con-
text of 5G networks, and obtain closed-form expressions for
determining diffusion time, network coverage, and waiting
time. In [8], Kouyoumdjieva and Karlsson study opportunistic
data dissemination in the context of mobile data offloading
under the assumption of an open system. All of these works,
however, allow nodes to only exchange information with each
other, without performing any computations or modifications
of the shared data. Thus, they only partially utilize the potential
of opportunistic networks.

The work presented in this paper falls under the broader
area of opportunistic computing. It is a paradigm that considers
the use of any available resource in an opportunistic network
by utilizing sporadic contacts occurring when two (or more)
mobile nodes come in direct communication range [9]. As
opposed to opportunistic data dissemination, nodes share and
exploit each other’s software and hardware resources not only
to exchange information but also to execute tasks. One such
task is computing an aggregate value across all nodes in the
network.

Various gossiping algorithms have been proposed to address
the problem of computing an aggregate value, i.e., a sum or
an average of a given measure, over a network. Typically
nodes exchange messages in rounds, and at each round, only
one pair of nodes (chosen at random or pre-defined) can
exchange information and perform some computation with the
objective to converge to a common value across all network

nodes [10]. Gossiping algorithms may be operated in the
presence of churn, i.e., nodes joining and leaving the network.
In [11] Jelasity et al. propose a fully distributed gossip-
based aggregation protocol for large dynamic networks. Nodes
in the network utilize pairwise interactions to assure quick
convergence to the desired aggregate value. In [12] Shi and
Srimani propose an online distributed gossiping protocol for
mobile networks where every node has only a limited knowl-
edge of its neighbors. As opposed to gossiping algorithms, in
opportunistic computing, there may be more than one node
pair communicating at a time. Moreover, the list of neighbors
is usually not known in advance and there is no sampling of
all neighboring nodes before one communication is established
with one of them. This is often due to the dynamics of the
system which occur faster than what is typically considered in
studies on gossiping algorithms; i.e., a typical link duration in
an opportunistic network with underlying pedestrian mobility
is around 10 s [13].

Mobile or fog computing has also been suggested as a way
of bringing computational power closer to end users, especially
in the context of the large-scale Internet of Things (IoT)
networks [14]. The fog can in principle constitute any devices
with sufficient storage, processing power, and energy for
carrying out distributed computing tasks. Few works, however,
consider expanding the mobile fog to utilize the processing
power of end devices, either mobile devices carried by humans
or the sensor devices. In [15], Di Pascale et al. present
a generalized framework for leveraging resources in ultra-
dense IoT mesh networks by coupling data communication
and processing. The authors map an artificial neural network
on top of the IoT network and are thus able to exploit the
communication between devices to perform data processing
and aggregation while reducing computational latency and
improving the energy distribution across the network. How-
ever, the framework is currently only evaluated for scenarios
in which all nodes in the network are static. Moreover, the
authors assumed that the size of the network and the functions
of nodes within the network are known in advance.

The concept of mobile crowd sensing provides a way of
utilizing resources on mobile devices for data collection and
processing [16]. A variant, opportunistic sensing, allows data
to be collected in the background without active involvement
of the user [17]. Mobile crowd sensing applications are usually
client-server-based, with mobile devices sensing and reporting
data to a central server (located somewhere in the cloud)
that further processes and distributes the data to those users
who request access to them. Although peer-to-peer alternatives
have been suggested by Jiang et al. [18], those solutions
only suggest that nodes share information directly with one
another. However, data processing is still executed at the
server. As opposed to mobile crowd sensing, opportunistic
computing allows nodes to act as sensors and processors of the
information, as well as to exchange data and computational
results with one another. Finally, the application of node
counting is surveyed for non-imaging techniques in [19].



