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1.  INTRODUCTION

Long-term changes in environmental conditions
due to progressing climate change alter species
abundances and their distribution (Last et al. 2011,
Bellard et al. 2012). The seasonal timing of recurring

biological events, i.e. phenology, plays an important
role in linking species with their abiotic and biotic
surroundings, ranging from individual physiological
responses to interspecific relationships (Forrest &
Miller-Rushing 2010, Burthe et al. 2012). Changes in
the phenology of species are considered to be the fin-
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gerprint of climate change while most often being
linked to increasing temperatures. Such changes
favor earlier occurrences or faster developments
(Parmesan & Yohe 2003), which may result in mis-
matches of resource availability and lower recruit-
ment success (Durant et al. 2005, Thackeray et al.
2010, Asch et al. 2019, Régnier et al. 2019).

Studies addressing changes in the phenology of
species typically include shifting firsts of ecological
events, such as first budding and flowering of plants
or arrival and departure of migrating species (e.g.
Hopkins 1918, Fitter et al. 1995, Sparks & Menzel
2002). Although there is a body of literature also
investigating phenological changes in aquatic
realms, it remains comparably small due to the suit-
ability and accessibility of data to study such changes
(Thomas et al. 2014), i.e. long-term and high-fre-
quency observations. While much is known about
the ecology and biology of commercially important
fish stocks, including their spawning seasons, the
first days of spawning or hatching of fish larvae are
difficult to record as well as being subject to annual
variation. Hence, long-term shifts in such timings are
rarely documented (but see Asch 2015).

Here, we developed a modeling framework to
study possible changes in fish larval phenology
through advancements in egg-hatching and devel-
oping times and applied it to spring-spawning Baltic
herring Clupea harengus membras L. Herring com-
prise ecologically and commercially
important species in the Atlantic and
Pacific oceans (Blaxter 1985, Levin et
al. 2016) as well as in the Baltic
Sea (Parmanne et al. 1994, Natural
Resource Institute Finland [Luke]
2020). For some Baltic herring stocks,
there is evidence of earlier spawning
and higher larval survival in years of
early ice breakup and early increases
of sea surface temperature (Arula et
al. 2014, 2016), but there is currently
no study that systematically addresses
phenological changes in this species.
With the semi-enclosed and shallow
Baltic Sea being among the fastest-
warming large marine ecosystems
globally (Belkin 2009), we hypothe-
size that the temperature-dependent
spawning and growth cues have led to
a progressively earlier development of
Baltic herring larvae.

We test our hypothesis with data
from a long-term monitoring program

that surveyed Baltic herring larvae over 22 yr
(1974−1996) at 7 different areas along the coast of
Finland (Parmanne 2001) (Fig. 1). Since no informa-
tion on the exact first dates of larval hatching are
available from the area, we developed phenology
measures based on the probability of occurrences of
the smallest larvae (<10 mm) and on the fractions of
3 different size classes (<10, 10−15 and >15 mm)
throughout the sampling season from May to August.
Earlier dates in high occurrence probabilities of the
smallest larvae indicate relatively earlier spawning,
and earlier dates in high fractions (over 10% of the
total larval pool) of the largest larvae (>15 mm) indi-
cate faster development. Our method is based on a
spatio-temporal hurdle model (Cragg 1971, Potts &
Elith 2006), which can distinguish the environmental
and density-dependent effects on both occurrence
and abundance patterns separately. The model also
enables us to link phenology changes to environ-
mental covariates and to predict size-specific Baltic
herring larval groups. To increase the resolution of
our environmental covariates, we constructed spatio-
temporal maps through spatio-temporal interpola-
tion from a large number of in situ observations. Our
results expose shifts in herring larval phenology and
show size class-specific responses in occurrence and
abundance while highlighting the long-term envi-
ronmental drivers and density dependence effects
influencing Baltic herring larvae.

Fig. 1. Study areas along the Finnish coast. Submaps of sampling areas indi-
cate the locations of survey transects as blue lines. Color codes are reflected in
Figs. 4–6. ICES subdivisions 29 to 32 are indicated, where areas 1 to 3 derive
spawning stock biomass values from subdivisions 29 and 32 and areas 4 to 7 

from subdivisions 30 and 31
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2.  MATERIALS AND METHODS

