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1 Introduction 

This master’s thesis work was performed the University of Helsinki Small animal and Equine Hospital, 

and Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine  at the 

University of Helsinki, and is the metabolomics portion of a ‘nutri-omics’ research project, which was 

initiated in 2013 by the DogRisk research group led by Dr. Anna Hielm-Björkman.2,3 

Improving the length of pet healthspan remains a long-term goal in research of the health-nutrition 

axis. To achieve this, most research focuses on practical solutions, for example improving diet to treat 

chronic disease in canines.4 To date however, little consideration of diet as a means for disease 

prevention has been reported in the literature.5 It has been well established that a healthy diet in humans 

contributes to an increased healthspan, and that an unhealthy diet increases the risk of many 

pathologies.6-8 In canines, studies to see whether certain diets help treat chronic diseases have mainly 

involved observing whether certain types of diets and functional foods appear to have a protective or 

therapeutic effect against chronic ailments.9-11  

With the recent advancements in the field of metabolomics, it has become easier to study the 

relationship between an individual’s metabolome and environmental factors.12 The nascent field of 

canine nutritional metabolomics holds potential for both improving our understanding of canine disease 

risk factors and the underlying causes behind those risks.13 However, to our knowledge using a targeted 

metabolomics approach to study the interactions between chronic disease states and long-term dietary 

interventions on canines had not previously been performed. Although kibble and raw food diets are 

the two predominant forms of dog feeding throughout most of the world, only a few studies exist that 

have compared the two. Furthermore, to date, no studies have been published that use a targeted 

metabolomics approach to study the effects of feeding these diets on canine health. Through the use of 

combined media (blood serum and urine) in the present study, I examine the extent to which the 

homeostasis of quantified blood metabolites are maintained, and their relationship with food intake. 

By using a targeted metabolomics approach, data was generated and used to determine whether, and 

to what extent differences in the canine blood serum and urine metabolome could be seen as a result 

of the two different diets, as well as between healthy and atopic individuals. I studied the metabolic 

relationships between diet and the chronic skin disease canine atopic dermatitis (CAD) as well as 

canine metabolic health in general through comparing our results with previously performed studies. 

This was performed by applying statistical tools and data processing protocols as described in the 
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literature, and then interpreting the biological implications to the best of my ability using recent 

relevant research. This study aims to determine the validity and practicality of using this method for 

providing context-inclusive answers for research questions that focus on the intersection between 

nutritional intervention and long-term health outcome in canines. This preliminary study began with 

the hypotheses that dietary choice is linked to both metabolic health as well as CAD severity in the 

CAD-diagnosed canines, and that a preliminary indication of whether this is the case can be seen in 

the targeted serum and urine metabolite profiles of polar, non-ionic metabolites. I further hypothesized 

that the healthy and CAD-diagnosed canines would respond differently to nutritional intake by means 

observable in the targeted serum and urine metabolite profiles of polar, non-ionic metabolites. Clinical 

metabolomics-based experiments are inherently hypothesis-generating and are hence an ideal approach 

for preliminary or pilot studies. Hence, through analyzing metabolites which represent a diverse yet 

sparse selection of metabolites simultaneously, I also aimed to generate new information that could 

help guide the formulation of future, more precise hypotheses. Next, I outline an overview of the 

literature that has forged the path to where we now are in the realm of clinical metabolomics, 

specifically with regards to canines and the study of underlying chronic disease states, in particular 

canine atopic dermatitis. 

 

2 Literature review 

2.1  Metabolites 

 

Metabolites are a diverse class of mainly organic compounds, typically described as being any 

compound up to 1500 Da in size,14 which are produced by organisms as a result of cellular 

metabolism.15 In animals, the term ‘metabolites’ is broad and typically refers to lipids, amino acids and 

small peptides, nucleic acids, carbohydrates and organic acids, thiols as well as conjugates of the 

above-mentioned compound classes.16 Together, they make up the organism’s metabolome, also 

termed metabolic profile, and the term’s use is almost invariably biofluid-, cell-, or biotissue-specific.17 

For example, the blood serum and urine metabolome is of great interest to health researchers.18 The 

metabolome is made of compounds that are either exogenous, i.e. compounds which the organism has 

acquired from its environment, or endogenous, i.e. compounds which the organism itself has created 

via either anabolic or catabolic processes. Regardless of where they came from, metabolites are 
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regarded as compounds involved with the organism’s metabolic processes.19 They are the direct link 

between an organism’s genetic expression, and its interaction with its environment, and hence the 

metabolic profile of an individual has been referred to as describing a biologically ‘functional 

phenotype’ (Figure 1).20,21 In other words, the organism expresses genes, with which it creates proteins 

and enzymes in order to manipulate its metabolic profile in response to it environment.22 

 

Figure 1. Overview of the dichotomy between traditional clinical biochemistry experiments (left) and its ‘omics’ counterpart that has 

become increasingly popular in clinical chemistry research. Figure adapted from illustration by Kaddurah-Daouk et al. (2008).15 

 

2.2 Metabolomics 

The study of whole sets of metabolites are generally referred to as metabolomics, metabonomics, or 

metabolic profiling.23 The terms all refer to the detection and measurement of the metabolome of an 

organism’s biofluids or any other biomaterial, including solids and gases.15 The study of sets of 

metabolites began long before the coining of the term ‘metabolomics’24 and the field is built upon many 

decades of research that primarily focused on single metabolic pathways,19 or types of compounds e.g., 

amino acids.19,25 However, metabolomics specifically aims to address how metabolic flux can be 

observed in response to an external or internal factor across multiple, or even all metabolic activities 

present within a cell, tissue, biofluid or organism.26 Although the term metabolomics is ubiquitously 

used in current metabolite-based studies, many distinct types of metabolomics-based analyses exist, 

presenting a persistent challenge when tasked with defining what metabolomics precisely 

describes.24,27 Essentially, all forms of metabolomics-type analyses combine preparing and feeding a 
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biological sample to a highly sensitive instrument, and then interpreting the instruments output with 

robust statistical data processing software.27 Due to the highly variable nature of the metabolome’s 

physicochemical properties, as well as variability of relative metabolite concentrations, it has proved 

challenging to create an experimental procedure that would allow for the detection and characterization 

of all metabolites present in a biological sample, even when multiple instrument platforms are 

combined.21 As a result, to our best knowledge no current methodology allows for a truly all-inclusive 

quantitative metabolome analysis and consequently certain trade-offs have to be taken into account 

when choosing which platform or combination of instruments to use for metabolomics-based 

experiments.28 The most common instruments in use today for metabolomic analyses are nuclear 

magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS) and liquid 

chromatography-mass spectrometry (LC-MS).29 When compared to NMR, GC-MS and LC-MS are 

considerably more sensitive instruments and hence allow lower level of detection for metabolites 

within samples. As such LC-MS platforms have become the more popular of the two options with 

regards to health research, where generally many biofluid metabolites are found in relatively small 

concentrations which in many cases do not need to vary much to illicit large-scale phenotypic 

changes.30 Upon detection, the measurement of metabolites and other small-molecule concentrations 

within the sample can be either qualitative or quantitative depending on the type of experimental setup, 

which in turn is dependent on the aim of the experiment.21 When using LC-MS, metabolomics 

experiments that yield qualitative data regarding the sample’s metabolome are generally referred to as 

untargeted metabolomics, and metabolomics experiments that yield quantitative data regarding a 

defined set of metabolites present in the sample’s metabolome are generally referred to as targeted 

metabolomics.21 Here, we focus on targeted metabolomics using an ultra-performance liquid 

chromatography-tandem triple quadrupole mass spectrometry platform (UPLC-MS/MS), a set of 

techniques which may enable quantitative metabolite measurements in canine urine and blood serum 

samples in a clinical chemistry setting. 

2.3 Clinical targeted metabolomics experiments 

Targeted metabolomics analysis is most often performed with a liquid chromatography tandem mass 

spectrometry (LC-MS/MS) instrument, which has become the gold standard in clinical settings.31 Here 

are the key considerations required at each step of the workflow for the successful analysis of non-
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ionic, polar metabolites in blood serum and urine samples by using targeted metabolomics with the 

LC-MS/MS-based approach in a clinical setting as has been recommended in the literature.21,30,32,33 

2.3.1 Experiment design  

Designing an experiment properly is perhaps the most important step to performing a successful 

experiment. A failure in design may make all subsequent steps unusable, or biologically irrelevant.34 

The design must hence adequately address the aims of the experiment, which in turn is to answer the 

experiment’s hypotheses. In a clinical research setting, the use of metabolomics is most often aimed to 

complement more traditional clinical chemistry experiments, where metabolomics-based experiments 

may be used as a ‘first-pass’ approach, generally thought of as a means to generate novel hypotheses. 

The data offers a broad view of metabolic processes which may then be used to better pinpoint where 

exactly within the metabolome, or within a certain set of metabolic processes it would be wise to follow 

up with more precise clinical chemistry assays.33 Several key considerations need to be determined. 

First, it is necessary to determine what data would be required in order for the research hypothesis to 

be answerable. This includes choosing which bio-samples should be collected for analysis, which 

analytical method should be chosen to analyze the collected samples, and which statistical methods 

should be used for subsequent data analysis. Second, the minimum cohort size necessary for the results 

of a tested variable to be considered statistically significant in metabolomics-based studies needs to be 

determined. Often a pilot study with a small sample size is used in order to give an indication of whether 

the research question should be further studied using a larger cohort, which would allow for a more 

precisely defined hypothesis.35 Clinical pilot studies on the other hand often rely on the minimum case-

control inclusion requirements which would allow for subsequent power calculations for larger-scale 

studies to be considered reliable.36 Lastly, clinical research also requires approval from an ethics 

committee.37 

2.3.2 Sample collection 

When the samples are collected, handled and stored, the aim is to do so in a uniform manner which 

allows for inter and intra-individual sample variability to be kept to a minimum, as well as in a way 

that allows for the sample’s metabolite concentrations to remain stable.38 This is achieved by 

controlling for both the conditions under which the sample is collected, as well as the conditions that 

the collected sample is then stored in prior to preparation for LC. Certain criteria apply to both the 
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collection of blood and urine samples, namely the samples should all be taken at approximately the 

same time of day to prevent metabolic flux due to the individuals’ circadian rythym39 and fasted 

samples should always be collected to prevent temporary flux due to meals.40 Furthermore, for blood 

serum samples, it is essential that the locus of sample collection is the same for all individuals and for 

urine samples it is recommended that they are collected mid-stream.41 Blood serum samples are 

allowed to clot and the resulting biomaterial, including cells and debris is removed with centrifugation. 

Both blood serum and urine samples should be stored in -80°C after collection, and freeze-thaw cycles 

should be kept to a minimum.33,42 

2.3.3 Sample preparation 

After the blood serum or urine sample has been collected and stored, several preparatory steps must be 

taken for the successful analyses of the targeted metabolites prior to chromatographic analyte 

separation and subsequent analysis with the MS/MS instrument.21 First, a precise amount of each 

sample destined for analysis is aliquoted and a precise amount of isotopically labeled standards (IS) 

for each of the targeted metabolites are added directly to it as well as to replicates of the sample, which 

are included to further increase the reliability of the analysis. Besides allowing for absolute 

quantification of the metabolite concentration in the sample, the IS can also allow for different sample 

batches, i.e. samples that are analyzed during different ‘runs’ to be compared.21 Second, a sample 

clean-up step called metabolite extraction is typically performed. In targeted metabolomics, the aim is 

primarily to extract the metabolites of interest as effectively as possible while also aiming to remove 

as many compounds as possible from the sample that are not of interest.33 This is best achieved by 

taking advantage of the common physicochemical properties of the targeted metabolites, such as 

solvent polarity, pH and temperature. Blood serum samples are first treated with a protein precipitation 

step, where typically an organic solvent, e.g. methanol or acetone is added, and the precipitate is 

removed via filtration.43 Due to their low protein concentration, urine samples typically do not require 

this step and instead preparation focuses on the interaction that the sample will have with the column 

it will subsequently be run through. For example, a large ratio of organic solvent is added to urine 

samples destined for separation with HILIC columns, as the high water content of urine hinders the 

HILIC column from separating the analytes smoothly.30 For both blood serum and urine samples, a 

solid-phase extraction (SPE) is typically employed, where the metabolites of interest are extracted into 

a solid phase.44 The use of SPE results in a much ‘cleaner’ sample, as most compounds that do not 
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exhibit certain shared properties with the analytes of interest have been removed, including those that 

interfere with chromatographic separation and analysis using MS. This step greatly increases the 

reproducibility of the sample analysis.45 As the sample analytes are absorbed into a solid phase and 

are subsequently eluted back into a liquid phase, the samples can be concentrated, which increases their 

detectability. 

