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ABSTRACT 

This study explores the enhancement of UV-C tertiary treatment by sulfate radical based 

Advanced Oxidation Processes (SR-AOPs), including photolytic activation of 

peroxymonosulfate (PMS) and persulfate (PS) and their photocatalytic activation using 

Fe(II). Their efficiency was assessed both for the inactivation of microorganisms and the 

removal or micropollutants (MPs) in real wastewater treatment plant effluents. Under the 

studied experimental range (UV-C dose 5.7 to 57 J/L; UV-C contact time 3 to 28 s), the 

photolysis of PMS and PS (0.01 mM) increased up to 25% the bacterial removal regarding 

to UV-C system. The photolytic activation of PMS led to the total inactivation of bacteria 

(≈ 5.70 log) with the highest UV-C dose (57 J/L). However, these conditions were 

insufficient to remove the MPs, being required oxidant’s dosages of 5 mM to remove 

above 90% of carbamazepine, diclofenac, atenolol and triclosan. The best efficiencies 

were achieved by the combination of PMS or PS with Fe(II), leading to the total removal 

of the MPs using a low UV-C dosage (19 J/L), UV-C contact time (9 s) and reagent’s 

dosages (0.5 mM). Finally, high mineralization was reached (>50%) with photocatalytic 

activation of PMS and PS even with low reagent’s dosages. 

Keywords: SR-AOPs; UV-C; disinfection; micropollutants; real wastewater. 
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1. Introduction 

Water quality is currently threatened by micropollutants (MPs) detected at trace levels in 

water bodies and whose impact in the environment is of growing concern [1, 2]. These 

MPs originates from human activities such as farms, industries, hospitals and even 

domestic wastewaters [3, 4]. The detection of MPs in surface waters confirms that their 

removal efficiency in wastewater treatment plants (WWTP) is not complete [4, 5], due to 

their high chemical stability or low biodegradability [6]. The reach of groundwater and 

drinking water supplies is a serious threat for population, so it is crucial to develop 

efficient degradation strategies. 

The intensification of tertiary treatments of wastewater is an alternative to achieve the 

degradation of MPs. Besides, the regeneration of wastewater is a solution to increase the 

water resources in regions with problems of water shortage. During the last decades, 

different international institutions (WHO, USEPA, etc.) and governments have published 

guidelines and laws to reuse reclaimed wastewater [7-9]. In Spain, the Royal Decree 

1620/2007 establishes the maximum admissible values for different parameters as a 

function of the final use of reclaimed water [10]. The highest risk comes from biological 

agents causing waterborne diseases. Although conventional disinfectants as chlorination 

are very efficient, the generation of toxic disinfection by-products (DBPs) [11] has 

recently become a matter of concern among water utilities and regulators. Other efficient 

alternatives like UV-C lamps present problems of microbial regrowth, as they lack of 

residual effect and microorganisms have DNA repair mechanisms [12, 13]. For all these 

reasons, Advanced Oxidation Processes (AOPs) have been demonstrated as a promising 

technology to disinfect and remove MPs in a large extent [14-20]. 
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AOPs involve in-situ generation of highly reactive free radicals, such as hydroxyl (HO·; 

HR-AOPs) or sulfate (SO4-·; SR-AOPs). This research explores the efficiency of different 

SR-AOPs in the disinfection and removal of MPs present in real secondary effluents. 

Sulfate radicals processes are based on the addition of persulfate salts, such as Na2S2O8 

and KHSO5 [21]. Sulfate radicals (SO4-·) can be generated under different activation 

routes (reactions 1–4), such as UV, heat, high pH, and transition metal ions [22–30]. 

𝐻𝑆𝑂$%
&'/∆
*⎯,	𝑆𝑂.% ∙ + 	𝐻𝑂 ·        (1) 
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&4/5
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𝑆2𝑂32% + 𝑀89 → 𝑆𝑂.% · +𝑀(89<) + 𝑆𝑂.2%      (4) 

On the other hand, the photolysis of H2O2 generates hydroxyl radicals (HR-AOP) when 

it is irradiated by photons of wavelengths lower than 300 nm (reaction 5): 

𝐻2𝑂2
&4
*, 	2𝐻𝑂 ·         (5) 

UV/H2O2 process has been proven to be effective for the disinfection of microorganisms, 

control and treatment of trace organic contaminants [31–32]. Moreover, the second order 

rate constant of the reaction of sulfate and hydroxyl radicals with some MPs has been 

reported to be of the same order of magnitude [33]. 

This work presents a novel study on the disinfection and removal of MPs present in real 

secondary WWTP effluents via SR-AOPs. Treatment was carried out under very realistic 

conditions of continuous operation mode with contact time of few seconds to reproduce 

the operation of UV-C processes at industrial level. Different wastewater flow rates, 

oxidant and Fe(II) concentrations were tested with the objective to establish the optimal 
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conditions for disinfection and remove these MPs. The efficiency of these treatments is 

compared with the photolysis of H2O2 as HR-AOPs model. 