2.1.  Study area and survey data

Our study area covers Finnish coastal regions in
the northern Baltic Sea between 59° and 65° N lati-
tude (Fig. 1). The included latitudinal range is char-
acterized by strong environmental gradients in water
temperature, salinity and primary production. Salin-
ity values range from ca. 6 to 7 psu in the Archipel-
ago Sea in the south to under 3 psu in the Bothnian
Bay in the north and the eastern Gulf of Finland in
the east. While the northern areas are less affected
by nutrient loadings, the Archipelago Sea and the
Gulf of Finland are eutrophied due to the highly pop-
ulated and agriculture-dominated catchment areas
in the vicinity. During 1974 to 1996, a Baltic herring
larval survey was conducted at 7 areas along the
Finnish coast, with samples taken approximately
every tenth day from May to August (Fig. 1) (Par-
manne 2001). Herring is a pelagic species that
spawns in shallow coastal areas, where its adhesive
eggs attach to littoral substrates such as macro-
phytes. After hatching, the yolk-bearing larvae
(<10 mm) remain concentrated in the vicinity of the
spawning beds, whereas the larger larvae (14−
18 mm) are more homogeneously distributed in the
coastal areas (Polte et al. 2017). Once the larvae have
finished their metamorphosis to juvenile fish, they
return to the open sea. Each area was sampled at 5
(Bothnian Bay and western Gulf of Finland) to 6 (all
other areas) locations, where transects were con-
ducted using a modified Gulf V larvae sampler with
a 300 μm collection mesh and an opening diameter of
20 cm. The sampler was pulled by 7 to 11 m boats at
a speed of 4 knots (2 m s−1) during daytime. Samples
were taken from each 1 m layer, and maximum
depths at the various sites ranged from 5 to 18 m
(for more details see Parmanne & Lindström 2003).
Larval abundances were the highest in the Archi -
pelago Sea (Areas 3 and 4, Fig. 1) and by far the low-
est in the Bothnian Bay (Area 7, Fig. 1). For detailed
tem poral size class-specific abundances, see Fig. S1
in Supplement 1 at www. int-res. com/ articles/ suppl/
m666 p135 _ supp/

2.2.  Environmental covariates and spatio-temporal
covariate model

We selected surface water temperature (°C), salin-
ity (psu) and chl a (μg l−1) (as a proxy for primary pro-
duction and hence resource availability) as covari-

ates to explain the environmental contribution in the
variation of Baltic herring larvae. All environmental
covariates were constructed so that they summarize
the spatial average over the sampling area (including
all sampling transects of respective areas) at the date
of larval sampling. Hence, the covariates vary be -
tween sampling areas and sampling occasions,
which increases the information on the effect of
covariates upon the phenology.

To produce these spatial averages, we first com-
bined 10 000 point observations for each covariate
from or within the vicinity of the sampling areas.
These observations were derived from the open data
service of the Finnish Environment Institute (VESLA:
Finnish Environment Institute and the Centres
for Economic Development, Transport and the Envi-
ronment, http:// rajapinnat. ymparisto. fi/ api/ vesla/ 2.0/;
Baltic Environmental Database: Baltic Nest Institute,
http:// rajapinnat.ymparisto.fi/api/veslabnirajapinta/
1.0/) and data of Parmanne (2001), who had meas-
ured the temperature in fixed locations close to the
Baltic herring larval sampling transects (see Fig. 1).
We then constructed a spatio-temporal statistical
model (a Gaussian process, Banerjee et al. 2014) to
interpolate the covariate values over each study area
in a grid with a 10 × 10 km spatial resolution. The
grids varied by area from 60 to 90 km2. We set the
spatial resolution with respect to the estimated spa-
tial smoothness of the covariate models and the fre-
quency of the point observations. Next, we averaged
the predicted values over each study area to derive a
study area-specific covariate value. We created such
predictions for each time point where there was her-
ring sampling. The benefit derived from this
approach is that it explicitly accounts for spatio-tem-
poral correlations in measurements and filters out
random variations in environmental data that arise
from local phenomena (such as daily weather) or
measurement errors. Supplement 1 gives a detailed
summary of environmental data and the interpola-
tion approach (Section S1). Model fitting and predic-
tions were done with GPstuff (Vanhatalo et al. 2013)
in Matlab 2018b. Supplement 2 provides all data and
code to reproduce the spatio-temporal covariate
model. Since temperature is a key driver of possible
shifts in phenology, we highlight the signal in
increasing temperature of each month (May− August)
over time (Fig. 2).

We also included spawning stock biomass (SSB)
data of the Baltic herring stocks referring to ICES
subdivisions 25 to 29 and 32 (ICES 2018) and subdi-
visions 30 and 31 (ICES 2017). We assigned yearly
SSB values to the respective study areas. SSB values

https://www.int-res.com/articles/suppl/m666p135_supp/
https://www.int-res.com/articles/suppl/m666p135_supp/
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for the northernmost subdivisions 30 and 31 (Fig. 1)
were only available from 1980 onwards; hence, the
areas located within them were modeled only from
1980 onward. While the coarse resolution of SSB may
not accurately reflect regional differences within
areas in the subdivisions, it represents the best avail-
able data covering the spatio-temporal extent of this
study and was hence considered to be the best proxy
for regional stock sizes.

