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a b s t r a c t 

We study the scattering properties of a cloud of particles. The particles are spherical, close to the incident 

wavelength in size, have a high albedo, and are randomly packed to 20% volume density. We show, using 

both numerically exact methods for solving the Maxwell equations and radiative-transfer-approximation 

methods, that the scattering properties of the cloud converge after about ten million particles in the 

system. After that, the backward-scattered properties of the system should estimate the properties of a 

macroscopic, practically infinite system. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

In August 2016, in conjunction with the Union Radio- 

cientifique Internationale (URSI) Commission B International Sym- 

osium on Electromagnetic Theory in Espoo, Finland, the Depart- 

ent of Physics at the University of Helsinki organized a workshop 

itled ‘One-Billion-Particle Problem’ (OBPP). 1 The leading topic of 

his workshop was to discuss the current state-of-the-art in meth- 

ds and implementations for solving electromagnetic absorption, 

xtinction, and scattering problems. Especially, we are interested in 

he scattering properties of a medium that is macroscopic in size, 

ut constitutes of particles or structures with typical sizes close to 

he wavelength of light. 

The scattering of a macroscopic target consisting of wavelength- 

cale elements is an open problem in computational electro- 

agnetics. Approximate methods based on radiative transfer (RT) 

ethod are computationally feasible for macroscopic media, but 

he pure RT approximation is not valid with close-packed me- 

ia [1] . Modified RT approaches for dense media have been stud- 

ed [see, e.g., 2,3 ], and there are recent advances in modified 

T approaches combining rigorous and approximate elements for 
∗ Corresponding author. 

E-mail address: antti.i.penttila@helsinki.fi (A. Penttilä). 
1 See http://wiki.helsinki.fi/display/PSR/OBPP . 
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igher packing densities [4–7] . Several approaches for solving (nu- 

erically) exactly the macroscopic Maxwell equations (MEs) gov- 

rning the problem exist [see, e.g., 8–10 ]. However, all these meth- 

ds share the same caveat — as the size of the target compared 

o the wavelength increases, the required computational resources, 

uch as the CPU-time and the memory, also increase. The current 

imit in problem sizes possible to solve with these methods is one 

f the questions to be answered in this work, but roughly speaking, 

t is currently around x = 

2 π r 
λ

from 150 to 300, where x is the size

arameter, r is the radius of the volume-equivalent sphere, and λ
s the wavelength. 

It is clear that as the computational resources needed by nu- 

erically exact solvers of electromagnetic scattering increase faster 

han O(n ) with n being the number of particles or the scattering 

olume, there will be still limits in the use of direct ME’s solvers 

or large problems. To be exact, in some methods (as in STMM 

nd DDA, see Section 2.1 ), there is interaction between the par- 

icles that needs to be solved. This interaction is naively O(n 2 ) , 

ut can be implemented as O(n log n ) with the help of Fast Fourier 

ransform (in DDA) or Fast Multipole Method (in STMM methods). 

n addition, there is the number of iterations m needed for the 

terative matrix inversion, making the total computational com- 

lexity as O(m (n log n )) , where m depends of n but in a compli-

ated manner. In finite-difference type methods (such as DEC, see 

ection 2.1 ), the complexity is O(mn ) , again with complicated de- 

endence between n and m . 

https://doi.org/10.1016/j.jqsrt.2021.107524
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2021.107524&domain=pdf
mailto:antti.i.penttila@helsinki.fi
http://wiki.helsinki.fi/display/PSR/OBPP
https://doi.org/10.1016/j.jqsrt.2021.107524
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Fig. 1. One random realization of 10 3 equal-sized spheres that are packed in a 

spherical volume with 20% packing density. The scattering angle θ is the angle be- 

tween the direction of the incident field and the observing direction of the scattered 

field. 
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One can try to tackle the computational problems with modern 

upercomputers with thousands of interlinked central or graphics 

rocessing units (CPUs or GPUs), but at some point the overhead 

f the message passing between the processor cores will surpass 

he performance gain from adding more cores to the task. Thus, it 

ould be beneficial if the scattering properties of finite particulate 

edia would converge to those of macroscopic, practically infinite 

ase at some size. In this work, we will estimate if there is such 

onvergence and at which point. First, in Section 2 we will define 

he scattering problem given at the OBPP workshop and introduce 

he codes that were used to solve it. Second, in Section 3 we will

how the workshop results, and finally in Section 4 we will discuss 

nd conclude. 