2. Materials and methods 

2.1. Water 

Two different types of water were used: a) simulated urban wastewater (SWW), used as 

model water for the optimization of operating conditions; and, b) real urban wastewater 

(RWW) whose main physico-chemical parameters are shown in Table 1. RWW came 

from Estiviel WWTP, located in Toledo (Spain) and operated by FCC Aqualia. RWW 

were collected from the inlet of the UV-C system of the tertiary treatment in an 

intermediate bulk container (IBC), and shipped to Universidad Rey Juan Carlos 

(Móstoles, Spain), to do their characterization and the experimental treatments. Three 

different sampling campaigns were carried out between October of 2016 and March of 

2017. 

2.2. Chemicals 

The SWW composition is as follows: meat peptone (Scharlab; 160 mg/L), meat extract 

(Scharlab; 110 mg/L), urea (Scharlab; CO(NH2)2; 30 mg/L), NaCl (Scharlab; 7 mg/L), 

CaCl2•2H2O (Scharlab; 4 mg/L), MgSO4•7H2O (Scharlab; 2 mg/L) and K2HPO4 

(Scharlab; 28 mg/L) [34]. 

Photolytic and catalytic activation of potassium peroxymonosulfate 

(2KHSO5·KHSO4·K2SO4, PMS, Merck) and sodium persulfate (Na2S2O8, PS, Scharlab) 

were applied using concentrations ranging from 0.01 to 5 mM. For catalytic activation of 

PMS and PS, Iron (II) sulfate heptahydrate (FeSO4·7H2O, Panreac) was used, always in 

the same molar ratio than persulfate salts (1:1). Finally, H2O2 (HP, 30% w/w, Panreac) 

was used for application of H2O2/UV-C treatments. All the reagents used were analytical 

grade. Deionized water was used to prepare the SWW samples, being a compromise 
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between realistic water matrices with organic content competing for the oxidants and a 

constant water composition to guarantee reproducibility and comparability among the 

different processes. 

2.3. Bacterial analyses 

E. coli and E. faecalis were selected as model microorganisms due to their wide use as 

faecal contamination indicator. E. coli strain K12 and E. faecalis were provided by the 

Colección Española de Cultivos Tipo (CECT 4624 and CECT 5143 respectively). They 

were used to prepare the microbial suspensions spiked in the SWW samples. Fresh liquid 

cultures were prepared in Luria-Bertarni broth (Scharlau) and incubated at 37°C in a 

rotary shaker (150 r.p.m.) for 22h. Microbial suspensions were harvested by 

centrifugation at 3500 r.p.m. for 25 min. The microbial pellet was re-suspended in 

sterilized saline solution (NaCl 0.9%) and diluted in the reactor to an initial concentration 

of 106 CFU/mL. 

The analyses of the microorganisms E. coli and E. faecalis were performed by the spread 

plate method after a serial 10-fold dilution in sterilized saline solution (NaCl 0.9%). 

Aliquots of diluted samples were plated on MacConkey Agar (Scharlau) for E. coli and 

Slanetz&Bartley agar (Scharlau) for Enterococcus sp. Colonies of E. coli and 

Enterococcus sp. were counted after 24h of incubation at 42ºC and 48h at 37ºC 

respectively. Additionally, fungi population was also followed in experiments with 

RWW. This analysis was also performed by the spread plate method, using Yeast Malt 

Extract Agar (Scharlau). Colonies were counted after incubation of 48h at 37ºC. RWW 

samples were not inoculated, and wild strains of microorganisms were analysed. 

Microbial regrowth was estimated after the storage of the samples at room temperature 

for 24 and 48h, after the last sampling time. 
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2.4. Micropollutants analyses 

The analytical methodology developed for the quantification of MPs is based on 

conventional solid phase extraction (SPE) followed by reverse phase liquid 

chromatography (UPLC) of the extract and detection by time-of-flight mass spectrometry 

(TOF-MS) (see supplementary material). 

2.5. UV-C photoreactor 

The system consists of a feed tank, a centrifugal pump and a rotameter at the inlet of the 

reactor. All the treatments were performed at the natural pH of samples without further 

adjustment (pHSWW = 7.10; pHRWW = 7.23) in continuous mode, with four different flow 

rates (1-10 L/min). No significant pH changes were recorded along the process, in 

agreement with other authors [35]. The reactor is a 46 cm in length and 3.60 cm in inner 

diameter quartz tube illuminated by a UV-C lamp (Philips TUV PL-L 95W/4P HO 

1CT/25, λmax=254 nm) placed 10 cm above the tube in the axis of a parabolic reflector. 

The total illuminated volume is ca. 470 mL. The UV-C contact time ranged from 2.8 to 

28 s, and the UV-C dosages from 5.7 to 57 J/L, calculated from the experimental value 

of 95.5 W/m2 measured with a UV-C radiometer (Delta OHM, Model HD 2102.2). 

Experiments started when UV-C radiation was switched on, also corresponding to the 

simultaneous addition of oxidants and catalyst. During the course of the reaction, samples 

were collected at periodic intervals until steady-state was reached. All assays were carried 

out in triplicates, and results are presented as average data. For clarity purposes, error bars 

are not represented in all the figures, but the observed standard deviation was always less 

than 5% of the reported value. 