2.3.  Population model for Baltic herring larvae

Since the processes underpinning larvae presence
and abundance may depend differently on the envi-
ronment and SSB, we developed a hurdle model
which fits both components separately. While a hur-
dle model can be viewed as a single model, it is fitted
with 2 separate components: one modeling pres-
ence−absence and the other modeling abundance
conditional on presence. Here, we model the pres-
ence of larvae using a generalized linear probit
model and the abundance, conditional on presence,
using a Ricker-type population growth model (Hil -
born 1985, Tang 1985, Subbey et al. 2014). Moreover,
since the environment and competition may affect
different-sized larvae differently, we constructed the
model for 3 size classes: small (<10 mm), medium

(10−15 mm) and large (>15 mm). We denote by Rj(i),t,c

the number of larvae, by Ni,t the SSB and by xj(i),t the
environmental covariates, with subindexes i for stock
assessment region (see Fig. 1), j(i) for sampling area
within the ith stock assessment region, t for sampling
date and c for size class. The hurdle model is then:

(1)

where πj(i),t,c is the probability of presence of larvae
and μj(i),t,c is the expected log larval production rate
(i.e. log of the number of larvae per m3 water per unit
SSB), with σ2

c being the variance of the independent
random error in log larval production rate.

As shown in Supplement 1 (Section S2), the ex -
pected log larval reproduction rate can be derived
from the first principles of a Ricker model and repre-
sented as a linear mixed-effects model:

(2)

where αj(i),c is an area-specific intercept correspon-
ding to the log-relative proportion of SSB in sampling
area j, ƒc(xj(i),c) is a function describing the effect of
environment on the rate of reproduction and larval
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Fig. 2. Region- and month-specific temperature development over the study time frame, derived from the spatio-temporal co-
variate model. Different colors represent months: May (5), June (6), July (7) and August (8). Dots are spatial average tempera-
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growth and survival until size class c, βj(i),c <0 is an
area-specific regression coefficient corresponding to
the density-dependent decrease in reproduction suc-
cess of an individual (up to a given larval size class)
and εj(i),t,c is a spatio-temporally autocorrelated ran-
dom effect. The random effect εj(i),t,c explains both
process stochasticity and residual error due to noisy
data. Since we have our size-class specific para -
meters, the model allows different environmental
and density-dependent processes for different size
classes. For example, if βj(i),c was close to zero for the
smallest size classes and significantly negative for
larger size classes, there would be density-depen-
dent competition only between larger larvae.

We modeled the probability of presence of larvae
with probit regression with a similar regression func-
tion as in the log larval production rate, that is πj(i),t,c =
Φ(αj(i),c + ƒc (xj(i),t) + βj(i),cNi,t + εj(i),t,c). However, the eco-
logical interpretation of the parameters of this model
component is different from the Ricker model: αj(i),c

explains the mean occurrence probability, ƒc (xj(i),t) +
βj(i),cNi,t describes the effect of environment and SSB
to occurrence probability and εj(i),t,c accounts for spa-
tio-temporally correlated random processes in a sam-
pling area over the spawning seasons. In the occur-
rence probability model, the parameter βj(i),c is not
restricted to be negative, and it does not correspond
to density-dependent competition.

We modeled the covariate effects in both model
components with polynomials of the form ƒc (x) = bc ,sal

× sal + bc,temp1 × temp + bc,temp2 × temp2 + bc,chl a1 ×
chl a + bc,chl a2 × chl a2. As a marine species in the
brackish water conditions of the Baltic Sea, Baltic
herring is at its physiological distribution limit with
respect to salinity (Illing et al. 2016). Therefore, we
assumed a linear relationship of salinity and Baltic
herring larvae. The quadratic response functions for
chl a and surface water temperature encode an
assumption that the observed conditions may include
optimal levels of these covariates (Peck et al. 2012,
Abdellaoui et al. 2017). Prior to the analysis, we log
transformed the chl a data.

When fitting the multiple size class model to data,
we applied a hierarchical Bayesian approach. The
fixed effects (βj(i),c, bc,sal, …, bc,chl a2) were given a hier-
archical prior such that, for example:

βj(i),c,~N(mj(i), σ2
j(i))

mj(i) ~N(0,1)

where mj(i) is the mean density-dependent mortality
parameter over size classes in sampling area j(i). The
other fixed effects had analogous priors. Analogous
to Hartmann et al. (2017), we modeled the intercepts

αj,c as study area-level multivariate random effects
with between-size class correlations and the spatio-
temporal random effects εj(i),t,c as per sampling area
independent multivariate temporal Gaussian pro-
cesses with between-size class correlations. That is,
α1, …, α7, ~N(0,∑α), where αj,. = [αj,1, αj,2, αj,3] and ∑α =
Cov(αj, αj

T), and similarly εj(i),., ~GP(0,k(t,t’)∑ε), where
k(t,t’) is a temporal covariance function (exponential)
and ∑ε is the covariance matrix between εj(i),t, = [εj(i),t,1,
εj(i),t,2, εj(i),t,3]. T denotes the matrix/vector transpose
and t denotes time. The benefit from using hierarchi-
cal priors over size classes is that they allow informa-
tion flow between them.