. The one-billion-particle-problem definition 

The definition of the scattering problem was given to the work- 

hop participants beforehand. It stated that: 1 

Consider one billion spherical particles (radius r) randomly lo- 

cated in a finite, spherical medium (radius R ) in free space 

in an incident electromagnetic plane wave field (wavelength 

λ, wave number k = 2 π/λ). Show the ensemble-averaged 4 ×4 

Mueller scattering matrix interrelating the four Stokes parame- 

ters ( I = (I, Q, U, V ) ) of the incident field and the scattered field

when the size parameter ( x = kr) and complex refractive in- 

dex ( m ) of the individual spherical particles are x = 1 . 76 and

m = 1 . 50 + i 10 −4 and when the volume fraction of the spheri-

cal particles in the spherical medium is v = 20 %. 

Furthermore, it stated that in the (expected) case where the 

roblem could not be solved with one billion particles, one may 

ompute with the maximum number of particles still practical for 

he method. As the participants started producing their answers, 

e converged having intermediate results for powers of ten in the 

umber of particles, starting from 10 3 . The size parameters for the 

roblem with the number of particles is presented in Table 1 , and 

he illustration of the scattering geometry with 10 3 particles is 

hown in Fig. 1 . 

.1. Scattering codes 

We had contributions for the OBPP from the workshop partici- 

ants, and we also conducted extensive simulations using various 

ifferent codes ourselves at the workshop host institute. The codes 

hat we used are all published, most of them publicly available, so 

e introduce them next only shortly. While pushing the limits of 

hese codes did require certain fine tuning, we do not discuss it 

n details, since the main argument is based on the agreement be- 

ween different independent codes. In most cases, the codes were 
able 1 

ize parameters for the scattering problem with the number of particles (No.) vary- 

ng in powers of ten, starting from 1,0 0 0 particles. The table shows both the size 

arameter of the particles ( X particles , equivalent-volume-sphere radius), and the size 

arameter of the sphere that circumscribes the particles ( X sphere ). The columns a–g 

ndicate the codes that were used to compute the results with the corresponding 

ize parameter. The columns are as a - RT-CB, b - RT-CB-ic, c - R 2 T 2 , d - FaSTMM, 

 - DEC, f - ADDA, and g - MSTM. Please see Section 2.1 for the description of the 

odes. 

No. X particles X sphere a b c d e f g 

10 3 17.6 30.1 x x x x x x x 

10 4 37.9 64.8 x x x x x x 

10 5 81.7 140 x x x x x x 

10 6 176 301 x x x x 

10 7 379 648 x x 

10 8 817 1397 x x 

10 9 1760 3010 x x x 

a

d
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T

i

J
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2 
un on the computing cluster at CSC — IT Center for Science in 

inland. 

.1.1. Numerically exact codes 

Superposition T-matrix code MSTM. The MSTM code is devel- 

ped by Daniel Mackowski, and we used version 3.0 of the code. 2 

he code works with perfect spheres and solves the so-called T - 

atrix of the whole volume as the superposition of all the indi- 

idual T -matrices from the constituents. The electromagnetic fields 

re expanded with the spherical vector wave functions (SVWF), 

nd the scatterers in the cluster are represented as the T -matrices, 

.e., mappings from the incident SVWF coefficients to the scattered 

nes. The interactions between the scatterers are computed by em- 

loying the translation addition theorems for the SVWF. This yields 

o the system of linear equations which can be solved numerically. 

he code is using an MPI-parallelization and can be efficiently used 

n large computing clusters [11] . 

Fast superposition T -matrix method FaSTMM . The FaSTMM code 

s developed by Johannes Markkanen, and formulates the solution 

o the multiple scattering problem using the field decomposition 

nd the superposition principle. 3 This leads to the so-called su- 

erposition T -matrix method (STMM, similarly as with the MSTM 

ode) [12–14] . 

The FaSTMM uses an iterative solver to solve the linear system 

n which the matrix-vector multiplication in each iteration step is 

ccelerated with the fast multipole method (FMM) [15] . The FMM 

ecreases the computational complexity of the matrix-vector prod- 

ct from O(n 2 ) to O(n log n ) where n is the number of particles.

he FaSTMM is implemented with modern Fortran language and it 

s parallellized with OpenMP. 

