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ABSTRACT

Aims. We explore the performance of neural networks in automatically classifying asteroids into their taxonomic spectral classes. We
particularly focus on what the methodology could offer the ESA Gaia mission.
Methods. We constructed an asteroid dataset that can be limited to simulating Gaia samples. The samples were fed into a custom-
designed neural network that learns how to predict the samples’ spectral classes and produces the success rate of the predictions. The
performance of the neural network is also evaluated using three real preliminary Gaia asteroid spectra.
Results. The overall results show that the neural network can identify taxonomic classes of asteroids in a robust manner. The success
in classification is evaluated for spectra from the nominal 0.45–2.45 µm wavelength range used in the Bus-DeMeo taxonomy, and from
a limited range of 0.45–1.05 µm following the joint wavelength range of Gaia observations and the Bus-DeMeo taxonomic system.
Conclusions. The obtained results indicate that using neural networks to execute automated classification is an appealing solution for
maintaining asteroid taxonomies, especially as the size of the available datasets grows larger with missions like Gaia.
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1. Introduction

There seems to be a trend. Whenever a new spectral asteroid
dataset is introduced, a new way to classify asteroids is born. For
example, one of the historically most well-known taxonomic sys-
tems was developed by Tholen (1984, 1989) based on the data
collected by the Eight-Color Asteroid Survey (ECAS; Zellner
et al. 1985). Another leap toward a system with greater detail
was made when Bus & Binzel (2002) introduced their taxo-
nomic system consisting of 26 classes, defined by the data of
the second phase of the Small Main-Belt Asteroid Spectroscopic
Survey (SMASS II). However, neither of the systems consid-
ered the near-infrared (NIR) range because to the surveys did not
record any data there. This was amended by DeMeo et al. (2009)
when they refined the previous Bus taxonomy by utilizing a new
dataset that extended into the infrared.

The asteroid datasets we have had access to in the past have
not been particularly large, typically consisting of less than a
few thousand samples. However, this soon began to change with
missions like the European Space Agency’s Gaia. Launched
in 2013, Gaia’s main objective is to form the most accurate
three-dimensional map of the objects within the Milky Way.
The mission goals emphasize astrometry in combination with
photometric and spectrometric surveys, focusing mainly on the
stars within our galaxy. However, because of Gaia’s sensitivity to
faint and small objects, it has also detected a considerable num-
ber of asteroids (Gaia Collaboration 2016). Consequently, the
near future is exciting for asteroid spectroscopy: the Gaia Data
Release 3 will be made available in 2022. It will include a signif-
icant amount of data on the asteroids in our Solar System, which
will help constrain their spectra considerably (Delbo et al. 2019).

Therefore, if past trends are to be believed, it is extremely
likely that with the data provided by Gaia, a new taxonomic sys-
tem for asteroids must be developed. A plan for the purpose has

already been developed by, for example, Delbo et al. (2012a). The
formation of a new taxonomy is especially relevant for the mis-
sion because the spectra are in a different wavelength range from
the previous systems; Gaia’s operation range falls between 0.33
and 1.05 µm (Gaia Collaboration 2016). The wavelengths are
unique due to the lack of modern asteroid taxonomies extending
to the ultraviolet.

If and when a new Gaia taxonomy is formed, there will still
be a demand to evaluate the class of a Gaia-observed asteroid
within the other taxonomies. This is true in general for all the
asteroid spectral observations that do not fall in the wavelength
range of a particular taxonomic system. In this study we particu-
larly concentrate on the Bus-DeMeo taxonomy (B-DM) since it
is the most recent one, and seems to be very frequently used in
modern asteroid studies (Delbo et al. 2012a; Sanchez et al. 2012;
Reddy et al. 2014).

The official B-DM classification system1 cannot really deal
with wavelength ranges other than (0.45, 2.45) µm, except that
it can try the classification using only NIR data from 0.85 µm
onward. For the small missing parts at the end of the wavelength
range they recommend extrapolation, but this is a reasonable
option only in the case of very small missing ranges. There is an
approach where the B-DM classification is done for Gaia wave-
lengths using linear discriminant analysis for the B-DM original
asteroids at Gaia wavelengths, and then applying naïve Bayesian
classification (Torppa et al. 2018). While this approach seems
to work quite well, it is not easily automatically applied to any
given wavelength range. Therefore, in this article, we study the
possibility of using artificial neural networks (ANNs) and deep
learning for the task of classifying spectra taken at arbitrary but
somewhat overlapping ranges with the B-DM wavelengths.

1 B-DM spectral classification implementation at http://smass.
mit.edu/busdemeoclass.html, thanks to Stephen M. Slivan at MIT.
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The following sections explore the topic and the application
of ANNs in practice. First, the preparation of the datasets uti-
lized within the study is presented. Next, the theory of neural
networks is discussed in the context of the specific example used
in this application. Classification of base B-DM system samples,
along with those that would be obtained by the Gaia mission,
is then executed and the obtained results are presented. Addi-
tionally, three real preliminary Gaia samples are tested against a
network trained with simulated Gaia data. The significance and
implications of the results are then discussed, after which our
conclusions are presented.

