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Backgrounds & aims: Intestinal microbiota may be causally involved in the pathogenesis of non-alcoholic
fatty liver disease (NAFLD). We aimed to study the effect of short-term overfeeding on human gut
microbiota in relation to baseline and overfeeding-induced liver steatosis. We also asked whether the
baseline microbiota composition is associated to the overfeeding-induced increase in liver fat.
Methods: In a randomized trial, 38 overweight and obese subjects were assigned to consume an excess of
1000 kcal/day of diets rich in either saturated fat, unsaturated fat, or simple sugars for 3 weeks. Fasting
blood samples and 1H-MR spectroscopy were used for extensive clinical phenotyping as previously re-
ported (PMID: 29844096). Fecal samples were collected for the analysis of the gut microbiota using 16S
rRNA amplicon sequencing, imputed metagenomics and qPCR. Microbiota results were correlated with
dietary intakes and clinical measurements before and during overfeeding.
Results: The overall community structure of the microbiota remained highly stable and personalized
during overfeeding based on between-sample BrayeCurtis dissimilarity, but the relative abundances of
individual taxa were altered in a diet-specific manner: overfeeding saturated fat increased Proteobac-
teria, while unsaturated fat increased butyrate producers. Sugar overfeeding increased Lactococcus and
Escherichia coli. Imputed functions of the gut microbiota were not affected by overfeeding. Several taxa
affected by overfeeding significantly correlated with the changes in host metabolic markers. The baseline
levels of proteobacterial family Desulfovibrionaceae, and especially genus Bilophila, were significantly
associated to overfeeding-induced liver fat increase independently of the diet arm. In general, limited
overlap was observed between the overfeeding-induced microbiota changes and the liver fat-associated
microbiota features at baseline.
Conclusions: Our work indicates that the human gut microbiota is resilient to short-term overfeeding on
community level, but specific taxa are altered on diet composition-dependent manner. Generalizable
microbiota signatures directly associated with liver steatosis could not be identified. Instead, the carriage
of Bilophila was identified as a potential novel risk factor for diet-induced liver steatosis in humans.
Clinical trial registry number: NCT02133144 listed on NIH website: ClinicalTrials.gov.

© 2020 Published by Elsevier Ltd.
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1. Introduction

NAFLD is closely associated with obesity and the metabolic
syndrome [1] but its pathogenesis remains elusive [2]. Due to the
physiological proximity of the gut to the liver, the intestinal
microbiota is highly relevant for NAFLD [3]. Metabolic endotox-
emia, characterized by increased circulating levels of LPS derived
from Gram-negative bacteria, triggers pro-inflammatory pathways
aturated or unsaturated fat or sugars on the gutmicrobiota in relation
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leading to insulin resistance in mice [4]. Transplantation studies in
rodents have suggested a causal role for the gut microbiota in
NAFLD development [5,6]. Yet in humans, there is little consensus
on the existence of a specific dysbiotic microbiota pattern in NAFLD
[7] and evidence of a causal relationship between microbiota and
NAFLD is limited by the cross-sectional nature of most human
studies [2]. In addition, there is substantial heterogeneity in the
methods used for clinical phenotyping and analysis of microbiota.
Dietary intervention studies targeting the gut microbiota in
humans in relation to NAFLD or other metabolic diseases have
focused on either healthy, lean subjects [8] or obese subjects un-
dergoing weight-loss programs [9e11]. No studies have examined
effects of a hypercaloric intervention on gut microbiota in NAFLD in
obese and overweight individuals.

The Western diet is rich in fat and simple sugars [12]. Rodent
studies have shown that not only the amount but also the type of
dietary fat affects the gut microbiota [13,14]. In C57BL/6J mice fed
for 8 [13] weeks with high-fat diets (45E% fat) containing either
saturated palm oil, olive oil or safflower oil, only the palm oil
diet altered the fecal microbiota [13]. During 16-week exposure, all
test diets were found to have a significant effect on the cecal
microbiota [14]. Both studies reported high intake of saturated fat
to be the strongest stimulus for fat accumulation in the liver [13,14].
While distinct effects of unsaturated fat or saturated fat on host
physiology have been reported [15,16], it is unclear whether the
human gut microbiota responds differently to a high intake of
unsaturated fats or saturated fats or carbohydrates. It has also been
shown that the response of host physiology to dietary intervention
depends partly on the baseline microbiota configuration [17e20].

