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Quantum entanglement is one of the biggest mysteries in physics. In gauge field theories, the
amount of entanglement can be measured with certain quantities. For an entangled system,
there are correlations with these measured quantities in both time and spatial coordinates
that do not fit into the understanding we currently hold about the locality of the measures
and correlations. Difficulties in obtaining probes for entanglement in gauge theories arise
from the problem of nonlocality. It can be stated as the problem of decomposing the space
of the physical states into different regions.

In this thesis, we focus on a particular supersymmetric Yang-Mills theory that is holo-
graphically dual to a classical gravity theory in an asymptotically anti de Sitter spacetime.
We introduce the most important holographic probes of entanglement and discuss the in-
equalities obtained from the dual formulation of the entanglement entropy. We introduce
the subregion duality as an interesting conjecture of holography that remains under research.
The understanding of the subregion duality is not necessarily solid in arbitrary geometries,
as new results that suggest either a violation of the subregion duality or act against our com-
mon knowledge of the holography by reconstructing the bulk metric beyond the entanglement
wedge.

This thesis will investigate this aspect of subregion duality by evaluating the bulk probes
such as Wilson loop for two different geometries (deconfining and confining). We aim to find
whether or not these probes remain inside of the entanglement wedge. We find that, for both
geometries in four dimensions, the subregion duality is not violated. In other words, the
reduced CFT state does not encode information about the bulk beyond the entanglement
wedge. However, we can not assume this is the case with arbitrary geometries and therefore,
this topic will remain under our interest for future research.
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1 Motivation and introduction
One of the most interesting topics of the cutting-edge research in areas such as quan-
tum field theory is to describe and explain the quantum entanglement. Quantum
mechanics has proven itself on being the fundamental basis of our world, and ex-
plaining the entanglement as a phenomenon would be the next big step in the path
to better understanding of our universe. Steps towards this goals have been made
particularly in the area of the holographic duality [35]. While the quantum field
theories alone are incapable of describing and explaining the entanglement of grav-
itational interaction, the holography provides new, efficient tools. In general, the
holographic principle rests on a duality of certain quantum field theories (QFTs)
with gravitational theories in higher dimension. In other words, the holographic
QFTs with fixed spacetime geometry correspond to a gravitational theory with a
boundary described with this same geometry. Thus, the problems and calculations
in such holographic QFTs can be calculated and solved using the methods of general
relativity. In particular, we concentrate on the AdS/CFT correspondence as an ex-
ample of the holographic duality. The reason of major interest towards AdS/CFT
comes from the fact it gives connection between calculations in perturbative string
theory and calculations in certain gauge field theory without perturbations. In other
words, these non-perturbative calculations correspond to strong coupling, in which
the results are significantly harder to obtain in the frame of field theory [37]. There-
fore, we shall take the examined QFT to the limit of a large number of degrees
of freedom and large coupling constant. This allows us to relate the QFT with
perturbative string theory and access the tools of holographic duality.

This thesis will concentrate on introducing the phenomena of quantum entan-
glement in terms of holographic duality and discuss the ways and probes we can
examine this phenomenon with. In this first chapter, we take an introduction-level
look into the basics of the AdS/CFT correspondence and its mathematical formula-
tion. Continuing to the Chapter 2, we shall introduce the probes of the holography.
These probes include for example the Wilson loops, two-point functions and entan-
glement entropy. In addition, we will discuss the subregion duality and the details
of entanglement wedge and its cross section. We describe how these probes are
obtained using the holographic principle and further, how they help us understand
the entanglement as a phenomenon. In the Chapter 3, we discuss the entangle-
ment entropy inequalities. First, we introduce the fundamental inequalities and
then move on to the holographic entropy cone and to the recent research results on
the entropy inequalities. In addition, we take detailed look of the conjecture of the
entanglement wedge reconstruction that would possibly violate the subregion dual-
ity. Furthermore, the probes introduced and discussed in the Chapter 2 reveal their
main purpose for this thesis in the Chapter 4. We will evaluate the probes for two
different bulk geometries and check whether or not they fall inside the entanglement
wedge. Finally, in the Chapter 5, we conclude the results and discuss about the
conclusions and possibilities for future research about this topic.

Starting with the introduction to the holographic duality, the first and most well-
known example of it is the AdS/CFT correspondence that describes the duality
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between conformal field theory (CFT) and quantum gravity [2]. An important
example of the AdS/CFT correspondence is the family of black hole geometries.
At that case we have AdSd+1 background which is dual to thermal state of CFT.
The holographic duality as we know it today was introduced by Maldacena [36].
However, We can start the discussion from the black hole entropy

SBH = A

4l2P
, (1.1)

also known as the Bekenstein-Hawking entropy [45]. We could also state that the
holographic principle was introduced from string theory by considering a system of
branes and taking it to the limit of low energy [21]. For example, when we take
the type IIB string theory with N branes, we can consider the low-energy limit
and therefore use the particular conformal field theory known as the maximally
supersymmetric Yang-Mills theory, also referred as the SYM theory. We will talk
more about the properties and importance of the Yang-Mills theory later on.

In (1.1), A represents the area of an event horizon and lP is the Planck length.
We can think the black hole entropy from the field theory point of view. Consider
the degrees of freedom beyond the horizon. If we trace over them, we can obtain the
entanglement entropy associated with the horizon. It turns out to be proportional
to the area of the given boundary, which is analogous to the form of the Bekenstein-
Hawking entropy.

In more detail, on the side of gravity, the boundary of spatial volume encodes
all the information about the volume itself. To get an idea how the duality works,
the number of degrees of freedom on each side of the correspondence needs to be
matched first. Since the degrees of freedom are measured by the entropy, for a
spatial region Rd−1 with d-dimensional spacetime in CFT side we have

SQFT ∝ V ol(Rd−1). (1.2)

Then, for spacetime on gravity side with d+1 dimensions, the entropy follows (1.1),
and a spatial region Rd on the gravity side in d + 1 dimensions is bounded by a
manifold with d− 1 dimensions. This can be expressed as

Rd−1 = ∂Rd. (1.3)

From this, it is straightforward to see that indeed, the entropy on the gravity side is
proportional to the area of the boundary ∂Rd. Furthermore, this area is proportional
to the volume of the spatial region on the CFT side with d− 1 dimensions, namely

SGR(Rd) ∝ Area(∂Rd) ∝ V ol(Rd−1). (1.4)

In particular, we demand the background geometry to be asymptotically AdS, since
it results in conformal boundary geometry in the limit of UV. The relation 1.4 arises
from the conformal invarience of the considered QFT, i.e. the field theory is at fixed
point of the renormalization group. Renormalization group is tool that helps to
investigate the behavior of physical system at varying scales. The renormalization
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group flow is then a group of scale transformations, with space determined by the
coupling constants. It follows that, this flow allows the original CFT to be equivalent
to the one described with the scale transformations [12][39]. The renormalization
group is useful with many CFTs, but not in the case of gravity. Therefore, in this
thesis we focus on the probes and tools of holography, and to the CFTs that are dual
to gravitational theories. However, worth of mentioning is that all CFTs are not
necessarily dual. Thus, the question of finding the subset of CFTs with gravitational
duals is under active research, one example being a set of dual CFTs proposed in [9].

For anti-de Sitter spacetime, we can write the line element in d + 1 dimensions
as

ds2 = L2

z2 (−dt2 + d~x2 + dz2), (1.5)

which is better known as the Poincaré patch. It originates from the Poincaré in-
variance in d dimensions [37]. However, we must note that the Poincaré coordinates
do not cover the whole space. The reason it is called a patch to begin with, is
that it only covers a certain part of the whole space. This gives a reason to look
at the metric with so called global coordinates that do cover all of the space, with
τ ∈ [0, 2π] and ρ ∈ R+:

ds2
global = R2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρd~Ω2

d−2). (1.6)

Here d~Ω2
d−2 marks the (d− 2)-dimensional 2-sphere metric. We can make a substi-

tution of tan θ = sinh ρ, where θ is defined in two dimensions as −π/2 ≤ θ ≤ π/2
and for other dimensions as 0 ≤ θ ≤ π/2. The metric can be then written as

ds2
global = R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θd~Ω2

d−2). (1.7)

Now, the part of the space that is covered by the Poincaré coordinates is called the
Poincaré patch, and it covers a triangle-like area of the whole space. If we mark
Ωi = sin θ1 cos θ1, . . . , sin θ1 sin θ2, . . . , sin θd−1 s.t. the relation Ω2

i + cos2 θ1 = 1 is
satisfied, then the Poincaré coordinates (1.5) are connected to the global ones by
the following relations:

z = L

cosh ρ cos τ − sinh ρ cos θ1
(1.8)

t = z cosh ρ sin τ (1.9)
xi = zΩi sinh ρ. (1.10)

The reason to use the Poincaré patch with the holographic calculation is that it
is particularly convenient on describing the dual spacetimes. More importantly, it
allows us to investigate the field theory living on the Minkowski spacetime instead
on a sphere. Namely, we can treat the d-dimensional Poincaré as the conformal
group.

In (1.5), the L represents the anti-de Sitter radius and z the coordinate corre-
sponding to the extra dimension. This line element gives AdS a boundary at z = 0
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which furthermore yields the geometry of AdS that we are particularly interested
in. Important note about the boundary geometry is that it is only one of the choices
in the group of geometries with same causal structure.

On the other side of the correspondence, we have conformal field theory. Such
field theory is both relativistic and invariant under a set of certain spacetime trans-
formations called conformal group, in addition to having angle-preserving transfor-
mations. The conformal group is isomorphic to the group SO(d, 2), which makes
the connection to AdSd+1 clear. The Poincaré group is the symmetry group of
relativistic field theory for flat spacetime [42], and the Poincaré transformations

xµ → Λµ
νx

ν + aµ (1.11)

are isometries of a flat spacetime. For the transformations in CFTs that preserve
angles, a good example is scale transformation:

xµ → λxµ. (1.12)

Even though scale transformations are part of conformal transformations like Poincaré
transformations, it is obvious that the scale transformations do not belong to the
Poincaré group. In fact, the conformal group can be identified as the set of Rd

Minkowski spacetime which leaves angles, but not necessary lengths, invariant [21].
An important property of CFTs is that one can always find a special set of oper-
ators, i.e. local operators that transform simply under conformal transformations.
For example, the primary operators transform under dilatation operator as

O′(x′) = λ−∆O. (1.13)

However, when we are considering the states in CFT, we can not tell whether or
not they are holographic based on the transformation properties mentioned above.
The way of distinguishing the holographic states from the ones that are not is to
check whether their mutual information I(A : B), defined with the entanglement
proposed by the Ryu-Takayanagi proposal entropy S as

I(A : B) = S(A) + S(B)− S(AB), (1.14)

follows the so called monogamy inequality

I(A : BC) ≥ I(A : B) + I(A : C), (1.15)

that we will return to later in the Chapter 3 when discussing the inequalities of
holography further.
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Figure 1: For CFT with two dimensions, the mutual information between two disjoint areas is
calculated using the extremal surfaces shown in the figure. The length of the light pink line gives
the entanglement entropy of AB, that is S(AB) and correspondingly, the length of the red curves
correspond to S(A) and S(B). These entropies are then used to evaluate the mutual information.