2. Materials and methods

Before the classification process can be executed, the dataset
supplied to the neural network must be defined and constructed.
Additionally, the properties of the network itself have to be
specified.

2.1. Data

The data provided to the neural network must be labeled accord-
ing to a classification system. Since we want to utilize the
B-DM taxonomy, we ideally need spectral data that covers the
entire current wavelength range the system is based on (0.45
to 2.45 µm). However, acquiring infrared data for asteroids is
still complicated due to the hindering effects of the atmosphere.
As a consequence, sets that present infrared data for asteroids
are either small in size, or they are incorporated into larger
sets that have samples that do not necessarily all extend into
the infrared. Because of this, no universally used large dataset
exists that has both visible and infrared data for all asteroid sam-
ples. Consequently, for this study the primary dataset used is a
novel combination of two medium-sized datasets: that used by
DeMeo et al. (2009) in the construction of the B-DM taxonomy,
and the MIT-Hawaii Near-Earth Object Spectroscopic Survey
(MITHNEOS; Binzel et al. 2019).

In order to develop the new dataset (hereafter VisNIR), sev-
eral steps need to be taken (see Appendix A). The full VisNIR
dataset includes 591 individual asteroid spectra; each spectra
covers wavelengths from 0.45 to 2.45 µm with 0.01 µm steps.
There is a problem with using this dataset as the training set for
the ANN; there are 33 B-DM taxonomic classes in the set, but
for some of the classes there are only a few objects or even a sin-
gle object. The automated classification, especially if applied to
limited wavelengths, will not be very successful with this level
of detail in the taxonomy. We note that some ambiguous classifi-
cations in the B-DM implementation are left to the user’s visual
inspection. Therefore, we must simplify the classes in our tasks.

We compiled the reduced B-DM taxonomy and reduced
VisNIR dataset by combining the subclasses into their main
equivalents. In practice, this means reducing classes like Sa, Sq,
Sr, and Sv to simply the S-class. Out of the remaining main
classes, we removed the single-target classes O and R, as well
as the “unknown” class (U), a total of five samples. Hence, the
reduced set has 11 classes and 586 samples. The 11 classes in the
reduced set are A, B, C, D, K, L, Q, S, T, V, and X. The number
of asteroids in each class is presented in Table 1.

Finally, we created a simulated set for the ANN training. In
general, ANN training data is often augmented with synthesized
samples in order to reproduce enough variability and to obtain
enough example cases per class. Our synthesized samples are
formed using the principle component transform of the spectra,

Table 1. Number of samples (#) per each reduced B-DM taxonomic
class in our VisNIR dataset.

Class A B C D K L Q S T V X
# 7 12 61 22 15 33 43 310 4 28 51

Table 2. Wavelength ranges of the B-DM and Gaia data.

System Wavelength range (µm) Data points

Bus-DeMeo 0.45–2.45 200
Gaia 0.33–1.05 60

Notes. The corresponding number of data points is obtained by using
a step size of 0.01 µm and removing the normalization wavelength at
0.55 µm. The number of data points for Gaia is reduced because the
VisNIR set does not have data between 0.33 and 0.45 µm, and these
wavelength are thus removed from consideration.

adding random noise to the uncorrelated principle components,
and transforming back to wavelength space. This method is
described in more detail in Appendix B. One additional benefit
of having synthesized samples is that we can balance the num-
ber of training samples per class. In this work we always train
our ANNs with 200 samples in each (reduced) taxonomic class.

In this study we are not only interested in the B-DM wave-
length range, but also in other wavelength ranges, especially that
of the Gaia mission. Gaia’s asteroid data will be between 0.33
and 1.05 µm. We can build a B-DM classification for the Gaia
data by using our synthesized training set, but limiting the wave-
lengths of the objects to the overlapping range between B-DM
and Gaia, so between 0.45 and 1.05 µm. The reduced VisNIR
spectra (before synthesizing new samples) is illustrated in Fig. 1.
The wavelength ranges for the B-DM and Gaia systems and
the resulting number of data points each spectrum has in this
application are described in Table 2.

2.2. Artificial neural networks

Artificial neural networks are an example of supervised learn-
ing, and as such, they must be provided a dataset along with
labels that describe the classes the samples fall into. The net-
work learns to classify the samples by training itself with a set
of data that has access to the labels, and then testing its perfor-
mance by predicting the labels itself. The extent of success in the
predictions can be evaluated by comparing the suggested labels
to the real ones in the constructed label set.