2.3.4 Sample separation 

In targeted approaches, separating bio-sample analytes with chromatography based on their 

physiochemical properties prior to feeding the eluent into the MS instrument eases the metabolites 

subsequent identification and quantification.46 Importantly, the suppression of ion signals due to 

overlaps of molecular weight is addressed through first separating compounds with the same or very 

similar masses with other physicochemical properties, e.g. polarity.47 Targeted metabolomics sample 

separation using LC platforms are performed by running the appropriately prepared fluid bio-sample 

through liquid chromatograph (LC) at a given temperature and mobile phase gradient. As they pass 

through the column, the metabolites in the mobile phase interact with the stationary phase differently, 

causing their retention time within the column to differ.48 In the case of polar, non-ionic metabolites, 

such as amino acids, two column types are currently in use are particularly popular, reverse phase- 

liquid chromatography (RP-LC) and hydrophilic interaction- liquid chromatography (HILIC).33 Of the 

two, RP-LC had been considered the gold standard for most metabolomics-type analyses, however 

HILIC has recently become increasingly popular. The use of RPLC typically involves running the 

extracted metabolites within an organic mobile phase through a stationary phase along a gradient of 

decreasing solvent polarity, which retains the metabolites based on their hydrophobicity. As some 

metabolites are highly polar, often a derivatization step of the metabolites is included in order to allow 

for the metabolite to enhance their interaction with the column, with the added non-polar region also 

aiding in subsequent ionization with ESI as well as compound detection using CID, discussed below.49 

On the other hand, when using HILIC, the extracted metabolites are run through an aqueous mobile 

phase with high organic solvent content along a gradient of increasing solvent polarity and are retained 

based on their hydrophilicity.48 Here, an aqueous layer coats the column, and metabolites interact with 

the aqueous layer via hydrophilic interactions. This allows for improved separation of highly 

hydrophilic and polar compounds, though at the expense of inferior separability of highly non-polar 

compounds.50 
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2.3.5 Sample injection and ionization using ESI 

After having run through either the HILIC or RP-LC, the eluent is fed into a tandem mass-spectrometer 

(MS/MS) via an ionization source. Currently, clinical metabolite samples are most commonly ionized 

at atmospheric pressure using electrospray ionization (ESI).31 Ionization using ESI is considered a ‘soft 

ionization’ technique, which helps prevent metabolite fragmentation caused by more traditional 

ionization techniques.33 Essentially, the eluent is fed through a thin nozzle that produces a certain 

voltage, which causes the liquid in the nozzle to spontaneously form a cone shape, known as the Taylor 

cone 51. The charge density of the liquid increases towards the tip of the cone, which competes with 

the surface tension force of the liquid. As the charge exceeds the Rayleigh stability limit, the surface 

tension of the liquid can no longer contain the charge and homogenous droplets are formed, which pass 

through the nozzle as a fine spray. 51 After the droplets pass through the ionization chamber, they are 

evaporated, often with the help of a nebulizing gas, such as helium. The analyte is subsequently ionized 

as it is released from the aqueous droplet while it evaporates during its passage through the ionization 

chamber into the MS inlet.51 However, bio-samples are highly complex analytical matrices. They 

contain non-volatile contaminants, such as salts and other ionic or highly hydrophilic compounds, 

which when found within a droplet containing a compound that is more hydrophobic, it is more willing 

to receive the charge from the droplet.50 As the more hydrophobic compound is not ionized, it hence 

is undetectable with the MS as such. This is addressed by combing ESI with a MS/MS system,52 which 

has become a popular tool in clinical metabolism-related experiments.18 

2.3.6 Sample analyte detection with triple quadrupole MS/MS 

The triple quadrupole tandem mass spectrometer (QqQ) is essentially two mass filters connected to 

detectors, with a collision chamber between the two.53 There are several alternatives for how to 

combine the three quadrupoles, known as scan modes, whose adequacy depends on the nature of the 

analysis. In targeted metabolomics analysis, as the metabolites of interest have been pre-defined, 

selected reaction monitoring (SRM), a form of multiple reaction monitoring (MRM) is the preferred 

scan mode, as it allows for the required sensitivity and selectivity for the analysis of small 

metabolites.54 In general, the scan modes operate by allowing the ionized particles to enter the MS 

inlet, where they encounter the first quadrupole (Q1) which scans through a range of radio frequency 

and direct current potentials and only allows particles within a certain range of mass-to-charge (m/z) 

to maintain a stable trajectory through the Q1.53 The Q1 hence ‘selects’ precursor ions that can be 
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introduced to the collision chamber, which is the next quadrupole, q2. Here the ‘precursor’ ions are 

forced to collide with inert gaseous atoms, which subsequently causes them to fragment. The resulting 

fragments, ‘product ions’, are then detected by the third quadrupole, Q3. As the relative strength of 

bonds within the precursor ion are known, and fragmentation occurs at those bonds where the 

vibrational energy added exceeds the bond strength, it will fragment predictably, allowing for the 

fragments to help reliably identify the precursor ion.55 

2.3.7 Raw spectral data processing 

After the samples have been run through the MS/MS, the peaks of the raw spectral data must be 

analyzed in order to detect and quantify the targeted metabolites. Essentially, for scan modes such as 

SRM, metabolites of interest are identified by comparing the MS peak intensities from Q1 and Q3, as 

well as their chromatographic retention time.21 The identified metabolites of interest are then 

quantifiable by comparing their spectra to their respective IS spectra. Spectral data processing can be 

broken down into feature alignment steps followed by peak picking steps.33 Feature alignment is 

required as it has been well established that as a batch of samples are run through the chromatographic 

column, chromatographic retention time ‘drift’ occurs. The second step is to filter; here the common 

features are identified between samples, then compared with spectral databases. 56 The third step is to 

quantify the identified compounds through calibrating with the help of the IS, as well as check 

individual sample integrity with the help of pooled samples. 

2.3.8 Processed metabolite data processing using statistical software 

Once the raw MS spectral data has been processed, the resulting data should represent the absolute 

concentrations of the targeted metabolites in the sample. This processed data can hence be used to test 

experimental hypothesis by performing statistical analysis of the data through the use of statistical 

models best suited to answer the research hypothesis. Some considerations for choosing the appropriate 

statistical model include the nature of the variables tested, the sample size and number of cohorts, as 

well as how time factors into the experiment. Common approaches to interpreting processed targeted 

metabolomic data include the use of both univariate-based and multivariate-based statistical models.57 

Although the field is rapidly evolving, popular protocols and workflows exist and their use has been 

widely adopted.21,58,59 Prior to their application to appropriate statistical models, the workflow 

generally deals with any missing values by either removing the metabolite altogether or replaced using 
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one of several possible methods for dealing with missing values.52 Depending on the range of 

metabolite concentrations in the dataset, a normalization step is often included in order to better 

compare cohorts with widely ranging metabolite concentrations simultaneously.59 

2.3.9 Targeted metabolomics is outsourced to ensure experimental reliability 

As for any metabolomics experiment, the key to successfully using the UPLC-MS/MS based platform 

for targeted metabolomics experiments lies in the ability to create reproducible results. This is achieved 

by optimizing the sample preparation procedure, as well as by using standardized experimental 

procedures and materials.21 As a result, to prevent errors in the experimental workflow, currently 

dedicated metabolomics ‘centers’ are used to outsource the laboratory portion of the work.27,31 

2.4 Targeted metabolomics may continue to provide novel insight for clinical research 

 

Following the advent of the genomics era that followed the human genome project around two decades 

ago, Hood26 suggested applying metabolomics to elucidate details regarding the relationship between 

diet and health. It had already then been firmly established that myriad chronic pathologies are either 

the direct result of or correlate extensively to metabolic imbalances that are observable in biofluids and 

tissues.19 When applied to a clinical setting, targeted metabolomics hence allows for the study of how 

precise biofluid metabolite concentrations relate to clinical phenotypes.40 In mammals, metabolic 

processes are highly dynamic and can occur over the matter of seconds, or over many months, and 

criteria have been developed in order to take temporal and dynamic metabolic processes into account 

in clinical experiments.60 However, it has been demonstrated that the majority of human serum 

metabolites are kept surprisingly stable,61 a finding which greatly benefits research regarding how well, 

as well as to what extent metabolite profiles reflect the overall health status of the individual.40 This 

finding is likely reflected in canines as well, given their similarities,62 though to my best knowledge 

studies on stability of biofluid metabolites in canines has not been reported. 

2.4.1 Metabolomics for studying the relationships between metabolism, health and diet in 

canines 

Even small persistent metabolic imbalances due to environmental factors, such as diet, are thought to 

be a root cause of many of the chronic pathologies that humans63 and their pet dogs suffer from.64 

Currently, several thousands of clinical metabolomics-based experiments have been reported.29 
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However, the most recent review that focuses on clinical metabolomics-based canine studies shows 

that, although its popularity is accelerating, the popularity of using metabolomics-based studies of 

canines still remains relatively low.37 According to that review, 16 studies, i.e. approximately 43% of 

the metabolomics-based experiments utilized a quantitative approach, where 26% of studies performed 

targeted metabolomics and 17% performed metabolic ‘profiling’ of certain classes of compounds. Of 

the 16 studies reported, the popularity of using urine (7/16) serum (5/16) and plasma (5/16) samples 

for analyses were quite similar.37 Of these, only two studies focused on the interaction between 

metabolism and diet, and five studies focused on the interaction between metabolism and a chronic 

pathology. Regarding diet, one study performed a metabolic analysis of blood serum using both GC-

MS and LC-MS.65 The other study performed a non-targeted analysis of urine and fecal samples using 

GC-MS and LC-MS, although the blood serum was also analyzed using a standard clinical 

biochemistry panel.66 Of the five studies that regarded chronic pathologies, none studied or even 

controlled for the possible interactions between diet and subsequent metabolic modulation of the 

disease phenotype.67-71 To my best knowledge, no study has used a targeted metabolomics approach to 

study the interactions between canine metabolism, diet, and an underlying chronic disease state. 

Furthermore, of the studies that focused on diet, no study focused on both the metabolome of urine and 

blood. However, the study of the effects of nutritional intake on a canine’s blood serum biochemistry 

can be complemented with the simultaneous analysis of the metabolomic profile of the urine. An excess 

of a polar metabolite’s concentration in blood above the needs of an organism's normal function can 

be seen as an increase in the metabolite concentration in the urine as it exceeds the renal threshold for 

that compound.72 Although a few studies combined either blood serum or urine samples with other 

biosamples, e.g. serum with bile,73 feces with urine,74 only one study had analyzed both canine serum 

and urine samples simultaneously.71 Although that study focused on intestinal dysbiosis, the authors 

did not study the effects of nor control for the possible effects of diet in their experiment. To our best 

knowledge, a metabolomics-based analysis of dog’s serum and urine in response to diet has not been 

reported.38,42 

2.5 Using dogs as model organisms has noteworthy advantages 

 

Nutrition-based experiments have been notoriously difficult to perform on humans;75 it is costly to 

include a sufficient amount of participants over sufficiently long periods of time. More importantly, 

controlling dietary intake of humans has shown to be challenging especially if the participants are not 
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housed throughout the study at a clinic, which is mainly due to that humans often lie about their food 

intake, or have difficulty quantifying everything consumed over any meaningful period of time.76 As a 

result, much research ultimately aimed towards humans has been performed using ‘traditional’ model 

organisms, e.g. rodents and other small invertebrates.77 There are noteworthy reasons why this is the 

case; they are cheap to breed and study, their lifespans are relatively short, genetic variance between 

individuals can be far more tightly regulated, and protocols for their use as model organisms have been 

well established.77,78 However, within the realm of clinical nutritional metabolomics, using pet canines 

as a model organism instead of mice and rats has several noteworthy benefits and hence there has been 

a recent trend in clinical settings towards embracing canines as a model organism for humans.64,79 Mice 

and rats are nocturnes and often studied in cages that do not reflect a typical human environment. 

Within that environment, mice poorly reflect how humans respond to environmental factors. For 

example, a recent review reported that only 5% of cancer drugs that showed promising results in mice 

were also shown to show efficacy and safety in humans.80 Dogs on the other hand, are genetically,62,81 

epigenetically,82 physiologically and behaviorally83 closer to humans than mice and other rodents. 

Dogs share their environment with their owners and are typically regarded as family members.37 Their 

lifestyle closely resembles that of their owners, including the same drinking water, in-house and outside 

exposures to toxins, and often even the same type of lifestyle. Epigenetically, they age similarly, but 

on a far shorter timescale than humans, allowing for the progression of shared chronic pathologies to 

be studied on a shorter timescale.82 Their diets are easily controlled by their owners, and the owner is 

not incentivized to lie about their dog’s food intake. The lack of a controlled environment that the 

laboratory cage offers is traded in for studying an organism in the very environment that both the dog 

and the human share. Conducting research in this less controlled environment undoubtedly increases 

the amount of background ‘noise’ in the data gathered, but so too is addressed through increasing the 

amount of data collected with the help of ‘omics’-based approaches.64,79 

2.6 Diet 

As for any invertebrate, a dog’s main exogenous source of metabolites is diet, and hence the diet’s 

composition in large part influences the dog’s blood metabolome, both directly and via the 

microbiota.84 The majority of domesticated dogs in the developed world eat a kibble diet (KD).85,86 

According to the recently embraced NOVA food classification,87-89 kibble is an ‘ultra-processed’ 

product. Kibble is a mixture of ultra-processed grains such as wheat, corn, and/or rice, mixed with 
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ultra-processed animal by-product meal and enriched with chemical additives, including synthetic 

vitamins, minerals, trace elements, preservatives, coloring agents, and palatability enhancers.90,91 The 

raw meat-based diet (RMBD) in contrast, consists of raw animal parts. Complete and balanced 

commercial RMBDs also contain small amounts of raw vegetal matter as a source of fiber and 

sometimes a commercial premix of vitamins, minerals, and trace elements.92,93 The popularity of 

RMBDs is particularly high in Finland,94 but has also increased throughout the industrialized world.95 

The possible health benefits of feeding dogs with RMBDs remain understudied in comparison to its 

popularity.92 In a recent review regarding the subject of raw feeding and its health effects,85 the authors 

concluded that there was insufficient evidence to evaluate the risks and benefits of RMBDs with regard 

to canine health. The NOVA classification of RMBDs is currently under debate, and has hence not yet 

been established. Although the raw ingredients themselves are minimally processed89 (chopped, mixed 

and frozen), minerals and vitamins are often added. The processing of the individual ingredients used 

to produce kibble may significantly alter their nutritional value and the overall health of the dog, 

although the reasons for this remains poorly understood.96,97 The KD macronutrient profile differs 

remarkably from the RMBD profile. In terms of percent dry matter, a KD usually consists of a ‘Protein: 

Fat: Carbohydrate’ (PFC) macronutrient ratio 16-38:6-18:40-60%, whereas the PFC ratio of RMBD is 

typically 45:50:0-10%.98 

2.7 Canine Atopic Dermatitis 

Canine atopic dermatitis (CAD), part of the atopic complex, is a common systemic disease in canines, 

and is considered a form of chronic inflammation and manifests as an allergic response to an 

environmental factor which causes pruritus of the skin.99 Clinical protocols for CAD diagnoses include 

the CADESI-4 scale and Favrot’s criteria.100,101 The development of CAD has been suggested to be 

genetically predisposed in canines, as well as further modulated by epigenetic factors.99 Phenotypically 

the disease manifests itself differently in each individual, 102 although there is a relatively consistent 

trait of elevated concentrations of the antibody IgE across both atopy types and species.103,104 Atopic 

dermatitis (AD) has been associated with several of the classic markers of metabolic syndrome (MetS) 

found both in humans 105 and in canines.106 This relationship, likely mediated via inflammatory 

markers, is not fully understood.107 The relationship between skin inflammation and oxidative stress 

markers in humans as a result of MetS has been studied,108 and several pathophysiological disease 

mechanisms which combine AD and MetS have been proposed.109,110 Nutrition has been shown to have 
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a vital role in determining the development of MetS through modulating metabolic pathways that have 

been attributed to the development of AD.103 CAD typically comprises both food-induced atopic 

dermatitis and non-food-induced atopic dermatitis.104 Although physiologically indistinguishable,111 

they can be differentiated with the diet-restriction provocation trial.101 The link between metabolic 

health and CAD remains poorly studied. Most attention has focused on metabolic processes in the skin, 

especially in relation to fatty acids and lipids.112-115 It has long been known that the immune system of 

animals can be modulated by metabolites derived from nutrition.116 In canines for example vitamin 

D,117 and fatty acid supplementations118-120 have been shown to have a protective effect against allergic 

pruritic responses. 