3. Results and discussion 

3.1. Optimization of operating conditions. Simulated wastewater disinfection 
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Different treatments were applied using SWW to optimize the operating conditions, 

taking as reference parameters the removal of bacteria population. Figure S1 

(Supplementary Material) shows the effect of persulfate salts themselves over bacteria 

population in dark conditions. Oxidant’s doses higher than 0.1 mM lead to bacterial 

inactivation in the dark. Therefore, 0.01 mM was chosen as oxidant dose for all the 

treatments, in order to ensure the photoactivated nature of the process, and to reduce costs. 

Photolysis of PMS, PS and HP 

Figure 1 shows the inactivation results for E. coli (Figure 1a) and E. faecalis (Figure 1b) 

obtained after the application of UV-C alone and in the presence of a low oxidants’s 

dosage (0.01 mM). As expected, the highest inactivation was obtained with the highest 

UV-C contact time, 28 sec (1 L/min; UV-C dose 57 J/L). As observed, the addition of the 

oxidants enhanced significantly the disinfection. In the case of E. coli, from 3.50 log 

obtained only using UV-C, until values ranging 4.50–5 log after the addition of the 

oxidants. The differences between treatments are lower for E. faecalis, reaching 

inactivation values slightly higher than 3.50 log. Nevertheless, the largest efficiencies 

were observed for PMS in both cases, reaching inactivation values around 5-log. This 

value supposes an increase in efficiency of 43% regarding to UV-C treatments without 

oxidants. The higher efficiency of PMS could be attributed to its higher oxidant potential 

(Eº = 2.51 V) in comparison with PS (Eº = 2.01 V). 

 

Figure 1 (a, b) 
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It is worth noting that the UV-C dose and UV-C contact time are common in real WWTP. 

For instance, the average UV-C dose and contact time in Estiviel WWTP, are in the order 

of 60 J/L and 7 seconds respectively, being enough to comply with the Spanish legislation 

of wastewater reuse (RD 1620/2007) [10]. This dose value is closer to the one 

corresponding to a flow rate of 10 L/min. It can be observed in the Figure 1, that for lower 

UV-C doses there are almost no differences in the bacterial efficiency when oxidants were 

added in comparison with UV-C alone. Only when HP was added, it was observed a slight 

increase in bacteria removal. In the case of E. coli (Figure 1a) it was observed as all the 

oxidants combined with UV-C, reached similar efficiency ranging from 2.5 to 3-log at 5 

L/min (6 seconds UV-C contact time), when UV-C treatments reached only 1-log. Even 

when the highest flow rate was applied (3 seconds UV-C contact time) the addition of 

oxidants increased the efficiency significantly until 1.5–2-log. This behavior was 

observed in the case of E. faecalis as well (Figure 1b), however the efficiency gap is 

considerably lower than the observed for E. coli. 

Metal activation of PMS and PS 

The sulfate radicals generation rate could increase using a transition metal as activator of 

PMS and PS. While silver ion was proved to be the most efficient for activating the PS 

[26], for PMS activation, cobalt ion (Co2+) exhibited the best activated performance [36]. 

The vast majority of authors agree that Co(II) and Fe(II) are the most suitable activators 

[26–31]. However, the environmental and health drawbacks of Co(II) dissuade their use, 

and for this reason this research only show the use of Fe(II) as activator. 

Figure 2, shows the inactivation results of E. coli and E. faecalis (Figures 2a and 2b 

respectively) reached combining 0.01 mM of PMS and Fe(II) in the same molar ratio 

(1:1) irradiated with UV-C. 
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It can be clearly observed as the addition of Fe(II) enhanced the treatments PMS/UV-C 

and UV-C, reaching the total inactivation of E. coli (≈ 5.70-log) with 28 seconds of 

contact time. Although the reduction of E. coli population was lower when the flow rate 

was increased, it can be observed that the removal is higher than obtained with PMS/UV-

C. Worth mentioning is the inactivation of E. coli (2.1-log) obtained with a flow rate of 

10 L/min (3 seconds of UV-C contact time). 

In the case of E. faecalis, the behavior is slightly different at high flow rates. At 1 L/min, 

the addition of Fe(II) increased the removal of E. faecalis until 5.5-log, higher than the 

removal with PMS/UV-C. However, because of the higher resistance of this bacteria, it 

can be observed in the figure as the addition of Fe(II) with high flow rates does not have 

effect in the activation of PMS. The inactivation differences between Escherichia coli 

and Enterococcus faecalis are related to the structural differences of both bacteria, usually 

being E. faecalis more resistant than E.coli [17]. 

 

Figure 2 (a, b) 

 

The activation of persulfate salts (PMS and PS) has been widely reported in the literature 

for organic compounds removal [37–40], but to the best of our knowledge the number of 

references using these systems for water disinfection is much lower [41, 42]. In all the 

cases, the authors reported the efficiency in discontinuous mode, while this manuscript 

proved the efficiency in realistic conditions of continuous mode using very low UV-C 

contact time, and low reagent’s dosages. Previous investigations have successfully 

applied this process to the disinfection of winery wastewater [41]. In this case, tenfold 
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PMS concentration was applied in batch mode and using UV-A LED radiation (370 nm), 

because of the much higher organic carbon load (≈ 600 mg/L). Now, the current research 

shows the potential of this technology in the treatment of effluents at large scale in 

continuous mode, reducing the dosage of reagents, treating large water volumes. 

However, an important limitation is observed in the treatment, as the combination 

PMS/Fe(II)/UV-C only worked properly with the lowest flow rate. When flow rate is 

increased, the addition of Fe(II) did not improve the inactivation reached by PMS/UV-C. 