The basic components of a neural network are the processing
elements, neurons, and the connections between them (Zhang
et al. 2003). The learning process revolves mostly around adjust-
ing the connections until they describe the features in the defined
training set. Each connection is represented by a weight. The
neurons themselves reside in layers within the network. The sim-
plest way to describe the layers is to define three types: the input
layer, the hidden layers, and the output layer. Further descrip-
tions involve defining the functions the layers utilize. There also
are some governing functions that adjust the performance of the
entire network. There is no automatic way to find the best struc-
ture for the neural network; for example, it is left to the user to
decide the parameters that define how many layers the network
has, what functions the layers utilize, and how many neurons are
in each of the hidden layers.
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Fig. 1. Illustration of the 586 asteroid spectra in the reduced VisNIR set. The vertical lines indicate the cutoff point between the B-DM and Gaia
wavelengths. The red part of spectra is what remains in the Gaia wavelength range. The x-axes hold the wavelengths from 0.45 to 2.45 µm, while
the y-axes are the reflectances normalized to unity at 0.55 µm.

2.2.1. Classification neural network algorithm

The neural network structure utilized in the study is a specific
type of feed-forward network, constructed to excel in classifica-
tion tasks (see, e.g., Hietala 2020). A feed-forward network is a
structure in which the connections between the neurons cannot
and will not form a cycle, meaning that information flows in only
one direction (Ganesh & Anderson 2009). The overall structure
of the network that we utilize has one input layer, one hidden
layer, and one output layer.

The input layer is essentially a vector of length s, where s is
the number of data points (i.e., wavelengths) each sample has.
Each of the input elements can be described as an input neuron,
which connects to the neurons on the next layer. Typically some
kind of data pre-processing also takes place within the neural
network, and these processes can be attributed to take place in
the input layer. A common example of pre-processing is deciding
how to handle any possible unknown inputs. The size of the input
layer can vary greatly between applications because it is based on
the utilized dataset’s number of variables, which consequently
affects the design of the hidden layers.

The hidden layer contains the number of neurons chosen
by the user. These neurons produce an output by utilizing the
weighted inputs, biases, and activation functions through the
equation

a= f (Wp+ b), (1)

where the vector a is the output of a layer, f is the vector-valued
mapping of the layer’s activation function f to its argument vec-
tor, W is the weight matrix, p is the input vector, and b is the
bias vector. The operational power of neural networks lies in the
capability to adjust the weights and “learn” the features of the
data in this way. The adjustment process takes place in the train-
ing phase, where the network can fine-tune the weights based on
the provided samples with their corresponding labels. The user
can also choose to increase the number of hidden layers if the

classification task seems to require it. In the multi-layer case,
the preceding layer’s outputs become the next layer’s inputs, and
they are once again adjusted by the weights and biases. We con-
ducted studies of the network accuracy and the variation of this
accuracy between consequent training runs, and found that with
the full B-DM wavelength range (input dimension 200), a hidden
layer with about 30 neurons is enough to reach good accuracy,
but still small enough so that the deviation between runs due
to possible overfitting or underfitting will be small. With the B-
DM and Gaia overlapping wavelengths only, the number of the
neurons in the hidden layer can be decreased to about 20.

The activation function (or alternatively the transfer func-
tion) that all the neurons utilize on the hidden layer in this imple-
mentation is the hyperbolic tangent sigmoid function, tansig. It
is a specific case of the sigmoid function and mathematically
equivalent to the hyperbolic tangent function

f (x)=
ex − e−x

ex + e−x , (2)

which ranges from −1 to 1, making it a scaled and shifted ver-
sion of the logistic function. Sigmoid functions are some of the
most widely used activation functions in neural networks, mostly
due to their simplicity and because they are differentiable with a
positive derivative everywhere (Han et al. 2012). The differentia-
bility is a key aspect in neural network design since it facilitates
the ability to optimize the performance in a robust but efficient
manner using gradient-based methods.

The output layer has as many neurons as there are classes to
place objects into. Although typically of a different size and uti-
lizing a different activation function, the output layer’s operation
principle is very similar to that of the hidden layers, and can be
also described by Eq. (1). The activation function of the output
layer here is known as softmax. The result produced by utilizing
softmax is that all the inputs are scaled to true probabilities that
add up to 1. Based on these values it is possible to choose the
value with the highest probability as the assigned class. Because
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Fig. 2. Simplified structure of the neural network.
The input layer provides the hidden layer s data
points per sample. It is equal to 200 and 60 for the
full B-DM and Gaia wavelength ranges, respec-
tively. The hidden layer has r neurons, which is
equal to 30 or 20 in our implementation. Finally,
the output layer has as many neurons as there are
output classes, represented by c. Therefore, c is
equal to 11 for the reduced VisNIR set.

the network structure and the task in this case are relatively sim-
ple, in a well-performing case it is typical to see one of the values
close to 1 and the others very close to 0, implying that the net-
work is very sure about the label it assigns to that particular
sample.