3 Experiment 

3.1 Materials and methods 

3.1.1 Animals and study design  

A flowchart of the diet intervention is shown in Figure 2. In this diet intervention study, initiated in 

2013, client-owned pet Staffordshire Bull Terriers were first studied with nutrigenomic 2 and 

hematological3 approaches. The family history of the dogs has been reported elsewhere 2. The diet 

intervention included inclusion, baseline, and end visits during the diet trial. No special inclusion diet 

was required prior to baseline, although the diet of each dog prior to their baseline visit was determined 

using a food frequency questionnaire. 
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Figure 2. Flowchart of study: A flowchart depicting the selection process of the Staffordshire Bull Terriers used for the metabolomic 

analysis (n=20), and how they resulted in the cohorts based on diet (KD= kibble diet, RMBD= raw meat-based diet) and health status 

(CAD= canine atopic dermatitis). 

 

Of the original cohort of Staffordshire Bull Terriers that underwent the whole study and fulfilled all 

criteria of the diet trial (n=46), only a subset (n=20) were selected for serum metabolomic analysis due 

to high running costs. The subset (n=20) was stratified based on owner-reported diets prior to baseline, 

as well as their diet during the study. All dogs analyzed for this study were fed solely kibble (KD) or 

raw food (RMBD) over a diet intervention period of 3-5 months (median =135 days) i.e. forming a KD 

cohort (n=9) and an RMBD cohort (n=11). The dogs included in the analysis (n=20) were also split 

into cohorts based on whether they were CAD-diagnosed (n=14), or healthy (n=6). For analysis that 

considered diet and health condition, the dogs were divided into four cohorts, Healthy-KD (n=3), CAD-

KD (n=6), Healthy-RMBD (n=3), CAD-RMBD (n=8). Urine metabolomic analysis of samples 

collected at the end of the diet intervention was performed for a subset (n=8) of only CAD-diagnosed 

individuals, also due to high costs of analysis.  The baseline samples were collected during September 

and October, and the end samples were all collected between February and April. The winter months 

were chosen for the diet intervention due to the seasonality of the disease, as CAD symptoms have 

been reported to be exacerbated as a result of pollen and blooming plant exposure 100,126. Due to 

unrelated circumstances (pregnancy of the study co-ordinator) the trial ended later than planned. 
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Seasonality possibly affected the disease phenotype, as the end visit was delayed in some cases to 

spring, when plants already started blooming in Finland. 

The canines were evaluated before and after the diet intervention by a dermatologist, who used Favrot’s 

criteria 111, the Canine Atopic Dermatitis Extent and Severity Index (CADESI-4) scale 101, biochemical 

and hematological tests. The threshold for whether a canine suffered from CAD required a fulfilment 

of 5 out of 8 of Favrot’s criteria. The severity of the CAD was diagnosed using the CADESI-4 scale, 

which categorizes CAD severity as follows: 0-10 = in remission, 11-33 = mild CAD, 34-59= moderate 

CAD, ≥60 = severe CAD. Owner-reported data regarding CAD severity as a visual analogue scale to 

evaluate the level of pruritus at two week intervals from baseline to end was also collected. The owner-

reported pruritus conflicted with the dermatologist’s CAD severity evaluation in some cases. However, 

for clarity, only the diagnosis reported by the dermatologist was used in this study.  

The diets used in the study were a commercial kibble diet (KD), and two commercial raw meat-based 

diets (RMBDs). The RMBDs used in this study had an average PFC macronutrient ratio of 26:74:0 

percent metabolizable energy (% ME). The KD diet used in this study had a PFC macronutrient ratio 

of 23:36:41% ME (Table 1). 

 

Table 1. Percent metabolizable energy (%ME) of the kibble (Hill’s Science Plan) and two raw-meat based diets (Mush BARF Vaisto, 

pork-chicken-lamb, beef-turkey-salmon). The values are calculated using the modified Atwater factors as suggested by the National 

Research Council 127. 

Macronutrient  Hill’s 

Science 

PlanTM 

Canine, 

adult 

sensitive skin 

with chicken 

(%ME)1 

MUSH 

Vaisto 

(Pork-

Chicken-

Lamb) 

(%ME) 

MUSH 

Vaisto  

(Beef-

Turkey-

Salmon) 

(%ME) 

MUSH diets 

combined 

average 

(%ME) 

Protein  23.28 23.84 28.09 25.96 

Fat 35.76 76.16 71.91 74.04 

Carbohydrate 40.95 0.00 0.00 0.00 

1 %ME= % metabolizable energy 
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The commercial dry diet used in this study was Hill’s Science PlanTM Canine Adult Sensitive Skin with 

Chicken (detailed composition shown in Table S1a). The two commercial raw meat diets used in this 

study were MUSH Vaisto® Pork-Chicken-Lamb and MUSH Vaisto® Beef-Turkey-Salmon (detailed 

compositions shown in Table S1b). For the RMBDs, owners were free to choose either one or combine 

both diets. According to manufacturer claims, both the KD and the two RMBD options were ‘complete 

diets’. Owners were asked to feed their dogs 99.9% with the trial food using amounts recommended 

by the manufacturer, adjusting amounts if their dog’s bodyweight would start to fall or rise. Owners 

reported the adherence to diet using a food diary. Water was allowed ad libitum. 

3.1.2 Samples 

The metabolomic analysis of blood and urine samples were performed in two batches, i.e, batch 1 and 

batch 2. Both batches are described in Table 2. For batch 1, blood serum samples, collected at baseline 

and end, and urine samples collected only at end, from atopic dogs (n=8) were used. For batch 2, only 

blood serum samples collected at baseline and end from a cohort of both atopic and healthy dogs were 

used (atopic n=6, healthy n=6). For analysis of serum, batches 1 and 2 were combined (atopic n=14, 

healthy n=6) for several of the analyses described below. 

 

 

 

 

 

 

 

 

 

 

 



Robin Moore  Master’s Thesis 

  

18 

Table 2: Overview of the experimental setup of diet intervention, including division of Staffordshire Bull Terriers into diet cohorts (diet 

overview in Table 1), gender, health status, disease phenotype, diet intervention length, and age.  

Batch 1 2 1&2 

Diet cohort RMBD1 KD2 RMBD KD RMBD KD 

Dogs (total) (n) 4 4 7 5 11 9 

Gender 

(male/female) 
4/0 2/2 3/4 3/2 7/4 5/4 

Sterilized (yes/no) 2/2 3/1 2/5 1/4 4/7 4/5 

Blood serum 

analyzed 
yes yes yes yes yes yes 

Urine analyzed yes yes no no no no 

Atopy (total)(n) 4 4 4 2 8 6 

NFIAD3/FIAD4 3/1 3/1 4/0 2/0 7/1 5/1 

Healthy (n) 0 0 3 3 3 3 

Mean diet 

intervention 

length (days) (SD5) 

126 (35.3) 141 (26.6) 137 (27.0) 136 (29.7) 133 (29.0) 139 (26.7) 

Mean CADESI 

score at BL6 (SD) 
CAD: 13.5 (9.0) CAD: 19.0  (10.8) 

CAD: 12.5 (8.7) 

Healthy: 3.3 (1.2) 

CAD: 18.5 (16.3) 

Healthy: 2.7 (1.2) 

CAD: 13 (8.3) 

Healthy: 3.3 (1.2) 

CAD: 18.8 (11.1) 

Healthy: 2.7 (1.2) 

Age at BL 

(months; mean, 

SD) 

44.7 (34.9) 56.2 (31.7) 60.8 (35.9) 75.2 (46.1) 54.9 (34.7) 66.8 (39.3) 

1RMBD= raw meat-based diet; 2KD= kibble diet; 3NFIAD= non food-induced atopic dermatitis; 4FIAD= food-induced atopic dermatitis; 5SD= 

standard deviation; 6BL=baseline 

 

Blood samples were collected from the jugular vein using Vacuette® 3 mL EDTA, 3 mL lithium 

heparin, and 6 mL plain serum tubes by a closed method (Vacutainer® Safety-Lok™ Blood collection 

sets, Becton Dickinson, Meylan, France). Serum samples were allowed to clot at room temperature for 

30 minutes before centrifugation (2100 x g for 15 min). Urine samples were collected into factory-

clean specimen jars and frozen after collection in 5 mL tubes. All samples were fasting samples 

collected in the morning. After collection they were stored at -80 °C. 

The targeted metabolomic analysis of the dogs’ serum samples at baseline and end of the diet 

intervention (all dogs n=20, healthy n=6, atopic n=14) were performed at the Finnish Institute of 

Molecular Medicine (FIMM) using targeted liquid-chromatography mass spectrometry. As targeted 
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metabolomics of canine samples had not been performed before the first batch (Batch 1, n=8) was sent 

to FIMM to test the method. As the results were interpretable, more samples (Batch 2, n=12) were sent. 

Common polar, non-ionic metabolites (n=102) were targeted with nanomolar accuracy (±0.005µM) 

using the BioCrates p180 kit as standards for isotopic quantification. A full list of the targeted 

metabolites used in the standard mixture are included in the supplementary material (Supplementary 

file 20). A labeled internal standard mixture (10 µL) was added to 100 µL of serum or urine samples, 

which were all run in triplicate to ensure reliability. Metabolites were extracted by adding 4 parts (1:4, 

sample: extraction solvent) of the 100% acetonitrile + 1% formic acid solvent. The collected extracts 

were dispensed into OstroTM 96-well plates (Waters Corporation, Milford, USA) and filtered by 

applying vacuum at a delta pressure of 300-400 mbar for 2.5 min using a robotic vacuum station. The 

filtrate was transferred to a 96-well collection plate, which was placed under the OstroTM plate. The 

collection plate was sealed with the well cap mat and placed in the auto-sampler of the liquid 

chromatography system for injection. Samples were analyzed using high-throughput targeted 

quantitative metabolic profiling using the ACQUITY UPLC-MS/MS instrument (Waters), with a 1.7 

µm BEH amide HILIC column for chromatography. 

3.2 Data pre-processing 

Sample preparation for UPLC-MS/MS, as well as raw spectral data processing, was carried out on site 

by FIMM personnel. Subsequent concentration data were provided for each metabolite, along with 

comments regarding their reliability. The raw spectral data was acquired with MassLynx 4.1, and 

TargetLynx software. Detailed information regarding the raw spectrum metabolomics analysis can be 

found elsewhere.128 All metabolomics instrumentation used for analysis was owned by and located in 

the FIMM metabolomics unit in Biomedicum (Metabolomics Unit, Finnish Institute for Molecular 

Medicine FIMM, Helsinki-00014, Finland). 

Based on LC-MS raw data processing, for batch 1, 80 of the original 102 targeted metabolites in serum 

samples (Table S2a), and 80 of the original 102 metabolites in urine samples, were used in the statistical 

analysis (Table S2b). The raw data from batch 2 were considerably better, and only one of the 102 

metabolites, spermidine, had to be omitted from analysis. For the combined batch serum analysis, 79 

of the original 102 metabolites were used for the statistical analysis (Table S2c). 

Original metabolite values in the serum and urine datasets were reported in µmol/L. Urine metabolite 

values were normalized to their respective creatinine concentrations. Urine metabolite values used in 

data analysis were adjusted to metabolite(µmol)/creatinine(mmol). Creatinine-adjusted urine 
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metabolite values were used in the analysis that combines serum and urine datasets. Only usable 

metabolite concentration values found in both datasets were used. In summary 72 of the original 102 

metabolite values were used in the analysis that combines serum and urine metabolite values. 

3.3 Statistical Analysis 

Statistical analysis was performed with the R package MetaboAnalystR.58 Source code for the 

statistical analysis workflow was documented as R-generated analysis reports (Supplementary files 1-

19). Targeted metabolites that were unreliably quantified or contained over 50% missing values were 

removed with Excel prior to data processing with R. The integrity of all serum samples and urine 

samples were checked with R prior to data analysis. As metabolites concentrations fluctuate greatly, 

the raw concentration values in both serum and urine were log transformed using a generalized 

logarithm function, allowing the concentrations to assume a more normal distribution for subsequent 

analysis. To improve the sample size and hence statistical power for downstream analysis, batch 

correction for the end-of-diet time points of batch 1 and batch 2 serum data was performed using the 

ComBat empirical Bayes method developed by Johnson et al. (2007)129 in order to combine the two 

cohorts as there was significant variation due to batch effect. Combined-batch analysis of serum 

concentrations from batches 1 and 2 used values generated with the K-nearest neighbor algorithm prior 

to their combination to estimate any remaining missing values. The similarity between batches 1 and 

2 end values was analyzed with principal component analysis. A 2-D principal component analysis 

plot of both pre- and post-correction is attached in the appendix (Figure S1). Each metabolite included 

in the combined batch analysis was tested to see whether there was a significant difference between 

batches after batch correction using a t-test. No significant differences were observed due to batch after 

the batch correction was performed. In all of the metabolite datasets used in this study, the K-nearest 

neighbor algorithm was used to compute missing metabolite values for metabolites that were missing 

less than 50% of the values within each cohort 

For the results of statistical analysis, the cutoff for significance was set at FDR<0.05 (False Discovery 

Rate, also referred to as the FDR-adjusted p-value or q-value in some tables). In all statistical analyses, 

p-values are reported. As a general rule for metabolomics analysis, the reporting of FDR-values are 

recommended to ensure that results are statistically significant as the number of parameters tested are 

far greater than the number of samples.59 In essence, the FDR ‘controls the expected proportion of 

falsely rejected hypotheses’.130 
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3.3.1 Univariate analysis of baseline and end of diet intervention 

Univariate analysis of baseline serum values from batch 1 and batch 2, as well as the combined batch 

dataset with respect to diet cohorts and health status cohorts, was performed to confirm whether there 

were any significant metabolite concentration differences between either cohort at the baseline of the 

diet intervention. Analyses of diet and health were first performed separately. For both the baseline 

and end of diet intervention, a general linear model (GLM), and parametric t-tests were used to observe 

statistically significant fold changes between the RMBD and KD cohorts in Batch 1 serum and urine 

samples, in Batch 2 serum samples, and in the combined batch serum samples i.e., analysis of all dogs 

in the study. Univariate analysis reports were created for each test between diet cohorts and health 

status both at the baseline and end of the diet intervention, and are can be found in the supplementary 

material (Supplementary file 21). 