2.4.  Statistical analysis

With the Ricker model not covering zero larval
counts, the above hurdle model (Eq. 1) factorizes
with respect to the occurrence and abundance mod-
els so that we can conduct statistical inference for
these 2 model components independently. However,
as we aim to model all size classes simultaneously,
we need to implement them as multivariate general-
ized linear mixed models. For this, we used the hier-
archical modeling of species communities (HMSC)
(Ovaskainen et al. 2017, Tikhonov et al. 2020), from
the HMSC R package (Tikhonov et al. 2019, Ovas -
kainen & Abrego 2020), which allows us to model the
correlations between size class-specific responses to
environmental covariates and SSB as well as the cor-
relations between size class-specific random effects.

We fitted the models using the Markov chain
Monte Carlo method implemented in HMSC. We
examined all simulations and ensured convergence
with the Gelman-Rubin potential scale reduction fac-
tor. We assessed the explanatory and predictive pow-
ers of the 2 hurdle model components separately, the
presence−absence model through size class-specific
area under the curve (AUC) (Pearce & Ferrier 2000)
and coefficient of discrimination (Tjur R2) (Tjur 2009)
values and the abundance model by R2. To compute
the predictive power, we performed a 2-fold cross-
validation for both the presence−absence model and
the abundance model. We further followed Ovas -
kainen et al. (2017) to calculate the proportional vari-
ance partitioning among the fixed and random
effects of each larvae size class as well as overall for
both the presence−absence model and the presence-
conditioned abundance model. Herring analyses
were performed in R version 3.6.3. Supplement 3
provides the code for fitting and post-processing of
the HMSC models. 
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2.5.  Phenology measures

Due to the lack of exact information when the first
individuals of fish stocks spawn and subsequently
the first eggs hatch, we took advantage of the de -
tailed size class distribution of Baltic herring larvae.
We studied (1) whether the high probability of small
larvae (<10 mm) presence had shifted to earlier dates
and (2) whether the higher expected proportion of
large larvae (>15 mm) were appearing earlier in the
year over time. For (1), we recorded the first day of
the year where the probability of occurrence of small
larvae was greater than 75 and 90% for each year
from 1974 to 1996. We chose these probability
thresholds to ensure that general patterns are consis-
tent regardless of the threshold. The higher thresh-
old at 90% comprises only high probabilities of
occurrences and therefore corresponds to a conser-
vative measure for the presence of larvae. The lower
threshold at 75% probability represents a less strin-
gent cutoff and is, thus, more sensitive to changes in
phenology. Shifts toward earlier appearances in the
high proportions of large larvae indicate faster devel-
opment and/or earlier spawning dates, even if the
actual spawning dates are outside of the sampling
time frame. Hence, for this phenology measure (2),
we calculated the posterior probability that the frac-
tion of large larvae is higher than 10% of the total lar-
vae pool for each year from 1974 to 1996. We set a
>10% abundance threshold rather than a first obser-
vation, to ensure the robustness of our findings
throughout the sampling season, as the spring-
spawning Baltic herring spawns over several months
(e.g. Aneer 1989). Herring larvae are approximately
7 to 9 mm in length at hatching (Geffen 2002), and
daily larvae growth rates in Finnish waters have
been reported to range between 0.18 and 0.52 mm
per day (Hakala et al. 2003); hence, it takes approxi-
mately 10 to 40 d for them to grow to the large size
class after hatching. If spawning rate remained con-
stant and all larvae survived, 10% of all larvae would

be in the large size class earliest at the moment when
the first spawned larvae had grown from the small to
the large size class. If the growth rate increases, the
proportion of large larvae reaches 10% earlier. How-
ever, since larvae experience mortality, the 10%
threshold can be seen as a conservative measure for
the development. As the growth rates of fish larvae
are heavily influenced by temperature (Fey 2001,
Hakala et al. 2003), we additionally relate the proba-
bility of the fraction of large larvae to the realized
temperature gradient to highlight the impact of sur-
face water temperature on larvae growth.