Discrete exterior calculus DEC. The DEC code is developed by 

ukka Räbinä. The state-of-the-art in finite-difference type tech- 

iques is the discrete exterior calculus (DEC), which refers to the 

ntuitive correspondence with its continuous counterpart, i.e., the 

xterior calculus [16,17] . The cornerstone of DEC is the segregation 

f differentiable and metric structures. This is to say, the discrete 

ounterparts of the differential operators do not depend on the 

etric. These so-called ”discrete exterior derivatives” fulfill exactly 

he Stokes theorem. The metric structures (or the material param- 
2 MSTM 3.0, available at http://www.eng.auburn.edu/ ∼dmckwski/scatcodes/ . 
3 FaSTMM is available at http://wiki.helsinki.fi/display/PSR/ . 

http://www.eng.auburn.edu/~dmckwski/scatcodes/
http://wiki.helsinki.fi/display/PSR/


A. Penttilä, J. Markkanen, T. Väisänen et al. Journal of Quantitative Spectroscopy & Radiative Transfer 262 (2021) 107524 

Fig. 2. The intensity and the degree of linear polarization computed with the available codes for the spherical volume containing variable amount of spherical particles in 

v = 20% packing density. Continues in Fig. 3 . 
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4 
ters) are approximated with ”discrete Hodge” matrices, which are 

elated to geometries of primal and dual meshes. 

For efficient implementation of DEC, one should focus on the 

pproximation of the discrete Hodge [18,19] . To minimize the dis- 

retization error, a tetrahedral (body-centered cubic) mesh struc- 

ure has been chosen, which leads to more isotropic wave propa- 

ation than with the cubic tiling. Also the discrete Hodge correc- 

ion, which is based on spatial curvature of the estimated solution, 

s applied. With these tricks, the numerical wavelength error has 

een nearly eliminated, which is essential in large problems. 

The method is implemented with C++ programming language 

sing message passing interface (MPI) and domain decomposition 

arallelization. 

Discrete dipole approximation code ADDA. The ADDA code is 

 C99 implementation of the discrete dipole approximation — a 
3 
ethod based on the discretization of the volume-integral form 

f the MEs [20] . ADDA uses an MPI-parallelization for a single- 

cattering problem and can be efficiently used in large comput- 

ng clusters [21] . In this manuscript, we are using ADDA version 

.3b4. 4 

The ensemble averaging was replaced by orientation averaging, 

or which rotation over one Euler angle can be performed at a 

mall computational cost [21] . In other words, for each particle ori- 

ntation ADDA computed the scattered fields not in a single scat- 

ering plane, but rather for a set of planes rotated around the inci- 

ent direction. More details about ADDA simulations can be found 

n [22] . 
ADDA is available at https://github.com/adda-team/adda . 

https://github.com/adda-team/adda
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Fig. 3. Continued from Fig. 2 . 
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.1.2. Radiative-transfer-type approximations 

Because the one-billion-particle scattering medium is far too 

arge to be currently solved with the numerically exact codes, we 

lso included three approximate solutions in the comparison. All 

he approximations are based on the radiative-transfer solution of 

he electromagnetic scattering, but two of these are modified so 

hat they could better adapt to the non-sparse packing density of 

 = 20% . 

Radiative transfer with coherent backscattering RT-CB. The RT- 

B method is developed at the University of Helsinki 5 . It solves 

he radiative transfer equation (RTE) using Monte Carlo multiple- 

cattering algorithm. The RTE works well for the sparse medium 

nd hence it is widely used, e.g., in atmosphere modeling. Still, the 

TE is oversimplified meaning that it is missing some effects, such 
5 RT-CB is available at http://wiki.helsinki.fi/display/PSR/ . 

4 
s the coherent backscattering (CB). The CB causes the intensity 

eak and the negative polarization surge in the backscattering an- 

les. The RT-CB traces rays inside the medium and by tracing an- 

ther ray in reversed order and solving the interference of these 

ays, a CB effect is added to the RT solution [23] . 

Radiative transfer and coherent backscattering with incoherent 

elds RT-CB-ic. The applicability of the RT-CB can be extended to 

he dense media by using an input generated with the incoherent 

elds [24] . The input is created by generating a set of volume el- 

ments, and computing the first-order incoherent scattering prop- 

rties from these using them. The generated incoherent Mueller 

atrix and the mean free path can be then used with the RT-CB. 