3.3.2 Univariate analysis of CADESI-4 score, weight, and age with diet 

The change in CADESI-4 scores between diet cohorts was determined by testing the change (end 

timepoint minus baseline) to see whether diet correlated with change in phenotype. The same was done 

for weight and age. Changes in CADESI-4 scores were also compared within dietary cohorts between 

gender, as well as neutering status. 

3.3.3 Analysis between sample media and dietary cohorts at end of diet intervention 

A two-way analysis of variance (ANOVA) was performed between sample media (blood or urine) and 

dietary cohorts (KD or RMBD). Hierarchical clustering was then combined with the results from the 

two-way ANOVA to generate heatmap visualizations of the significantly different metabolites between 

diet cohorts and sample type in the serum and urine data. The differences in variance between cohorts 

are also reported as F-values. 

Fold-change comparisons combined with t-tests were used to identify significant differences between 

serum and urine metabolite concentrations. The GLM was then used to perform correlation analysis 

between samples and identify which significant metabolites correlate with diet. To visualize how the 

samples within cohorts contributed to significant metabolite differences observed with the GLM, 

heatmap visualizations of significant metabolites (FDR<0.05) within individual batches, as well as 

combined batch results from Fisher’s least significant difference (LSD) test were created. 



Robin Moore  Master’s Thesis 

 
22 

To further explore the results seen from t-tests and the ANOVA, a supervised multivariate regression-

based analysis, partial least squares-discriminant analysis (PLS-DA), was used to test the significance 

between sample media and diet cohorts. This was performed to determine the extent to which the linear 

combination of the metabolite values for a given sample can predict the diet cohort of the dog. For each 

component, each metabolite was assigned a variable importance in projection (VIP) score. The VIP 

score signifies the relative contribution a given metabolite has to discriminating the cohorts that are 

compared in the model and is dependent on the percentage variation explained by the component 

vectors used in the model. 

To observe the risk of overfitting when using PLS-DA, cross-validation using the leave-one-out 

approach (LOOCV) was used to determine the accuracy, R2 and Q2 values of each respective 

component, where Q2 values have been computed to resemble the scale used for R2 and accuracy 

scores (0< x <1). Loading plots for the components 1 and 2 (the two components which explain the 

most variation between cohorts) were visualized to show the relative contributions metabolites had to 

the creation of their respective component vector. 

3.3.4 Analysis between diet and atopy at end of diet intervention 

Analysis of diet and health combined for batch 2 and combined batch datasets to test for interaction 

was also performed with a two-way ANOVA. As all dogs in batch 1 were diagnosed with atopy, no 

analysis with regards to health status was performed. For the combined batch dataset, the results from 

the end of the diet intervention were studied with a two-way ANOVA between diet and atopy and their 

interactions. Results were visualized with a heatmap. To further explore the results seen from t-tests 

and the ANOVA, PLS-DA was used to identify the extent to which the diet and atopy cohorts differed. 

4 Results 

4.1 Univariate analysis of baseline and end of diet intervention 

By controlling for baseline bias, mildly significant concentration differences of arginine, histidine, and 

threonine between the two diet cohorts (p-value <0.05, FDR>0.05) were found (Table S4). No 

significant metabolite concentration differences between atopic and healthy individuals were observed 

either at baseline or at the end of the diet intervention. 

For all dogs’ serum samples in the study (n=20), the metabolites that significantly differ (FDR ≤0.05) 

between diet cohorts at the end of the diet intervention are presented in Table 3. A more comprehensive 
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table of all dogs at the end of the diet intervention, significant differences between the diet cohorts of 

the batches separately, only urine metabolites from the individuals of Batch 1 (n=8), as well as serum 

metabolites from only atopic dogs (n=14) are included in the appendix (Tables S5-S9). 

 

Table 3. Comparison of significantly different metabolite concentrations in all dog’s serum samples between kibble diet (KD, n=9) and 

raw meat-based diet (RMBD, n=11) at end of diet intervention. Mean serum concentrations are presented as the natural log of the original 

metabolite concentration. 

 

Metabolite 
Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 
p-value 

q-value 

(FDR4) 
Fold change 

In KD 

cohort 

Methionine 6.686 (0.294) 5.697 (0.305) < 0.0001  0 1.17 Up 

4-Pyridoxic Acid -8.830 (0.460) -11.025 (0.804) < 0.0001  0 -1.25 Up 

Citrulline 5.659 (0.204) 4.654 (0.507) < 0.0001  0.0011 1.22 Up 

Cytosine -4.146 (0.790) -5.964 (0.930) 0.0002 0.0026 -1.44 Up 

Proline 7.965 (0.406) 7.099 (0.403) 0.0002 0.0026 1.12 Up 

Cystathionine 3.154 (1.292) 0.152 (1.004) 0.0002 0.0026 20.78 Up 

Taurochenodeoxycholic 

Acid 
-0.898 (0.762) -3.255 (1.357) 0.0002 0.0026 -3.62 Up 

Hexanoylcarnitine -7.033 (0.484) -5.937 (0.760) 0.0015 0.0148 1.18 Down 

Decanoylcarnitine -6.414 (0.485) -5.443 (0.661) 0.0018 0.0156 1.18 Down 

Glycine 8.629 (0.299) 8.049 (0.407) 0.0023 0.018 1.07 Up 

Creatine 4.155 (0.616) 5.176 (0.753) 0.0043 0.0297 -1.25 Down 

Kynurenine 0.849 (0.513) 0.242 (0.319) 0.0045 0.0297 3.51 Up 

Dimethylglycine 2.369 (0.511) 1.606 (0.575) 0.0062 0.0374 1.48 Up 

Trimethylamine-N-

Oxide 
-3.100 (11.157) 1.534 (0.830) 0.0074 0.042 0.49 Down 

1SD= standard deviation; 2KD= kibble diet; 3RMBD= raw meat-based diet; 4FDR<0.05= false discovery rate < 0.05  

 

At the end of the diet intervention, hexanoylcarnitine (FDR=0.015, p=0.0015), decanoylcarnitine 

(FDR=0.016, p=0.0018), octanoylcarnitine (FDR=0.052, p=0.01), acetylcarnitine (FDR=0.086, 

p=0.021), creatine (FDR=0.03, p=0.005) and creatinine (FDR=0.15, p=0.041) concentrations were 

higher in serum of the RMBD cohort than in the KD cohort (all dogs, n=20). Higher serum 

concentrations of urea-cycle metabolites citrulline (FDR=0.001, p<0.0001) and proline (FDR=0.002, 

p=0.0002), the nucleobase cytosine (FDR=0.0026, p=0.0002) were observed in all of the dogs of the 

KD cohort. Higher concentrations of the primary bile acid taurochenodeoxycholic acid (FDR=0.0026, 
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p=0.0002), and taurocholic acid were found in the KD cohort relative to the RMBD cohort (1.87-fold 

higher concentration, FDR=0.112, p=0.028). Serum methionine concentrations were higher in the KD-

fed dogs (FDR<0.0001, p<0.0001), as well as cystathionine (FDR=0.0026, p=0.0002), 

dimethylglycine (FDR=0.037, p=0.0062), and 4-pyridoxic acid (FDR<0.0001, p<0.0001). There were 

higher urine concentrations of betaine, the precursor to dimethylglycine, in the RMBD-fed cohort 

(FDR=0.0022, p=0.0008), as well as  a trend in serum of all dogs (FDR=0.086, p=0.02). Notably, dogs 

from batch 1 in the KD cohort also had significantly higher urine concentrations of methionine 

(FDR<0.02, p<0.0002) and 4-pyridoxic acid (FDR<0.04, p<0.002) (Table S6). There were no 

metabolites that significantly differed between diet cohorts of the healthy individuals (KD n=3, RMBD 

n=3), although several metabolite concentrations differed with a p-value<0.05 (FDR>0.05, p<0.05) 

(Table S10). 

4.2 Two-way ANOVA between sample media and diet at end of the diet intervention 

 

Figure 3. Batch 1 (n=8) comparison of serum and urine profiles between diet cohorts a) An overview of sample media and diet 

interaction at the end of diet intervention where metabolite values differ significantly (FDR<0.05) between diet cohorts (red) and sample 

type (blue), as well as interaction between the two (dark green and purple). b) A heatmap illustrating significant features from the two-

way ANOVA. Values relative to the combined cohort average are represented as a color spectrum and have been scaled to -2 (blue) 

through 2 (red) (KD= kibble diet, RMBD= raw meat-based diet). 
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A two-way ANOVA was used to see whether any significant difference in serum metabolite 

concentrations between the diet cohorts could be seen in urine metabolite concentrations (Figure 3a). 

Out of the 63 metabolites that differed significantly between serum and urine, ten also differed between 

diet cohorts with interaction detected in five of the metabolites (Table S10). The significantly different 

metabolites between diet cohorts and sample type (serum and urine) from the two-way ANOVA were 

visualized with a heatmap (Figure 3b). To further explore how urine and serum samples differed 

between the diet cohorts of batch 1, a PLS-DA was performed. The parameters of the model, calculated 

with the LOOCV approach, are shown in Table S14a. Components 1 and 2 were plotted against each 

other (Figure 4) with shaded circles representing the 95% confidence interval area for the respective 

diet cohorts.  
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Figure 4. PLS-DA shows how the serum and urine profiles of Batch 1 (n=8) can separate diet cohorts PLS-DA of Batch 1 dogs 

(n=8) at the end of the diet intervention. Plot shows how serum, urine, and the KD (n=4) and RMBD (n=4) cohort metabolites differed 

at the end of diet intervention, shown with 95% confidence intervals (shaded regions) (KD= kibble diet, RMBD= eaw meat-based diet). 

 

In the 2-D PLS-DA plot presented in Figure 4, the extent to how much within-cohort variation exists 

for diet cohorts and urine and serum samples was visualized. When the first two components of the 

PLS-DA were plotted against each other, the urine and serum samples were separable with the first 

component, and the RMBD and KD diet-cohorts were separable with the second component. However, 

likely due to the low sample size, the predictability of the model calculated with R2 and it predictability 
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when testing the model (Q2) was 0.108, and as such can be considered quite weak. However, although 

the Q2 is small, the model describes the extent to which the sample media accounts for most of the 

variance. There was a minor overlap of confidence intervals between diet cohorts observed in serum 

samples when separated with component 2. 

4.3 Univariate analysis of CADESI-4 score, weight, and age with diet 

According to the evaluation of CAD severity at the end of the diet intervention, neither the KD or the 

RMBD significantly changed the CADESI-4 score outcome of the CAD-diagnosed dogs. According 

to the diagnoses performed by the dermatologist, all CAD-diagnosed canines in this study suffered 

from mild CAD, and CAD severity remained mild in all individuals throughout the diet intervention 

period.  The difference between diet cohorts was insignificant, with a weak worsening trend in the KD 

cohort (p =0.104). There was a general trend in worsening of CADESI-4 scores found in both diet 

cohorts (for the KD n=9, μ=18.3, σ=13.8), (for the RMBD n=11, μ=6.9, σ=6.5). The change in 

CADESI-4 scores did not result in a progression from mild to moderate CAD symptoms in any of the 

CAD-diagnosed canines however. In the serum samples of dogs from all dogs (n=20), no significant 

weight and age differences between the KD and RMBD cohorts at the end of the diet intervention were 

detected. Results from the univariate analysis of CADESI-4, weight, and age across diet and disease 

cohorts are presented in Tables S3a-e. 

4.4 Analysis between of diet and atopy 

In all the atopic dogs, no significant differences in CADESI-4 scores between diet cohorts were found 

at the diet intervention baseline, where the dogs’ diets were mixed, or at the end of the diet intervention. 

The outcome of serum concentrations of all dogs (n=20) at the end of the diet intervention were 

visualized as a two-way ANOVA between diet and atopy and their interactions (Figure 5a). Here, the 

RMBD and KD cohorts were classified as either healthy (Healthy-RMBD, n=3, Healthy-KD, n=3) or 

atopic (RMBD, n=8, KD, n=6). Metabolite values that differed significantly between either diet or 

health status cohorts, or their interaction, are presented in Table S12. The significantly different 

metabolites between diet cohorts from the two-way ANOVA of the atopic and healthy canines were 

visualized with a heatmap (Figure 5b).  
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Figure 5. ANOVA analysis of serum from all dogs at the end of diet intervention shows significant metabolite differences between 

diet cohorts, but not between health status cohorts. a) An overview of how metabolite values differ significantly (FDR<0.05) between 

diet cohorts (red), and health status cohorts (blue), as well as any significant interaction between them (green) for all dogs (n=20) at end 

of diet intervention. b) A heatmap illustrating significant metabolite concentration differences in the two-way ANOVA for CAD-

diagnosed (n=14) and healthy individuals (n=6) (green and orange), and between the kibble diet (KD) (n=9) and raw meat-based diet 

(RMBD) (n=11) cohorts at the end of diet intervention. 

 

To further address the separation of cohorts based on diet and health status, PLS-DA analysis was 

performed to see how the metabolite profiles differed between diet and health status cohorts (Figure 

6a). The parameters of the model were calculated using the LOOCV approach and are shown in Table 

S14b. Likely due to the low sample size, as well as the similarity between the CAD-diagnosed and 

healthy individuals serum metabolite concentrations, the predictability of the model calculated with 

R2 and it predictability when testing the model (Q2) was 0.277, which is relatively weak. Nevertheless, 

the model gives an indication towards how the healthy individuals in both diet groups were more 

closely clustered among themselves than the atopic individuals of either diet cohort. The top 20 VIP 

scores were visualized as a heatmap that looks at the top 20 metabolites across all components (Figure 

6b), with which the diet cohorts could be separated, but that the health status cohorts (CAD-diagnosed 

and healthy) could not. Many of the metabolites found to be significantly different with the two-way 
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ANOVA described above, and the univariate analysis at end of the diet intervention (Table 3) were 

also found to have high VIP scores. 