It seems that the contact time is not enough for reacting PMS and Fe(II), and the 

generation of radicals is similar that the obtained without Fe(II). Although the coupling 

of PMS/Fe(II) is one of the most common combination, it presents some disadvantages 

similar to the Fenton reaction, such as a slow regeneration of Fe(II) from Fe(III) and the 

production of a ferric hydroxide sludge [43]. 

On the other hand, the disinfection efficiency of coupling PS with Fe(II) and irradiation 

with UV-C (Figures 3a and 3b) was tested, adding the same molar concentration, 0.01 

mM. Contrary to what happened in the case of PMS/Fe(II)/UV-C treatments, the 

combination coupling photocatalytic activation of PS by Fe(II) did not improve the 

inactivation results without Fe(II). For example, in the case of E. coli it can be observed 

that the efficiency of both treatments, with and without Fe(II) is similar for all the tested 

flow rates, suggesting that the applied operating conditions are not enough to enable 

significantly the catalytic activation of PS. Other authors reported the successful 

photocatalytic activation of PS using Fe(II) on the removal of organic pollutants [44], but 

with higher oxidant dosages and UV contact time.  

 

Figure 3 (a, b) 
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3.2. Disinfection and MPs removal of real wastewater 

After reaching the optimal operating conditions to achieve total disinfection of 

wastewater, the efficiency of the processes was tested on RWW, in order to assess their 

possible application at full-scale. In this case, the effectiveness was studied not only over 

microbial population, but also in the more challenging goal of MPs removal. 

Wastewater characterization. MPs occurrence 

Table 2 shows the occurrence of some of the targeted MPs in RWW. As it can be 

observed, seven out of eleven different contaminants were detected (SCL, CFN, SMX, 

CBZ, ATN, DCF, TCS) at trace level (μg/L). The highest detected concentration 

corresponds to sucralose (SCL), ranging 20-24 μg/L. The use of sucralose has increased 

in the last decades in a vast variety of diets, as an important type of food additive. Other 

authors have reported similar values in groundwater and wastewater [45]. The 

concentration of the other MPs is ranging 0.1-1.2 μg/L. These values are similar than 

other reported by Collado et al. [4], in the characterization of different WWTP effluents. 

Some substances were not detected, such as SMZ, ATZ (both banned in Spain) and IBP. 

In the case of the IBP, despite its common presence in urban wastewaters, this substance 

is easily degraded in conventional WWTP, as reported by other authors [46–48]. 

Disinfection of treated wastewater effluents 

Figure 4 shows the inactivation results of E. coli, E. faecalis and fungi population using 

0.01 mM of reagent’s dose. As observed in the Figure 4, because of the low microbial 

concentration in the samples, 102-104 CFU/100mL, almost all the applied treatments 

reached the detection limit (DL) of microbial determination at 1 and 3 L/min. For this 

reason, the comparison between the different treatments is performed in the highest flow 

rates (5 and 10 L/min). Figure 4a shows as the addition of low dosages of oxidants, 
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increased the bacteria inactivation regarding to the treatment using only UV-C. Therefore, 

UV-C alone reached E. coli inactivation of 0.80-log, while the highest inactivation value 

was obtained with the PS/UV-C treatment, reaching 2.08-log with a UV-C contact time 

of 6 seconds. This treatment was more efficient than the use of PMS and HP, even higher 

than coupled with Fe(II). In the case of E. faecalis (Figure 4b.) it is required to compare 

the results at 10 L/min. The highest efficiency was reached using HP/UV-C (1.22-log), 

more than 90% E. faecalis removal, just in 3 seconds with an UV-C dosage of 5.7 J/L. 

Fungi inactivation are shown in the Figure 4c. Fungi are eukaryotic cells with different 

resistance, so their use as biological control parameter could provide useful and reliable 

information about the treatments efficiency. As shown in the figure, the low dosage of 

reagents enough for bacteria inactivation is not suitable for fungi. Again, it is observed as 

the addition of oxidants improved significantly the fungi inactivation regarding to UV-C 

alone, mainly at 1 and 3 L/min, reaching the detection limit with HP/UV-C, and values 

higher than 3-log with photolysis of PMS and PS, when 1 L/min was used, and higher 

than 2-log at 3 L/min. Nevertheless, using even higher flow rates, only PMS/UV-C and 

PS/UV-C obtained a disinfection higher than 1-log. Therefore, the SR-AOPs applied in 

this research, and specially PMS/UV-C and PMS/Fe(II)/UV-C, are more efficient in the 

disinfection of wastewater with a high microbial load (>106 CFU/mL) than UV-C alone. 

With low microbial loads, UV-C radiation is enough to reach the highest disinfection 

level requited by the Spanish Legislation about reuse of reclaimed wastewater (RD 

1620/2007) [10]. 

 

Figure 4 
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Photolytic activation of PMS and PS 

Table 3 shows the degradation results of the detected MPs after the application of 

H2O2/UV-C, PMS/UV-C and PS/UV-C at 1 and 3 L/min increasing oxidant dosages 

(0.05-5 mM). The conditions used for disinfection (0.01 mM as reagents dosage) were 

insufficient to improve UV-C radiation effect on the removal of MPs (data not shown). 