2 Probes in holographic duality
We have chosen few of the probes in AdS/CFT to evaluate. The following back-
ground introduction of the probes clarifies the reason we chose these probes. We
include few words about the Yang-Mills theory, that is a strongly coupled quantum
theory raising from the Lie group. As we will see, particularly useful case is the
supersymmetric Yang-Mills theory in four dimensions, i.e. N = 4 SYM. This one
corresponds to a field theory with 4 supersymmetries relating the boson and fermion
fields. Next, we will talk little bit about the algebra and notations associated with
the Yang-Mills theory in general.

For a compact Lie group G, for example the SU(N) and SO(N), there is asso-
ciated Lie algebra with Hermitian generators Tα [37] satisfying

[Tα, T β] = ifαβγT γ, (2.1)

where the fαβγ marks Lie algebra’s structure constants. For SU(N) group, the
indices go as α, β, γ = 1 . . . N1−1. These generators need to be further normalized,
and typically in the current context we use the following normalization for the
generators:

Tr(TαT β) = 1
2δ

αβ. (2.2)

Now, for matter fields with G = SU(N), we can use the gauge field Aµ = AαµT
α,

that is also known as the connection. We introduce the covariant derivative of our
state vector ψ carrying the field as

Dµψ = ∂µψ − ieAµψ, (2.3)

where e is for charge, which in our case we could normalize to one. Moreover, using
Aµ, the field strength is defined as within Lie algebra (also known as the curvature),
and can be written as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (2.4)
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This formulation can be further used to introduce the action of Yang-Mills theory
with a coupling constant g [37]:

SYM = − 1
2g2

∫
d4xTrF µνFµν . (2.5)

The set of all transformations that belong to this symmetry group can be referred
as its gauge group. However, we must note that typically, the gauge group refers
to SU(N) or SO(N), and the symmetries of Poincaré are considered separately.
The gauge symmetry is not to be confused with an actual physical symmetries of
the system, but remind ourselves that gauge symmetry takes us from one state to
another. Thus, in the description of the system, it is a redundancy. This redun-
dancy is one of the key reasons to use the Yang-Mills theory: The gauge fields with
redundancy gives us the possibility to use various properties of the system. Namely,
when working with Yang-Mills theory we can for example obtain the degrees of
freedom in every generator Tα from the rank of the gauge group. Analogously to
the connections mentioned in general relativity, such as Levi-Civita connection, in
Yang-Mills theory we can use the connections to describe the parallel transport on
a given manifold with appropriate electric charge γ. For the connection Aµ of a
particle on a worldline xµ(τ), the parallel transportation is written as

i
dω

dτ
= dxµ

dτ
γAµ(x)ω. (2.6)

From this, we can then further introduce the probes that are crucial for the dis-
cussion and calculations performed later on. The key is that following the presented
Yang-Mills theory, we can use the holographic principle in our field theory based
calculations to make them easier to evaluate. The calculations via holography are
much simpler since it allows us to reduce them to the evaluation of the geodesics
and parallel transport. This is significantly simpler than trying to evaluate functions
purely in the quantum field theories, that in many cases is an impossible task to
perform. In the following chapters, we will discuss further some of these calculations
through holography.

2.1 Entanglement entropy
First and very fundamental probe we introduce is the quantum entanglement en-
tropy. Quantum entanglement is a property of a quantum system which means that,
it is one of the fundamental factors distinguishing the quantum physics from clas-
sical physics. If a quantum state cannot be presented independently from another,
the state is described as an entangled state. One way to measure the amount of
entanglement in a system is the entanglement entropy. It can be described as the
measure of the uncertainty in a quantum system. Entropy itself is not restricted
to quantum systems only, but in theory of quantum information, we use formalism
different from the classical formulation of the entropy in information theory.

The classical formulation of the entropy in the information theory is called the
Shannon entropy. For discrete random variable X with realizations at X = x, the
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probability distribution P (x) with 0 ≤ P (x) ≤ 1 has the Shannon entropy H(X) as
follows:

H(X) = −
∑
x∈X

P (x)lg(P (x)) = 〈− log2(P (x))〉. (2.7)

If we denote the number of possible values for X with n, then the Shannon entropy
reaches its maximum value at H(X) = lg(n), which corresponds to the probability
distribution at P (x) = 1/n. For two random variables X1 and X2, we have the
Shannon entropy simply as

H(X1, X2) = −
∑

x1∈X1,x2∈X2

P (x1, x2)lg(P (x1, x2)). (2.8)

We can then focus on the quantum equivalent of the information and there-
fore continue in the frame of quantum mechanics. When talking about entangled
quantum states, it is important to introduce the density operator that represents
the state. Through the density operator ρ, the state can be described either as a
pure state or a mixed state [41]. For the pure states, the density operator satisfies
ρ2 = ρ. This means that, the pure state can be constructed and described purely
by the Hilbert space state vectors. For mixed states, this is not the case. Instead,
the density operator plays more crucial role with mixed states, for which we have
ρ2 6= ρ. In general, ρ is Hermitian and thus satisfies the self-adjointness ρ† = ρ. In
addition, it has a unit trace, Tr(ρ) = 1 and satisfies non-negativity. Furthermore,
the density operator can be presented in terms of its eigenvectors {|i〉} and their
eigenvalues (which here can be understood as the probability of state being {|i〉})
pi as

ρ =
∑
i

pi|i〉〈i|. (2.9)

Let us now consider two subsystems A and B forming a bipartite system in a pure
state. We mark the orthonormal basis vectors of these subsystems as {|j〉A} and
{|k〉B}. These bases are part of the Hilbert spaces HA and HB. Now, a composite
system of these in case of a pure state is described with the pure state density matrix

ρ = |ψ〉〈ψ| (2.10)
=
∑
j,k

ajk|jA〉 ⊗ |kB〉
∑
j,k

〈jA| ⊗ 〈kB|, (2.11)

where the sum of coefficients is normalized to one. Now, if we define states |ψAi 〉
and |ψBi 〉, that correspond to a change of basis, as

|ψAi 〉 =
∑
j

cij|j〉A (2.12)

|ψBi 〉 =
∑
k

dij|k〉B, (2.13)

we can apply the Schmidt decomposition

|ψ〉 =
∑
i

√
pi|ψAi 〉 ⊗ |ψBi 〉. (2.14)
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Then, let us say we can only access the information in the quantum system A. We
would evaluate this information associated with the system A using the reduced
density matrix ρA, defined as [41]

ρA = TrB(ρAB) = TrB(
∑
i,j

√
pipj|i〉〈j|A ⊗ |̃i〉〈j̃|B) (2.15)

=
∑
i,j,k

√
pipj|i〉〈j|A〈k|̃i〉B〈j̃|k〉B (2.16)

=
∑
i,j,k

√
pipj|i〉〈j|A〈̃i|k〉B〈k|j̃〉B. (2.17)

This is most often seen written as

ρA =
∑
i

pi|i〉〈i|A. (2.18)

As an example of entangled quantum system, let us consider a system of two
spins. The state

A| ↑〉 ⊗ | ↑〉+B| ↓〉 ⊗ | ↓〉 (2.19)
is then entangled if neither of the coefficients, A or B, vanishes. Describing exactly
how entangled the states are, boils down to the values of their amplitudes: if A and
B have values close to each other, the state can be described as more entangled
than the one with widely differing amplitudes. In other words, the entanglement
of the state is equivalent on having uncertainty about the state. Evaluating the
entanglement entropy is a way to measure the amount of this uncertainty. Now, it
may be hard to evaluate the expectation value of the quantity that has a logarithm.
For this reason, we can use the Rényi entropy to obtain our entanglement entropy.
We start from the Rényi entropy

Sn = 1
1− n ln

∑
i

pni = 1
1− n ln Tr(ρn) (2.20)

and then take this to the limit of n → 1. The resulting entanglement entropy is
better known as the von Neumann entropy [51], defined for the density matrix ρ of
the state:

S(ρ) = 〈−lg(ρ)〉 = −Tr(ρlgρ). (2.21)
The entanglement entropy has proven to be extremely difficult to evaluate in

the field theories, even without any interactions. However, if the field theory is
at strong coupling, we can obtain the entanglement entropy using the holographic
duality. This conjecture is known as the Ryu-Takayanagi proposal [44]. It gives
information about the connection of entanglement on the boundary and bulk ge-
ometry by stating, that in holographic CFT, the entanglement entropy of a spatial
region A can be given as

S(A) = Areamin(ΣA)
4GN

. (2.22)

The left hand side in 2.22 represents the holographic entropy and the right hand
side is the definition for it. In the last section, we discussed about how the field
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theory lives on the boundary geometry. The Ryu-Takayanagi proposal 2.22 therefore
describes how the holographic entanglement entropy S(A) is determined from a
surface that minimizes the Area(ΣA). The ΣA is a codimension-2 bulk surface, where
the term codimension refers to the number of dimensions that can be removed from
the submanifold. In other words, it refers to the dimension of the quotient space
between the given vector space and its subspace. The codimension-2 bulk surface
ΣA is required to have the same boundary as A[3]. In addition, we require that ΣA

is anchored and homologous to A. In the figure 2, we have visualized a system with
the geometry that is asymptotically AdSd+1, where the holographic entanglement
entropy can be evaluated with Ryu-Takayanagi proposal.

Figure 2: Visualization of the system for Ryu-Takayanagi proposal, where the entanglement
entropy of A can be evaluated with the surface ΣA.