The basic structure for this network is described in Fig. 2.
It includes the three outlined layers, as well as the connections
between them. The illustration here is simplified in the sense that
connections are described as vectors or matrices. This allows the
focus to be on the overall processes taking place in the structure
instead of on the individual components. As mentioned previ-
ously, the size of the input layer depends on the number of data
points each spectrum has in the dataset. Here the number of data
points is equal to 200 for the B-DM range, and 60 for the shorter
Gaia range. The input data points are supplied to the rest of the
network by the column vector p. Each individual data point con-
nects to each of the neurons in the hidden layer with a unique
weight. Therefore, an overall weight matrix W1 of size r× s
exists between the first two layers. The superscript is included
in order to discriminate between the arrays in different layers.
The symbol r represents the number of neurons in the hidden
layer. In this study, r is equal to 30 or 20, as explained before.

Each of the hidden layer neurons, which are connected to all
the input data points, forms a connection to the layer’s activation
function after it has added up the weighted input and the bias fac-
tor. These connections together form the r× 1 vector n1 in Fig. 2.
Since each neuron has its own bias, they can be generalized into
an r× 1 vector b1. Each layer produces a final output, which is
represented by ai. The components p, W, b, and a listed here are
the constituents of Eq. (1).

The output layer has as many neurons as there are classes to
place objects into, represented by c. The value of c is 11 with our
reduced VisNIR dataset. Overall, the connections on the output
layer function similarly to those of the hidden layer. The individ-
ual final outputs are included in vector a2, which consists of the
class probabilities between 0 and 1.

2.2.2. Training the neural network

Before the neural network can be applied, it must be trained.
In the training process the unknown values for the weight and
bias parameters are estimated. The estimation is, in practice, a
high-dimensional nonlinear minimization task. The function to
be minimized is the loss function J (average of the cross entropy
H), computed from the training data and the difference between
the labels predicted by the ANN and the correct labels as

J(p,Q)=
1
n

n∑
i

H(pi, qi)=
1
n

n∑
i

−log(qi,pi ), (3)

where vector p holds the correct label index 1, . . . , k for each
sample i, and matrix Q consists of rows qi, which are the

predicted probabilities for the categories 1, . . . , k. In this paper
the dimension of the optimization task is (200× 30 + 30) +
(30× 11 + 11)= 6371 for the full B-DM wavelengths, and 1451
for the Gaia wavelengths only.

Taking into account the very high dimension of the typical
ANN training task, the optimization algorithm must be highly
efficient. A stochastic gradient descent algorithm Adam is used
here (Kingma & Ba 2014). In the stochastic version of the steep-
est gradient descent, only one stochastic sample of the whole
training data, a batch, is used in each evaluation round. This
decreases the computation time when the complete training set
is large. A parameter called the learning rate controls how much
the current batch can affect the global gradient estimate in each
round.

The ANN training process is affected by the training data,
the random starting values of the weight and bias parameters, the
batch size and the value of the learning parameter, the random
batch selection when training, and the number of complete opti-
mization rounds employing all the batches in the training data
(i.e., number of epochs). Taking this into account, it is natural
that successive training of the ANN using the same training data,
but with a new random initialization of the system, can lead to a
slightly different result with finite number of epochs.

Insufficient training or a too simple ANN structure can lead
to underfitting the data, while excessive training with a com-
plicated ANN structure can lead to overfitting. We tackled the
underfitting problem by increasing the size of the first layer only
as long as the prediction accuracy kept increasing significantly,
and the deviation in the prediction accuracy between successive
training runs did not increase significantly. For the overfitting,
we introduced a dropout layer between the hidden layer and the
output layer for the training. The dropout layer removes a given
percentage (in this case 10%) of the connections between the
layers at random during the training rounds. Effectively, this
makes the network more robust, and less bound to overfitting. In
addition, the dropout layer is good in our application with spec-
tral data, which has very high local correlations between nearby
wavelengths. The ANN can easily lock down to one value or a
few single wavelength values for a specific spectral feature. How-
ever, if the real data to be used has more noise than the training
data, and the one wavelength has an outlier value, the whole pre-
diction can go wrong. With the dropout layer, the ANN is forced
not to trust a single input from a neuron, but rather the com-
bination of many neuron inputs to tackle the possible missing
connection.

2.2.3. Applying the neural network in classification

As explained in Sect. 2.2.2, there is a certain level of random-
ness in the estimated weight and bias values of a trained network,
due to the random starting values and the stochastic optimization
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algorithm. This can be somewhat frustrating when building the
final “production use” version of the ANN. Two identically built
models can give slightly different results in the classification.
To reduce this effect, we propose using a method of multiple
ANNs as “voters” (see, e.g., Auda et al. 1995; Cao et al. 2012).
In this method, a number of ANNs (e.g., 5) are trained with
random initializations. In the classification task, each of the net-
works classifies, but the final answer is based on the majority of
the votes given by the ANNs. This decreases the effect of ran-
domness during the training process with individual networks,
not only in the classification, but especially when asking the
probabilities of each taxonomic class for a given object. The
output neurons produce, after the softmax operation, a “proba-
bility distribution” for the different classes, where each neuron
correspond to a certain class. It can be very fruitful to not only
examine the “winning class” of an object, but also the probabil-
ity estimate of the winning class and the competing classes. In
cases where the ANN is very sure about the classification, the
majority of the probability mass is with the corresponding neu-
ron. In unclear cases, however, the second-best class could have a
probability that is almost as high as that of the winner, and these
cases might be interesting to study further.