We recently reported a detailed description of phenotypic al-
terations and the metabolic pathways involved after 3 weeks of
overfeeding of saturated fat, unsaturated fat or simple sugars in
obese and overweight individuals, and showed that the diet rich in
saturated fats led to the largest increase in the liver fat content [16].
In the present study, we studied the impact of each of these over-
feeding regimes on gut microbiota composition and, predicted
functions as well as the quantities of total bacteria and butyrate
producers. In addition, we studied the relationship between the gut
microbiota and nutritional and clinical parameters both at baseline
and during overfeeding, and specifically asked whether the base-
line microbiota composition was associated to the overfeeding-
induced increase in liver fat.

2. Materials and methods

The study was ancillary to an intervention registered at Clin-
icalTrials.gov as NCT02133144. The study protocol was approved by
the Medical Ethical Committees of the Hospital District of Helsinki
and Uusimaa and Helsinki University Central Hospital. All volun-
teers provided an informed, written consent.

2.1. Study design, participants and clinical phenotyping

The exclusion criteria, subject characteristics, study design, diets
and clinical phenotyping of the participants have been described in
detail in the article reporting the clinical outcomes of the study
[16]. In brief, 38 overweight and obese subjects (age 48 ± 2 years,
body mass index (BMI) 31 ± 1 kg/m2) were randomized into three
groups to consume an excess of 1000 kcal/day of diets rich in either
saturated fat (SAT, 59E% fat; N ¼ 14), unsaturated fat (UNSAT, 60E%
fat; N ¼ 12), or simple sugars (CARB, 24E% fat; N ¼ 12) for 3 weeks.
Detailed diet compositions have been reported earlier [16]. At
baseline, 12 out of 38 participants had NAFLD, defined as liver fat
>5.56% by 1HMRS as in the Dallas Heart Study [21]. Fasting blood
samples were collected before and after the intervention and the
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subjects were extensively phenotyped for parameters such as liver
fat content by 1HMRS, insulin sensitivity, pathways of intra-
hepatocellular triglyceride synthesis (lipolysis and de novo lipo-
genesis) and blood biochemistry (liver enzymes, fasting glucose,
free fatty acids, insulin, lipids) [16]. The overfeeding period was
followed by a weight-loss period to restore the participants’ body
weight and liver fat to their original states. Fecal samples were
collected for microbiota analysis at baseline, after the intervention
and at follow-up approximately 2 months after the intervention.
Clinical phenotyping and dietary assessment [16] were not per-
formed in the weight-loss period. Therefore, the analyses focus on
the samples taken at baseline and after overfeeding; the follow-up
microbiota sample was in addition used to assess beta-diversity of
the microbiota over time.

2.2. 16S rRNA gene amplicon sequencing and assessment of
metabolic endotoxemia

Fecal DNA extraction, library preparation, Illumina MiSeq
sequencing of hypervariable V3eV4 regions of the 16S rRNA gene
and sequencing data preprocessing were performed as previously
described [16]. Lipopolysaccharide binding protein (LBP) and sol-
uble cluster of differentiation 14 (sCD14) in serum were measured
using ELISAs (R&D Systems, Minneapolis, MN, USA) [16].

2.3. Quantification of total bacteria and butyrate-producing
capacity by qPCR

Total bacteria and butyrate production capacity were performed
by qPCR using a BioRad iCycler iQ thermal cycler system (BioRad,
Hercules, CA) with HOT FIREPol® EvaGreen® qPCR Mix Plus (Solis
BioDyne, Tartu, Estonia). Total bacteria were quantified [22] with
universal primers as previously described [23]. The 10-log-fold
standard curves ranging from 102 to 107 copies were produced
using the full-length amplicons of 16S rRNA gene of Bifidobacterium
longum. For quantification of butyrate production capacity of the
microbiota, the butyryl-CoA:acetate CoA-transferase gene was
quantified by qPCR as described [24], and the output values were
converted based on comparative Ct method [25]. All qPCR assays
were performed in triplicate. Precautions were taken to ensure that
the data from each triplicate fall within 0.5 threshold cycle (Ct), and
clear outliers (>2 standard deviations) were removed before
calculating average Ct of each sample. There was no detectable
amplification arising from non-template controls in any of the as-
says. The amplification efficiencies of all qPCR assays ranged from
91% to 98%.