If we consider a non-discrete case, the entanglement entropy is UV-divergent on
the field theory side, which can be seen through the holography. Thus, to get rid of
the divergence, cutoffs are required. Calculations of the entanglement entropy are
thus required to be done with re-normalization of the action. In general, the pipeline
for the entanglement entropy calculation starts from introducing the induced metric
g∗ on the surface ΣA embedded in the bulk. Then, minimization of this surface allows
us to use the Ryu-Takayanagi formula (2.22) to obtain the entanglement entropy. If
the bulk metric is denoted by g and the embedding by f , then the induced metric
is

g∗ = f ∗ g = ∂xα

∂yµ
∂xβ

∂yν
gαβdy

µ ⊗ dyν . (2.23)

Using g∗, we can obtain the area of ΣA using its volume:

Vol(ΣA) =
∫ √

det g∗dy1 ∧ · · · ∧ dyd−1 (2.24)

=
∫
L(x(y), y)dy, (2.25)
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where L denotes the Lagrangian of the system. We can continue the calculation
using the familiar Euler-Lagrange formulation

∂L
∂xµ(y) −

∂

∂yν
( ∂L
∂(∂νxµ(y))) = 0, (2.26)

and minimize the action. Now, it is important that we consider the divergence of the
area. Often, the divergence is bypassed by re-normalization, namely by considering
a cutoff. This means that, at some z = ε, we encounter the ending of the surface
instead of encountering the ending at the boundary of AdS.

2.2 Entanglement wedge
Yet another holographic probe and a measure of entanglement for mixed states is
the entanglement wedge and its cross section. If we consider a boundary region A of
the AdS in terms of holography, the entanglement wedge itself is defined as the bulk
domain of dependence of a surface that is bounded by ΣA and A. Interestingly, it
has been proposed that, the entanglement wedge can reach beyond its corresponding
bulk region [6]. This can be stated in another way, by introducing a causal wedge,
denoted by CA, that is the intersection between the causal future and causal past
for the domain with dependence of A in the bulk. In terms of CA, we can say that
the ΣA can reach beyond this causal wedge [52].

By considering a density matrix ρA, we reconstruct the entanglement wedge using
this density matrix. In addition, we face an interesting feature of that we can find a
larger system with pure state so that the density matrix of the mixed state is actually
the reduced density matrix of this pure state. In other words, we can track down the
original state by tracing partially over the states corresponding to the considered
mixed states. This is called purification, and the reason it to be a particular interest
for us, is that we can measure the entanglement of this purification. Now, when
the purification is described via the Schmidt composition (2.14), we can define the
entanglement of this purification, EP (A,B), as

EP (ρAB) = minρAB=Tr
AB
|ψ〉〈ψ|S(ρAA), (2.27)

where the two regions A and B are the two overlapping areas on the boundary.
Marking the union of A and B as AB, we can refer to the entanglement wedge as
MAB. Then, we know that MAB is associated with minimized surface ΓAB. The
purifications of ρAB are marked as the states |ψ〉 by using the definition

ρAÃ := TrBB̃|ψ〉〈ψ|, (2.28)

in which the minimization has been done over all pure states |ψ〉 ∈ HAÃ⊗HBB̃. We
must take into account that these pure states must satisfy the following condition:

ρAB = TrÃB̃|ψ〉〈ψ|. (2.29)

In other words, the states |ψ〉 that satisfy (2.29) are the purifications of the ρAB [46].
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2.2.1 Entanglement wedge cross section

The entanglement of the purification has a candidate gravity dual, which is the
entanglement wedge cross section [48]. Therefore, we can write them as

Ep(ρAB) = EW (A,B). (2.30)

To explain more detail how this description is realized, we take a look at the entan-
glement wedge MAB. For certain MAB, we may consider a case where it is connected
and contains subregions A and B. In this situation, we find that the boundary of
∂MAB can be further divided into the parts corresponding to the regions A and
B [41] as

∂MAB = A ∪B ∪ ΓAB, (2.31)

where the ΓAB is the minimal surface associated to the entanglement wedge. Fur-
thermore, it can be presented in terms of the minimal areas of the individual regions:

ΓAB = Γ(A)
AB ∪ Γ(B)

AB . (2.32)

Figure 3: Graphical visualization of the entanglement wedge and its regions A∪Γ(A)
AB and B∪Γ(B)

AB

that encounter each other at ∂ΣAB , meaning that the minimization of the surface ΣAB is the
corresponding entanglement wedge cross section.

If we now take a look at the area where our regions A ∪ Γ(A)
AB and B ∪ Γ(B)

AB

encounter each other and call this area ΣAB, we can arrive at the definition of
the entanglement wedge cross section. A visualization of entanglement wedge cross
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section EW is presented in the Figure 3. It is defined as the minimal area of the
surface ΣAB

EW (ρAB) = EW (A,B) = Area(Σmin
AB )

4GN

, (2.33)

where ρAB is a density matrix that the purification is performed on. Indeed, the
discussed entanglement of the purification is dual to the entanglement wedge cross
section [47]. Thus, EW yields a way of obtaining information about the correlation
measure without having to evaluate the entanglement of the purification itself. It
hands us the information about the correlation of A and B via their union A∪B that
corresponds to the density matrix of the associated mixed state ρAB. We shall return
to the discussion of the entanglement wedge cross section in the later chapters.

While we chose to concentrate on the entanglement wedge cross section as the
dual for the entanglement of purification, it is not the only possible dual. For
example, entanglement negativity is one proposal [28]. It has been suggested that
the entanglement negativity is, in fact, a dual for the entanglement wedge cross
section [31].

2.2.2 Odd and reflected entropies

A question worth asking is if the entanglement wedge cross section could be obtained
directly from the given state. This question has been answered affirmative with the
introduction of odd and reflected entropies. The key notation with these two is that
they are in fact simple refinements on EW . This means that with additional assump-
tions, the calculation of the entanglement wedge cross section can be simplified by
the calculation of associated entropy. The first of these two refinements, the odd
entropy, is proposed as an odd integer analytic continuation of Tsallis entropy. The
Tsallis entropy for discrete cases is originally defined as

ST = k

q − 1

(
1−

∑
i

pqi

)
, (2.34)

where the pi are the discrete probabilities that sum up to one, the q is a real param-
eter and k is positive constant [50]. The odd entropy S0 is the analytic continuation
of (2.34), for the odd integer n0 → 1 by Tamaoka et al. [47]:

S0(ρA1A2) = lim
n0→1

S
(n0)
0 (ρA1A2). (2.35)

Moreover, it was proved that (2.35) reduces to the entanglement entropy for ρA1

in case of a pure state and that (2.35) reduces to the von Neumann entropy in
case of product state. In addition, Tamaoka et al. demonstrate a calculation of
S0(ρA1A2)− S(ρA1A2) in two dimensions, obtaining

S0(ρA1A2)− S(ρA1A2) ≡ EW (ρA1A2) = EW (ρA1A2). (2.36)

Here the EW is defined through EW = S0(ρA1A2)−S(ρA1A2). The equation 2.36 states,
that the difference between the odd entropy S0(ρA1A2) and the von Neumann entropy
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S(ρA1A2) yields the entanglement of purification EP , which is the holographic dual
of entanglement wedge cross section EW .

Another refinement is the so called reflected entropy. It was introduced in [15]
via considering reflected minimal surfaces and obtaining the entanglement entropy
from them. For entanglement wedge EW with regions A and B, they conjectured
that the reflected entropy on the continuum limit to be

SR(A,B) = 2EW (A,B). (2.37)

To understand this result, we need to add few notes about the states and spaces
behind it. First, we can relate it to the AdS deconfining geometry, which describes
the black hole. In that case, we have a situation where the entanglement wedge is in
fact anchored to A and A∗ where A∗ = JAJ , and J is an anti-unitary CPT (charge,
parity, time). A visualization of such a situation is presented in Figure 4. A crucial
assumption in the calculation of the reflected entropy is that the considered QFT
satisfies the split property. Namely, it means that the algebra describing the QFT
can be further splitted into subalgebras. These subalgebras correspond to space-like
separated regions which are associated to independent states. By assuming such a
QFT let us introduce a N that is the factor performing the splitting of the algebras,
i.e.

AA ⊂ N ⊂ A′B. (2.38)
Here AA is a subalgebra of the algebra for our region B and A′B represents the
commutant of the same algebra of B.

Now, to fully bring together all the important properties this splitting factor
must satisfy, we need to become familiar with some concepts of the von Neumann
algebra. In general, the factors in this algebra refer to algebra with identity operator
multiples in the center. There are three different types we can divide these factors
into. For type I factors, there is nonzero minimal projection. For type II, there does
not exist minimal projections at all but instead, there are finite-projections. These
are nonzero projections that can be divided further into the sum of two projections.
For type III factors, there are no nonzero finite projections. Using this information,
the conjecture of [15] becomes more clear: they demand the factor N that splits
the algebras to be type I factors and canonical. Of a given state ψ and N splitting
the algebras of the space-like separated regions A and B, the reflected entropy SR
in the continuum limit is

S(N ) = 2EW (A,B) +O(G0
N). (2.39)

Here the correction term is the first quantum correction in the expansion with respect
to GN : The first term is the one that is already coefficient to the entanglement
wedge. We shall now drop the correction term, and continue with only the first
term. Yet another way of presenting the SR is with the associated density matrix.
For the density matrix ρAA∗BB∗ = |√ρAB〉〈

√
ρAB|, the reflected entropy is obtained

by tracing over subsystems and arriving at

SR(A,B) := S(AA∗)√ρAB
= S(BB∗), (2.40)
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Figure 4: For AB, that is a Hilbert space, the horizon can be treated as the entangling surface.
The area of this RT surface is twice the minimal EW .

where again, A∗ = JAJ and the purification is presented with

ρAB = Tr|√ρAB〉〈
√
ρAB|. (2.41)

The reflected minimal surface used to obtain the reflected entropy is visualized in
Figure 4 via the separated regions A and B and their entanglement wedge cross
section.