The idea of voting is extended here also to the class probabil-
ities. When evaluating them for a spectrum, the class probability
estimates are collected from the individual voters (i.e., the
ANNs). Then, a trimmed mean over the voters is used to com-
pute a preliminary probability estimate for a given class. Finally,
the estimates are scaled so that their sum is 1. The final step is
needed because the trimmed mean operation can eliminate dif-
ferent voters for different classes, so the resulting mean does not
necessarily sum up to 1 anymore.

While the training process of the ANN, or multiple ANNs,
is a resource-demanding task, the classification using the final
trained network or multiple voter networks is a much lighter
task. In the training phase, each round of the numerical optimizer
requires the evaluation of the ANN for each case in the training
data. In the final production use, the classification requires only
one evaluation of the ANN for one single object. While this still
requires a matrix-vector multiplication of size (30 × 200) matrix
and size 200 vector in our case (full B-DM wavelengths), and
some smaller operations for each voter, it is still relatively cheap.

2.2.4. Cross-validating the network performance

Finally, the performance of the ANN voter network needs to be
evaluated. We accomplish this by cross-validation, where one
part of the data is left out from the data synthesizing and ANN
training, but is used to assess the accuracy of the system in
predicting the correct classes. In our VisNIR dataset some tax-
onomic classes have only a few spectra, such as the T type with
four samples and the A type with seven samples (see Table 1).
Therefore, we decided to perform the cross-validation by the
leave-one-out method, where at every validation round, only
one observation is left out from the training set and then clas-
sified. This method is optimal regarding the sample size left
for training, but also requires the most validation rounds. We
completed a full validation sequence by running the leave-one-
out round for each of the 586 asteroids. The left-out spectrum
was completely isolated from both the data synthesizing and the
ANN training. This means that we trained the ANN network
586× 5= 2930 times (five voter ANNs for every round). Our val-
idation round benefited greatly from GPU acceleration using the
Nvidia Tesla P100 card.

Table 3. Summary of the ANN properties in this study.

Model property Value

Hidden layer size 30 (full) or 20 (Gaia
wavelengths) nodes

Hidden layer activation function tansig (see Eq. (2))
Output layer size 11 nodes
Output layer activation function softmax
Number of ANNs 5
training algorithm ADAM
Number of epochs in training 5000
batch size 35
Learning rate 0.001

2.2.5. Overfitting

Taking into account the fact that a feed-forward ANN is basi-
cally a very pliable nonlinear model with a vast number of free
parameters, there is always the risk of overfitting. In an ideal
case, the labeled data can be divided into training, validation, and
testing sets. In this approach the validation set is used to check
if the model accuracy remains close enough to the accuracy
evaluated using the training set. If the validation set accuracy
differs significantly from the training set value, the ANN is prob-
ably overfitting the data, and model hyperparameters should be
adjusted toward a simpler model. The model hyperparameters
can include the number of nodes in a layer, the number of lay-
ers, the number of epochs in training, and the type of activation
function.

In our case the amount of labeled data, especially with some
taxonomic types, does not really support the separation into vali-
dation data. Therefore, we needed to take other measures to avoid
model overfitting. First, when we designed the model, we did not
try to optimize the model performance. Rather, we tried to opti-
mize the simplicity of the model. Our ANN has only one hidden
layer, and a modest number of 30 or 20 nodes. This ANN struc-
ture was found by starting with larger node numbers and two
hidden layers, and simplifying as long as the performance kept
on a good level.

Second, we introduced a dropout layer between the hidden
layer and the output layer. The purpose was to force the network
not to lock down on a single spectral wavelength or a feature, but
also to make the network more robust against overfitting.

Third, instead of training one ANN with a large number of
epochs, we trained five ANNs with somewhat modest number
of epochs, 5000. Increasing the number of epochs in training
would allow the ANN to adapt to the learning set with increas-
ing accuracy, but due to an evident overfitting risk, this is not
the desired behavior. However, to tackle the possible underfitting
with a smaller number of epochs, we joined these five ANNs and
made the final classification based on their votes. The summary
of all our ANN structure and training parameters are given in
Table 3.