Actually the lowest concentration shown in Table 3 (0.05 mM) is still not enough for 

significantly improving the efficiency of UV-C radiation alone, although there are some 

exceptions. For instance, 0.05 mM PS/UV-C enhance the efficiency of UV-C on the 

removal of ATN and DCF, reaching 37 and 39%, respectively at 1 L/min. 

Very high removal efficiency was reached for three pollutants (94% DCF; 95% ATN; 

74% TCS), by applying PS/UV-C treatment at 1 L/min using the intermediate dosage of 

0.5 mM. Using shorter contact time led to lower efficiencies, as expected from the lower 

UV-C dosage, although in the case of ATN a high efficiency is also obtained at 3 L/min. 

Nevertheless, the best removal efficiency is obtained with the highest dosage (5 mM) in 

almost all the compounds. Removals above 95% are obtained for CBZ, DCF, ATN and 

TCS (in some cases 100%), by using photolytic activation of the highest concentration of 

persulfate salts (PMS and PS) at 1 L/min. Even at 3 L/min some of them show removal 

efficiencies higher than 90%, in the case of DCF with both SR-AOPs, but CBZ just by 

PMS/UV-C, and TCS by PS/UV-C. In all the studied situations, the treatments based on 

sulfate radicals provided higher results than photolysis of H2O2, whose best results were 

removals above 50% (56% CBZ; 57% DCF; 56% ATN; 65% TCS). 

Despite the previous results, the applied treatments did not work satisfactorily for all the 

compounds, such as the case for SMX and SCL. For SMX, 5 mM PS/UV-C treatments 

reached some removal (47±1%) at 1 L/min, but unfortunately the rest of the treatments 
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did not work. In the case of SCL, the most efficient treatment was 5 mM H2O2/UV-C, but 

the removal only slightly exceeds 20%. Finally, CFN was detected in low concentration 

in the raw wastewater, with values below quantification limit, and was not detected at the 

outlet of the treatments. 

Some authors have studied the removal of MPs by the application of these treatments at 

lab-scale in batch reactors. Xu et al. [50] reported the total removal of SCL after 60 

minutes of reaction by 3.78 mM PMS/UV-C. This result contrast with the reported in this 

study (13% using 5 mM PMS/UV-C), but in this case the UV-C contact time corresponds 

with 28 s and SCL is presented in a very complex real WWTP effluent. Shukla et al. [51] 

reported the use of PMS, PS and HP in combination with UV-C for the removal of 

phenolic contaminants. After 350 minutes of reaction, total removal of phenol was 

reached with PS/UV-C and HP/UV-C with dosages below 7.0·10-3 mM. Sharma et al. 

[52] reported the 96.7% removal of Bisphenol A under 360 minutes of 0.66 mM 

PMS/UV-C. Luo et al. [53] reported that PS/UV-C system is more effective than 

PMS/UV-C and HP/UV-C for degradation of ATZ. This conclusion fits with the results 

shown in this manuscript. On the other hand, Pablos et al. [40] showed some extent 

removal of different MPs during HP/UV-C disinfection treatments carried out in a closed 

recirculating annular reactor. With an initial amount of 100 mg/L of HP, almost 50% of 

SMX removal was obtained after 60 min. Although, the results presented in this report 

cannot be compared with the ones obtained by the above mentioned authors [40, 50-53], 

they gain relevance considering the realistic conditions of contact time (28 s) and WWTP 

effluents for the industrial application of these processes. 
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Iron (II) catalytic activation of PMS and PS 

Table 4 shows the MPs removal efficiency of Fe(II) catalytic activation of PMS and PS 

using different reagent’s dosages at 1 and 3 L/min. An optimal molar ratio ratio 1:1 

Oxidant:Fe(II) was established based on preliminary experiments. 

As previously observed in Table 3, photolytic activation of PMS and PS reached the total 

removal of some MPs with 5 mM dosages. Therefore, it only makes sense to add iron to 

improve the efficiency for lower reagent’s dosages. For example, in the cases of DCF and 

ATN using the lowest dosage of PMS (0.05 mM), the addition of Fe(II) significantly 

improved the efficiency reached in absence of Fe(II). Nevertheless, the effect of the 

combination of Fe(II) with persulfate salts can be better verified using the intermediate 

reagent’s concentration. In this case, CBZ, DCF, ATN and TCS were removed higher 

than 75%, even at 3 L/min. Even ATN reached 100% of removal in all the studied 

scenarios. There are not significant differences between the use of PMS and PS in 

combination with Fe(II), just in the case of SMX (60% with PMS; 100% with PS). 

Finally, the combination of PS with Fe(II) using the highest concentration of the reagents 

was useful to abate SCL in a high extent (50%). 