These results hold for QFTs with holographic duals that the split property ap-
plies to when quantized on the manifold. One relatively recent discussion on this
assumption within holography is presented in [22]. Furthermore, one might ask,
does the reflected entropy satisfy the set of inequalities that the entanglement en-
tropy does. There are a few inequalities particularly interesting for the reflected
entropy. The first one is

SR(A : BC) ≥ I(A : B) + I(A : C), (2.42)

which has been proven to hold in holography [15], since for mutual information
satisfies the inequality (1.15), the (2.42) follows from the inequality of

SR(A : BC) ≥ I(A : B). (2.43)

The second one is
SR(A : BC) ≥ SR(A : B), (2.44)

which has received failed attempts of proof due to the entanglement wedge cross
section being related to the entanglement wedge nesting. This in part produces
complications on the calculation of the correlation functions with modular flow.
The third inequality proposed for the reflected entropy following the strong super-
additivity is

SR(A1A2 : B1B2) ≥ SR(A1 : B1) + SR(A2 : B2), (2.45)
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with proposed proof by [15]. In more detail, their fundamental conjecture is that
for the algebra splitting factor N , the entanglement wedge is UV-finite since the
boundary of AdS is not reached. Thus, the calculation of the entropy reduces
to calculation of the area of the reflected minimal surfaces. Indeed, the reflected
entropy as a measure of correlation between A and B is considered over other such
measures due to its relatively simple formulation.

In addition to odd and reflected entropies, there is yet another method considered
useful with the calculation of the entanglement wedge cross section. It is introduced
by Harper and Headrick [23], where they use the bit threads formalism to generate
a flow formulation for the entanglement wedge cross section. In the framework of
holography, we can study the probes such as entanglement entropy either with the
extremal surfaces, as we have discussed so far, but with bit threads. The bit threads
are vector fields that have a bound norm and do not have divergence. The norm
bound is obtained from the Planck length. We can think them as curves that have
transverse density equal to the norm of the vector field everywhere. In addition,
the threads can only end on the boundary of the manifold. A major reason the
extremal surfaces are used is the non-locality of the information about the metric.
However, there are examples cases that introduce choices of bit threads that exploits
the locality of the bulk [1]. One example of this is a proposal by Freedman and
Headrick for the calculation of the entanglement entropy by not relying on the bulk
surface but flow minimization instead:

SA = 1
4GN

maxv∈F
∫
A

√
hnµv

µ. (2.46)

Here
F = {v|∇µv

µ = 0, |v| ≤ 1}
and A is defined as the boundary of minimal surface on our manifold. The flow is
a vector field v on the manifold. It has no divergences and satisfies |v| ≤ 1

4GN
[11].

In (2.46),
√
h is square root of the determinant of the induced metric. This form

of entanglement entropy can be shown to be equal to the Ryu-Takayanagi formula
(2.22) through the Riemannian max flow and min cut theorem. In fact, it was proven
that if we consider a minimal hypersurface m(A) located in the bulk, the area of
that surface is equal to the maximum flow that comes out from the region A [18][25].
This requires the boundary region A to be optimized over all those vector fields in
the bulk that have no divergence. This means that, the entanglement entropy can
be written using the max flow as

S(A) = maxv flow

∫
A
v. (2.47)

Then, the equivalence is recovered via the Riemann max flow-min cut theorem as

maxv flow

∫
A
v = 1

4GN

minv flowArea(m(A)), (2.48)

where m(A) is the minimal surface with boundary A.
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The main difference between the flow-based entropy and the RT-entropy is that
the minimized surface is typically unique, but the result of max flow theorem is
highly degenerated. Indeed, there are questions to address relating this alternative
method of reconstructing the metric of which few such question Agon et. al [1]
discuss in their publication.

2.3 Correlation functions
To detect the correlation between probes, we must evaluate the correlation func-
tions. The usefulness of them is that in the case of the considered systems being
independent from one another. This relates to the mutual information (1.14), where
we obtain zero in the case of independent systems. In the framework of field theory,
the correlation functions are sometimes referred to as Green functions, in the case
where our correlation function is a 2-point function. This goes back to the free field
theory where the correlation function of differential operator is in fact the Green
function. The correlation functions are also known as the n-point functions, and
defined as

〈O(x1) . . .O(xn)〉 =
∫
Dφe−S[φ]φ(x1)φ(x2) . . . φ(xn)∫

Dφe−S[φ] (2.49)

=
δ(n)Srenorm.

grav. [φ]
δϕ(x1) . . . δϕ(x2) , (2.50)

where Srenorm.
grav. [φ] is the renormalized version of the on-shell gravity action [33]. Cal-

culations of the n-point functions is often done in the momentum space due to better
understanding of the behavior of the divergence at p → ∞. The case we are par-
ticularly interested in is the two-point function. For a scalar field φ it is defined as

GE(x− y) = 〈O(x)O(y)〉. (2.51)
However, as discussed, we prefer to work in the momentum space and thus transform
(2.51) into momentum space by introducing 〈O(x)〉ϕ as the path integral of one-point
function with source ϕ. It measures the amount of fluctuation of our probe from
the expectation value. By expanding this into power series within linear order, we
can write 〈O(x)〉ϕ as

〈O(x)〉ϕ =
∫
ddyGE(x− y)ϕ(y). (2.52)

With this, the expression for the two-point function for normal-ordered probe (i.e.
〈O(x)〉ϕ vanishes) in momentum space becomes

GE(k) = GE(k)ϕ(k). (2.53)

To bring this more related to the calculation of the action, the two point function
is evaluated with the on-shell action. Considering a case of scalar field φ , we can
write

Son-shell = −ν2

∫
dzddx∂M [√gφMgMN∂Nφ], (2.54)
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that with the boundary at z = ε reduces to

Son-shell = ν

2

∫
ddx(√gφgzzφ)z=ε. (2.55)

Once again, we note that there is divergence in the action. The reasonable way
to get rid of it is to define a quadratic term on the boundary of our AdS and add it
to the on-shell action to bypass the divergence. A proper term to use would be∫

∂AdS
ddx

√
det(γµν)φ2(ε, x), (2.56)

where γµν is the induced metric:

ds2
z=ε = γµνdx

µdxν = R2

ε
δµνdx

µdxν . (2.57)

2.4 Wilson loops
One of the most important probes are the Wilson loops. Most often, they are defined
as

WC := Tr
(
P exp

(
i
∮
C
Aµdx

µ
))

, (2.58)

where P is a path-ordering operator, mainly used as time-ordering operator T . They
are probes through the holonomy of the gauge field Aµ introduced previously through
Yang-Mills theory. For a particle on a given manifold with connection Aµ that is
parallel transported along the closed loop C, we actually have an effect analogous to
the so called Aharonov-Bohm effect. This effect describes how particle is affected by
Aµ through the phase factor and thus introducing the phase as a probe, creating a
phase factor for the wave function of the particle. Thus, the Wilson loops are really
phase factors in gauge theories and they are expressed as the trace of a path-ordered
exponential for Aµ along closed loop C.

The Wilson loop can be obtained from string theory as an invariant action for
our string [49]. In holography, the expectation value of the Wilson loop is the most
informative, since it relates to the partition function of the string:

〈WC〉 =
∫
DXµe−SNG(Σ) , (2.59)

where the path integration is to be done over the worldsheet coordinates and SNG
is the action which we will introduce later in this section. In the limit of strong
coupling, one can perform a saddle point approximation to this expression and
obtain the reduced form [17]:

〈WC〉 = e−SNG(Σ) . (2.60)

In the Figure 5, the set up for Wilson loop is visualized through holography. We
may think the closed loop as the boundary that a fundamental string hangs from.
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Furthermore, the potential energy between antiquark and quark results from the
calculations of the equations of motion for this string:

Vqq = SNG − S||NG, (2.61)

where the action S
||
NG is of the free string.

Figure 5: Visualization of the holonomy of the gauge connection through which the Wilson loops
are defined. In terms of holography, the Wilson loop along curve C can be then presented as the
boundary of Σ lying on the D-brane.

Now, in order to carry out the calculations of Wilson loops, we need to introduce
and evaluate the needed action. In this case, we can consider a case where the
string has ending in the boundary of AdS and then embed this string. We obtain
the induced metric that is then used to calculate the on-shell Nambu-Goto action
Nambu-Goto action. In general, when the induced metric is written as

gαβ = ηµν
∂Xµ

∂τ

∂Xν

∂σ
, (2.62)

and the determinant of the metric is introduced as

det(gαβ) = (∂X
∂τ

)2(∂X
∂σ

)2 − (∂X
∂τ
· ∂X
∂σ

)2 (2.63)

, we can arrive at a result where the action is proportional to the worldsheet:

SNG = −T
∫
d2σ

√
− det(gαβ), (2.64)

where T denotes the proportionality constant, and in more detail it is the tension of
the string. Now, by plugging in the metric, we obtain the Nambu-Goto action as

SNG = −T
∫
d2σ

√
(∂X
∂τ

)2(∂X
∂σ

)2 + (∂X
∂τ
· ∂X
∂σ

)2 (2.65)

which can be expressed as

SNG = −T
∫
d2σ

√
−Ẋ2X ′2 + (Ẋ ·X ′)2. (2.66)
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For coordinates Xµ = (t, ~x) at certain time when d~x
dτ

= 0, this can be interpret
as integration over the spatial length of the string. The action has fundamentally
two symmetries: First one to mention is the Poincaré invariance, namely that the
transformation parameters do not depend on the coordinates on the worldsheet.
Second one is the re-parametrization invariance, which can be described as gauge
symmetry.

Speaking more generally, we can link the Wilson loops to the electric operators
in which case, the S-duality results in mapping these Wilson loops to their magnetic
counterparts. These are naturally the magnetic ones called ’t Hooft loops, which we
will introduce and discuss in detail in the next section.

2.5 ’t Hooft loops
The holographic calculation of the ’t Hooft loops follows the same pattern as the
Wilson loops. However, instead of the already familiar Nambu-Goto action for the
Wilson loops, we consider a D1-brane action in string theory. The difference of ’t
Hooft loops to the Wilson loops arises as we need to take the dilaton into account
and thus evaluate the action as

SD1 = −T̃
∫
d2ξe−φ

√
− det(gαβ), (2.67)

where T̃ is the tension for a D1-brane, φ stands for the dilaton and ξ are the
coordinates of the D1-brane. When minimizing this action, result yields the loop
we are interested in.

Notice that, if we wish to work with the mentioned N = 4 SYM theory, the ’t
Hooft loop reduces to version that is analogous to the Wilson loop, since the dilaton
is constant in the N = 4 SYM theory. This comes from the the dilaton being dual
to the coupling constant. This means that, ’t Hooft loops differ from Wilson loops
only in field theories with non-trivial coupling constants, corresponding to radially
depending dilaton fields in the bulk.