 

 

Figure 6. PLS-DA analysis of the diet cohorts and health status cohorts. A) PLS-DA (partial least squares-discriminant analysis) plot 

of the first two components, displayed with 95% confidence intervals for each diet group (shaded regions of same color). B) A PLS-DA 

VIP score heatmap visualization of the most important features (n=20) across components. (KD = kibble diet, RMBD = raw meat-based 

diet, CAD= canine atopic dermatitis). 

 

As a follow up to the two-way ANOVA, an unprotected Fisher’s LSD test was used to compare how 

the metabolite concentrations at the end of the diet intervention differed between the four cohorts, i.e. 

the healthy and atopic dogs of both diet cohorts. The significant differences (FDR<0.05) between these 

cohorts are presented in Figure 7 as group averages. The tabulated results are included in the appendix 

(Table S13). 
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Figure 7. Fisher’s least significant difference (LSD) test to determine the significant differences between diet cohorts of healthy 

and atopic individuals. Significant differences between metabolite concentrations calculated with Fisher’s LSD test (KD= kibble diet, 

RMBD= raw meat-based diet, CAD= canine atopic dermatitis). 

5 Discussion 

5.1 Diet cohorts readily distinguished by distinct serum and urine metabolite profiles  

The two diets included in this study were remarkably different in terms of the types of raw ingredients 

used, their macro- and micronutrient composition, and their manufacturing methods. This suggests that 

the feeding of a particular diet could have a profound impact on metabolism, which, in turn could have 

an effect on the dog’s overall health and wellbeing. To our best knowledge, no data are available about 

the comparative study of blood and urine metabolomics in response to raw meat-based and kibble diets. 

Most of the metabolomics-based studies performed before 2015 are referred to in a review paper by 

Allaway (2015) 64. To date, only the study by Schmidt et al. (2018) (7) compares the differences 

between a RMBD and a KD using metabolic profiling 131. However, that study considers the fecal 

metabolome. The first study to evaluate health outcomes as a result of feeding commercial RMBDs 
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was published in 2012 132. The authors concluded that no undesirable changes occurred to either blood 

biogenic amine concentrations or skin and coat conditions in dogs fed the RMBDs in their study. Here, 

the major differences in metabolite concentrations observed between the diet cohorts could indicate 

impact on blood biochemistry, overall health, as well as the CAD condition are discussed in light of 

literature found regarding these topics. 

There were higher concentrations of several of the carnitines, creatine and creatinine in the serum of 

the RMBD cohort than in the KD cohort (all dogs, n=20) (Table 3). This finding is likely reflected in 

the markedly higher meat content of the RMBD diet. Meat is the main dietary source of carnitines 133 

and creatine 134. It is likely that the elevated creatinine concentrations in the RMBD cohort because 

creatine is the direct precursor of creatinine 135. Furthermore, carnitines play crucial roles in long-chain 

fatty acid transport for mitochondrial oxidation, which is to be expected of canines eating a fat-rich 

diet. Higher serum carnitine concentrations have been associated with anti-aging effects in canines  136. 

The authors note that higher carnitine concentrations are associated with younger dogs, but they make 

no claims as to age-related health benefits 136. 

The urea-cycle metabolites citrulline and proline were found in significantly lower serum 

concentrations in the RMBD cohort than in the KD cohort (Table 3). These metabolites are involved 

in urea production and ammonia recycling 137,138. Citrulline is the direct precursor for arginine synthesis 

139. Meat protein contains high amounts of both arginine 140 and creatine 134, where arginine, and 

subsequently citrulline is required for creatine synthesis 141. As citrulline is used to accept the amino 

groups of excess amino acids from dietary protein 142, the higher protein content in the RMBD may 

explain this observation, i.e. less citrulline would be required by the KD-fed dogs, which possibly 

explains the higher concentrations observed in the KD cohort. Proline is found in especially high 

concentrations in collagen 143, an unexpected finding considering the likely higher collagen content in 

the RMBD. 

The significantly higher serum concentrations of the nucleobase cytosine observed in all of the dogs 

of the KD cohort (Table 3), as well as urine concentrations in the Batch 1 KD cohort (Table S6) at the 

end of the diet intervention, is notable. To the best of our knowledge no studies have investigated the 

relationships of diet between cytosine concentrations in blood and urine. 

In blood serum of all dogs in the KD cohort, higher concentrations of the primary bile acid 

taurochenodeoxycholic acid could be seen after the diet intervention than in the RMBD cohort. 

Elevated concentrations of the downstream product of taurochenodeoxycholic acid, deoxycholic acid, 
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has been implicated in colon tumorigenesis in both mice and humans 144,145. Colon cancer is 

exceptionally high in canines 146, although the links to bile acid concentrations remain poorly 

understood. Although insignificant, taurocholic acid was also found in higher serum concentrations in 

the KD cohort relative to the RMBD cohort. It has been established that the composition of the 

microbiota throughout the canine gut is largely defined by the nutritional profile of dietary intake 147,148. 

The microbiota composition modulates the amount and composition of nutrients that are able to pass 

through the gut endothelium, hence affecting blood serum biochemistry 149. Most studies on this topic 

have focused solely on fecal samples 150. Bile acid concentrations have been suggested to be sensitive 

to changes in gut microbiota composition. It has been reported that fecal bile acid concentrations 

increase in canines when fed an animal-based, high-fat, low-fiber diet 151. Elevated primary bile acid 

concentrations in blood have been shown to be a sign of elevated inflammation 152, especially with 

regards to the liver 153. No reference values regarding what levels lead to increased inflammation has 

been reported for canines 151. 

Due to their toxicity, bile acid concentrations are tightly regulated in mice 154, and furthermore are 

usually increased as a response to increased fat digestion 155 as they function essentially as emulsifiers 

to improve fat absorption through the endothelium. Given the far greater amounts of fat present in the 

RMBD this finding comes as a surprise. However, it should be noted that there were also large amounts 

of carbohydrate present in the high-fat, low-fiber diet in the study performed by O’Keefe et al. (2015) 

155. As the RMBD has little to no carbohydrate, the energy metabolism of the canines was likely 

markedly different from the humans participating in the diet interventions of the O’Keefe et al. (2015) 

155 study. The RMBD-fed dogs were possibly even ketogenic, i.e. causing a switch over to increased 

𝛽-oxidation of fatty acids as a primary means for ATP production 156. It has been shown that even in 

the presence of high fat content, glucose is the preferred energy substrate in mammals 157. Canines fed 

a high-fat diet, in particular one rich in medium-chain triglycerides (MCTs), even in the presence of 

high carbohydrate, have been reported to be ketogenic 158,159. However, results from both studies 

performed by Law et al. (2016, 2018) 158,159 are questionable, as the authors neglected to measure or 

report ketone body values in the dogs and thereby establish whether the diets were ketogenic 160. 

Furthermore, ketone body production has been shown to rely on low levels of carbohydrate 161. 

Although MCTs are readily used for energy, even in the presence of carbohydrate 160, it does not 

necessarily switch the dog to a state of endogenous ketosis, i.e. where fat is the preferred metabolic 

energy source– the underlying assumption of a ketogenic diet 161. Ketogenic diets may affect serum 

bile acid concentrations in mice 162. In mammals, a switch over to ketogenic metabolism has major 
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implications for altering glycolytic energy metabolism 163, and an increase in NADPH production, 

which is produced via the pentose phosphate pathway 164. In the RMBD cohort of batch 1 (n=4) (Table 

S7), a significantly higher level of ribose-5-phosphate was observed, indicating an upregulation of the 

pentose phosphate pathway 163, and subsequently a downregulation of glycolysis and upregulation of 

ketone body production. However, higher concentrations ribose-5-phosphate were not observed in the 

RMBD cohort of batch 2 (n=7) or when observing all the dogs in the RMBD cohort (n=11). The 

discrepancy between batches in itself merits further investigation. The finding in batch 1 may indicate 

that the RMBD was ketogenic, although to date no studies to our knowledge have considered the 

ketogenic properties of RMBDs, an area that merits further investigation. 

At the end of the diet intervention, all canines in the KD cohort had higher serum concentrations of the 

sulfur-containing amino acid methionine than the RMBD cohort (Table 3). The batch 1 KD cohort also 

had significantly higher urine methionine concentrations than the RMBD cohort (Table S6). The serum 

of all canines in the KD cohort had higher levels of cystathionine. Both play important roles in 

homocysteine metabolism via the remethylation pathway, via the transsulfuration pathway, and via 

one-carbon pathway.165 The amino acid homocysteine is remethylated to methionine in a process 

dependent on vitamin B12 (B12) or is converted to cysteine via cystathionine in a vitamin B6-

dependent process.165 A schematic representation of the methionine and transsulfuration pathways are 

represented in Figure 8.  
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Figure 8. An overview of homocysteine metabolism and the transsulfuration pathway. CBS= cystathione-beta synthase; MeSe= 

methionine synthase; THF= tetrahydrofolate. (Figure uploaded by radio89 and labeled for reuse. 

https://commons.wikimedia.org/wiki/File:Choline_metabolism-en.svg.  Image modified to present all terms in English.) 

 

Serum methionine concentrations have been implicated in the outcomes of many long-term health 

studies in a vast selection of organisms 166. It has been shown that lower consumption and subsequent 

blood concentrations of this essential amino acid is associated with longevity across species 166,167, as 

well as improved blood glucose tolerance in rats, lower levels of oxidative stress in mice 168, and a 

lower risk of developing cancers in both species 169,170. The amount of food that dogs are fed may also 

affect dog health, however this consideration falls beyond the scope of the present study. Elevated 

serum methionine concentration serves as an indicator of overfeeding as has been shown in mice 171. 

As there was considerably more meat-based protein present in the RMBD, it could be expected to be 

https://commons.wikimedia.org/wiki/File:Choline_metabolism-en.svg
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reflected as higher blood serum and urine concentrations of methionine in the RMBD cohort. However, 

the KD manufacturer apparently adds an unspecified amount of DL-methionine to the kibble (Table 

S1a), which may in part explain this observation. Another explanation may be that canines in the KD 

cohort are actively eliminating or recycling greater concentrations of homocysteine than dogs fed the 

RMBD. In only the atopic dogs of the KD (n=6) cohort, there is a trend of higher homocysteine 

concentrations versus the atopic dogs of the RMBD (n=8) cohort (Supplementary file 21, sheet 23). 

Concurrently, there is also a trend of higher urine homocysteine concentrations of CAD-diagnosed 

KD-fed dogs from batch 1 (p=0.05714, FDR=0.1934) (Supplementary file 21, sheet 24). Although 

insignificant there is a trend of higher homocysteine concentrations in both urine and in the Batch 1 

KD cohort (Supplementary file 21, sheets 19 and 24). In a previously reported study regarding the 

hematology of the canines during the diet intervention 3, it was determined that the canines in the KD 

fed cohort had elevated concentrations of blood serum B12 values. The significantly higher 

concentrations of methionine in the blood sera and urine of the batch 1 KD cohort (Table 3, Table S6), 

and concurrently higher B12 serum concentrations 3 may be partially due to increased methionine 

synthase activity 165 as homocysteine is converted to methionine via this pathway (Figure 7). The higher 

concentrations of B12 comports with a higher methionine/homocysteine ratio as methylated B12 is 

converted into B12, i.e. as its methyl group is donated to homocysteine, turning it into methionine. In 

the data reported by Anturaniemi et al. 3, serum folate concentrations were also significantly higher in 

KD-fed dogs, which also plays a role in homocysteine clearance.165 In the present study however, 

concentrations of folic acid, the acid form of folate, were not significantly different between diet 

cohorts for either urine or serum. There is a correlation between the amount of B12 in the food with 

serum B12 in dogs172, indicating that B12 concentrations in dogs are tightly regulated, i.e. conserved 

in dogs fed a diet low B12. Furthermore, 4-pyridoxic acid, a downstream product of pyridine (B6), was 

also found in significantly higher concentrations in both the serum and urine of the KD cohorts. As B6 

is the cofactor for cystathione beta-synthase, which converts homocysteine to cystathionine via the 

transsulfuration pathway173 (Figure 7), this may indicate that this pathway is significantly upregulated 

in the KD diet. Cystathionine, the first metabolite produced as a result of homocysteine clearance via 

the transsulfuration pathway165 was found in far higher concentrations in all dogs in the KD cohort, 

with a high fold-change difference compared to the RMBD cohort (Table 3). Finally, higher serum 

concentrations of dimethylglycine were observed in all dogs in the KD cohort (Table 3), and a trend of 

higher serum concentration of betaine was found in all dogs in the RMBD cohort (Table S5), as well 

as in the urine of the batch 1 RMBD cohort (Table S6) compared to the KD cohort. Playing important 

roles in one-carbon metabolism, and subsequently often discussed in the context of DNA methylation, 
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betaine is converted to dimethylglycine as its methyl group is added to homocysteine, producing 

methionine (Figure 7).174  

Elevated homocysteine levels are often discussed as risk factors for various canine pathologies, 

including cardiovascular disease,175 increased inflammation,176 and certain renal pathologies.177 In 

humans, elevated levels of plasma homocysteine have been associated with irritable bowel syndrome 

and cancer.178 Elevated homocysteine levels and subsequent clearance have long been known to be a 

risk marker for MetS in humans.179 To our knowledge, no studies have observed any direct correlation 

between atopy and elevated homocysteine or methionine blood serum concentrations. However, a 

higher prevalence of atopic dermatitis in offspring was observed in the offspring of women with 

elevated circulating levels of vitamins B12 and folate, and hence upregulation of the homocysteine 

pathway may be related.180 Homocysteine is highly toxic for dogs,181 and blood homocysteine 

concentrations are kept low, lying within a narrow concentration range.182 Studies on mice have shown 

that homocysteine concentrations are kept low even in the case where serum concentrations of 

methionine171 as well as cystathionine177 are significantly increased. We find a similar phenomenon in 

the present study. It should be noted that the blood homocysteine concentrations in the canines of both 

diet cohorts were no higher than those reported for healthy canines elsewhere.183,184 The significantly 

higher blood serum and urine concentrations may indicate that more methionine was added to the diet 

than biologically necessary.72,185 This may also be true of other metabolites found in significantly 

higher concentrations in both the serum and urine samples of batch 1 (Table 4a, Figure S2a), including 

4-pyridoxic acid, which as discussed above is likely related to the significantly higher cystathionine 

concentrations observed in the KD cohort. 