III. DISTRIBUTED COUNTING VIA OPPORTUNISTIC
COMMUNICATION

A. The computing task

To demonstrate the potential of distributed computing via
opportunistic communications, we consider a useful yet simple
computing task, namely counting a node population in a closed
system. The computing task is considered executed when all
participating nodes in the system have converged to the correct
count. In this work, we assume that all nodes in the system
are participating and collaborating for the computation of the
task.

We assume N unique nodes (represented by a set N of
node IDs, with cardinality N ) that are distributed at random
in a given area. At the beginning of the counting process, each
node ni ∈ N is only aware of its own presence in the area,
thus its state is set to Si = {ni}. The cardinality of the set Si,
|Si| denotes the current node count in the area as perceived
by node ni. Whenever two nodes, i and j, come in direct
communication range, they exchange their state sets, and each
node forms the union of its own state set with the received
set: Si = Sj ← {Si ∪ Sj} Thus, the cardinality grows by the
number of nodes that each one adds to its set. Eventually the
set will include all node identities and the cardinality will then
be N = |Si|,∀i.

B. Protocol design

The node set can grow without limit when the count of
the population is taken over all nodes ever present in the
lifetime of the system. Representing sets as bit vectors may
then cause issues related to storage space on mobile devices.
Furthermore, as we rely on wireless communication for the
spreading of data, the set representation should be kept small,
possibly fitting into a single beacon message for the wireless
channel without the need for fragmentation. To address these
issues, we use D-GAP compression [20] for storing the state
vector of each node. D-GAP compression can be considered as
a specialized variant of run-length encoding which provides a
compressed representation of bit vectors in the form of integer
vectors (later referred to as D-GAP vectors). Consecutive 0s
or 1s that are part of a bit vector are represented by a single
integer as part of a D-GAP vector. The first bit of the D-
GAP thereby determines if an integer represents a sequence
of 0s or 1s. A leading bit of 0 shows that the first integer
corresponds to a number of consecutive 0s, followed by a
number of consecutive 1s and so on; a leading bit of 1 indicates
the opposite behavior. For instance, the D-GAP equivalent of
the bit vector 1000 0000 0001 is [1] 1 10 1, where with [1]
we denote the leading bit. We note that D-GAP compression
is particularly beneficial when storing vectors that have long
sequences of 0s or 1s, which makes it highly appropriate for
the use-case of distributed counting.

Let us consider an example of four nodes to show the
functional principles of the proposed protocol for distributed
opportunistic node counting (Fig. 1). Upon entry into the
area, a node inserts itself into its D-GAP state vector. For

instance, node 1 in Fig. 1 has inserted itself in position 1
in its state D-GAP vector which is initialized with [1] 1. We
have further indicated the three empty positions in the D-GAP
vector of node 1 for illustration purposes; in reality, a node
entering the area has no prior knowledge as to how many
nodes are expected to be present, and thus its D-GAP vector
will change and increase as the discovery process continues.
We note that to preserve privacy, the node ID is determined
by a cryptographic hash function, which is calculated over a
unique identifier, e.g., the node’s MAC address. Each node
broadcasts a beacon at regular intervals, which comprises its
state D-GAP vector to other nodes in its direct communication
range. Upon reception of a beacon from another contact, a
node updates its local state D-GAP vector. For instance, in
Fig. 1 nodes 2 and 4 have previously exchanged their state
vectors, while nodes 3 and 4 are currently in the process of
exchanging their state vectors and thus have identical views
on the population in the area.

We define three operations on D-GAP vectors: namely
merge, consolidate and append, to assist the process
of combining two D-GAP vectors. We refer the interested
reader to [3] for further detail on these definitions. In a
nutshell, the protocol operates as follows. Upon receiving a
new vector, a node first checks in a local database whether
the received vector carries potentially new information. This
check is currently done by looking up the node-ID in a
local database (a simple table containing the node-ID and
updated fields, where the updated field holds the last time
when the node received new information from the peer). If
the node-ID is found, there has been prior communication
with this peer and the advertised updated field value is
compared to the previously registered updated field value.
If they do not differ, the local state vector stays unchanged.
Otherwise, the protocol consecutively executes the operations
merge, consolidate and append in order to update
the local estimate. Thus, the state vector contains cumulative
information of all nodes that have been counted over time. This
is the computation taking place in a node with each update of
its state set.