However, there are some additional and interesting points about the ’t Hooft
loops even in the SU(N) N = 4 Yang-Mills theory. The discussion of ’t Hooft loops
can be further taken to include the discussion about S-duality and the supersymme-
try of these loops. Recalling that through the gauge connection our loop operators
can be determined to conserve some amount of supersymmetry. This connection
with the scalar fields corresponds to the Bogomol’nyi–Prasad–Sommerfield (BPS)
operators in case where annihilation between them and fermion field Ψ. In detail,
it means that for fermion field Ψ with field strength FMN , the solution of scalars φ
is [40]

φ(y)A = λ

2π

∫
ds

θA(s)
(y − x(s))2 . (2.68)

The condition we require for the BPS operator is

δΨ = 1
2ΓMNFMNε− 2ΓAφAε1 = 0. (2.69)
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Here ε = ε0 + xµΓµε1 with ε0 and ε1 being the Majorana-Weyl constant spinors and
A = 4, . . . , 9 and M,N = 0, . . . , 9 as in the regular ten dimensional notation. The
Γ:s present the usual gamma matrices with Clifford algebra C`1,3(R). Then, we can
consider the variation of the Ψ and the use of the identity

εµνρσΓρσ = −2ΓµνΓ1234, (2.70)

to get rid of the Levi-Civita tensor in the variation of Ψ. Then, the condition for
supersymmetry reduces and gives our operator the desired BPS nature in terms of
the circular path xµ(s) and the couplings θA(s) that are scalar:

δΨ =
∮
ds((y − x)µΓµ

(y − x)4 [iΓν cosφẋν + Γ1234Γν sinφẋν + ΓAθA](ε0 + Γνxνε1)) (2.71)

= 0. (2.72)

This is zero when the integrand is zero. Furthermore, for electric loop (φ = 0)
this reduces to the condition of Maldacena-Wilson operator and thus gives us the
condition for the regular (BPS) Wilson loops:

[iΓµẋµ + ΓAθA](ε0 + Γνxνε1) = 0. (2.73)

Now, in the case of ’t Hooft operator and loops, we consider the gauge group as
G = U(N), and define a homomorphism map as

ρ : U(1)→ G, (2.74)

which for the exponential eiα ∈ U(1) gives mapping of

G = eiαB = diag(eim1α, . . . , eimNα), (2.75)

in which we take mi to be the magnetic weights of the G, i.e. vectors that identify
the irreducible representation of this group. We can then define the ’t Hooft operator
in a certain representation of G with either k-symmetry of antisymmetry so that
the matrix B is

Bk−symm. = diag(k, 0, . . . , 0︸ ︷︷ ︸
N

) (2.76)

Bk−antisym. = diag(1, 1, . . . , 1︸ ︷︷ ︸
k

0, . . . , 0︸ ︷︷ ︸
N

). (2.77)

Using this, we get the conditions for our operator very similar to the Abelian case,
but modified to include the diagonal matrix B as

Aµ(y) = B
∫
ds

ẋ(s)
(y − x(s))2 , (2.78)

φA(y) = B
∫
ds

θA(s)
(y − x(s))2 , (2.79)

23



and then obtain the condition after variation for non-Abelian case similarly to pre-
vious one as

δεΨ = 1
2ΓMNFMNε(s)− 2φAΓAε1 = 0. (2.80)

Let us now consider the circular motion and finally get to the actual, circular ’t
Hooft loops. Starting with

xµ(s) = (cos(s), sin(s), 0, 0), (2.81)
θA(s) = θA0 , (2.82)

and continuing to the configurations introduced in (2.68) via mapping of R4 to the
AdS2 × S2 gives

φA(y) = 2πB θA0√
(1 + y2)2 − 4(y2

1 + y2
2)
. (2.83)

After this, performing the variation of the ’t Hooft operator results in the condition
for circular BPS ’t Hooft loop:

(Γ34
ε1 + ΓAθA0 ε0) = 0. (2.84)

Similarly to the Wilson loop, this circular ’t Hooft loop preserves half of the super-
symmetries. As mentioned earlier, the expectation value of ’t Hooft loop is analogous
to the expectation value of the Wilson loop,

〈H〉 = e−SD1 . (2.85)

Recall, that the vacuum expectation value of the ’t Hooft loop differs from that of
the Wilson loop if the coupling of the theory is not constant in energy. In the bulk,
this difference manifests itself through a non-trivial dilaton field entering explicitly
in the D1-brane action (2.67), absent in the Nambu-Goto action (2.66).

Another note to add in the discussion of ’t Hooft loops is in the large-N QCD,
where the propagator of quark field and belonging to the group SU(N), obeys

〈ψiψi〉 ∝ δij. (2.86)

Here the propagation happens from i to j, namely marked with the color indices.
Let us consider taking N large [32][33][19], which is known as the ’t Hooft limit. The
SU(N) algebra itself has generators that give the propagator components expressed
above to be proportional to δilδ

k
j − δijδ

k
l /N , which corresponds to propagation of

gluons. Hence, the large N limit in this association is equivalent with neglecting the
term with N . Generally speaking, taking the ’t Hooft limit helps to simplify the
QCD by concentrating the dynamics only to the planar diagrams [30].

Furthermore, the ’t Hooft coupling is encountered with the large N limit, namely
the limit of large numbers of colors. In detail, this is the coupling of

λ = g2
YMNc (2.87)
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with fixed λ that satisfies λ � 1. The limit Nc → ∞ is then the limit of large Nc.
Interestingly, in this theory with topologically invariant Euler characteristics ξ, the
partition function is in fact given by the sum of topologies from the 2-dimensional
surfaces associated [38], i.e.

lnZgauge =
∞∑
i=0

N ξ
c fi(λ). (2.88)

This marks the connection to the holographic duality, where we can see the similarity
of the partition functions between the string and gauge theories.

3 EE inequalities

3.1 Fundamental inequalities
Earlier, in the Chapter 2.1, we discussed and introduced the entanglement entropy
(EE) in the holography. The holographic entanglement entropy is useful not only
in the calculation of dual probes in the bulk but also key to the mutual information
of the system. It is important to note how entanglement entropy itself must satisfy
some inequalities in order for the considered quantum state to be counted as holo-
graphic. Therefore, we will now introduce few of the most important inequalities of
the entropy. Earlier, we introduced the von Neumann entropy. For that, we require
the following inequality to be satisfied:

S(ρ) ≥ 0. (3.1)

This means that the entropy associated with the state density matrix ρ is always
non-negative. The state for which the entropy is equal to zero is the pure state.
In addition, the strong subadditivity is one of the most essential and well-known
inequalities of entanglement entropy. This is considered when we have three regions
A, B and C that are separated from one another. For their entropies, the strong
subadditivity condition reads

S(AB) + S(BC) ≥ S(B) + S(ABC), (3.2)

where we have chosen to continue with shorter notation of marking the entropy
S(ρA) associated with density matrix ρA by writing it as S(A). Similar short hand
notation we used above is to write the entropy of an union S(A : B) as S(AB).

Yet another inequality is the monogamy inequality of the mutual information
(1.15). We already encountered this in the discussion of the entanglement wedge.
We can further write it for tripartite information as [7]

I(A : BC) ≥ I(A : B) + I(A : C) (3.3)
⇔ I(A : BC)− I(A : B)− I(A : C) ≥ 0. (3.4)

Presented for any disjoint regions A, B and C [24][5]. The inequality is visualized
with schematics in the Figure 6.
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Figure 6: Visualization of the strong subadditivity. The gray regions correspond to the joint
region of ABC, whereas the light blue region is the region B. When visualized, it becomes even
more apparent that the proof of strong subadditivity is, after all, simply a geometrical proof.

If we have the system where the strong subadditivity is not applicable due to the
number of regions being only two, we encounter the subadditivity inequality. This
is analogous to the strong subadditivity with one of its three regions missing:

S(A) + S(B) ≥ S(AB). (3.5)

Finally, if we encounter system that is bipartite, we have to consider the inequality
of

S(AB) ≥ |S(A)− S(B)|, (3.6)
which is known as the Araki-Lieb inequality. This inequality lets the entropies
associated with the given subsystems to have larger values than the entropy of the
system they together compose.

These inequalities are heavily used in the holographic context as well. They can
be proved to work in the holographic formulation of the entanglement entropy. For
example, the monogamy inequality 3.3 was originally proved for the Ryu-Takayanagi
proposal in [26]. The strong subadditivity in the context of holography is proven in
the [5], but as the number of regions is increased, the number of inequalities the RT-
entropies must satisfy rises towards infinity. In the following chapters, we shall take
more detailed look into the holographic entanglement entropy and the inequalities
in the context of subregion duality.

3.2 Subregion duality
An essential concept in this context is the subregion duality that describes the du-
ality between the entanglement wedge and the reduced CFT state of the boundary
region. It answers to the question of whether there is a bulk region with full informa-
tion corresponding to a boundary subregion that we have full information of. The
subregion duality introduces entanglement wedge of the given boundary subregion
as such object. In other words, the entanglement wedge has the information about
the associated bulk state. Originally, the existence of such subregion duality was
suspected due to the AdS/Rindler reconstruction [20]. For the causal wedge CA for
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the boundary subregion A, this construction solves the equations of motions using
perturbations, resulting in the equations for operator in the CFT. This allows the
field theory to model the effective field theory for the bulk in this causal wedge.
But as the RT entropy proposes, the causal wedge is not the full story. It has been
stated [6] that there are cases where the density matrix of the given boundary sub-
region would access the information from beyond the CA. However, this would be
in contradiction with the proposal of entanglement wedge reconstruction conjecture
[27]: For the entanglement wedge EA, the theorem states that for

CA ⊆ EA, (3.7)

we can reconstruct the operators associated with the bulk via the entanglement
wedge as field theory operators in the boundary subregion.

Since we are already familiar with the entanglement wedge cross section and
the purification from Chapter 2, we can consider the associated inequalities. The
entanglement of purification EP (2.30) satisfies the following inequalities, proven
by [48]:

1
2I(A : B) ≤ EP (A,B) ≤ min[S(ρA), S(ρB)], (3.8)

EP (ρAB) ≤ EP (ρA(BC)), (3.9)

EP (ρA(BC)) ≥
1
2I(A : B) + 1

2I(A : C). (3.10)

where I(A : B), defined in (1.14), stands for the mutual information for regions A
and B [4]. Furthermore, we shall introduce the requirements for the correspond-
ing entanglement wedge cross section. Naturally, we require EW (A,B) > 0 since
Area(ΣAB) ≥ 0. Furthermore, due to the duality to the entanglement of purification,
entanglement wedge cross section must satisfy

EW (A,B) ≥ 1
2I(A,B). (3.11)

If we consider how the states are constructed, we arrive at vanishing EW for the
product state and EW (A,B) = ρAB for the pure state.