However, we would like to note that our procedure is a com-
promise. We optimized the model and its hyperparameters with
all the data, although we wanted to find the simplest model pos-
sible. If it were possible to use labeled datasets with thousands or
tens of thousands of spectra, we would have preferred to divide
the data into separate training, validation, and testing sets. When
this data is available, we will be able to use it to re-evaluate our
ANN accuracy. Also, we should critically evaluate the results

A46, page 5 of 9



A&A 649, A46 (2021)

Fig. 3. Confusion matrix from the ANN classification of the VisNIR
dataset. The known classes are organized in rows of the matrix, and
the distribution of the predicted class labels for each correct class are
organized as columns. The blue shade of the cell background color
highlights the diagonal with the correct classifications, while the orange
shade shows the misclassifications.

of classification with our suggested method when the Gaia
spectral data becomes available, most probably with Gaia Data
Release 3.

3. Results and discussion

Once the structure of the neural network has been decided, and
the networks have been trained, the classification can begin. We
are interested in how well the neural network succeeds in classi-
fying the asteroids correctly, that is, how many of the predicted
classes match the true, known classes of those samples. The
degree of success is described by the classification success rate,
which is expressed in percentage points.

3.1. Classification of samples with the full Bus-DeMeo
wavelength range

We begin by establishing a baseline for our ANN performance
by classifying samples from our VisNIR dataset using the full
B-DM wavelength range. The so-called confusion matrix of
the results is presented in Fig. 3, where the distribution of the
predicted classes is cross-tabulated with the distribution of the
correct classes. The cases that are correctly predicted are located
in the diagonal of the matrix, and their sum, 531, is the number
of correct classifications out of the total 586 cases, making the
overall classification accuracy 90.6%.

With many taxonomic classes, the resulting accuracy is
100%. The S types are sometimes misclassified, mainly as
Q types. If C types are misclassified, it is mostly as X types. Of
all the types, the L type is the most difficult to classify (75.8%
accuracy). If L-types are misclassified, they can fall into K, S, or
X types.

Fig. 4. Confusion matrix from the ANN classification of the Vis-
NIR dataset using only the intersection of the Gaia and Bus-DeMeo
wavelengths. For the structure of the matrix, see Fig. 3.

3.2. Classification of samples with the joint Gaia and
Bus-DeMeo wavelength range

If we now turn to the task of classifying objects with the wave-
length range of the Gaia observations into the B-DM taxonomic
system, the accuracy decreases. This occurs because the wave-
length range of the spectra is reduced from 0.45–2.45 µm to
0.45–1.05 µm. The result of this classification for our VisNIR
dataset as a confusion matrix is presented in Fig. 4. The over-
all accuracy comes now from the cases in the diagonal, 507,
divided by the total number of 586, so 86.5%. The drop in accu-
racy does not seem very dramatic, especially taking into account
that we are now completely missing the NIR part above the
1.05 µm wavelength. It seems that the ANN classification of
Gaia-observed asteroids can be quite promising.

If we look at individual taxonomic types in the classification,
we find that the L types are still relatively difficult to classify
(66.7% accuracy). In addition, now with the limited wavelength
range, the C types are more difficult (75.4% accuracy). In partic-
ular, the difference between B and C types is somewhat difficult
without the longer NIR wavelengths. The third lowest accuracy
is for X types (82.4% accuracy). Its misclassified objects are
spread quite widely into B, C, D, K, L, or T types.

3.3. Classification of real Gaia samples

Thus far we have motivated the need to simulate Gaia classifica-
tions by the fact that no true Gaia asteroid data is available yet.
However, some preliminary samples do exist (Galluccio et al.
2017). Here we test the performance of the neural network with
three asteroids, (19) Fortuna, (21) Lutetia, and (279) Thule, with
real Gaia spectra.

To prepare the new data, a spline fit is done to the three spec-
tra to obtain the same number of data points as the training set
samples. Additionally, the Lutetia data stops at 1.01 µm, so its
spline fit is followed by a linear extrapolation to estimate values
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Fig. 5. Comparison of the spectra of (19) Fortuna, (21) Lutetia, and (279) Thule to the spectra of the simulated samples in their predicted classes.
Top row: Fortuna with the samples from the C, X, and D classes. Middle row: Lutetia with the samples from the X, L, K, and S classes. Bottom row:
Thule with the samples from the D, T, and X classes. The red lines are the spectra of the real asteroids, while the gray lines show the synthesized
samples in the training data.

Table 4. Reduced classes predicted for Fortuna, Lutetia, and Thule
using the Gaia spectral observations.

Asteroid Most probable taxonomic types

(19) Fortuna C (77%), X (16%), D (5%)
(21) Lutetia X (71%), L (14%), K (7%), S (6%)
(279) Thule D (91%), T (6%), X (3%)

Notes. The most probable taxonomic class is printed in bold, but all
classes with predicted probabilities >1% are also reported.

until the 1.05 µm endpoint. The samples are presented to the
network without any class labels.