C. Mobility scenario

We assume all nodes to follow a random walk (RW)
mobility. It is commonly used in computer simulations to test
the robustness of mobile network functions concerning user
mobility [21]. In RW mobility, the movement of nodes is
governed in the following manner. Each node selects a random
destination in the simulation area (i.e., a 500 m × 500 m
closed space) and a random speed. The destinations follow
a uniform distribution and the speed v follows a Gaussian
distribution, v ∼ N(1, σ2), where the mean speed is 1 m/s
and σ represents the standard deviation (STD). When a node
arrives at its destination, it will simultaneously pick a new
speed and a new destination. Thus, there is no pausing in our
used RW model; all nodes are constantly moving during the
simulations. Initially, the nodes are uniformly and randomly
distributed in the simulation area. In practice, we generate
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Fig. 1. An example of four mobile nodes executing the protocol for
distributed computing in an opportunistic network. Information in each node
is represented by a state D-GAP vector; the respective bit vectors are shown
for clarity.

the traces of nodes in advance and store them in a trace
file containing a snapshot of the positions of all nodes in the
system every 0.6 s.

D. Simulation setup

In our simulation scenario, we assume that all nodes carry
devices and are participating in collectively gathering data
from other nodes. For the simulation, we use an implementa-
tion of an opportunistic content distribution system in the OM-
NeT++ modeling framework MiXiM [22]. Each simulation run
is executed in synchronous rounds of 0.6 s corresponding to
the granularity of the mobility traces we use. At the beginning
of each round, nodes broadcast their state sets of nodes,
i.e., their gathered data. To avoid collisions on the wireless
medium, the broadcast transmission of each node in each
round is distributed uniformly at random from 0 s to 0.5 s.
The communication range of each node is set to 10 m.

E. Performance metrics

We use the following performance metrics and definitions
to evaluate and monitor the processing of data gathering under
opportunistic communications.
• Number of contacts (C) and contacts per time epoch (c)

(the rate) reflect the dynamism of data dissemination.
In our work, one contact for a node refers to that node
receiving a message from another node.

• Fully knowledgeable node are those nodes that have
gathered all node IDs in the system.

• Accuracy (∆) of the system shows the ratio of fully
knowledgeable nodes to all nodes in the system. It reflects

the likelihood of hearing the correct count if a node is
selected at random to report. Let X be the number of
fully knowledgeable nodes and N be the total number of
nodes in the system. Then, the accuracy is calculated as:
∆ = X/N . When the accuracy equals 1, all nodes have
gathered all node IDs.

• Knowledge gain (G) of each node and for each contact
shows how many new IDs that the node learns during
a contact. It corresponds to the increase in counting per
contact.

IV. MODELING OF THE DATA COLLECTION PROCESS

A. Effects of number of contacts

We first look into how the number of nodes and their
mobility affect the contact rate.

First, we depict how the contact rate changes with time
in Fig. 2. We remark that a contact here is perceived on the
application layer, i.e., when a broadcast message is received
by a node. Thus the estimated contact rate may differ from
the actual physical contact rate due to interference on the
wireless channel. We show the number of contacts in each time
bin for two different values of the speed STD, for σ = 0.4
and σ = 0.1. Time bins here correspond to the granularity
of the mobility trace, i.e., 0.6 s. We notice that the average
contact rate does not change dramatically over time, it merely
fluctuates periodically. This may be caused by the collision
avoidance mechanism in the MAC layer. The average number
of contacts in each period is almost constant.