3.3 The holographic entropy cone
In [8], Bao et al. present a parametrization of the phase space constructed from the
RT-entropies for a given CFT and call this parametrization as holographic entropy
cone. The cone is constructed from the set of inequalities the RT-entropies satisfy,
and visualized in Figure 7. Using this cone, they are able to find a complete set of
inequalities for 2 to 4 regions, which is something that in general has not been done
for arbitrary quantum systems. It has been known [13] that for 5 or more regions,
the set of inequalities is infinite, and they claim to have found a new, infinite family
of such inequalities. The most interesting aspect of their conjecture is the finite
number of the inequalities for the regions with less than 5 regions. Their approach
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for the finite set of inequalities for four regions is done with so called graph model
that re-defines the RT-entropies as combinatorial problem and thus gives the number
of ways to cut and reassemble the entanglement surfaces to new surfaces. By doing
so, it restricts the entanglement entropies of other regions in the bulk.

Figure 7: Graph showing the entropy cone for regions A and B. For two regions, there is only
one extreme ray.

These minimal cuts, Wl, defined as

Wl :=
⋃
{W (x) : x ∈ {0, 1}L with xl = 1} (3.12)

are thought as the Il-cuts for regions Il with bitstrings xl ∈ {0, 1}L. Furthermore,
starting from a general inequality for the entropies from combinatorics

L∑
l=1

αlS(Il) ≥
R∑
r=1

βrS(Jr), (3.13)

they define a bulk inequality for these minimal cuts as

L∑
l=1

αl|C(Wl)| ≥
R∑
r=1

βr|C(Ur)|, (3.14)

in which the cut of each region Il is defined as the reassembling of the subset ∩Ll=1W
xl
l .

Note that the bitstrings and their indices follow

xi := (i ∈ Il)Ll=1 ∈ {0, 1}L, (3.15)
yi := (i ∈ Jr)Rr=1 ∈ {0, 1}R, (3.16)
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where L and R are the total number of considered bitstrings x and y, respectively.
By setting S∗(Il) = |C(Wl)| and assuming that the reassembling results in a new
cut Ur as

Ur :=
⋃
{W (x) : x ∈ {0, 1}L with f(x)r = 1} (3.17)

for some function f , they show that in fact, the (3.14) satisfies the entropy inequality:

L∑
l=1

αlS
∗(Il) =

L∑
l=1

αl|C(Wl)| ≥
R∑
r=1

βr|C(Ur)| ≥
R∑
r=1

βrS
∗(Jr). (3.18)

The remarkable thing about this result is that it holds for any cut Wl in addition
to the minimal cuts and thus brings the bulk inequality in the set of holographic
entropy inequalities. This requires the mapping f to be {0, 1}L → {0, 1}R with
an appropriate initial condition, keeping the system within the correct boundary
subsystems.

Moreover, they generalize the already known inequalities starting from the infi-
nite, cyclic group of them:

N∑
i=1

S((Ai . . . Ai+l−1)(Ai+l . . . Ai+l+k−1))− S(Ai+l . . . Ai+l+k−1) ≥ S(A1 . . . AN),

(3.19)
where the summation on the left hand side happens over the modulo of N in the
so called conditional entropies. By considering the cases where both the monogamy
of mutual information and the strong subadditivity are satisfied, namely setting
N = 2k + 1 and l = 1, the resulting generalization of the cyclic inequalities is

N∑
i=1

S(Ai|Ai+1 . . . Ai+k) ≥ S(A1 . . . AN), (3.20)

where S(Ai|Ai+1 . . . Ai+k) is the conditional entropy, defined as

S(Ai|Ai+1) = S(Ai, Ai+1)− S(Ai+1), (3.21)

which corresponds to a finite number of inequalities. The reason using (3.20) is useful
is that using only the strong subadditivity and monogamy of the mutual information
is not enough for five or more regions. In that case, we have to consider additional
inequalities that cannot be described with the two already familiar inequalities and
thus (3.20) is one of these additional inequalities we must consider. For five regions,
it becomes

S(A|BC) + S(B|CD) + S(C|DE) + S(D|EA) + S(E|AB) ≥ S(ABCDE), (3.22)

but it is important to note this is only one of the additional inequalities valid for five
or more regions. However, together these three, the monogamy of the mutual infor-
mation (1.15), strong subadditivity (3.2) and cyclic inequality for five regions (3.22),
give the stabilizer inequalities for corresponding quantum system. This means that,
the entropies must be stabilizing entropies. The term ”stabilizing” refers to the sta-
bilizer codes, which is a subclass of quantum error correction codes [43]. The other
entropy inequalities presented by [8] for five regions are
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1.

2S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(ADE) + S(BCE)
≥ S(AB) + S(ABCE) + S(ABDE) + S(AC) + S(AD)
+ S(BC) + S(BE) + S(DE)

(3.23)

2.

S(ABE) + S(ABC) + S(ABD) + S(ACD) + S(ACE) + S(ADE)
+ S(BCE) + S(BDE) + S(CDE) ≥ +S(AB) + S(ABCE) + S(ABDE)
+ S(AC) + S(ACDE) + S(AD) + S(BCD) + S(BE) + S(CE) + S(DE)

(3.24)

3.

S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(BCE) + S(DE)
≥ S(AB) + S(ABCD) + S(ABCE) + S(AC) + S(ADE)
+ S(B) + S(C) + S(D) + S(E)

(3.25)

4.

3S(ABC) + 3S(ABD) + 3S(ACE) + S(ABE) + S(ACD) + S(ADE)
+ S(BCD) + S(BCE) + S(BDE) + S(CDE) ≥ 2S(AB) + 2S(ABCD)
+ 2S(ABCE) + 2S(AC) + 2S(BD) + 2S(CE) + S(ABDE) + S(ACDE)
+ S(AD) + S(AE) + S(BC) + S(DE).

(3.26)

These inequalities are independent from one another and can be associated with a
certain facets of the five-region entropy cone. Still, these are only one family of the
full, infinite set of inequalities possible to find for five regions. As a side note for
the states lying on the boundary between holographic and non-holographic states,
they are suggested to have entanglement entropy corresponding to the extreme rays
of the entropy cone. Interesting addition is that in the framework of gravity, these
extremal states are conjectured to correspond to wormhole geometries [34].

4 Evaluation of probes
When we start from higher temperature and begin to lower it, we can calculate
the Wilson loops for the corresponding geometries and from the behavior of the
Wilson loop we see whether the theory is deconfining or confining. In fact, next
we will demonstrate how the lowering of the temperature moves the geometry from
deconfining to the confining. In addition, for each geometry we shall visualize the
entanglement wedge cross section EW . From the reach of the Wilson loops compared
to the reach of the wedge, we can see whether or not the Wilson loops are inside the
wedge, and thus conclude if the subregion duality is satisfied.
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The metric we wish to examine in the deconfining geometry is

g = R2

z2 (− b(z)
a(z)2dt

2 + a(z)2

b(z) dz
2 + d~x2), (4.1)

in which R is the curvature radius of the spacetime. Now, we can choose the
parametrization of a(z) = 1 which follows the Schwarzschild metric. In the Schwarzschild
black hole metric, the radius of the spacetime can be marked with R and then scaled
to R = 1. This leads us to the metric we refer to as the deconfining one:

g = R2

z2

(
−b(z)dt2 + 1

b(z)dz
2 + d~x2

)
. (4.2)

This is dual to the quantum field theory at a finite temperature. In (4.2), the b(z)
is defined as b(z) = 1 − z4

z4
∗
, where zh marks the black hole horizon coordinate. We

can work with this metric in the units of temperature, which effectively means that
zh = R = 1. This is the notation we will use from now on.

Let us discuss about the confining background, which is the geometry where
our bulk space has an ending at z = z0. Considering the Poincaré patch, the
z is the radial coordinate. This causes the mass gap, since the space ends to a
non-zero value [16]. When we consider the strings hanging from the boundary,
we can encounter only the configuration of connected string. This is because the
disconnected strings would have no place to end, when we consider that they do
not reach all the way to the end point, as visualized in the Figure 8. The possible
”disconnected” configuration can be obtained if we consider the strings that have
endpoints at the endpoint z = z0. However, even in this case the strings can
be thought to be connected at the endpoint. We can easily obtain the confining
geometries from the black hole metric (4.2) by double Wick rotation. The confining
geometry we are using is the same as in [28], namely

g = R2

z2 (−dt2 + dz2

b(z) + d~x2
d−3 + b(z)dx2

circle), (4.3)

where b(z) = 1− zd

zd
h

. We will consider the same N = 4 Yang-Mills theory as before,
but this time our space is R3 × S1. The metric for d = 4 is

g = R2

z2 (−dt2 + dz2

1− zd

zd
h

+ d~x2 + (1− zd

zdh
)dx2

circle) (4.4)

= R2

z2 (−dt2 + dz2

1− z4

z4
h

+ d~x2 + (1− z4

z4
h

)dx2
circle). (4.5)
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Figure 8: The string configuration for the confining geometry. On the left, we have the connected
configuration. On the right, we have the non-possible disconnected configuration, where the strings
have no endpoints.

Next, we will talk more about the reach of the probes and the bulk and evaluate
the chosen probes in these two geometries.

4.1 Reach of the bulk and entanglement wedge

In this chapter, we will go through the probes introduced in earlier chapters. We shall
evaluate the probes for both deconfining and confining geometries. These probes
are the entanglement entropy, (spatial) Wilson loops, ’t Hooft loops, entanglement
wedge cross-section and two-point functions. This chapter will demonstrate on a
fundamental level how the two chosen geometries vary from each other and how the
behavior and reach of the embedding of these probes compare to the embedding and
location of the entanglement wedge. In this context, we can use the term ”reach”
of the bulk and probes. The probes can be thought to have a certain reach, that
essentially is the width l(zs). In the case of the subregion duality, the reach of the
probes should always be less than the reach of the entanglement wedge.