Radiative transfer with reciprocal transactions R 2 T 2 . The R 

2 T 2 

ethod is developed at the University of Helsinki 6 [4,6] . The 
6 R 2 T 2 is available at http://wiki.helsinki.fi/display/PSR/ . 

http://wiki.helsinki.fi/display/PSR/
http://wiki.helsinki.fi/display/PSR/
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Fig. 4. The backscattering hemisphere scattering efficiency Q bcsa as a function of 
ethod employs the T -matrix method to handle the interaction 

etween the electric fields and the incoherent volume element 

ut functions similarly to the RT-CB. The scattering properties of 

he incoherent volume elements are precomputed with an exact 

ethod and transferred to the R 

2 T 2 using the T -matrices. Due to 

he T -matrix formalism, the R 

2 T 2 accepts any volume element that 

an be presented with the T -matrix [5] . Compared to the RT-CB-ic, 

he R 

2 T 2 should produce results that are closer to the exact ones 

ecause the way R 

2 T 2 handles the incoherent volume is more rig- 

rous and does not use averaged properties. 

. Results 

With all the codes, the Mueller matrix of the target, as a func- 

ion of the scattering angle, was computed. In addition, the inte- 

rated quantities of scattering and absorption efficiency Q sca and 

 abs , which are the scattering and the absorption cross-sections 

 sca and C abs normalized with the cross-sectional area of the cir- 

umscribing sphere, were computed. Please note that the intensity 

 M 11 , the (1,1) element of the Mueller matrix) is normalized in all

esults so that the integration over the unit sphere equals to Q sca 

f the target: 

 csa = 

∫ 2 π

0 

∫ π

0 

sin (θ ) M 11 (θ ) d θ d φ, (1) 

Table 1 shows the cases that were computed and the codes 

hat produced results for those cases. The numerically-exact-code 

omputations were pushed to the current practical limits using a 

odern supercomputer 7 , except for the MSTM code. The FaSTMM 

nd the MSTM codes are so similar in their methodology, that 

he MSTM was only used for 1,0 0 0 particles to cross-validate the 

aSTMM results. 

The intensity and the degree of linear polarization (DoLP) for 

ases with 10 3 , 10 4 , 10 5 , 10 6 , 10 8 , and 10 9 spheres are shown in

igs. 2 –3 . The case with 10 7 spheres is so similar to 10 8 spheres,

nd only computed with the RT-CB and RT-CB-ic codes that it was 

eft out of the figure. We are showing only the scattering angles 

tarting from 60 °, since the forward-scattering angles contain the 

iffraction with the numerically exact codes but not with the RT- 

ased approximations, and also because we are more interested in 

he scattering effects by the particles than the volume as whole. 

ll the numerically exact results are averaged over multiple real- 

zations of the particle positions in the media. Owing to the fact 

hat the corresponding computations with large number of parti- 

les are very heavy, especially the DoLP values are not that well 

veraged but contain still some speckle effects from the individual 

ealizations that are not completely averaged out. 

From the results shown in Figs. 2 - 3 we can see that the approx-

mate methods, especially the RT-CB-ic and R 

2 T 2 that are corrected 

o be applicable to dense media, start to follow the numerically 

xact results quite well with 10 5 spheres or more in the volume. 

he intensity, including the sharp backscattering enhancement, is 

odeled very well. The DoLP results vary more even within the 

umerically exact methods, due to the limited number of configu- 

ation averages or the different discretized representation of spher- 

cal shape in the codes. In any case, the inversion angle of the DoLP 

rom positive to negative, and the shape of the negative polariza- 

ion lobe that is related to the coherent backscattering, are quite 

ell agreed with all the codes. The location of the polarization 

aximum might be modeled a bit too far in the scattering angle 

ith the RT-based approximations. This is associated with the lack 
7 The Taito supercluster from HP with over 400 Intel Xeon Haswell computing 

odes. Each node has two processors, 24 cores, and at least 128 GB of memory per 

ode. The computer is provided by the CSC. 

t

s

m

t

a

h

5 
f accounting the coherent field in the RT approximations, as noted 

n [25,26] . 