Fig. 3 shows the average number of contacts across different
node populations for two different values of the speed STD. As
shown in Fig. 3, when there are 300 nodes, the average number
of contacts is nearly 12, while it drops to around 2 when the
number of nodes is 100. Decreasing the STD value leads to a
slight decrease in the average number of contacts, especially
when the node population is larger; for sparse populations,
i.e., 100 nodes, the average number of contacts is not affected
by the speed STD. Hence, in the next step, we try to model
the relation between the number of nodes and the average
number of contacts in each time bin without consideration for
the speed STD.

Table I shows that the power function has the lowest root
mean square error (RMSE) of all considered functions. For
N nodes, the number of contacts in each time bin, ĉ, is thus
almost proportional to the square of the number of nodes,

ĉ = 6.856 · 10−5 ·N2.117. (1)

The contact rate depends only on the number of nodes and
not significantly on the variability of the speed according to
Fig. 3. However, the mixing of nodes could be affected by
the spread of the speed distribution. For this reason, we now
consider the time for counting N nodes and the convergence
towards the full count.



TABLE I
CURVE FITTING WHERE N IS THE NUMBER OF NODES AND ĉ IS THE

CONTACT RATE (NUMBER OF CONTACTS IN EACH TIME BIN).
Function Expression RMSE

Exponential Ĉ = 1.962 exp(5.838 · 10−3 ·N) 2.20

Polynomial Ĉ = 0.086 ·N − 10.64 3.390
Ĉ = 1.56 · 10−4 ·N2 − 7.59 · 10−3 ·N + 0.28 0.438

Power Ĉ = 6.856 · 10−5 ·N2.117 0.396
Ĉ = 8.418 · 10−5 ·N2.085 − 0.2278 0.467

 

Fig. 2. The average number of contacts in each time bin vs. simulation time.
Time bins here correspond to the granularity of the mobility trace, i.e., have
a duration of 0.6 s.

B. Effects on accuracy

Since the number of contacts per time unit is independent
on the speed STD, we regard the opportunistic computation
as being clocked by contacts rather than by time bins.

Fig. 4 shows how the accuracy of the counting changes with
the number of contacts. Note that we consider all contacts,
regardless of whether they bring new data to the node or not.
Specifically, in the 300-node case, after about 12,000 contacts,
the first fully knowledgeable node appears, and all nodes have
gathered all data after about 26,000 contacts. When the number
of nodes is 500, the first fully knowledgeable node appears
after about 30,000 contacts, and the accuracy becomes one
after about 60,000 contacts.

The increasing number of nodes leads to higher contact rate,
as shown above, hence more opportunities to gather all node
IDs in a given time. However, there is also a higher number
of nodes to be counted. To see the combined effect, we derive
the time to count all nodes and consider the accuracy as well.

To evaluate the effect of the number of nodes on the
accuracy, we fix the accuracy and measure how the number
of needed contacts changes with the number of nodes. We set
accuracy to 0.2, 0.4, 0.6 and 0.8 respectively, and show the
results in Fig. 5. To achieve the same accuracy, more nodes
need more contacts, as expected. The differences caused by
speed STD can be observed in the cases of large numbers of
nodes.

We model the relation among the number of nodes (N ),
(total) number of needed contacts (C) and accuracy (∆). We
first set the speed STD to 0.1 and try the exponential, poly-

  

Fig. 3. The average number of contacts in each time bin vs. number of nodes
(time bins 0.6 s).

nomial and power functions as fitted curves for the number of
nodes versus the number of contacts under different accuracy
scenarios. We find that a power function has the lowest RMSE.
Specifically, the expression is

C = (0.5478 ·∆ + 0.1389) ·N1.7652. (2)

Letting Eq. (2) be divided by Eq. (1), we are able to derive
the model of the number of time bins, NTB = C/ĉ,

NTB =
(7.9901 ·∆ + 2.0260) · 103

N0.3518
, (3)

where each time bin is 0.6 seconds (see Section III).
Eq. (3) reveals that the needed time to compute the count to

a given accuracy increases linearly with the accuracy while it
slowly decreases as a power law with the increasing number
of nodes. To exemplify, for 500 nodes (which for the area is
one node per 500 square meters), it will take 11 minutes for
them to know how many they are.