2.4. Data analysis and statistics

Sequencing data were analyzed and visualized using R package
mare [26], which implements tools from e.g. USEARCH [27] and R
package vegan [28], and has been optimized for the analysis of
microbiota count data. To account for the varying sequencing
depth, the number of reads per sample was used as an offset in all
statistical models. Microbiota richness and Shannon diversity index
were estimated using vegan's diversity command. BrayeCurtis
dissimilarity, quantifying the compositional dissimilarity between
different samples, was used as the between-sample distance metric
to estimate beta-diversity. Permutational multivariate analysis of
variance (adonis function in the vegan package) with BrayeCurtis
dissimilarities was used to identify factors contributing to the
variation in microbiota composition. At baseline, variation in the
microbiota was significantly associated to habitual intake of insol-
uble fibre (7%, p ¼ 0.02 in permutational multivariate ANOVA) and
age (6%, p ¼ 0.01), while BMI or body weight were not associated
aturated or unsaturated fat or sugars on the gutmicrobiota in relation
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with the variation in the microbiota or predicted functions
(p > 0.05). Hence, all comparisons for the baseline microbiota
composition were performed with and without adjustment for
insoluble fibre intake and age. The significantly differentially
abundant taxa identified in both models were consistent; p-values
for the unadjusted model are reported. Mare functions “GroupTest”
and “CovariateTest” implementing generalized linear models using
negative binomial distribution from MASS [29] were used to eval-
uate the differences in the relative abundance of common bacterial
genera, families and phyla (>0.01% abundance; > 30% prevalence)
between different groups and to assess associations between the
abundances of common bacterial taxa and clinical and dietary
variables, respectively. Heat-map visualization of baseline associ-
ations between bacterial genera and clinical and nutritional vari-
ables and their statistical significance was done using the R
function CorrelationMap in mare that implements Spearman cor-
relation test. Functional prediction and annotation were made us-
ing Parallel-META 3 [30]. The comparison of differentially abundant
pathways based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) [31] between NAFLD and non-NAFLD subjects was per-
formed using LEfSe analysis [32] under the condition a ¼ 0.01 with
an LDA score of at least 2.5. For the exploratory responder analyses,
we stratified all subjects based on their liver fat increment during
overfeeding. Responders are defined as subjects with any increase
in the liver fat (N¼ 29), and non-responders as subjects whose liver
fat content measured by 1HMRS did not increase (N ¼ 9). P-values
were adjusted by the Benjamini-Hochberg method for multiple
testing in all comparative and correlation tests involving count data
for multiple taxa. P-values < 0.05 and FDR-adjusted p-values (adj.
p) < 0.2 were considered significant.

Anthropometric and metabolic data are presented as the means
with SDs for normally distributed variables and as medians (quar-
tiles 1e3) for non-normally distributed variables. Non-count data
(anthropometric and metabolic parameters, microbiota diversity
and richness) were analyzed with Wilcoxon signed-rank test
(comparison of variables before and after overfeeding) and
KruskaleWallis test (comparison of variables between three diets).
Spearman's test and partial Spearman's test were performed for
normal and adjusted correlations of non-count variables, respec-
tively. All significant correlations underwent visual inspection
when applicable to eliminate statistically significant correlations
driven by few extreme values. Only statistically significant and
visually validated results are reported.

3. Results

3.1. Cross-sectional analysis of the relationship between clinical
parameters and gut microbiota at baseline

Firmicutes, mainly the families Ruminococcaceae and Lachno-
spiraceae, vastly dominated the subjects’ microbiota (mean 86%,
range 73%e97%), followed by Bacteroidetes (8%, 0%e23%) and
Actinobacteria (6%, 0%e20%). Verrucomicrobia and Proteobacteria
represented on the average less than 1% of the microbiota.

The microbiota of the subjects with NAFLD (N ¼ 12) differed
from the rest (N ¼ 26), as they clustered separately in ordination
space using principal coordinates analysis (PCoA) based on the
BrayeCurtis distance both compositionally (Fig. 1A) and based on
predicted functions (Supplementary Fig. 1A), explaining 7%
(p ¼ 0.007) and 10% (p ¼ 0.02) of their variation in permutational
multivariate ANOVA. Differential abundance testing revealed that
the microbiota in subjects with NAFLD was enriched in Blautia and
an unclassified genus of Lachnospiracecae, whereas phylum Bac-
teroidetes and genera Bacteroides, Alistipes and Clostridium were
reduced in subjects with NAFLD (Fig. 1B). The analysis on the
Please cite this article as: Jian C et al., Impact of short-term overfeeding of s
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inferred gene families from KEGG Orthology groups showed that
genes related to cell membrane transport were overrepresented in
the NAFLD gut microbiota, while genes associated with glycan
biosynthesis and metabolism were enriched in subjects without
NAFLD (Supplementary Fig. 1B).