3.  RESULTS

3.1.  Model evaluation

We assessed the performance of the occurrence
and abundance components of the hurdle model
individually (Table 1). The presence−absence model
component was assessed with AUC values that indi-
cate how well the model was capable of distinguish-
ing between classes (0 and 1). Mean AUC values of
0.93 among the size classes suggest a high model
performance. The overall explanatory power of the
presence−absence model, reflected in Tjur R2, was
0.51, and the 2-fold cross-validation-based predictive
power was 0.45. The presence-conditioned abun-
dance model had a mean explanatory power (R2) of
0.56 and a predictive (cross-validation) power of 0.43.

3.2.  Estimation of Baltic herring larval drivers

We partitioned the explained variation to the fixed
and random effects (Fig. 3a,b) and summarized the
weights of the covariate effects (Fig 3c,d) in the pres-
ence−absence and abundance models separately.
The temporally explicit spatial random effect (combi-
nation of year, day and area; εj(i),t,c) explained most of

Model Metric Small Medium Large Mean

Presence−absence AUC 0.94 0.93 0.92 0.93
Tjur R2 0.54 0.53 0.47 0.51

Cross-validation Tjur R2 0.47 0.47 0.41 0.45

Presence-conditioned abundance R2 0.58 0.56 0.53 0.56
(Ricker type) Cross-validation R2 0.45 0.44 0.41 0.43

Table 1. Model evaluation metrics for the larval size classes small, medium and large. Mean values (in bold) represent average 
model metric. AUC: area under the curve; Tjur R2: Tjur’s coefficient of discrimination
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the overall variation for presence− absence and abun-
dance of Baltic herring larvae as well as similar
amounts in both submodels. It showed decreasing
importance for larval presence with increasing larval
size class. No such change was detected for larval
abundances. While the proportion of explained vari-
ation attributed to the area-level random effect (αj(i),c)
remained similar among the size classes in the
 presence− absence model, it changed considerably
among size classes in the abundance model, with
decreasing influence of area from small to large lar-
vae. SSB at area showed consistent amounts of
explained variation for occurrences of each size
class. Moreover, SSB was the most important fixed
effect for abundances, and its relevance increased
with larval size (small = 10.1%, medium = 28.8%,
large = 42.7% of explained variation), reflecting that
the density dependence of larval survival in the
Ricker model is more important for larger larvae. The
importance of environmental covariates differed
markedly between the 2 model components. Over
one-quarter of the explained variation could be
attributed to temperature, chl a and salinity together
in the presence−absence model, while they ac -
counted roughly for 10% in the abundance model. In

the presence−absence model, temperature and chl a
separately accounted for an overall similar propor-
tion of explained variation, approximately 11%, but
with different amounts for varying size classes. The
importance of temperature increases with size
reflected in the explained variation at each size class
(small = 5.4%, medium = 7.6%, large = 19.4%), while
the explained variation attributed to chl a was rele-
vant particularly for the medium size class (small =
9.2%, medium = 18.1%, large = 5.8%). Temperature
and chl a played lesser roles for the abundance of lar-
vae, with a total average of explained variation of
2.7% for temperature and 3.1% for chl a. Salinity
showed opposing trends for the size classes, being
most relevant with a positive effect for presence−
absence of large larvae and showing a negative
effect for abundance of small larvae (Fig. 3).

3.3.  Shifts in phenology

First appearances in which small larvae were pres-
ent with >90% (>75%) posterior probability have on
average decreased by 4.6 d (7.9 d) per decade (Fig. 4,
all areas). With the exception of the eastern Gulf of

Fig. 3. Variance partitioning and weight of covariate effects. Explained variation in herring larvae size class responses to ran-
dom and fixed effects of (a) the presence−absence model and (b) the abundance (Ricker) model conditional on presence. Bar
plots in (a) and (b) show size class-specific results, whereas the keys show averages over all size classes for the presence−
absence and Ricker abundance models. Weights of the covariate effects are indicated by posterior means and 95% credible 

interval for (c) the presence−absence model and (d) the Ricker abundance model. SSB: spawning stock biomass
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Finland at the 90% probability threshold, there was a
consistent trend in the earlier days of larval presence
over time over all areas. The northernmost area, in the
Bothnian Bay, did not show any trend, as all predicted
occurrences had a lower probability than 90%.