The differences in the removal efficiency of the different MPs should be related to their 

specific structure and chemical composition (i.e. functional groups) and their 

physicochemical properties that makes them more or less refractory to the attack of the 

oxidant species. As an example, Luo et al. [49] classified the potential removal of 

hydrophilic micropollutants by sorption according to the value of the partition coefficient, 

logKow. Table S1 (Supplementary material) shows the structure and physicochemical 

properties of the micropollutants detected in the wastewater samples. According to Table 

S1, CBZ, CFN, SMX, ATN and SCL present a higher hydrophilicity. However, it is not 
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obvious the existence of a relation exist with the removal efficiency, being CFN and ATN 

poorly removed by the same treatments, whereas both present completely different values 

of hydrophilicity. No clear relation can be neither derived between the chemical structure 

and functional groups of the compounds (shown in Table S1) and their removal 

efficiencies. Therefore, until a much deeper knowledge of the relation between chemical 

structure and physicochemical properties of the MPs enables the prediction of the 

efficiencies, an experimental approach based on the huge amount of scientific data 

reported in the literature should be adopted for the design of the removal treatments. 

 

The efficient activation of PMS and PS through the use of different transition metals, 

mainly iron, has been reported in literature [53-55]. For example, Ahmed and Chiron [55] 

proved PS/Fe(II)/UV–Vis using solar irradiation, and they reported the efficiency 

improvement for CBZ abatement regarding to PS/Fe(II) and PS/UV–Vis. They found 2:1 

as optimal molar ratio PS:Fe(II) for a full mineralization of CBZ in 30 min with a CBZ:PS 

ratio of 1:40. 

In terms of mineralization, Table 5 shows the DOC removal. The highest DOC abatement 

are observed for PS/UV-C in almost all the cases, with values around 50%. On the other 

hand, although H2O2/UV-C did not reach high levels of MPs removal, the DOC abatement 

is higher than the obtained with PMS/UV-C. The addition of Fe(II) increased the 

mineralization, reaching values higher than 50% in all the cases, with the highest values 

correspond to PMS/Fe(II)/UV-C. Assuming that the reported data can be extrapolated to 

the MPs, these high mineralization rates are definitively a promising result, although 

further studies are indeed needed to examine the oxidation by-products generated after 

these UV-C-based AOPs. 
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4. Conclusions 

This work demonstrated the efficiency of SR-AOPs to intensify UV-C tertiary treatments 

to remove completely the biological load and MPs detected in real secondary effluents 

using very low reagent’s doses (0.5 mM) and very low UV-C contact time (9 seconds). 

Lower dosages (0.01 mM) were enough to inactivate microbial populations completely, 

but insufficient to degrade MPs. 

Application of SR- and HR-AOPs significantly improves the efficiency of UV-C on the 

removal of MPs detected at trace level in WWTP effluents. Both PMS/UV-C and PS/UV-

C showed better performance than HP/UV-C. In general, the addition of Fe(II) as catalyst 

for PMS and PS activation allows reaching a complete removal of the MPs even using a 

very low UV-C dosage of 19 J/L, corresponding to a short UV-C contact time of 9 s, and 

reduced reagent’s dosages (0.5 mM). Even though the latter was the general case, some 

MPs such as SCL, could not be removed satisfactorily, reaching only 50% of removal 

even under the strongest conditions (5 mM PS/Fe(II)/UV-C at 1 L/min; 57 J/L; 28 s). 

Although further studies are needed to elucidate the by-products generated after these 

UV-C-based AOPs, the high mineralization (> 50%) reached by the PMS/Fe(II)/UV-C 

and PS/Fe(II)/UV-C even with low reagent’s dosages might open new remediation 

strategies for the removal of MPs in the tertiary treatment of WWTP effluents. This would 

allow the reuse of wastewater according to Spanish legislation (RD 1620/2007) without 

risk of bacterial regrowth. 
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Figure captions 

Figure 1. Comparison between (■) UV-C and photolysis of (●) PMS, (▲) PS and (▼) 

HP with UV-C treatments in the inactivation of (a) Escherichia coli and (b) Enteroroccus 

faecalis, using different flow rates (1, 3, 5 and 10 L/min). The time scale corresponds to 

the operation time of the continuous process required to achieve the steady state. 

Figure 2. Efficiency of PMS activation with Fe(II) (▲), and comparison with (■) UV-C 

and photolysis of (●) PMS, in the inactivation of (a) Escherichia coli and (b) 

Enteroroccus faecalis, using different flow rates (1, 3, 5 and 10 L/min). The time scale 

corresponds to the operation time of the continuous process required to achieve the steady 

state. 

Figure 3. Efficiency of PS activation with Fe(II) (▼), and comparison with (■) UV-C 

and photolysis of (▲) PS, in the inactivation of (a) Escherichia coli and (b) Enteroroccus 

faecalis, using different flow rates (1, 3, 5 and 10 L/min). The time scale corresponds to 

the operation time of the continuous process required to achieve the steady state. 

Figure 4. Efficiency of different oxidation treatments in the inactivation of 

microorganisms of RWW samples: a) Escherichia coli; b) Enterococcus faecalis; c) fungi 

population. Operating conditions: [Oxidant] = 0.01 M; [Fe2+] = 0.01 M; UV-C (95 W); 

continuous mode; FR = 1 – 10 L/min; UV-C contact time = 3 – 28 seconds. 
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Table captions 

Table 1. Physico-chemical characteristics of wastewater during the three different 

campaigns (October ’16 – March ’17). 

Table 2. Occurrence of MPs in real secondary effluents during three different campaigns 

in the period from October ’16 to March ’17 (concentration in µg/L). 