The atopic complex is still not fully understood in canines,102 nor its relationship to MetS. Previous 

studies in mice186 and humans187 have provided contradictory evidence, indicating that AD both may186 

or may not187 be linked to MetS in mammals. Whether underlying lifestyle choices predispose risk for 

both MetS and AD, or whether the development of MetS increases the risk of developing AD or vice 

versa, is not fully understood.107 According to the evaluation of CAD severity at the end of the diet 

intervention, neither the KD nor the RMBD significantly changed the CADESI-4 score outcome of the 

CAD-diagnosed canines, although there was a trend of greater CADESI-4 worsening in the KD cohort 

(p=0.219) (Appendix table S3c). There was a general trend in worsening of CADESI-4 scores found 

in both diet cohorts (for the RMBD=6.9, σ=6.5, for the KD, μ=18.3, σ=13.8) (Appendix S3d and S3e, 

respectively). In order to avoid interference from the seasonality of the disease, the diet trial was 

originally planned to take place during the late fall and winter months, when plant allergens known to 
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exacerbate symptoms were not present. As discussed above, the trial had to be pushed forward, such 

that it ended when many plants had begun to bloom in Finland. It is likely that this delay caused the 

worsening of symptoms in both diet cohorts. There were disagreements between the owner-reported 

CAD diagnosis, which used the visual analogue scale, and the dermatologist’s diagnosis, which used 

the CADESI-4 scale. A metabolomics approach can potentially address and classify differing 

phenotypes of CAD, by combining ‘omics’ with clinical and epidemiological data. However, in the 

present study when considering the targeted metabolomic analysis that compared the atopic and healthy 

individuals, there were no significantly different metabolite concentrations at either the baseline or the 

end of the diet trial (Figure 4a). This suggests that diagnosing CAD by studying the blood serum with 

the targeted metabolites used in this study is also challenging. 

A couple of studies looking at macronutrient preference among dogs served several food choices of 

varying macronutrient compositions ad libitum have indicated that several breeds of dogs are well 

attuned to what they prefer and what their bodies require.98,188 In the first study, the authors observed 

that several breeds of dogs adjusted to a preferred PFC macronutrient composition of 30:63:7% ME 

over a 7-day period,188 and another study observed that Harrier Hound dogs adjusted to a PFC 

macronutrient ratio of 44:52:4% ME.98 The adequacy of diets for domesticated dogs, especially with 

regard to macronutrient composition, have been studied by comparing their diet with the diet of wolf 

(C. lupus) populations.189 A meta-analysis of 41 studies that observed the wolf diet in Europe and North 

America concluded that the average wolf diet has a PFC of 54:45:1% ME.189 With the lack of 

carbohydrate and relatively high protein content, it resembles the RMBD used in our study (Table 1). 

This macronutrient ratio also resembles the ratio that the dogs in the two ad libitum studies mentioned 

above preferred.98 The ratio these breeds tend towards comports with current nutritional guidelines for 

dogs,190 which classify proteins and fats as essential, and carbohydrates as non-essential. It remains 

unclear whether increased starch digestibility offers any advantage to dogs with regard to their 

healthspan, or whether the artificial selection for improved tolerance towards a starch-rich diet may 

outweigh the predisposition for other illnesses. Both of these topics deserve further study. 
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5.2 Strengths and limitations of the study 

5.2.1 Strengths and limitations of the study design 

To our best knowledge this pilot study was the first ever to apply a serum and urine metabolomics-

based approach to study how feeding canines a high-fat, moderate-protein, very low-carbohydrate 

RMBD affects serum and urine metabolite concentrations, as well as compare the outcome with the 

serum and urine metabolite profiles of dogs fed a moderate-fat, moderate-protein, high-carbohydrate 

KD. This targeted metabolomics approach offers quantitative and reliable data of blood serum and 

urine metabolite concentrations. Both urine and serum were analyzed simultaneously, giving insight 

into the relationships between the serum and urine media and diet. All dogs were pedigreed 

Staffordshire Bull Terriers. Their health status was diagnosed by a dermatologist using Favrot’s criteria 

and the CADESI-4 scale to produce validated clinical scores. 

As the present study focuses specifically on nutrition, there were no controls for quantitative markers 

for sleep, physical activity, or overall stress. Due to the high cost of analysis, the number of dogs that 

were used for the study were kept to a minimum of three dogs per cohort (KD-healthy, RMBD-

healthy). As discussed in the Design and Animals section the postponed end of the diet intervention 

possibly allowed the introduction of undesired seasonal effects on CAD severity due to plant allergens. 

The study used more CAD-diagnosed than healthy dogs. Several dogs considered healthy prior to their 

official diagnosis by the dermatologist had to be reclassified as CAD-sufferers. There were no 

metabolites that significantly differed between diet cohorts of the healthy individuals at the end of the 

diet intervention (KD-healthy n=3, RMBD-healthy n=3). This is likely due to the small sample size. 

The far fewer significant differences in metabolites between diet cohorts of batch 2 (Table S8) may 

indicate that the underlying health status (CAD or healthy) had an impact on the results and may explain 

why the response to diet in the fully atopic cohort (batch 1) showed starker differences than for batch 

2. Alternatively, this result may be an artifact due solely to the smaller sample size of batch 1. 

5.2.2 Strengths and limitations of the instrumentation and analytical methods  

The use of a UPLC-MS/MS platform for the targeted analysis of serum and urine metabolites has 

notable advantages over alternative approaches, many of which have been summarized in a recent 

review that compares various techniques for metabolomics-based analyses of biofluids.27 Both the 

notable advantages and disadvantages of LC-MS over NMR and GC-MS approaches typically context-

dependent. As the approach used in the present study focused on non-ionic compounds, polar 
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compounds, ESI was the most suitable option for the concentration range that most of the compounds 

were found in, however ion suppression due to matrix effects of the eluent while using ESI may explain 

the poor chromatographic data collected for certain compounds, especially spermidine. Furthermore 

many samples contained targeted compounds that were close to or below the lower level of 

quantification, indicating that the sensitivity of the MS instrument could benefit from more sensitive 

ion monitoring approaches, such as orbitrap, given that it would be important to study more compounds 

that may be found in even lower blood serum and urine concentrations in future studies. However, for 

this reason, it would be implausible to suggest the use of any approach other than a UPLC-MS/MS- 

style approach for producing quantifiable metabolite data. 

Targeted metabolomic analysis of the serum samples collected from the dogs was performed in two 

batches. The ACQUITY UPLC/MS-MS instrument used for metabolomic analysis was serviced in 

between the analysis of the two batches, resulting in significantly different metabolite values between 

batches. Of the 102 metabolites targeted, a considerable amount had to be removed from the first batch 

analysis. Targeted analysis of the serum samples of the second batch went considerably better. Even 

so many of the metabolites were unable to be used in the combined batch analysis. The use of 

commercial IS kits helped save costs and generated quantifiable results, but it also caused us to focus 

on only a fraction of all metabolites in the samples studied, leaving the vast majority of metabolic data 

ignored. Given the vast variety of metabolites circulating in both serum and urine media, it is clear in 

retrospect that numerous metabolites not studied were worthy of analysis. 

6 Conclusions 

Three key differences were observed with regard to the effects of diet on the canine metabolite profiles 

studied. First, there were markedly higher levels of carnitines and related compounds in canines fed 

the RMBD. Additionally higher levels of nitrogen excretion were indicated, also a result of the diet’s 

high meat content. Second, the KD-fed cohort showed elevated bile acid concentrations which have a 

condition implicated for example in colon tumorigenesis in mice and humans. In addition to reflecting 

the macronutrient profile it may also implicate a change in the gut microbiota composition. Further 

study is needed to confirm this. Third, there were higher concentrations of sulfur-containing 

compounds such as methionine and cystathionine, as well as compounds related to their metabolism, 

in the serum and urine of KD-fed dogs. Higher serum concentrations of these compounds are associated 

with increased inflammation in mammals. Furthermore, lower serum methionine concentrations as 

seen in the RMBD cohort, has long been established as a marker associated with long lifespan, and is 
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generally considered beneficial for metabolic health. The latter two differences suggest that the KD 

may be less beneficial to the metabolic health of canines as metabolite concentrations that have been 

previously implicated in various pathologies were found in higher concentrations than in the RMBD-

fed dogs. Given the limitations of the present study however, such speculation requires further study 

to establish causality. Given the challenge of identifying CAD at the serum metabolite level, addressing 

and classifying differing phenotypes of CAD may be beyond the scope of a targeted metabolomics 

approach. Future studies will likely require both a larger set of metabolites to be targeted and larger 

sample cohorts. In summary, this experiment sought to clarify how nutrition may relate to CAD, as 

well as determine whether the impact of different diets could be seen on the metabolite level. While 

these topics are still novel for canine studies, the use of diet as a form of health maintenance, a notion 

that has gained popularity in recent years, will eventually be substantiated or rejected with quantitative 

clinical data. 

7 Ethics Statement 

Owners provided informed written consent for inclusion of their dogs in the study. The protocol was 

also approved by the Animal Experiment Board in Finland (ELLA) (permit number: 

ESAVI/3244/04.10.07/2013). 
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9 Appendix 

9.1 Tables 

Table S1: An overview of the nutrient compostion of the diets used for the diet intervention 

a) Nutrient composition of the KD used in the study. Values were provided by the manufacturer. 

 

Hill’s Science PlanTM Canine adult sensitive skin with chicken 
  

Composition: chicken (minimum chicken 23%, chicken and turkey combined 

31%), ground rice, ground maize, chicken and turkey meal, maize gluten meal, 

dried whole egg, vegetable oil, flaxseed, digest, animal fat, potassium chloride, 

DL-methionine, salt, L-lysine hydrochloride, L-tryptophan, vitamins and trace 

elements. Naturally preserved with mixed tocopherols, citric acid and rosemary 

extract. 
  

Analytical Constituent In Food  In Dry Matter 

Protein (%) 25.3 27.5 

Fat (%) 16 17.4 

Carbohydrate (NFE) (%)  44.5 48.4 

Fiber (crude) (%) 1.3 1.4 

Ash (%) 4.9 5.3 

Moisture (%) 8 
 

Calcium (%)  0.66 0.72 

Phosphorus (%)  0.58 0.63 

Calcium : Phosphorus  1.1 1.1 

Sodium (%) 0.35 0.38 

Potassium (%)  0.64 0.70 

Magnesium (%) 0.07 0.08 

Omega-3 fatty acids (%)  1.2 1.30 

Omega-6 fatty acids (%) 4.8 5.22 

ADDED per kg: 
  

Vitamin A (IU) 9600 10434.8 

Vitamin D (IU) 480 522 

Vitamin E (mg) 600 652 

Vitamin C (mg) 70 76.1 
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Iron (mg) 53.7 58.4 

Iodine (mg) 0.9 1.0 

Copper (mg) 5.3 5.8 

Manganese (mg) 5.6 6.1 

Zinc (mg) 111 121 

Selenium (mg) 0.15 0.2 

Beta-carotene (mg) 1.5 1.6 

 

 

b) Nutrient composition of the two RMBDs used in the study. Values were provided by the manufacturer 

 

MUSH BARF Vaisto® diets 
     

Composition (pork-chicken-lamb): Finnish 

pork 46% (meat, lung, cartilage, heart, 

liver), Finnish chicken 29% (meat, bone, 

gizzard, skin, heart, cartilage, liver), 

Finnish lamb 20% (bone, meat, lung, 

cartilage, liver), vegetables 5% (spinach, 

broccoli, lettuce, cold-pressed sunflower 

oil), egg < 1%. 
  

Composition (beef-turkey-salmon): 

Finnish beef, 47% (rumen, meat, lung, 

heart, cartilage, liver), Finnish turkey 

38% (meat, bone, cartilage), Norwegian 

salmon 10% (salmon including bones), 

vegetables 5% (broccoli, lettuce, apple, 

carrot, cold-pressed sunflower oil, 

camelina oil). 
  

Analytical Constituent (pork-chicken-lamb) 

In 

Food  

In Dry 

Matter Analytical Constituent 

In 

Food  

In Dry 

Matter 

Protein (%) 15.2 38 Protein (%) 15 42.5 

Fat (%) 20 50 Fat (%) 15.8 44.8 

Fiber (crude) (%) 0.6 1.5 Fiber (crude) (%) 0.8 2.3 

Ash (%) 4.2 10.5 Ash (%) 3.7 10.5 

Moisture (%) 60 0 Moisture (%) 64.7 0 

Calcium (%)  1.09 2.7 Calcium (%)  0.45 1.3 

Phosphorus (%)  0.65 1.6 Phosphorus (%)  0.34 1.0 

Calcium : Phosphorus  1.7 1.7 Calcium : Phosphorus  1.3 1.3 

Analysed ingredients from different batch 

per kg 
  

Analysed ingredients from different 

batch per kg 
  

Omega-3 fatty acids (%)  
 

0.4 Omega-3 fatty acids (%)  
 

1.1 

Omega-6 fatty acids (%) 
 

3.8 Omega-6 fatty acids (%) 
 

2.7 
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Vitamin A (IU) 
 

143050 Vitamin A (IU) 
 

80890 

Vitamin D (IU) 
 

698 Vitamin D (IU) 
 

2130 

Vitamin E (mg) 
 

46.6 Vitamin E (mg) 
 

54.4 

Vitamin C (mg) 
 

123 Vitamin C (mg) 
 

82.1 

Iodine (mg) 
 

1.86 Iodine (mg) 
 

1.64 

Copper (mg) 
 

24.2 Copper (mg) 
 

31.5 

Manganese (mg) 
 

8.8 Manganese (mg) 
 

7.4 

Zinc (mg) 
 

119 Zinc (mg) 
 

79.6 

Selenium (mg) 
 

0.62 Selenium (mg) 
 

0.73 

 

Table S2a-c: Overview of metabolites that were included and removed prior to data analysis, with reason’s for removal. 