However, we found strong patterns showing ear-
lier days of the year when considering the predicted
development of large larvae fractions over time
(Fig. 5). When averaged over all areas, the propor-
tion of large larvae being over 10% of the total
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y = 1300 - 0.56 x       R = 0.22, p = 0.41

y = 3800 – 1.8 x      R = –0.51, p = 0.075

y = 4700 - 2.3 x      R = -0.67, p = 0.0034

y = 9100 - 4.5 x      

y = 1100 – 0.46 x     R = –0.18, p = 0.064

y = 1700 - 0.79 x     R = -0.31, p = 0.00053

Fig. 4. First days of small larvae
presence with >90% (in color)
and 75% (in grey) posterior prob-
ability at each study area and
each year from 1974 to 1996.
Grey-shaded areas represent the
95% CIs of the linear regressions.
Upper regression line equation
and correlation coefficient is the
linear regression fit for the first
day of >90% posterior probability
per year, and lower regression
line is the same for 75% posterior
probability. Area 7 does not show
trends since the data did not meet
the threshold criteria. Color code
represents the area colors in Fig. 1
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abundance was reached 7.7 d earlier per decade.
Area-specific changes ranged between 1.4 and
13 d per decade. The trend was weakest in the
northernmost area of the Bothnian Bay but steepest
in the 2 other northern areas, Kvarken and the
Both nian Sea (Fig. 5). Higher surface water tem-

perature was positively associated, with an increas-
ing probability for large larvae comprising more
than 10% of the total larvae abundance. While this
observation holds true for all areas, the 2 northern-
most areas (Bothnian Bay, Kvarken) showed the
weakest increase (Fig. 6).
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y = 1600 – 0.69 x     R = –0.26, p < 2.2e-16 y = 1800 – 0.82 x     R = –0.27, p < 2.2e-16 y = 1300 – 0.57x  R = –0.22, p = 4.1e-09

y = 1600 – 0.68 x     R = –0.17, p = 1.2e–06 y = 2900 – 1.3 x      R = –0.38, p < 2.2e–16 y = 2300 – 1.1 x      R = –0.19, p = 0.00033 

y = 480 – 0.14 x     R = –0.037, p = 0.56 y = 1700 – 0.77 x     R = –0.24, p < 2.2e–16 

Fig. 5. Dates where the posterior
mean of the fraction of large larvae
is over 10% of total larvae pool.
Each point represents a sampling
date when the threshold is crossed.
The regression line equation and
correlation coefficient are given for
each area. Grey-shaded areas rep-
resent the 95% CIs of the linear
 regression. The points are plotted
with jitter (1,1) to highlight other-
wise overlapping data points.
Color code represents the area 

colors in Fig. 1
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4.  DISCUSSION

Our results indicate that Baltic herring have shifted
their phenology toward earlier larval development
over time. This finding is centered on 2 complement-
ing model-based results. First, the earlier detection of
first Baltic herring larvae (<10 mm) occurrences at
high probabilities (Fig. 3) suggests that northern
Baltic herring stocks spawn and/or larvae hatch ear-
lier. Second, fractions of large Baltic herring larvae
(>15 mm), contributing to more than 10% of the total
larvae abundance, are reached on average 7.7 d per
decade earlier (Fig. 4), suggesting faster develop-
ment. While both results essentially support the same
conclusion, the latter especially provides novel solu-
tions for modeling phenological change in larvae and
early life stages of fish and other animals. Since sea-
sonal fish larval surveys were designed to cover the
main spawning times of a stock, it is likely that the
sampling time frame does not match the first spawn-
ing events. However, by utilizing size class-specific
information, we can analyze the temporal change in
the fraction of large larvae that can reveal changing
phenology, as those early detected large larvae
hatched and grew already a few weeks before the
sampling. Our results show that temperature was
the strongest driver in terms of explained variation
of occurrences of large larvae in our model (Fig. 3a)
and that it had essentially a linear response, with a
positive effect on all size classes in both models
(Fig. 3c,d). With growth rates being a function of
temperature (Oeberst et al. 2009), we further high-
light that increasing temperatures are leading to
higher probabilities of detecting fractions of large
larvae earlier, pointing toward an earlier larvae
development.

4.1.  Drivers of Baltic herring larval occurrences
and abundances

Using a hurdle model framework, we disentangle
and quantify the drivers of Baltic herring larval
occurrences as well as abundances separately
(Fig. 3). While the climate-governed environmental
drivers (surface water temperature, chl a and salin-
ity) were important covariates in explaining occur-
rence patterns, SSB per area contributed most of the
explained variation of the fixed effects in both mod-
els, for larval occurrences and abundances but par-
ticularly for the latter (Fig. 3a,b). With SSB corre-
sponding to the density dependence effect in the
abundance model (Ricker model), our results indi-

cate that density dependence is stronger in larger
than in smaller larvae, showing increasing impor-
tance with increasing size class (Fig. 3b,d).