The classes the neural network predicts for the asteroids
are presented in Table 4. We report all taxonomic classes with
greater than 1% probability. The asteroid (19) Fortuna is gener-
ally taken as a C-type asteroid, Ch to be exact (Fornasier et al.
2014). Our ANN also suggests C type with a probability of 77%,
but also predicts X or D types with low probabilities. Asteroid
(21) Lutetia is Xc in the B-DM taxonomy, and is also classi-
fied by our ANN as X with 71% probability. Additionally, for
Lutetia the classes L, K, and S are predicted with >1% probabil-
ities. Finally, (279) Thule should be D type in B-DM, and is also
classified as such with some probability also on T or X types.

The classification of the three real Gaia samples, Fortuna,
Lutetia, and Thule, when the neural network has been trained
with simulated Gaia data shows overall encouraging results. All
three samples are predicted as their expected correct class with
high probability. However, sometimes the prediction is not abso-
lutely certain, as seen with Fortuna and Lutetia. Context for what
might cause the uncertainty in prediction is provided by Fig. 5,
which plots the spectra of the three asteroids on top of the sim-
ulated spectra of the predicted classes. With Lutetia it is easy to

understand how the network might sometimes mistake the spec-
trum as being from the L class. With Fortuna, it seems that the
overall slope of the spectra may be on the high end for C types,
but on the low end for X or D types, therefore justifying the lower
probabilities also for the X or D taxonomies.

Torppa et al. (2018) studied the same three asteroids and their
Gaia spectra, but using a linear discriminant analysis (LDA) and
a naïve Bayesian classifier that were adjusted for the Gaia wave-
lengths. Their probabilistic classification results were somewhat
similar. The D class was not proposed at any significant level for
Fortuna, and for Lutetia, the most probable classification in their
assessment was the K-class. The interpretation for their results
was that the LDA probably noticed the downturn in the Gaia
spectra of Lutetia after 1 µm, and gave that a large weight and an
association with the K type.

3.4. Training, training data, and the accuracy measure of our
neural network

The training of the ANN is a process where the network param-
eters are optimized against a chosen merit function. Usually in
classification tasks, and in our case, the merit function is the
cross-entropy (i.e., the sum of the logarithms of the predicted
class probabilities times the true binary class indicator). The
choice might seem quite objective, but it is not completely objec-
tive. The merit function will weight each class according to
their fraction in the training data. In our case, we chose to have
200 cases for each class in our synthesized training data. In prac-
tice, this means that we are weighting the importance of each
class uniformly. We could also choose to, for example, follow
the estimated frequencies of the asteroid classes in the aster-
oid population in the training data, thus giving more importance
to the classification of the most common classes. The caveat in
this kind of approach is that it can lead to situations where the
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classification accuracy of the rare taxonomic classes does not
really weigh at all in the merit function, and therefore the ANN
does not need to learn to classify them.

The similar weighting issue is also valid when we estimate
the final accuracy of the trained ANN using the test dataset.
Unlike in our training dataset, our test dataset is a real collec-
tion (i.e., not augmented or simulated) of the asteroid spectra in
the combined Bus-DeMeo and MITHNEOS datasets. Therefore
it will also weight the accuracy measure using the taxonomic
frequencies of our combined VisNIR dataset. We hope that the
frequency distribution is somewhat similar to the real taxonomic
distribution of the asteroids, although with a probable obser-
vational bias. By estimating the accuracy separately for each
class, we can apply all kinds of weights. For example, giving
each taxonomic class the same weight, the total accuracy of our
ANN would be 92.1% with all the B-DM wavelengths (it was
90.6% with weights from the VisNIR dataset frequencies) and
88.3% for the joint B-DM and Gaia wavelengths only (previ-
ously 86.5%). We could also apply other weighting schemes
for evaluating the expected accuracy in different situations, for
example by taking the best estimate for the main belt asteroid
population.

4. Conclusions

The aim of our study was to verify how well artificial neu-
ral networks can classify asteroids into their taxonomic classes,
particularly when the wavelength range of the spectra differs
from the range used to define the taxonomy. We were especially
interested in investigating the neural network Bus-DeMeo clas-
sification with the Gaia wavelengths. For this purpose a novel
asteroid VisNIR dataset was constructed. A feed-forward neu-
ral network was designed with parameters that yield the best
possible success rate of classification with the VisNIR samples.

The results seem to imply that a neural network can clas-
sify Gaia samples robustly, even with a taxonomic system that
was not designed specifically for their wavelength range. Com-
pared to earlier work on the same subject by Torppa et al. (2018),
the neural network is much more flexible and can be automati-
cally trained for various wavelengths. For further improvements,
it would be beneficial to have access to a considerably larger set
of real spectral data with solid taxonomic information. Further
studies of how the neural network prioritizes features in the data
within the Gaia wavelength range could also be done. Finally,
specifically regarding the Gaia data, it would be beneficial if the
blue end of the Gaia spectra could also be employed. This is
possible with suitable training data with taxonomic labels.