We now go back to the difference in convergence with
respect to the speed STD. The accuracy rises more quickly
during the middle period of opportunistic communications for
higher speed STD, as noted in Fig. 4, but it does not affect
the convergence time. We then set the number of nodes to 300
and 500 and show the distribution of count across all nodes in
Fig. 6. We take snapshots of the distribution at specific times
(clocked by contacts) and use box-plots to depict them. In
the box-plots, the candlesticks depict the bottom 10% and the
upper 90% of the count values while the boxed area contains
the values between 25% and 75%. The horizontal line depicts
the median of the distribution.

We note that the upper 90% of the counts increase to the
maximum value quickly, but the growth rate of the bottom
10% of the nodes has tiny counts. There is not any discernible
influence on the speed STD in these extreme points. For
instance, when the number of nodes is 300, after 1.8 × 104

contacts in the system, the median of count values nearly
equals to 300, i.e., the maximum value. However, the bottom
10% count values are still lower than 150.

We find that the speed STD affects the counting procedures
for the higher number of nodes. The median of counts for 0.4
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Fig. 4. Accuracy versus the number of contacts in the system: (a) 300 nodes,
(b) 500 nodes.

speed STD and 500 nodes is always slightly higher than that
for 0.1 speed STD, corresponding to the findings in Fig. 4. The
difference is more pronounced for the 25th percentile. We will
further analyze the effect of speed STD during the processes
of opportunistic communications in Section IV-C below.

C. Effects on knowledge gain

As for the speed STD, we know now that it influences
the accuracy during the middle period of the opportunistic
computation and that the increasing number of nodes makes
this effect more noticeable. Therefore, in this subsection,
we use the knowledge gain (G) to model the processes of
opportunistic computation.

The knowledge gain reflects how many new node IDs
that are gathered during each contact. Hence, it can be used
to capture how data are disseminated or collected during
the counting processes using opportunistic communications.
Similar to Section IV-B, we use contacts to clock the commu-
nication procedure and depict how the knowledge gain changes
during the processes of communications in Fig. 7.

 

Fig. 5. The number of needed contacts vs. number of nodes

As shown in Fig. 7, although the speed STDs are different,
the knowledge gain reduces to 0 almost at the same time for all
both values. With the increasing number of nodes, the larger
speed STD gives a slightly higher average knowledge gain
for each contact during the middle period of the opportunistic
communications, which is corresponding to Fig. 5.

TABLE II
FITTING THE CURVES OF KNOWLEDGE GAIN WHERE THE FITTED

FUNCTION IS a1 · exp(−(C−b1
c1

)2).

# of nodes Speed STD a1 b1 c1 RMSE
500 0.1 8.866 2.295 · 104 1.643 · 104 0.237
500 0.4 9.683 2.150 · 104 1.496 · 104 0.214
400 0.1 8.595 1.545 · 104 1.082 · 104 0.232
400 0.4 9.099 1.456 · 104 1.020 · 104 0.245
300 0.1 8.080 9228 6452 0.221
300 0.4 8.460 8870 6140 0.190
200 0.1 7.049 4552 3267 0.116
200 0.4 7.374 4442 3110 0.130
100 0.1 5.305 1471 1070 0.059
100 0.4 5.185 1513 1100 0.104

We set the number of nodes to 500, 400, 300, 200 and 100
respectively, and use a Gaussian function, a1 ·exp(−(C−b1c1

)2),
to fit curves to the knowledge gain, where C denotes the num-
ber of contacts in the system, a1 is the maximum knowledge
gain during opportunistic communications.