The environmental structuring is mainly deter-
mining if Baltic herring larvae are present or not.
One explanation for this could be the temperature-
dependent prey availability during the transition
from small yolk-sac larvae to medium-sized larvae,
when autonomous feeding starts (ca. 8−12 mm)
(Rannak & Simm 1979). The importance of chl a, a
proxy for prey availability (Garrido et al. 2008,
Druon et al. 2019), was particularly pronounced for
the small and medium size classes determining
occurrences. In creasing trophic mismatches have
been linked to future warming scenarios and can
result in lower recruitment success (Régnier et al.
2019). In cases where temperature determines
prey supply for the smaller size classes, and hence
their survival, the occurrence patterns of large lar-
vae could be indirectly affected by the effects on
smaller larvae. The observed increasing importance
of temperature with size (Fig. 6) is in line with this
assumption and reflected in the positive weight of
the temperature effect (Fig. 3c,d). The weaker
effect of temperature on the probability of abun-
dance of large larvae in the northernmost area,
the Bothnian Bay (Fig. 6), suggests an overriding
effect of low salinity. With lowest salinity values of
<3 psu, compared to 6−7 psu at the southernmost
in cluded areas, salinity may be the limiting factor
for successful reproduction, with recruitment being
lower with decreasing salinity (psu <3) (Illing et
al. 2016). Hence, the low salinity may also account
for the absence of occurrences with high probabil-
ities we observed in the Bothnian Bay (Fig. 4).

Archipelago zones comprise fine-scale environ-
mental gradients that are difficult to capture. With
our modeling approach for the environmental covari-
ates not being designed for capturing such fine-scale
gradients, we more importantly focused on capturing
the within-year and between-year variation in
the covariates rather than the accurate difference
between sampling site-specific values. The resolu-
tion in the measured salinity, temperature and chl a
data did not allow accurate fine-scale (i.e. sampling
site-specific) prediction of these within-year and
between-year variations. For this reason, we summa-
rized the environmental covariates as spatial aver-
ages over each of the 7 sampling regions. That is, the
daily covariate values attached to each sampling site
and year were the daily averages over the region
where that sampling site was located — and all sam-
pling sites within the same region had the same daily
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values. Hence, our covariate values capture the
within-year progression and the variation between
years in the average covariate values over the sam-
pling sites. The effect to herring larvae from
between-site variation in covariates within each
sampling region was then captured by the random
effects of the larval models.

While our analysis does not account for possible
current-induced larval transportation, we cannot
evaluate the proportion of larvae potentially not
remaining within a region. However, since included
SSB is at the ICES subdivision scale, movement of
larvae by currents should not affect our conclusions
on the SSB effect. Furthermore, if currents have
moved larvae, we mitigate that covariates could have
some mismatch with the actual spawning and early
larval phase areas by the fact that we have used
 sampling region averages for the covariates and not
covariate values at sampling sites, as described
above. The risk that larvae from one sampling area
are transported to another and thus are associated
with different environmental covariate values can
be neglected, since the sampling areas are usually
>100 km apart, with complex islands mosaics sepa-
rating them.

4.2.  Phenological changes of Baltic
herring larvae

We show that both developmental
stages in Baltic herring larvae, small
(<10 mm) and large (>15 mm), have
shifted their timing to earlier dates
(Figs. 4 & 5). First, our results suggest
an earlier onset of small larvae.
Depending on the probability thresh-
old of detection, the decrease in the
first days in occurrences of small lar-
vae varied between 4.6 d per decade
for very high probabilities of more
than 90% and 7.9 d per decade for a
still high but less strict threshold of
more than 75% probability of occur-
rences. Second, our results show that
the fractions of large larvae being
higher than 10% of the total abun-
dance has shifted by an average of
7.7 d per decade, varying between
regions from 1.4 to 13 d per decade,
and are associated with warmer con-
ditions (Fig. 5). Our results are compa-
rable to earlier reported magnitudes
of phenological shifts in marine eco-
systems (Genner et al. 2010, Poloczan-

ska et al. 2013, Asch 2015). However, with an aver-
age earlier development of almost 8 d per decade,
this advancement is faster than many observed shifts
in phenological change in terrestrial systems (Men-
zel et al. 2006, Miller-Rushing & Primack 2008).

Since the 4.6 d per decade advancement in the first
detection of small larvae at a probability threshold of
90% is smaller than the 7.7 d per decade advance-
ment for the large fraction of large larvae, our results
indicate overall faster larval development. However,
when considering the less strict 75% probability
threshold for detecting the first small larvae (with a
7.9 d per decade shift), the overall change in phenol-
ogy seems consistent and supports the robustness of
our results and the magnitude of change.