We aim to study the possibilities of neural network-based
classifiers further with the upcoming survey data from Gaia
and the Large Synoptic Survey Telescope observations over

photometric colors (Jones et al. 2015), and with the disk-resolved
spectral data from the spacecraft observations such as the JAXA
Hayabusa observations of the asteroid (25143) Itokawa (Abe
et al. 2006) or NASA OSIRIS-REx observations of the asteroid
(101955) Bennu (Simon et al. 2020).
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Appendix A: Creating the combined dataset

To create the VisNIR spectral dataset with taxonomically labeled
asteroids we combined two sets of asteroid data, the original
dataset used by DeMeo et al. (2009) when creating the B-DM
taxonomy, and the quite recent MITHNEOS dataset2 (Binzel
et al. 2019). To our understanding, the B-DM dataset is not pub-
licly available per se, and we thank F. DeMeo for providing us
with the original data.

The B-DM data consists of 371 asteroids, and the MITH-
NEOS data with both visual and NIR wavelengths of 316
asteroids. When combined, there are spectral data of 602 unique
asteroids, since there are overlaps in the datasets. We chose to
deal with the asteroids present in both datasets in a simple man-
ner; the more recent MITHNEOS data is selected in these 85
cases.

Our VisNIR dataset was created by resampling the origi-
nal observed spectra between wavelengths 0.45 and 2.45 µm in
0.01 µm steps. The resampling was done on the cubic regression
spline fitted to the original spectra. The knots of the regression
spline were placed on the percentiles of the data, and the num-
ber of these percentiles (and thus, the number of knots and the
number of individual splines) in the spline system was found by
optimizing the Bayesian Information Criteria (BIC), which is a
function of the squared residual errors between the fit and the
data, and the number of free parameters. The resulting number
of splines varied between 10 and 30.

We visually inspected all 602 regression spline fits to the
data. In most cases the results were visually very good. In some
cases the fit was found to be poor, either on the small or large
end of the wavelength range. This was always due to different
wavelength sampling densities in the original data. For example,
in some cases the visual range was covered only with about five
data points, while the NIR part was densely sampled. In these
cases we first did a separate, low-order fit to the less-sampled
wavelengths, resampled that part more densely, and then fitted a
global regression spline. In some rare cases, we needed to extrap-
olate the data a bit to reach the 2.45 µm wavelength. In seven
cases it was not possible, in our subjective opinion, to credibly
know how to extrapolate the data, and these cases were left out
from the final data.

With the scrutinized combined dataset now having 595 aster-
oids, we organized the asteroids according to their taxonomic
classes, and plotted all the spectra together for each taxonomic
class. By doing this, we could visually spot one strange case
in each class C, Q, Srw, and Xe, and removed them. This left
us with the final VisNIR dataset of 591 asteroid spectra from
0.45–2.45 µm range, 0.01 µm sampling, and with the B-DM
taxonomic label attached.
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Fig. B.1. Seven original A-type spectra in our
VisNIR dataset (left), and 200 synthesized A-type
spectra (right).

2 The dataset Binzel2019.zip, from http://smass.mit.edu/
minuspubs.html

Appendix B: Method for simulating asteroid
spectra

The synthesized spectral data for each taxonomic class is simu-
lated using the spectral data from that class as the base dataset.
The method is described in detail in this section.

Let the base dataset from one taxonomic class be in the data
matrix X. The individual spectra from our VisNIR dataset for
that class (n) are the rows of the matrix, and the columns (k)
are the 200 (full range) or 60 (only Gaia range) wavelengths.
For the principle component analysis (PCA) transform we need
the column mean vector of X as x̄ with k components, and the
covariance matrix Σ, dimension k× k, of X. Furthermore, X
needs to be centered, i.e., Xc =X − 1k x̄T , where 1k is a vector
of ones, with length k.

Now, the PCA transform of Xc is given with the help of
eigenvalue decomposition of Σ as

Σ=UΛUT , (B.1)

where U is a k× k orthogonal matrix of eigenvectors, and Λ is
a diagonal matrix with eigenvalues. Now the original (centered)
spectra Xc can be transformed into observations Z in the PCA
space with

Z=XcU. (B.2)

When simulating one synthesized spectra, we take at random
one real spectra in PCA space z from Z. Since the PCA trans-
form projects the original variables into uncorrelated variable
space, the components in z are uncorrelated. Therefore, we can
add simple uncorrelated Gaussian noise to z. The eigenvalues
give variances for the noise components. We scale these vari-
ances slightly down by a factor of 0.36 (factor 0.6 for standard
deviations) to keep the variation of the simulated spectra on a
reasonable level, based on visual inspection. Now with a vector
of Gaussian random numbers e with expected values of 0 and
standard deviations of 0.6

√
diag (Λ), our synthesized spectra in

PCA space is zs = z + e.
Finally, the vector zs can be transformed back in the original

wavelength space by

xs =Uzs + x̄. (B.3)

An example of the seven original spectra in the A class and
200 synthesized spectra using the above method is shown in
Fig. B.1.
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