The curve fitting results are shown in Table II. The RMSEs
are all lower than 0.25, which demonstrates the correctness of
the obtained models. We find that, except for the case of 100
nodes, the maximum knowledge gain for 0.4 speed STD is
always higher than the value for 0.1 speed STD. This implies
that higher speed STD is able to lead to higher maximum
knowledge gain for opportunistic communications.

To fully understand the relationships among maximum
knowledge gain, the number of nodes and speed STD, we
try a polynomial function, a power function and a logarithmic
function to model the maximum G with respect to N and speed
STD. The results are illustrated in Table III. The logarithmic
function gives the lowest RMSE. It has as the following
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Fig. 6. The distribution of count across all nodes at specific number of
contacts: (a) 300 nodes, (b) 500 nodes.

general form,
a1 = β · logα(N)− β, (4)

where parameter β depends on the speed STD.

TABLE III
MODELLING THE RELATIONSHIP BETWEEN MAXIMUM KNOWLEDGE GAIN

(a1) AND THE NUMBER OF NODES N UNDER DIFFERENT SPEED STDS.

Function STD Expression RMSE
Polynomial 0.1 a1 = 0.0087 ·N + 4.9790 0.5410

Power 0.1 a1 = 1.3420 ·N0.3087 0.2860
Logarithmic 0.1 a1 = 5.349 · lg(N)− 5.349 0.1515
Polynomial 0.4 a1 = 0.0107 ·N + 4.744 0.5961

Power 0.4 a1 = 1.03 ·N0.364 0.3113
Logarithmic 0.4 a1 = 5.645 · lg(N)− 5.645 0.2444

Similarly, we model the functions of the number of nodes
N and the parameters b1 and c1 under different speed STDs,
respectively. The results are shown in Table IV and Table V.

Since both parameters b1 and c1 are highly related to the
number of contacts in the system, there is no surprise that
the power function has the lowest RMSE. Note that when the
speed STD is fixed, the index of the power function is the same
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Fig. 7. Knowledge gain (G) vs. number of contacts: (a) 500 nodes, (b)
300 nodes, and (c) 100 nodes. Note the different scales of the x-axes in the
three graphs and their effect on visualizing the spread of the knowledge gain
distribution.

TABLE IV
MODELLING THE RELATIONSHIP BETWEEN THE PARAMETER b1 AND THE

NUMBER OF NODES N UNDER DIFFERENT SPEED STDS.

Function STD Expression RMSE
Polynomial 0.1 b1 = 53.86 ·N − 5427 1603

Power 0.1 b1 = 0.3945 ·N1.7652 77.93
Exponential 0.1 b1 = 1864 · exp(5.078 · 10−3 ·N) 1346
Polynomial 0.4 b1 = 50.09 ·N − 4851 1433

Power 0.4 b1 = 0.4895 ·N1.72 107.4
Exponential 0.4 b1 = 1841 · exp(4.971 · 10−3 ·N) 1246

for b1 and c1, which infers that the index merely depends on
speed STD.

To sum up, when speed STD is 0.1, the model of knowledge
gain (G) is,

G = (5.349 lg(N)−5.349) exp

(
−
(
C − 0.3945 ·N1.7652

0.2801 ·N1.7652

)2
)
.

(5)



TABLE V
MODELLING THE RELATIONSHIP BETWEEN THE PARAMETER c1 AND THE

NUMBER OF NODES N UNDER DIFFERENT SPEED STDS.

Function Speed STD Expression RMSE
Polynomial 0.1 c1 = 38.27 ·N − 3874 1237

Power 0.1 c1 = 0.2801 ·N1.7652 148.2
Exponential 0.1 c1 = 1286 · exp(5.143 · 10−3 ·N) 856.4
Polynomial 0.4 c1 = 34.81 ·N − 3341 1010

Power 0.4 c1 = 0.3408 ·N1.72 88.86
Exponential 0.4 c1 = 1293 · exp(4.954 · 10−3 ·N) 861.1

When speed STD is 0.4, the model of knowledge gain (G) is,

G = (5.645 lg(N)−5.645) exp

(
−
(
C − 0.4895 ·N1.72

0.3408 ·N1.72

)2
)
,

(6)
where N is the number of nodes and C represents the number
of contacts in the system.