Strong advancements in phenology can become
critical for the survival of species when there is a mis-
match in timing between prey and consumer (Ed -
wards & Richardson 2004). Across realms, primary
producers and primary consumers can advance sea-
sonal timings at about twice the rate of secondary
consumers (Thackeray et al. 2010). Especially during
early life history stages of species, such as the pre-
sented Baltic herring larvae case, a mismatch in tim-
ings of available prey resources can lead to weaker
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year classes, i.e. lower SSB, via slower growth rates
and starvation (Platt et al. 2003, Durant et al. 2007).
Species that adapt to gradually changing environ-
ments by shifting their seasonal timings with suffi-
cient pace to track their prey resources will likely not
show strong negative effects of climate-induced phe-
nology shifts (Cleland et al. 2012). In this light, strong
shifts in phenology of secondary consumers such as
Baltic herring larvae would likely be of benefit if they
track the pace of their zooplankton prey resources
and/or outpace potential predation pressure by
higher consumers. However, more often it has been
recorded that the diverging phenology of different
trophic levels sets trajectories to mismatching re-
sources and declines in consumers (Beaugrand et al.
2003, Mackas et al. 2007, Koeller et al. 2009). Despite
the lack of adequate data to link changes in food re-
sources for Baltic herring larvae at the spatio-tempo-
ral scale of this study, we know that the recruitment
success of Baltic herring has decreased from the early
1980s to the early 2000s along with decreasing SSB in
subdivisions 25 to 29 and 32 (ICES 2018). Our results
that chl a is an important covariate in structuring the
occurrence especially in the small and medium life
stages of Baltic herring larvae (Fig. 3) highlights the
importance of prey availability being a driver of year
class strength (see also Rahikainen et al. 2017).

Our analysis is based on the causal description for
larval abundance (the Ricker model, Section S2 in
Supplement 1), for which reason the conclusions of
our results are more confirmatory than conclusions
from a traditional approach that relies exclusively on
correlations between the environmental covariates
and SSB to explain changes in herring larval phenol-
ogy. However, since our conclusions are only as good
as our model, it is important to also consider alterna-
tive pathways that could have contributed to an ear-
lier emerging fraction of large larvae which are not
directly governed by the environment or do not affect
adult stages of the Baltic herring. One such case
could be size-specific predation pressure (e.g. Litvak
& Leggett 1992) if altered over time. An increase in
predation pressure on smaller larvae or a decrease in
predation pressure on larger larvae could potentially
contribute to shifting size class proportions. The
sharp increase of sticklebacks in coastal areas of the
Baltic Sea during recent decades (Berg ström et al.
2015, Eklöf et al. 2020) could indeed facilitate such
changes in predation pressure during the early life
stages of herring, despite seemingly no strong associ-
ations between stickleback abundance and white
fish/vendace larvae (Vanhatalo et al. 2020). Yet, as
we here in addition to proportional abundances of

different-sized larvae also observed a matching shift
in the onset of larvae development, i.e. first occur-
rences of small larvae per year, highlighting earlier
dates of detection, the influence of predation pressure
on our findings is likely not the main driver of the ob-
served pattern. Another such case could be intensi-
fied fishing pressure, which is, for herring, most in-
tense on pre-spawning aggregations in winter and
spring in the Baltic. This could speculatively result in
higher mortalities of late spawners and thus in higher
proportions of early-spawned larvae. However, due
to our coupled approach in modeling both earlier oc-
currences as well as earlier fractions of large larvae
>10%, this assumption would also only influence the
latter. While both ecological interaction as well as
fishing pressure may contribute to the mechanisms of
larval spawning and survival, our results provide
strong support for environmental factors driving the
shift in phenology.

The status of fish stocks affects the prospects of
fisheries under climate change. With shifting timings
of larval development of commercially important fish
species, fisheries should consider an adaptive man-
agement approach, where stock assessment and
management plans take the phenological advances
of the species into account, to ultimately mitigate cli-
mate change effects on fisheries.

4.3.  Conclusions

Our work highlights the shifting phenology of
Baltic herring larvae in the northern Baltic Sea and
provides a modeling framework to detect such
changes based on the different life stages of larvae
and early life stages of animals in general. We show
that Baltic herring larvae have advanced their first
occurrences as well as their growth-dependent
abundance over a 22 yr time period consistently over
a large spatial scale. Surface water temperature and
chl a (serving as proxies for prey availability) were
particularly strong drivers in explaining the occur-
rence patterns, while larval abundances showed
strong density dependence effects explained by the
specific SSB. With increasing temperatures having
positive effects on occurrence and abundance, indi-
cating high probabilities of earlier development and
detection of larvae, a continued advancement of
Baltic herring larval phenology can be expected
under future climate projections. Long-term data
series, such as the one utilized in this study, need to
be maintained and broadened to also include lower
trophic levels, as this will be fundamental to under-
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standing how the re sulting predator−prey dynamics
form altered species phenology in the Baltic Sea and
elsewhere.
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