In [6], they study the probes extended beyond the limit of the entanglement
wedge with hope to understand how far does the Ryu-Takayanagi surface m(Bd−1)
for the boundary subregion Bd−1 reach. In detail, the bulk metric of considered
AdS is reconstructed, which corresponds to possibilities of the reconstructed bulk
metric reaching further than the entanglement wedge. They suggest that, either
there is information about the bulk in the boundary subregion in addition to the
entanglement wedge or that, for extremal 2-surfaces anchored in the given subregion,
the subregion fails to have all the information about the areas of those surfaces.
These suggestions challenge the current understanding of the subregion duality. In
particular, we can evaluate probes such as Wilson lines and loops in such bulk
metrics to find whether the reach of them is beyond the entanglement wedge as well
or not. It has been stated ([35],[14]) that in the boundary CFT, the expectation
values of these loops correspond to the particular areas of the extremal surfaces that
lie in the boundary.
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Figure 9: The schematics for the four different phases with two regions A and B, corresponding
to two strips. The dashed black line is the horizon z = zh. Notice that only two of these phases
give nonzero entanglement wedge, which is the cyan vertical line on the right top and right bottom
phases.

Now, we choose to study the case with different background geometry, such as
those in [29] and [28]. In addition to the spatial Wilson loops, we can evaluate the
’t Hooft loops and 2-point functions considering the same questions about the reach
of these probes compared to the reach of the entanglement wedge. After evaluating
these, it is then possible to map these probes to the entanglement wedge to see if they
fall in or out of the wedge. Related to this, we can evaluate the entanglement entropy
for both geometries. We have chosen two different bulk geometries to evaluate these
probe, introduced as deconfining and confining geometries. Note that, when we
mention the deconfining geometry, we refer to the geometry with the black hole.
The method of obtaining either metric from the other one is in this case called the
double Wick rotation.

4.2 Spatial Wilson loop
Deconfining bulk geometry

Spatial Wilson loops in asymptotically AdS5 are presented as rectangles in (x1, x2)-
plane, namely by considering a string that ends at the boundary of our AdS5. This
embedding gives us the induced metric as

ĝ = 1
z2

((
1

b(z) + x′(z)2

)
dz + d~x2

d−2

)
. (4.6)

From here, we obtain the Lagrangian density:

L = 1
z2

√
gzz(z) + x′(z)2, (4.7)

and now we can use the Euler-Lagrange equations of motions to solve for the con-
served quantity, namely solving the equation

∂x′(z)L = 1
z2
∗

(4.8)

33



for x′(z), which yelds

x′(z) = z2√
−z4 + z8 + z4

∗ − z4z4
∗

. (4.9)

Therefore, the strip width integral in terms of this conserved quantity is

l(z∗) = 2
∫ z∗

0
x′(z)dz = 2

∫ z∗

0

z2√
−z4 + z8 + z4

∗ − z4z4
∗

dz. (4.10)

For the Wilson loop, we need to evaluate the action in (2.58). Plugging our
Lagrangian density with the conserved quantity (4.9) into the Nambu-Goto action
(2.66), we have

SNG = TR2

πα′

∫ z∗

ε

z2
∗
z2

√√√√ gzz(z)
1− z4

z4
∗

dz, (4.11)

where gzz(z) = 1
1−z4 , and the divergence is omitted by introducing ε as a cutoff.

Now, the main interest in the loop probes is fundamentally the potential between
quarks and namely, what is the effect of the potential compared to the case where
quarks would be free. For this reason, from the action for two quarks, we need
to subtract the action of two free quarks, as introduced in (2.61). In the case of
deconfining geometry, we in fact have few different possibilities for the subtracted
term. We choose to subtract the part where the string reaches from the horizon to
the boundary [10].

Now, from the equations of motions we see that the disjoint configuration is
allowed. This is because the area of the piece along the horizon is non-vanishing.
We should then continue with area regularization, to get rid of the divergence in the
action. This results in

SregNG = TR2

πα′
1
ε
− TR2

πα′
1
z∗
− TR2

πα′

∫ z∗

0

1
z2

√√√√ gzz(z)
1− z4

z4
∗

− 1
 dz, (4.12)

where we used an UV-cutoff to get rid of the divergence and regularize it by taking
the divergence term with ε out. We shall call the regularized version SregNG. This
leads to the expectation value of the spatial Wilson loops:

〈W (∂B)〉 = e−SNG (4.13)

= exp
−TR2

πα′
1
ε

+ TR2

πα′
1
z∗

+ TR2

πα′

∫ z∗

0

1
z2

√√√√ gzz(z)
1− z4

z4
∗

− 1
 dz

 . (4.14)

This regularized version of Wilson loop, corresponding to the quark-antiquark po-
tential is shown in Figure 10 as the function of l (4.10) together with the potential
in confining geometry. In that figure, we see a phase transition between two phases.
The dominant phase is the one where the string has broken and for which the po-
tential is identically zero, since we have used this phase as a regulator.
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Confining geometry

We will now introduce the embedding with t = const. and x = const.. The induced
metric on this surface is then

ĝ = 1
z2

(
dz2

b(z) + b(z)dx2
circle

)
, (4.15)

where b(z) = 1− z4, and we have used again the units in which R = zh = 1. We can
then get the equations of motion and solve that for the conserved quantity x′2circle,
yielding

x′2circle = z2√
1− z4

∗

√
z4
∗(1− z4)− z4(1− z4

∗)
, (4.16)

where z∗ is the turning point. This gives the l(z∗) integral as

l(z∗) = 2
∫ z∗

0

z2√
1− z4

∗

√
z4
∗(1− z4)− z4(1− z4

∗)
dz. (4.17)

The Nambu-Goto action (2.66) with R = zh = 1 is then

SNG = T

πα′

∫ z∗

0

1
z2

√
1
b(z) + b(z)x′circle(z)2dz. (4.18)

Figure 10: Regularized actions for both geometries as a function of l.
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We now need to subtract from the action the part where the string reaches the
bottom of our geometry. This gives us the regularized version of the action:

Sreg
NG = T

πα′

∫ z∗

0

 1
z2

√
1

1− z4 + 1
1− z4

∗

z4

z4
∗(1− z4)− z4(1− z4

∗)
− 1
z2

 dz− T

πα′
1
z∗

+ T

πα′
1
ε
.

(4.19)
We will use the regularized action to evaluate the Wilson loop

〈W 〉 = e−SNG . (4.20)

Essentially, the quark-antiquark potential is the logarithm of the Wilson loop, where
the action was regularized. This is visualized in the Figure 13 as a function of l(z∗),
where we can see the difference of the behavior of this probe in deconfining and
confining geometries.

4.3 ’t Hooft loop
Deconfining geometry

Since we work with bulk geometries that have constant dilaton, we can expect the ’t
Hooft loop, introduced in (2.67), to behave similarly to the Wilson loop. We obtain

H(∂B) = e−SD1 , (4.21)
where SD1 is the action for the D1-brane involving the term for dilaton. Thus, we
have

H(∂B) = T̃R2

πα′

∫ z∗

ε
e−φ

z2
∗
z2

√√√√ gzz(z)
z4
∗ − z4dz. (4.22)

Now, since this deconfining geometry does not involve non-constant dilaton, namely
the scalar field is constant, the term in our action corresponding to the dilaton acts
only as constant coefficient. This results in shifted version of the Wilson loop, where
the shift depends on the value of the dilaton. If we have e−φ = 1, the result yelds
no shift.

Confining geometry

Once again, we are using the definition of (holographic) ’t Hooft loop (2.67) which
is

H(∂B) = e−SD1 , (4.23)
As discussed with the previous geometry, only the non-constant dilaton fields alter
to the behavior of the ’t Hooft loop making it differ from the Wilson loop. Indeed,
for this confining geometry, we have the dilaton to be constant, and therefore the
behavior of the ’t Hooft loop is the same that of the Wilson loop. The difference
comes from a constant dilaton term: we have additional coefficient to the loop,
making ’t Hooft loop again the shifted version of the Wilson loop for the confining
geometry. If we choose to use the notation e−φ = 1, the result is yields no shift.
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4.4 Entanglement wedge cross section
Deconfining geometry

Furthermore, our goal is to extremize the world sheet of a string hanging between
quark and anti-quark. Using the same embedding as with the Wilson loops, our
strip width integral is

l(z∗) = 2
∫ z∗

0
x′(z)dz = 2

∫ z∗

0

z2

−z4 + z8 + z4
∗ − z4z4

∗
dz. (4.24)

Interestingly, this can be written as series using the Pochhammer symbol (a)m as
[17]

l(z∗) = 2
√
πz∗

∞∑
m=0

1
m!(1 +md)

(1
2

)
m

Γ
(
d(m+1)
2(d−1)

)
Γ
(

1+md
2(d+1)

) ( z
z∗

)md
, (4.25)

which in our case is

l(z∗) = 2
√
πz∗

∞∑
m=0

1
m!(1 + 4m)

(1
2

)
m

Γ
(

2(m+1)
3

)
Γ
(

1+4m
6

) (
z

z∗

)4m
. (4.26)

This can be written as series using the Pochhammer symbol (a)m as [17]

l(z∗) = 2
√
πz∗

∞∑
m=0

1
m!(1 +md)

(1
2

)
m

Γ
(
d(m+1)
2(d−1)

)
Γ
(

1+md
2(d+1)

) ( z
z∗

)md
, (4.27)

which in our case is then

l(z∗) = 2
√
πz∗

∞∑
m=0

1
m!(1 + 4m)

(1
2

)
m

Γ
(

2(m+1)
3

)
Γ
(

1+4m
6

) (
z

z∗

)4m
. (4.28)

To evaluate the entanglement wedge cross section, we either perform the integral
analytically as in [28], or evaluate it numerically. For the analytical approach, the
entanglement wedge cross section is proportional to the area of the hypersurface,
assuming symmetric configuration, such as presented in the Figure 9, where the
widths of the two strips are equal. The separation of the two strips is marked with
s. Let the hypersurface be called Γ, in which case the entanglement wedge cross
section (with zh = R = 1) follows as

EW = 1
4G(d+1)

N

∫
vol (Γ) (4.29)

= V R3

8G(5)
N z2

h

((
z

zh

)−2
2F1

(
1
2 ,
−1
2 ,

1
2 ,
z4

z4
h

))z∗(s)
z∗(2l+s)

(4.30)

= V

8G(5)
N

(
(z)−2

2F1

(1
2 ,
−1
2 ,

1
2 , z

4
))z∗(s)

z∗(2l+s)
(4.31)
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The limits of this integration can be realized from the Figure 9. The lower limit is
the z∗ evaluated at the total width of strips plus the separation, namely at 2l + s.
The higher limit is z∗ at only the separation width, which is marked with s. For
the numerical approach, we can first use the iterated values of l(z∗) and its reverse,
z∗(l) to get the entanglement entropy. The entanglement wedge cross section is
then integral in the region that satisfies 2S(l) > S(2l + s) + S(s), where S is the
entanglement entropy:

EW =
∫ z∗(2l+s)

z∗(s)

1
z3

√
1

1− z4dz. (4.32)

Figure 11: Entanglement wedge cross section for three different values of s/l.