 

a) Batch 1 (n=8) Serum 

Removed metabolites 

(n=22) 

Reason(s) for 

removal 
Included metabolites (n=80) 

Leucine ISTD1 Glycine Creatine Kynurenine g-Glu-Cy 

Hypoxanthine ISTD 
Trimethylamine-

N-Oxide 
Aspartate Pantothenic Acid Inosine 

Carnitine ISTD Alanine Adenine Cystathionine Guanosine 

Cytidine ISTD Glyceraldehyde Homocysteine 
3-

Hydroxykynurenine 
cGMP 

Isobutyrylcarnitine ISTD GABA Spermidine 2-deoxycytidine IMP 

Phosphoethanolamine 
Poor 

Chromatography 

Dimethyl 

Glycine 
Lysine Carnosine Glycocholic Acid 

AMP 
Poor 

Chromatography 

Aminoisobutyric 

acid 
Glutamine Adenosine 

Taurochenodeoxycholic 

Acid 

3-OH-Anthanilic 

Acid 

Poor 

Chromatography 
Choline Glutamic Acid Xanthosine Taurocholic Acid 

Sorbitol 
Poor 

Chromatography 
Serine Methionine 

Glutathione 

(reduced) 
Acetylcarnitine 

2-deoxyuridine 
Poor 

Chromatography 
Cytosine Histidine Folic Acid Propionylcarnitine 

Sucrose 
Poor 

Chromatography 
Creatinine Normetanephrine Uracil Isovalerylcarnitine 

Chenodeoxycholic 

Acid 

Poor 

Chromatography 
Proline Phenylalanine Succinate Hexanoylcarnitine 

UDP-Glucose 
Poor 

Chromatography 
Betaine Arginine Homoserine Octanoylcarnitine 
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Cholic Acid 
Missing values 

(>50%) 
Valine Citrulline Threonine Decanoylcarnitine 

NAD 
Missing values 

(>50%) 

Guanidinoacetic 

Acid 
Hippuric acid Nicotinic Acid   

Acetoacetic acid 
Missing values 

(>50%) 

Niacinamide 

(B3) 
Tyrosine Xanthine   

Homogentisic acid 
Missing values 

(>50%) 
Taurine 4-Pyridoxic Acid Orotic acid   

Pyridoxine (B6) 
Missing values 

(>50%) 

1-

methylhistamine 
Kynurenic Acid Allantoin   

Cotinine 
Missing values 

(>50%) 
Isoleucine 

5-

Hydroxyindole-

3-acetic acid 

2-Aminodipic Acid 

  

L-5-

Hydroxytryptophan 

Missing values 

(>50%) 
Hydroxyproline SDMA Inositol 

  

Neopterin 
Missing values 

(>50%) 
Asparagine ADMA Glucoronate   

cAMP 
Missing values 

(>50%) 
Ornithine Tryptophan Ribose-5-P   

1ISTD= internals standard discrepancy/ calibration error 

 

b) Batch 1 (n=8) Urine) 

 

Removed metabolites 

(n=22) 

Reason(s) for 

removal 
Included metabolites (n=80) 

Leucine ISTD1 Glycine Creatine Kynurenine g-Glu-Cy 

Hypoxanthine ISTD 
Trimethylamine-

N-Oxide 
Aspartate Pantothenic Acid Inosine 

Carnitine ISTD Alanine Adenine Cystathionine Guanosine 

Cytidine ISTD Glyceraldehyde Homocysteine 
3-

Hydroxykynurenine 
cGMP 

Isobutyrylcarnitine ISTD GABA Spermidine 2-deoxycytidine IMP 

Phosphoethanolamine 
Poor 

Chromatography 

Dimethyl 

Glycine 
Lysine Carnosine Glycocholic Acid 

AMP 
Poor 

Chromatography 

Aminoisobutyric 

acid 
Glutamine Adenosine 

Taurochenodeoxycholic 

Acid 

3-OH-Anthanilic 

Acid 

Poor 

Chromatography 
Choline Glutamic Acid Xanthosine Taurocholic Acid 

Sorbitol 
Poor 

Chromatography 
Serine Methionine 

Glutathione 

(reduced) 
Acetylcarnitine 

2-deoxyuridine 
Poor 

Chromatography 
Cytosine Histidine Folic Acid Propionylcarnitine 
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Sucrose 
Poor 

Chromatography 
Creatinine Normetanephrine Uracil Isovalerylcarnitine 

Chenodeoxycholic 

Acid 

Poor 

Chromatography 
Proline Phenylalanine Succinate Hexanoylcarnitine 

UDP-Glucose 
Poor 

Chromatography 
Betaine Arginine Homoserine Octanoylcarnitine 

Cholic Acid 
Missing values 

(>50%) 
Valine Citrulline Threonine Decanoylcarnitine 

NAD 
Missing values 

(>50%) 

Guanidinoacetic 

Acid 
Hippuric acid Nicotinic Acid   

Acetoacetic acid 
Missing values 

(>50%) 

Niacinamide 

(B3) 
Tyrosine Xanthine   

Homogentisic acid 
Missing values 

(>50%) 
Taurine 4-Pyridoxic Acid Orotic acid   

Pyridoxine (B6) 
Missing values 

(>50%) 

1-

methylhistamine 
Kynurenic Acid Allantoin   

Cotinine 
Missing values 

(>50%) 
Isoleucine 

5-

Hydroxyindole-

3-acetic acid 

2-Aminodipic Acid 

  

L-5-

Hydroxytryptophan 

Missing values 

(>50%) 
Hydroxyproline SDMA Inositol 

  

Neopterin 
Missing values 

(>50%) 
Asparagine ADMA Glucoronate   

cAMP 
Missing values 

(>50%) 
Ornithine Tryptophan Ribose-5-P   

1ISTD= internals standard discrepancy/ calibration error 

 

c) Batch 1 & 2 combined (All dogs, n=20) Serum  

 

Removed metabolites 

(n = 23) 

Reason(s) for 

removal 
Included metabolites (n = 79) 

Leucine ISTD1 Glycine Aspartate Cystathionine cGMP 

Hypoxanthine ISTD 
Trimethylamine-

N-Oxide 
Adenine 

3-

Hydroxykynurenine 
IMP 

Carnitine ISTD Alanine Homocysteine 2-deoxycytidine Glycocholic Acid 

Cytidine ISTD Glyceraldehyde Spermidine Carnosine 
Taurochenodeoxycholic 

Acid 

Isobutyrylcarnitine ISTD GABA Lysine Adenosine Taurocholic Acid 

Spermidine 

Poor 

Chromatography, 

CC, ISTD 

Dimethyl 

Glycine 
Glutamine Xanthosine Acetylcarnitine 

Phosphoethanolamine 
Poor 

Chromatography 

Aminoisobutyric 

acid 
Glutamic Acid 

Glutathione 

(reduced) 
Propionylcarnitine 
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AMP 
Poor 

Chromatography 
Choline Methionine Folic Acid Isovalerylcarnitine 

3-OH-Anthanilic 

Acid 

Poor 

Chromatography 
Serine Histidine Uracil Hexanoylcarnitine 

Sorbitol 
Poor 

Chromatography 
Cytosine Normetanephrine Succinate Octanoylcarnitine 

2-deoxyuridine 
Poor 

Chromatography 
Creatinine Phenylalanine Homoserine Decanoylcarnitine 

Sucrose 
Poor 

Chromatography 
Proline Arginine Threonine   

Chenodeoxycholic 

Acid 

Poor 

Chromatography 
Betaine Citrulline Nicotinic Acid   

UDP-Glucose 
Poor 

Chromatography 
Valine Hippuric acid Xanthine   

Cholic Acid 
Missing values 

(>50%) 

Guanidinoacetic 

Acid 
Tyrosine Orotic acid   

NAD 
Missing values 

(>50%) 

Niacinamide 

(B3) 
4-Pyridoxic Acid Allantoin   

Acetoacetic acid 
Missing values 

(>50%) 
Taurine Kynurenic Acid 2-Aminodipic Acid   

Homogentisic acid 
Missing values 

(>50%) 

1-

methylhistamine 

5-

Hydroxyindole-

3-acetic acid 

Inositol 

  

Pyridoxine (B6) 
Missing values 

(>50%) 
Isoleucine SDMA Glucoronate   

Cotinine 
Missing values 

(>50%) 
Hydroxyproline ADMA Ribose-5-P   

L-5-

Hydroxytryptophan 

Missing values 

(>50%) 
Asparagine Tryptophan g-Glu-Cy 

  

Neopterin 
Missing values 

(>50%) 
Ornithine Kynurenine Inosine   

cAMP 
Missing values 

(>50%) 
Creatine Pantothenic Acid Guanosine   

1ISTD= internals standard discrepancy/ calibration error 
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Table S3a-e: An overview of the relationship between diet cohorts as well as at end of diet intervention with the change in 

CADESI scores, weight change, age of cohorts  

 

a) CADESI score, age, and weight change in relation to diet of all dogs (n=20) 

Variable Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 

p-value q-value (FDR4) Fold Change In KD cohort 

CADESI5 

change 
16.889 (11.152) 9.364 (7.103) 0.1586  0.3515 1.8 Up 

Age (months) 74.111 (37.926) 62.000 (34.351) 0.4636 0.6233 1.2 Up 

Weight 

change, kg 
0.434 (0.721) -0.154 (1.047) 0.1709 0.3687 0.36 Up 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate; 5CADESI= Canine 

Atopic Dermatitis Extent and Severity Index   

 

b) CADESI score, age, and weight change in relation to diet of healthy dogs (n=6) 

Name Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 

p-value q-value 

(FDR4) 

Fold Change In KD cohort 

CADESI5 

change 
14.000 (1.732) 13.333 (5.859) 

0.657

9 
0.8701 1.05 Up 

Age (months) 97.000 (57.611) 96.667 (29.939) 0.9933 1 1 Up 

Weight 

change, kg 
0.267 (0.550) -0.766 (1.243) 0.2583 0.8029 2.87 Up 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate; 5CADESI= Canine 

Atopic Dermatitis Extent and Severity Index   

 

c) CADESI score, age, and weight change in relation to diet of CAD-diagnosed dogs (n=14) 

Name Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 

p-value q-value 

(FDR4) 

Fold Change In KD cohort 

CADESI5 

change 
18.333 (13.794) 7.875 (7.279) 0.2185 0.437 2.33 Up 

Age (months) 62.667 (22.411) 49.000 (26.859) 0.3333 0.5941 1.28 Up 

Weight 

change, kg 
0.517 (0.828) 0.076 (0.951) 0.3837 0.6409 6.78 Up 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate; 5CADESI= Canine 

Atopic Dermatitis Extent and Severity Index  
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d)  CADESI score, age, and weight change in relation to health status of RMBD-fed dogs (n=11) 

Name Mean (SD1) of 

CAD2 

Mean (SD) of 

H3 

p-value q-value 

(FDR4) 

Fold Change In CAD-

diagnosed 

cohort 

CADESI5 

change 
7.875 (7.279) 13.333 (5.859) 0.2783 0.8453 -1.69 Down 

Age (months) 49.000 (26.859) 96.667 (29.939) 0.031* 0.5087 -1.97 Down 

Weight 

change, kg 
0.076 (0.951) -0.763 (1.245) 0.2566 0.835 10.02 Up 

1SD= Standard deviation; 2CAD= Canine Atopic Dermatitis; 3H= Healthy; 4FDR= False Discovery Rate; 5CADESI= Canine 

Atopic Dermatitis Extent and Severity Index  

 

e) CADESI score, age, and weight change in relation to health status of KD-fed dogs (n=9) 

Name Mean (SD1) of 

CAD2 

Mean (SD) of 

H3 

p-value q-value 

(FDR4) 

Fold Change In CAD-

diagnosed 

cohort 

CADESI5 

change 
18.333 (13.794) 14.000 (1.732) 0.6025 0.8892 1.31 Up 

Age (months) 62.667 (22.411) 97.000 (57.611) 0.2212 0.7856 -1.55 Down 

Weight 

change kg 
0.517 (0.828) 0.267 (0.550) 0.6563 0.8892 1.93 Up 

1SD= Standard deviation; 2CAD= Canine Atopic Dermatitis; 3H= Healthy; 4FDR= False Discovery Rate; 5CADESI= Canine 

Atopic Dermatitis Extent and Severity Index   

 

Table S4: GLM comparing serum metabolite concentrations of diet cohorts at baseline of diet intervention (n=20)  

Metabolite concentrations that differed at baseline of diet intervention between the diet cohorts (p<0.05, FDR>0.05) (total n=20). NB 

that the canines’ diets prior to baseline were not controlled for. 