Table 3. Percentage of MPs degradation by UV-C photolytic activation of HP, PMS and 

PS using different oxidant concentration at 1 L/min (28 sec UV-C contact time; UV-C 

dose: 57 J/L) and 3 L/min (9 sec UV-C contact time; UV-C dose: 19 J/L). The average 

and standard deviation of three replicates is given, except for the treatment with 0.05 mM 

reagent addition.  

Table 4. Percentage of micropollutants degradation by catalytic activation of PMS and 

PS using Fe(II) and UV-C radiation, with different oxidant concentration at 1 L/min (28 

sec UV-C contact time; UV-C dose: 57 J/L) and 3 L/min (9 sec UV-C contact time; UV-

C dose: 19 J/L). The average and standard deviation of three replicates is given, except 

for the treatment with 0.05 mM reagent addition. DL is the detection limit, function of 

the initial concentration. 

Table 5. Mineralization percentage of organic matter after the application of the 

treatments. 
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Table 1. 

Parameter October’16 January’17 March’17 

pH 7.23 ± 0.12 7.30 ± 0.12 7.17 ± 0.08 

Conductivity (μS/cm) 1330 ± 245 1110 ± 66 1040 ± 83 

Turbidity (NTU) 4 ± 2 4 ± 1 4 ± 1 

Suspended solids (mg/L) 10 ± 6 7 ± 3 5 ± 2 

BOD (mg/L) 6 ± 1 6 ± 1 7 ± 2 

COD (mgO2/L) 28 ± 4 31 ± 3 27 ± 3 

DOC (mg/L) 17 ± 4 15 ± 6 20 ± 8 

Total Nitrogen (mg/L) 10 ± 2 11 ± 1 9 ± 1 

Total Phosphorus (mg/L) 0.83 ± 0.29 0.79 ± 0.24 0.67 ± 0.14 

Ammonia (mg/L) 1 ± 2 1 ± 1 0.70 ± 1 

Nitrates (mg/L) 7 ± 2 9 ± 1 6 ± 1 
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Table 2 

Group Compound October 2016 January 2017 March 2017 

Analgesics and anti- 

inflammatories 

DCF 1.22 ± 0.11 1.11 ± 0.05 0.96 ± 0.04 

IBP n.d. n.d. n.d. 

Antibiotics SMX 0.50 ± 0.05 0.40 ± 0.03 0.41 ± 0.04 

Psychiatric drugs CBZ 0.72 ± 0.06 0.37 ± 0.03 0.22 ± 0.03 

β-blockers ATN 0.12 ± 0.02 0.15 ± 0.01 0.11 ± 0.03 

Herbicides 
SMZ n.d. n.d. n.d. 

ATZ n.d. n.d. n.d. 

Anti-bacterials and 

Fungicides 
TCS 0.16 ± 0.02 0.11 ± 0.01 0.06 ± 0.00 

Stimulants CFN 0.09 ± 0.12 0.07 ± 0.03 0.01  

Sweeteners SCL 23.80 ± 2.30 20.90 ± 1.40 20.00 ± 1.80 
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Table 3 

Compound [Reagent] 
mM 

Treatment 
UV-C HP/UV-C PMS/UV-C PS/UV-C 

1 L/min 3 L/min 1 L/min 3 L/min 1 L/min 3 L/min 1 L/min 3 L/min 

DCF 
0.05 

32 ± 5 9 ± 6 
20 8 25 1 39 9 

0.5 40 ± 5 21 ± 1 56 ± 3 31 ± 2 94 26 ± 0 
5 57 ± 3 38 ± 2 100 100 96 ± 0 92 ± 3 

SMX 
0.05 

1 ± 0.41 0 
0 0 0 0 0 0 

0.5 10 ± 2 9 ± 4 0 0 44 0 
5 19 ± 2 12 ± 2 0 0 47 ± 1 0 

CBZ 
0.05 

10 ± 2 3 ± 4 
3 7 1 0 3 2 

0.5 31 ± 3 23 ± 8 23 ± 13 14 ± 3 26 ± 7 12 ± 4 
5 56 ± 3 44 ± 1 100 100 67 ± 16 39 ± 5 

ATN 
0.05 

5 ± 7 0 
0 4 7 24 37 21 

0.5 34 ± 2 28 ± 5 75 ± 4 69 ± 5 95 ± 6 59 ± 5 
5 56 ± 18 33 97 ± 6 88 ± 11 97 ± 4 81 ± 4 

TCS 
0.05 

34 ± 31 15 ± 26 
22 16 19 0 26 2 

0.5 40 ± 8 26 ± 6 28 ± 1 18 ± 7 74 10 ± 12 
5 65 ± 2 46 ± 1 100 24 ± 14 97 ± 5 100 

SCL 
0.05 

8 ± 11 11 ± 13 
0 8 2 0 7 7 ± 2 

0.5 9 ± 4 12 ± 8 9 ± 2 7 ± 2 36 0 
5 23 ± 3 20 ± 2 13 ± 2 6 ± 1 3 ± 1 0 
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Table 4 