To verify the correctness of our obtained models, we set
the number of nodes as 450 and 350 respectively and depict
the true values and modeled values in Fig. 8, where the circle
marks are the true values, and the dash lines represent our
obtained model. The modeled values are very close to the
true values.

V. DISCUSSION AND CONCLUSION

In this paper, we explore a distributed computational task for
counting the number of nodes that are constrained in an area.
We do so by exchanging data opportunistically via device-to-
device communications and study how the counting is affected
by the number and the mobility of nodes. We have made an
exploratory study based on simulation for a closed system
to better understand the interaction between the opportunistic
communication and the distributed computation of the nodes.

During the modeling, we find that the difference in mobility,
i.e., different speed STDs can affect the accuracy of the count
during the middle period of the distributed computation, but
it does not affect the convergence time. Hence, we further
investigate how the convergence of the counts in the nodes
progress towards a unanimous value and use the knowledge
gain of contacts to model the processes of data collection.
According to the derived model, we find that the gain follows
a Gaussian distribution over time and a higher speed STD
will lead to a slightly higher maximum gain for opportunistic
communication, which reflects that the computation is related
to the mobility as well.

We now return to the questions we posed in the introduction.

• How does the computation time depend on the mobility
and number of nodes? We have derived an expression
for the computation time to a given accuracy. It increases
linearly with accuracy while decreases as a power law
with the number of nodes.

• How does the counts in the nodes converge towards a
unanimous value? We use the knowledge gain of the
contacts to study the processes of data collection. The

 

(a)

 

(b)

 

(c)

 

(d)

Fig. 8. Verification for the knowledge gain model where circle marks are
true values and the dash lines represent the modeling values: (a) 450 nodes
0.1 speed STD, (b) 450 nodes 0.4 speed STD, (c) 350 nodes 0.1 speed STD,
and (d) 350 nodes 0.4 speed STD.



convergence progresses according to a Gaussian distri-
bution over time (i.e., contacts). The maximum knowledge
gain is proportional to the logarithm of the number of
nodes.

• Can the computation be modeled independently of the
mobility? In the underlying communication, there is not
any dependence of the contact rate on the standard
deviation, σ, of the speed distribution. However, for
the application, there is a dependence of the maximum
knowledge gain on σ. This is seen in the two mean values
of the distribution for STD 0.1 and 0.4, respectively. It
does not appear to affect the ultimate convergence time.

Given this understanding, we will model the process ana-
lytically. We especially will study the distribution of the count
over the collection of nodes at a given time point. This is now
shown in the box-plots in Fig. 6. It relates to the count an
outside observer would get if a randomly selected node would
be chosen to report on how many nodes reside in the area.
It is different than the accuracy we have used here, which is
the proportion of nodes that have converged to the true count.
Ultimately, we would like to return to our previous work in [3]
with a model that captures the dynamics in node population
for an open system with node arrivals and departures.

The studied distributed process is contact limited since the
computation occurs only when new information is provided
in a node (and for counting, the processing is light). Other
distributed opportunistic computations might have heavier
computation and be less dependent on the exchange of in-
termediate results with other nodes in the system. We remark
that our findings might not be applicable in such a case.

We believe (and will further study) that our results bring
insights also to other tasks than counting. The basic process
we have laid out consists of collecting data, performing a com-
putation on the data, and sharing the result of the computation.
Data in our case are node IDs, but could have been other
systems parameters that should collectively be estimated, or
the data could be environmental parameters for the space that
the nodes jointly sense, collect and compute. This indicates
broader applicability of opportunistic computing.
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