Genera Bacteroides, Alistipes and Clostridium correlated signifi-
cantly inversely with liver fat (Fig. 1C). In addition to liver fat,
Alistipeswas negatively associated with several other traits specific
to metabolic derangements, such as plasma triglycerides and
plasma glucose. Blautia was associated with lower intake of total
and insoluble dietary fibre as well as poly- and monounsaturated
fat. The Firmicute to Bacteroidetes ratio was significantly higher in
the subjects with NAFLD (p ¼ 0.003, Supplementary Table 1) and
positively associated with liver fat (R2 ¼ 0.29, p < 0.001). This
relationship remained significant after controlling for age and
insoluble fibre intake (p < 0.001). No significant associations were
identified between the predicted functional modules of the
microbiota and host variables including liver fat. Taken together,
increased relative abundances of Blautia and unclassified Lachno-
spiracecae as well as a higher Firmicute to Bacteroidetes ratio were
associated to increased liver fat content at baseline.

3.2. Effects of overfeeding on intestinal microbiota

At baseline, the SAT (N¼ 14), UNSAT (N¼ 12) and CARB (N¼ 12)
groups were comparable with respect to liver fat, anthropometric,
habitual dietary and blood biochemical characteristics [16]. Also
baseline microbiota diversity (SAT ¼ 11.9 (8.3e13.5); UNSAT ¼ 11.4
(9.2e13.4); CARB ¼ 11.1 (8.6e13.2), richness (SAT ¼ 81 (75e86);
UNSAT ¼ 78 (70e86); CARB ¼ 76 (64e92), and abundances of
bacterial phyla and genera were comparable across the three
groups.

The 3-week period of overfeeding significantly and similarly
increased BMI in all groups (Supplementary Table 2). The increase
in the liver fat was greater in the SATgroup compared to UNSATand
CARB groups (p ¼ 0.03). Moreover, insulin resistance, activities of
liver enzymes, concentrations of plasma HDL and LDL cholesterol as
well as the LBP to CD14 ratio as a marker of endotoxemia increased
significantly only in the SAT group (p < 0.01). The intervention
compliance was ensured by assessment of dietary profiles and fatty
acid composition of fasting plasma VLDL-TG [16].

Beta-diversity, assessed using PCoA plots based on between-
sample BrayeCurtis distances, showed strong clustering of the
microbiota samples by the individual (Fig. 2), indicating stability of
the individualized microbiota compositions throughout the trial.
The variance of the bacterial community compositions was pre-
dominantly explained by the individual (72%, p ¼ 0.001; Fig. 2),
while the microbiota composition (Supplementary Fig. 2AeC) or
predicted functions (data not shown) measured with permuta-
tional multivariate ANOVA were not associated to the sampling
time points or overfeeding diets. No differences were observed on
microbiota richness, alpha diversity or Firmicute to Bacteroidetes
ratio (p > 0.05). Finally, the potential impact of the intervention on
the colonic bacterial biomass was estimated based on the qPCR
assay for total bacteria, calculated as the number of 16S rRNA genes
per gram of stool. The mean bacterial copy number/per gram of
stool was not different at baseline and after overfeeding (1.2 � 1012

vs. 1.1 � 1012) or between the diets after overfeeding (both
p > 0.05).

3.3. Identification of taxon-specific alterations in response to
intervention

We next zoomed into individual taxa to identify specific bacteria
that were affected by overfeeding (Table 1). The SAT diet led to a
aturated or unsaturated fat or sugars on the gutmicrobiota in relation
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Fig. 1. Baseline microbiota analysis of participants with NAFLD (N ¼ 12) and without NAFLD (N ¼ 26). (A) Principal coordinates analysis (PCoA) plot based on BrayeCurtis distances
showing differences in gut microbiota compositions between subjects with NAFLD (red) and without NAFLD (black). (B) Bacterial genera overrepresented in subjects with NAFLD
(red) and without NAFLD (black). (C) Heat map displaying baseline associations between gut bacterial genera and clinical or nutritional variables. Statistically significant p-values are
noted with an asterisk (*p < 0.05), a double asterisk (**p < 0.01), or a triple asterisk (***p < 0.001). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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Fig. 2. Principal coordinates analysis (PCoA) plot of the participants' gut microbiota throughout the trial. Samples are colored by the subject and polygons connect the three samples
from each participant based on BrayeCurtis distances.

Table 1
Bacterial phyla, families and genera with differential abundances (raw p-values < 0.05 in at least one of the intervention diets) following overfeeding. Fold change is compared
to baseline abundance. P-values that remain significant after FDR adjustment are bolded (adj. p < 0.2).