Compound [Reagent] 
mM 

Treatment 
PMS/Fe(II)/UV-C PS/Fe(II)UV-C 
1 L/min 3 L/min 1 L/min 3 L/min 

DCF 
0.05 51 41 16 11 ± 1 
0.5 77 ± 16 96 ± 2 100 100 
5 100 100 100 98 ± 2 

SMX 
0.05 0 0 0 0 
0.5 67 ± 4 59 ± 3 100 0 
5 100 100 100 100 

CBZ 
0.05 11 9 12 13 ± 2 
0.5 86 ± 25 100 89 ± 15 78 ± 5 
5 100 100 100 100 

ATN 
0.05 46 38 1 0 
0.5 100 ± 0 100 100 100 
5 100 100 100 100 

TCS 
0.05 25 7 13 4 
0.5 100 97 ± 3 95 ± 6 88 ± 9 
5 100 100 100 100 

SCL 
0.05 8 10 0 3 ± 3 
0.5 21 ± 2 24 ± 2 6 ± 2 4 ± 4 
5 17 ± 5 13 ± 5 49 ± 1 24 ± 9 
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Table 5 

Treatment H2O2/UV-C PMS/UV-C PS/UV-C PMS/Fe(II)/UV-C PS/Fe(II)/UV-C 
Dosage Flow rate = 1 L/min 

0.05 mM 0 6 ± 3 2 ± 1 12 ± 4 10 ± 3 
0.5 mM 37 ± 9 23 ± 2 27 ± 11 49 ± 2 54 ± 5 
5 mM 45 ± 3 17 ± 1 54 ± 8 62 ± 3 44 ± 2 

  Flow rate = 3 L/min 
0.05 mM 0 0  0 4 ± 2 4 ± 1 
0.5 mM 9 ± 3 20 ± 8 47 ± 8 62 ± 7 51 ± 8 
5 mM 38 ± 5 27 ± 1 51 ± 8 58 ± 1 3 
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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SUPPLEMENTARY MATERIAL 

S1. Micropollutants analyses 

Solid Phase Extraction 

An internal standard mixture was added to a filtered 100 mL water sample and the sample 

was extracted with a Waters Oasis HLB SPE cartridge that was first conditioned with 4 

mL of methanol and 2x4 mL of water. The cartridge was then washed with 2x4 mL of 

5% methanol in water and dried with vacuum. The extract was eluted with 12 mL of 

methanol and finally concentrated to 1 mL under a stream of nitrogen. 

Liquid chromatography 

Liquid chromatographic separation was done with a Waters Acquity UPLC using a 

Waters Acquity UPLC HSS T3 column (1.8 µm, 2.1x100 mm). For positive ion mode the 

eluent A was 5% methanol/water with 0.1% formic acid and eluent B was 100% methanol 

with 0.1% formic acid. For negative ion mode the eluent A was 5% methanol/water with 

1 mM ammonium fluoride (NH4F) and eluent B was 100% methanol with 1 mM 

ammonium fluoride (NH4F). Gradient elution was used for both modes: 1 min 100% A, 

30 min from 100% A to 100% B, 8 min 100 % B, and 3 min 100% A. The flow rate used 

was 0.2 mL/min and the injection volume 20 µL. 

Mass spectrometry 

The time-of-flight mass spectrometer was a Waters/Micromass LCT Premier XE with a 

dual electrospray (ESI) source. This source enables feeding of a lock mass solution 

(leucine encephaline) to be measured along the sample to correct for any mass errors 

during runs. The scan range was normally 60-800 m/z, the scan time was 0.09 s, and the 

interscan delay 0.01 s. The mass resolution of the spectrometer was typically about 12000 

and the mass accuracy used in the identification was better than 5 ppm. The target 
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compounds were quantitated using the internal standard technique with isotope labelled 

standards. Caffeine (CFN), sulfamethoxazole (SMX), simazine (SMZ), carbamazepine 

(CBZ), atrazine (ATZ), and atenolol (ATN) were quantitated using positive ion mode and 

sucralose (SCL), diclofenac sodium salt (DCF), triclosan (TCS), and ibuprofen (IBP) 

using negative ion mode. 

Diclofenac-13C6 sodium salt (Sigma-Aldrich), ibuprofen-d3 (Sigma-Aldrich), caffeine-

13C3 (Sigma-Aldrich), carbamazepine-d10 (Sigma-Aldrich), estrone-2,4-d2 (CDN 

Isotopes), simazine-d10 (CDN Isotopes), triclosan-d3 (CDN Isotopes), atrazine-d5 (CDN 

Isotopes), sulfamethoxazole-d4 (CDN Isotopes), atenolol-d7 (TRC Canada) and 

sucralose-d6 (TRC Canada) were used as labelled standards for mass spectrometry 

analysis. The calibration was based on the same, non-labelled compounds. 
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Table S1. List of the 8 detected micropollutants and their physicochemical properties. 

Compound Molecular 
formula 

Molecular 
mass 

(g mol-1) 

pKa 
(-) 

logKow 
(-) 

CBZ 

 

236.3 13.9 2.28 

DCF 

 

296.1 4.15 4.48 

IBP 

 

206.3 4.9 3.37 

TCS 

 

289.5 7.8 5.12 

CFN 

 

194.2 0.5 0.28 

SMX 

 

253.3 5.81 0.65 

ATN 
 

266.34 9.6 0.16 

SCL 

 

397.63 12.52 0.229 
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Figure S1. Escherichia coli and Enterococcus faecalis inactivation in dark conditions (4 

h) with different dosages of a) PMS; and b) PS. 
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