We were able to run numerically exact simulations with the 

EC code using one million particles, which is already quite an 

mpressive result. That result, together with the other numerically 

xact results with 10 5 particles, seem to indicate that the dense- 

edia-corrected RT codes RT-CB-ic and R 

2 T 2 are producing results 

hat approximate quite well the true behavior starting from 10 5 –

0 6 particles. What is interesting is that also the traditional RT 

ethod that includes the coherent-backscattering approximation 

RT-CB) starts to approach these more accurate RT-CB-ic and R 

2 T 2 

esults with 10 7 –10 9 spheres. We note that these nice results are 

ere found for quite transparent media with Im (m ) = 10 −4 , and 

here can be challenges with RT-based methods in highly absorb- 

ng material [6] . 

In addition to the angular intensity and DoLP profiles, and scat- 

ering and absorption efficiencies Q sca and Q abs , we have also com- 

uted the ‘backscattering efficiency’ Q bcsa as 

 bcsa = 

∫ 2 π

0 

∫ π

π/ 2 

sin (θ ) M 11 (θ ) d θ d φ, (2) 

here the Mueller matrix is normalized as in Eq. (1) . 

. Discussion 

One of the long-standing questions in multiple scattering by 

mall particles is that at which size (i.e., number of scatterers, sur- 

ace area, volume, etc.) our (numerically) exact results converge in 

he far field. In detail, the quantity we are after could be the shape 

f the scattering phase function (of some Mueller matrix element), 

r an integrated property such as the scattering or absorption cross 

ection [27] . If we would be able to accurately simulate a volume 

hat is so large that its scattering properties do not further depend 

n the volume size, we could generalize them to apply for truly 

acroscopic targets. 

One can assume that the possible convergence to macroscopic 

ample properties would show up first, or at least with less fluc- 

uations, in the integrated quantities such as the scattering or 

bsorption efficiency. In media infinite in both perpendicular and 

arallel directions of the incident wave, there is no forward scat- 

ering, so we study the behavior of the backscattering efficiency 

 bsca defined in Eq. (2) , see Fig. 4 . As also the angular scattering

roperties seem to indicate ( Figs. 2 - 3 ), the dense-media corrected 
he target size, expressed as the number of the particles in the cloud. The Q bcsa is 

hown here for five methods, of which the FaSTMM and DEC rigorously solve the 

acroscopic Maxwell equations, and the RT-CB, RT-CB-ic, and R 2 T 2 are based on 

he radiative transfer approximation. The results with ADDA go up to 10 5 particles 

nd MSTM to 10 3 particles, they follow the same overall trend but are not shown 

ere. 
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Fig. 5. The scattering phase function (in the left) and the degree of linear polarization (in the right) for backscattering region. Results are computed with the RT-CB-ic 

method. The plot legend panel indicates the powers of ten for the number of particles in the target. 
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T methods agree well with the numerically exact methods. Also, 

ith 10 7 particles or more, the regular RT seems to converge with 

he corrected ones. 

What is extremely interesting, is that starting from 10 7 parti- 

les or so, the Q bcsa seems to converge to a constant value of about

.7. This happens both for the regular RT and for the dense-media- 

orrected ones. On the other hand, the RT-CB-ic and R 

2 T 2 val- 

es follow loyally the numerically-exact-method values up to the 

oint where the latter can still be used, 10 6 particles. This would 

uggest that the scattering properties of the target are converging 

ith about 10 million particles (volume-equivalent size parameter 

f particles about 400, circumscribing sphere size parameter about 

50). 

The same limit of 10 7 particles seems to hold if we look at the

hape of the scattering phase function or the degree of linear po- 

arization close to backscattering (see Fig. 5 ). Both the shape of the 

oherent backscattering peak and the negative degree of linear po- 

arization converge after this limit in the RT-CB-ic results. The tra- 

itional RT-CB results are very similar (not shown here). 

According to the results above, it seems that for this particu- 

ar problem, the scattering properties of the system start to con- 

erge at about 10 7 particles or at the circumscribing volume size 

arameter of 650. On one hand, this result is unique to this partic- 

lar scattering target. On the other hand, the individual particles 

re close to the wavelength size ( x = 1 . 76 ), which means that they

re efficient scatterers. Furthermore, there is almost no absorption 

n the system, the single-scattering albedo of the single sphere in 

he system is � = 0 . 999374 . Thus, one can expect excessive mul-

iple scattering for this system. With less multiple scattering or 

ith smaller single-scattering albedos, the convergence might be 

chieved earlier. That is why we conclude that a system with 10 

illion particles with sizes in the wavelength range can be con- 

idered to have the scattering properties in the backward-reflected 

emisphere of a macroscopic system. 
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