  

Metabolite Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 

p-value q-value (FDR4) Fold Change In KD cohort 

Arginine 7.229 (0.266) 7.551 (0.203) 0.0066 0.5256 -1.04 Down 

Histidine 6.224 (0.182) 6.421 (0.142) 0.0139 0.5548 -1.03 Down 

Threonine 7.764 (0.489) 8.151 (0.319) 0.0472 0.749 -1.05 Down 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 
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Table S5: GLM of all dogs comparing serum metabolite concentrations of diet cohorts at end of intervention 

Comparison of all individuals (n=20) between diet cohorts at end of diet intervention, including all metabolites below p<0.05 

 

Metabolite Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 

cohort 

p-value q-value 

(FDR4) 

Fold Change In KD cohort 

Methionine 6.686 (0.294) 5.697 (0.305) < 0.0001  0 1.17 Up 

4-Pyridoxic Acid -8.830 (0.460) -11.025 (0.804) < 0.0001  0 -1.25 Up 

Citrulline 5.659 (0.204) 4.654 (0.507) < 0.0001  0.0011 1.22 Up 

Cytosine -4.146 (0.790) -5.964 (0.930) 0.0002 0.0026 -1.44 Up 

Proline 7.965 (0.406) 7.099 (0.403) 0.0002 0.0026 1.12 Up 

Cystathionine 3.154 (1.292) 0.152 (1.004) 0.0002 0.0026 20.78 Up 

Taurochenodeoxycholic Acid -0.898 (0.762) -3.255 (1.357) 0.0002 0.0026 -3.62 Up 

Hexanoylcarnitine -7.033 (0.484) -5.937 (0.760) 0.0015 0.0148 1.18 Down 

Decanoylcarnitine -6.414 (0.485) -5.443 (0.661) 0.0018 0.0156 1.18 Down 

Glycine 8.629 (0.299) 8.049 (0.407) 0.0023 0.018 1.07 Up 

Creatine 4.155 (0.616) 5.176 (0.753) 0.0043 0.0297 -1.25 Down 

Kynurenine 0.849 (0.513) 0.242 (0.319) 0.0045 0.0297 3.51 Up 

Dimethylglycine 2.369 (0.511) 1.606 (0.575) 0.0062 0.0374 1.48 Up 

Trimethylamine-N-Oxide -3.100 (11.157) 1.534 (0.830) 0.0074  0.042 0.49 Down 

IMP -6.609 (7.565) -2.445 (1.389) 0.0097  0.051 2.7 Down 

Octanoylcarnitine -6.080 (0.410) -5.312 (0.713) 0.0104 0.0515 1.14 Down 

2-Aminoisobutyric acid -1.810 (0.218) -2.219 (0.419) 0.0165 0.0769 -1.23 Up 

Betaine 6.766 (0.327) 7.228 (0.463) 0.0200  0.0861 -1.07 Down 

Acetylcarnitine 1.619 (0.520) 2.170 (0.452) 0.0207 0.0861 -1.34 Down 

Taurocholic Acid -0.940 (0.717) -1.756 (0.795) 0.0283 0.1117 -1.87 Up 

Tryptophan 5.359 (0.361) 5.025 (0.284) 0.0323 0.1215 1.07 Up 

Creatinine 6.842 (0.225) 7.050 (0.200) 0.0414 0.1457 -1.03 Down 

Asparagine 6.518 (0.270) 6.163 (0.420) 0.0424 0.1457 1.06 Up 

Aminoadipic acid 1.365 (0.589) 1.874 (0.478) 0.047 0.1547 -1.37 Down 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 
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Table S6: GLM of batch 1 urine samples comparing diet cohorts at end of diet intervention 

Batch 1 Urine (n=8) comparison of diet cohorts at end of diet intervention (FDR<0.05) 

 

Metabolite Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 

p-value q-value (FDR4) Fold Change In KD cohort 

Methionine 8.937 (0.771) 5.306 (0.529) 0.0002 0.0192 1.68 Up 

Cytosine 5.321 (0.256) 3.254 (0.550) 0.0005 0.0196 1.63 Up 

Betaine 9.200 (0.422) 10.665 (0.214) 0.0008 0.0219 -1.16 Down 

4-Pyridoxic Acid 0.942 (0.219) -0.737 (0.593) 0.0018 0.0364 0.78 Up 

Creatine 8.307 (0.401) 11.074 (1.019) 0.0023 0.037 -1.33 Down 

Isoleucine 6.913 (0.137) 6.413 (0.157) 0.003 0.037 1.08 Up 

Hydroxyproline 5.523 (1.512) 9.547 (0.877) 0.0037 0.037 -1.73 Down 

Uracil 1.700 (0.297) 3.930 (0.923) 0.0037 0.037 -2.31 Down 

Homoserine 1.275 (0.190) 1.968 (0.267) 0.0055 0.049 -1.54 Down 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 

 

Table S7: GLM of Batch 1 dogs comparing serum metabolite concentrations between diet cohorts at end of diet intervention 

Batch 1 (N=8) comparison of diet cohorts at end of diet intervention (FDR<0.05) 

 

Metabolite 

Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 

cohort 

p-value q-value 

(FDR4) 

Fold Change In KD cohort 

Ribose-5-P -0.150 (0.297) 1.001 (0.104) 0.0003 0.0204 6.67 Down 

Citrulline 5.947 (0.284) 4.748 (0.239) 0.0006 0.0204 1.25 Up 

Cystathionine 3.245 (0.913) 0.240 (0.374) 0.0009 0.0204 13.53 Up 

Methionine 6.853 (0.268) 5.835 (0.215) 0.001 0.0204 1.17 Up 

Cytosine -3.596 (0.778) -5.865 (0.516) 0.0028 0.0389 -1.63 Up 

4-Pyridoxic 

Acid -8.755 (0.502) 

-10.678 

(0.619) 0.0029 0.0389 -1.22 Up 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 
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Table S8: GLM of Batch 2 dogs comparing serum metabolite concentrations between diet cohorts at  end of diet intervention 

Batch 2 (N=12) comparison of diet cohorts at end of diet intervention (FDR<0.05) 

 

Metabolite Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 

cohort 

p-value q-value 

(FDR4) 

Fold Change In KD cohort 

Taurochenodeoxycholic Acid -0.320 (0.534) -3.603 (1.105) 0.0001 0.0121 -11.25 Up 

4-Pyridoxic Acid -8.840 (0.467) -11.466 (1.014) 0.0003 0.0167 -1.3 Up 

Methionine 6.585 (0.362) 5.552 (0.398) 0.001 0.0337 1.19 Up 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 

 

Table S9: GLM of CAD-diagnosed dogs comparing serum metabolite concentrations between diet cohorts at end of 

intervention 

Comparison of all atopic individuals (n=14) between diet cohorts at end of diet intervention 

 

Name Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 

cohort 

p-value q-value 

(FDR4) 

Fold Change In KD cohort 

Methionine 6.746 (0.310) 5.719 (0.288) < 0.0001  0.0024 1.18 Up 

Proline 8.056 (0.402) 7.096 (0.228) 0.0001 0.004 1.14 Up 

Glycine 8.692 (0.269) 7.967 (0.252) 0.0002 0.0045 1.09 Up 

Citrulline 5.701 (0.229) 4.653 (0.433) 0.0002 0.0045 1.23 Up 

Dimethylglycine 2.584 (0.410) 1.555 (0.427) 0.0007 0.0076 1.66 Up 

Cytosine -3.961 (0.873) -6.222 (0.943) 0.0006 0.0076 -1.57 Up 

4-Pyridoxic Acid 
-8.842 (0.445) 

-11.101 

(0.767) 
0.0007 0.0076 -1.26 Up 

Cystathionine 3.001 (1.484) -0.057 (1.116) 0.0008 0.0083 0.02 Up 

2-Aminoisobutyric acid -1.780 (0.183) -2.254 (0.250) 0.0021 0.0183 -1.27 Up 

Creatine 4.136 (0.675) 5.403 (0.579) 0.0026 0.0209 -1.31 Down 

Hexanoylcarnitine -6.921 (0.485) -5.765 (0.753) 0.0067 0.0483 1.2 Down 

Decanoylcarnitine -6.415 (0.595) -5.330 (0.646) 0.0074 0.0488 1.2 Down 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 
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Table S10: GLM of healthy dogs comparing serum metabolite concentrations of diet cohorts at end of  diet intervention 

Comparison of healthy individuals (n=6) between diet cohorts at end of diet intervention (p<0.05) 

 

Name Mean (SD1) of 

KD2 cohort 

Mean (SD) of 

RMBD3 cohort 

p-value q-value (FDR4) Fold Change In KD cohort 

Decanoylcarnitine -6.540 (0.164) -5.239 (0.294) 0.0026 0.203 1.25 Down 

Taurochenodeoxycholic Acid -0.309 (0.429) -3.669 (1.067) 0.0072 0.2836 -11.88 Up 

Methionine 6.442 (0.122) 5.711 (0.342) 0.0253 0.4407 1.13 Up 

Citrulline 5.629 (0.122) 4.961 (0.320) 0.0279 0.4407 1.13 Up 

4-Pyridoxic Acid -8.626 (0.334) -10.599 (0.843) 0.0196 0.4407 -1.23 Up 

Hexanoylcarnitine -6.916 (0.366) -5.682 (0.623) 0.0417 0.4752 1.22 Down 

Octanoylcarnitine -6.122 (0.303) -5.104 (0.516) 0.0421 0.4752 1.2 Down 

1SD= Standard deviation; 2KD= Kibble Diet; 3RMBD= Raw meat-based diet; 4FDR= False Discovery Rate 
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Table S11: Overview of differences between urine and serum of diet cohorts 

 

a) Metabolite concentrations are significantly (FDR<0.05) higher or lower in both urine and serum samples 

 

Metabolite Urine (FDR1) Serum (FDR) In KD2 

cohort 

Cytosine 0.0059327 0.0069354 Up 

Methionine 0.0016249 0.0076431 Up 

4-Pyridoxic 

Acid 
0.013226 0.0069354 Up 

Betaine 0.013226 0.047101 Down 

Creatine 0.0059327 0.0069354 Down 

1FDR= False Discovery Rate; 2KD= Kibble Diet 

 

b) Metabolite concentrations that significantly differ (FDR<0.05) between diet cohorts in either urine or serum, but not both 

 

Metabolite Urine (FDR1) Serum (FDR) In KD2 

cohort 

GABA 0.013226 0.93735 Up 

Citrulline 0.77481 0.0069354 Up 

Cystathionine 0.2709 0.0068914 Up 

Alanine 0.0059327 0.85065 Down 

Hydroxyproline 0.0059327 0.90683 Down 

Adenine 0.033022 0.73449 Down 

Folic Acid 0.032336 0.94688 Down 

Uracil 0.012365 0.88737 Down 

Ribose-5-P 0.31033 0.0069354 Down 

1FDR= False Discovery Rate; 2KD= Kibble Diet 
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Table S12: Two-way ANOVA of all dogs between health status and diet cohorts 

Two-way ANOVA results from all dogs comparison between the RMBD and KD diet cohorts (RMBD= raw meat based diet, KD= 

kibble diet) RMBD) and health status (health and CAD). 

 

Metabolite Diet           

(F-value) 

Diet  

(p-value) 

Diet (FDR1) Health status  

(F-value) 

Health status  

(p-value) 

Health status 

(FDR) 

Interaction 

(F-value) 

Interaction 

(p-value) 

Interaction 

(FDR) 

Methionine 50.155 0.0000025959 0.00013647 0.71064 0.41166 0.81318 0.11327 0.74083 0.90344 

4-Pyridoxic Acid 47.872 0.0000034549 0.00013647 0.22242 0.64357 0.86173 0.12286 0.73052 0.90344 

Cystathionine 32.844 0.000030949 0.00081498 1.1789 0.29366 0.81318 0.072054 0.7918 0.90344 

Citrulline 27.838 0.000075305 0.0014873 0.079115 0.78211 0.93694 0.098471 0.75773 0.90344 

Cytosine 23.64 0.000173 0.0027334 0.31489 0.58247 0.81318 3.4045 0.08361 0.76625 

Taurochenodeoxych

olic Acid 
22.711 0.00021058 0.0027727 0.099986 0.75593 0.93694 2.9489 0.10523 0.76625 

Proline 21.233 0.00029094 0.0032835 0.37639 0.54816 0.81318 0.48891 0.49446 0.87327 

Hexanoylcarnitine 14.495 0.0015488 0.015294 2.4372 0.13805 0.81318 0.22119 0.64448 0.90344 

Decanoylcarnitine 12.697 0.0025931 0.020838 0.52946 0.47735 0.81318 0.50097 0.48926 0.87327 

Glycine 12.639 0.0026377 0.020838 0.14097 0.71225 0.92242 1.9031 0.18671 0.86202 

Creatine 11.475 0.0037579 0.026988 1.5408 0.2324 0.81318 1.8403 0.19375 0.86202 

Dimethylglycine 10.295 0.0054788 0.034996 0.67286 0.42411 0.81318 2.5887 0.12718 0.76625 

Kynurenine 10.143 0.0057588 0.034996 0.97885 0.33721 0.81318 0.37558 0.54859 0.87327 

1FDR= False Discovery Rate 

 

Table S13: Fisher’s LSD comparison between CAD-RMBD (n=8), Healthy-RMBD (n=3), CAD-KD (n=6) cohorts and Healthy-

KD cohorts (n=3)  

Four-group analysis between the atopic (CAD) and healthy canines of both diet cohorts (RMBD= raw meat based diet, KD= kibble 

diet) using Fisher’s LSD test showing the significant differences between cohorts. The results from this table are presented in figure 

S3. 

  

Metabolite F-value p-value FDR1 

Methionine 16.993 0.000031415 0.0017278 

4-Pyridoxic Acid 16.072 0.000043741 0.0017278 

Cystathionine 11.365 0.00030588 0.0080548 

Citrulline 9.3387 0.000837 0.014859 

Cytosine 9.1199 0.00094046 0.014859 

Taurochenodeoxycholic Acid 8.5868 0.0012584 0.016569 

Proline 7.3663 0.0025557 0.028843 

1FDR= False Discovery Rate 
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Table S14: PLS-DA model cross-validation scores. The accuracy, R2 and Q2 model parameters were determined by testing the PLS-

DA model with the leave-one-out cross validation (LOOCV) method. 

a) Accuracy, R2 and Q2 parameters for the 2 component PLS-DA model between sample media (serum and urine) and diet 

cohorts (raw meat-based and kibble) of Batch 1 (n=8) at the end of the diet intervention 

 

Diet vs Media  

Measure 2 component model 

Accuracy  0.5 

R2 0.40314 

Q2 0.10804 

b) Accuracy, R2 and Q2 parameters for the 2 component PLS-DA model between health status cohorts (CAD and healthy) and 

diet cohorts (raw meat-based and kibble) of both batches (n=20) at the end of the diet intervention 

 

Diet vs Health status 

Measure 2 component model 

Accuracy  0.4 

R2 0.586 

Q2 0.277 
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9.2 Supplementary Figures 

 

 

 

 

 

 
Figure S1- Batch correction combines the 2 batches used in the diet intervention 

 A PCA-plot showing the effect of the batch correction on the metabolite values of all dogs (n=20) (The end of the diet trial is shown 

here) using the ComBat method. 
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Figure S2 – Urine and serum meta-analysis comparison  

a) Relative urine (left) and serum (right) concentrations of metabolites that correspondingly were either higher or lower in both 

urine and serum samples between diet cohorts (Table S10a). 

b) Relative and serum (left) urine (right) concentrations of metabolites that correspondingly were significantly higher or lower 

in either urine and serum samples between diet cohorts (Table S10b). 
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Figure S3 

Original and log-transformed concentrations of metabolites that significantly differ between the four-group analysis using Fisher’s 

LSD (Table S12) 
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