Since the ratio of s/l needs to be fixed for visualization of the EW , we have
chosen three different values of the s/l ratio shown in Figure 11. In this figure, we
see the phase transition happening at certain l, which corresponds to the transition
of connected entanglement wedge to non-connected one, resulting in vanishing cross
section.

Confining geometry

To evaluate the entanglement wedge cross section for the confining geometry, we
will use similar embedding as with the Wilson loop calculation. We have the strip
width integral as

l(z∗) = 2
∫ z∗

0

z2√
1− z4

∗

√
z4
∗(1− z4)− z4(1− z4

∗)
dz. (4.33)
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Furthermore, we note that the turning point z∗ is not to be explicitly evaluated
but used with numerical approximation for the further evaluation of EW . The
entanglement wedge cross section follows as

EW =
∫ z∗(2l+s)

z∗(s)

1
z3

1√
1− z4

dz. (4.34)

For the confining geometry, we have again four possible phases for the entanglement
wedge. These configurations are realized in the Figure 9. The entanglement wedge
cross section for confining geometry is visualized in the Figure 12 for three different
values of s/l. We notice, that this time we have two phase transitions. The first one
happens when we encounter the critical value where 2l + s = l

(4)
crit and the second

transition is when s = l
(4)
crit. Here the l(4)

crit can be derived as in [28].

Figure 12: Entanglement wedge cross section for three different values of s/l.

4.5 Two-point function

Deconfining geometry

We will then study the massive particle geodesics to obtain the two-point function
of heavy operators. Using the embedding in (t, x1) plane, we can again use the
Euler-Lagrange equations of motion to find the conserved quantity x′(z) as

x′(z) = z

z∗

gzz(z)
1−

(
z
z∗

)2dz, (4.35)
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where gzz(z) = 1
1−z4 . We use this conserved quantity to find the l(z∗):

l(z∗) = 2
∫ z∗

0

z

z∗

√
gzz(z)√

1−
(
z
z∗

)2
dz. (4.36)

Now, we have everything we need to evaluate the functionality A needed for the
two-point function. Plugging in the l(z∗) yields

A = 2R
∫ z∗

ε

1
z

√
gzz(z)√

1−
(
z
z∗

)2
dz (4.37)

= 2
∫ z∗

ε

1
z

√
gzz(z)√

1−
(
z
z∗

)2
dz (4.38)

= 2 ln
(1
ε

)
− 2 ln

( 1
z∗

)
+ 2

∫ z∗

0

1
z


√
gzz(z)√

1−
(
z
z∗

)2
− 1

 dz. (4.39)

where on the second line we have implemented the zh = R = 1, so that the metric
component gzz reduces to

gzz(z, zh = 1) = 1
1− z4 . (4.40)

In the last line of (4.37), we have omitted the divergent term away from the integral,
leaving us with finite integral from 0 to z∗. Using this, the two-point function
becomes

〈O(t, ~x)O(t, ~y)〉 = lim
ε→0

ε−2∆e−∆A, (4.41)

where ∆ is the dimension of the operator. By plugging in the A, (4.41) takes the
form

〈O(t, ~x)O(t, ~y)〉 = lim
ε→0

ε−2∆ exp
(

∆ ln(1
ε
)− ln( 1

z∗
)
)

· exp
∫ z∗

0

1
z

 1
√

1− z4
√

1− z2

z2
∗

− 1
 dz

 .
This is shown in the Figure 13 as log10(〈O(t, ~x)O(t, ~y)〉) with ∆ = 1 and the term
with ε omitted.

Confining geometry

For the confining geometry, we shall again look the geodesics of a massive particle
to get the two-point function. We have the induced metric with R = zh = 1 as

ĝ = 1
z2

(
−dt2 +

(
1
b(z) + b(z)x′2circle

)
dz

)
(4.42)

40



which means we will solve the equations of motion with Lagrangian density

L = 1
z2

√
−
( 1

1− z4 + (1− z4)x′2circle

)
(4.43)

to obtain the conserved quantity as

x′2circle = z2

(1− z4)
√
z4
∗ − z4(z4

∗ − 1)
. (4.44)

We will plug this into the integrals for l(z∗) and A(z∗):

l(z∗) = 2
∫ z∗

0

z2

(1− z4)
√
z4
∗ − z4(z4

∗ − 1)
dz (4.45)

A(z∗) = 2
∫ z∗

0

z∗

(z4 − 1)
√
z4
∗ − z4(z4

∗ − 1)
dz − 2 ln

( 1
z∗

)
. (4.46)

Now we have everything we need for the two-point function. Similarly to the decon-
fining geometry, we shall use the formulation

〈O(t, ~x)O(t, ~y)〉 = lim
ε→0

ε−2∆e−∆A, (4.47)

which for our A(z∗) is shown in Figure 13 together with the two-point function of
the deconfining geometry.

Figure 13: 2-point function on the logarithm scale for both geometries. Note that while zh = 1,
its units are still on the horizontal axis with the width l. For the small values of l, we see how the
correlation is highly similar in both geometries and differs when the value of l is increased.

41



4.6 Entanglement entropy
Deconfining geometry

The first probe we will evaluate for this geometry is the (holographic) entanglement
entropy. We shall find the Ryu-Takayanagi surface, for which we can find the entropy
according to the proposal (2.22). The embedding we use is motivated as follows:
The bulk surface can be thought as spanning the x2 and x3 directions. This leaves
us with embedding in z 7→ x1(z). Therefore, we can solve the conserved quantity
x′1(z) from the equations of motion, obtaining

x′1(z) =
(
z

z∗

)3 1√
1− z4

dz√
1−

(
z
z∗

)6
, (4.48)

where z∗ is the bulk turning point. The strip width integral can be written in terms
of this, namely

l(z∗) = 2
∫ z∗

0
x′1(z)dz = 2

∫ (
z

z∗

)3 1√
1− z4

dz√
1−

(
z
z∗

)6
. (4.49)

The entanglement entropy is thus

SA(z) = 2
∫ z∗

ε

1
z3

1√
1− z4

dz√
1−

(
z
z∗

)6
(4.50)

= 2
∫ z∗

0

1
z3

 1
√

1− z4
√

1−
(
z
z∗

)6
− 1

 dz − 2
z2
∗
, (4.51)

where in the last row we have omitted the epsilon term from the integral, and focus
on the terms contributing to the behavior of the entropy. This is visualized as a
function of l in the Figure 14 together with the entanglement entropy in the confining
geometry.

The entanglement entropies in different phases are

S(A) = 2S(l) (4.52)
S(B) = S(2l + s) (4.53)

S(AB) = S(s). (4.54)

Confining geometry

The entanglement entropy as a function of the turning point is obtained from the
RT-formula 2.22. For that, we use an embedding with constant t and dx = 0. This
gives the induced metric as

ĝ = 1
z2

(
dz2

b(z) + d~x2
1 + b(z)dx2

circle

)
. (4.55)
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Solving the equations motion for the conserved quantity gives us the l(z∗) integral
as

l(z∗) = 2
∫ z∗

0

(
z

z∗

)3 dz

(1− z4)
√

1−
(
z
z∗

)6 1−z4
∗

1−z∗4

. (4.56)

The entanglement entropy is a function of l(z∗), since the we can obtain the RT-
surface using the strip width integral. The entanglement entropy is

SA = 2
∫ z∗

0

 1
z3

1√
1−

(
z
z∗

)6 1−z4
∗

1−z4

 dz − 2
z2
∗
, (4.57)

where we have omitted any constant coefficient and subtracted the divergent part
away from the integral.

Figure 14: Entanglement entropy for the confining geometry together with the entanglement
entropy for the deconfining geometry as a function of l.

The behavior of this entanglement entropy is shown in Figure 14 as a function
of l, compared to the entanglement entropy of the deconfining geometry. As we see,
with confining geometry we have a phase transition. As mentioned, the entanglement
entropy of deconfining geometry is linear with large values of l(z∗) all the way to
the horizon. With the confining geometry, this is not the case. Instead, when we
approach the horizon, we have a phase transition into the phase of O(N0).

5 Discussion and conclusion
We introduced holography as a tool for addressing the question of entanglement.
Using the dual properties of the considered geometries, we can evaluate the probes
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introduced in the first sections. These probes are dependent on the bulk metric
of the geometry. In the discussion of the entanglement entropy, we introduced not
only the most fundamental inequalities, but the results on holographic entropy cone.
These gave us guideline on what to expect and what to check when calculating the
entanglement entropies for different geometries.

After evaluating the entanglement entropies for the deconfining AdS black brane
background and the confining background, we could test not only the most funda-
mental entropy inequalities but the ones presented together with the holographic
entropy cone for two regions, A and B.

Another research result addressed in this thesis was the bulk reconstruction while
concentrating on its reach compared to the reach of the entanglement wedge. As
discovered in [6], the bulk reconstruction can reach further than the entanglement
wedge. Thus, evaluating the holographic probes for two different background geome-
tries gives us insight about the localization of the probes themselves with respect to
the bulk and entanglement wedge. As described earlier, the reach of these variables
and the bulk reconstruction beyond the entanglement wedge would associate with
violation of the subregion duality as we currently know it. In fact, such situation
would point to reduced CFT living on the boundary of the entanglement wedge.
The evaluations of the chosen probes was done in 4 dimension in this thesis. The
result obeyed the subregion duality, namely the spatial Wilson loops for both decon-
fining and confining geometries lay inside the entanglement wedge. This is realized
in Figure 15 with comparing the reach of the entanglement entropy to the reach of
the potentials given by Wilson loop, as a function of l.

Figure 15: Left: the deconfining geometry. Right: the confining geometry. These figures present
the embedding of the entanglement entropy compared to the embedding of the Wilson loop for
both geometries. This means, we plot the z∗ against the l(z∗).

Even though the two geometries we worked with in this thesis did give us results
that obey the subregion duality, this may not be true for arbitrary background
geometries. There is second option for the probes to end outside the boundary of
the entanglement wedge, and for non-trivial geometries we can not assume either
one, and in fact the subregion duality in some of the non-trivial backgrounds may be
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violated. The calculations of probes with respect to the reach of the entanglement
wedge in such non-trivial geometries therefore are the target of future research.
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