SAT UNSAT CARB All

p-value (adj. p) Fold change p-value (adj. p) Fold change p-value (adj. p) Fold change p-value (adj. p) Fold change

Phylum
Proteobacteria 0.03 (0.14) 3.7 0.34 (0.52) 1.9 0.56 (0.67) 3.4 0.01 (0.07) 2.6
Family
Desulfovibrionaceae 0.01 (0.28) 2.8 0.06 (0.52) 2.1 0.38 (0.79) 0.5 0.23 (0.79) 1.7
Genus
Uncultured Coriobacteriaceae 0.77 (0.86) 1.2 0.02 (0.18) 0.5 0.11 (0.66) 1.1 0.69 (0.9) 0.9
Anaerostipes 0.16 (0.86) 0.8 0.04 (0.22) 0.5 0.41 (0.88) 0.9 0.03 (0.19) 0.7
Lachnospira 0.4 (0.86) 1.5 0.01 (0.12) 1.7 0.68 (0.94) 0.8 0.15 (0.73) 1.4
Roseburia 0.38 (0.86) 1.2 0.005 (0.12) 1.4 0.93 (0.97) 1 0.16 (0.73) 1.2
Unclassified Ruminococcaceae 0.68 (0.86) 1.1 0.03 (0.18) 1.5 0.47 (0.91) 0.9 0.58 (0.9) 1.1
Lactococcus 0.77 (0.86) 2.2 0.98 (0.98) 0.7 0.003 (0.14) 4.1 0.21 (0.79) 1.6
Escherichia coli 0.75 (0.86) 1.5 0.67 (0.91) 2 0.01 (0.18) 60.7 0.17 (0.79) 2
Bilophila 0.01 (0.38) 2.8 0.06 (0.67) 2.1 0.38 (0.9) 0.5 0.23 (0.79) 1.7
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significant phylum-level increase in the abundance of Proteobac-
teria (p ¼ 0.03, adj. p ¼ 0.14). The increase was mainly attributed to
Desulfovibrionaceae (dominated by Bilophila spp.), although not
reaching statistical significance after FDR adjustment (p ¼ 0.01, adj.
p ¼ 0.28) because of the limited prevalence of this bacterial family
among the study subjects (Supplementary Fig. 3). Lactococcus and
Please cite this article as: Jian C et al., Impact of short-term overfeeding of s
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Escherichia coli thrived on the CARB diet (Table 1). The high mean
increase (i.e. 60-fold) in the abundance of E. coli in the CARB group
was mainly attributed to one individual. The UNSAT diet resulted in
significant increases in the butyrate producers Lachnospira, Rose-
buria and unclassified Ruminococcaceae, and a decrease in uncul-
tured Coriobacteriaceae (Table 1).
aturated or unsaturated fat or sugars on the gutmicrobiota in relation
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3.4. Butyrate-producing capacity of the microbiota

Due to the significantly increased abundances of several
butyrate-producing bacteria following the UNSAT overfeeding
(Table 1), we estimated the overall butyrate-producing capacity of
the microbiota by quantifying the butyryl-CoA:acetate CoA-trans-
ferase gene (butyryl-CoA) using qPCR. At baseline, the abundance
of the butyryl-CoA gene correlated significantly and positively with
the collective relative abundance of dominant butyrate producing
genera Blautia, Subdoligranulum, Faecalibacterium, Anaerostipes,
Butyrivibrio, Coprococcus and Roseburia/Eubacterium rectale [24]
(Supplementary Fig. 4). Butyryl-CoA gene abundance did not
change during overfeeding and was uncorrelated with the changes
in clinical and nutritional variables.
3.5. Association of baseline microbiota to overfeeding-induced
increase in the liver fat

We examined the baseline abundances of common bacterial
taxa in all subjects stratified by the clinical outcome, here liver fat
increment, as done in previous studies [17,18,33]. There was no
difference in the clinical and dietary characteristics between the
responders and non-responders at baseline. However, the baseline
prevalence and mean abundance of Desulfovibrionaceae, especially
genus Bilophila, were significantly higher in responders i.e. subjects
with overfeeding-induced increase in the liver fat (Fig. 3).
3.6. Correlations between the microbiota composition and clinical
and nutritional parameters during overfeeding

To parallel the dynamics between the gut bacteria and the host-
associated parameters during the intervention, changes in the
abundances of common genera were related to changes in key
clinical and dietary variables listed in Supplementary Table 2.
Subjects from different diets were pooled to increase the statistical
power as all diets led to significant increase in the liver fat content
(Supplementary Table 2 and [16]). To account for the differing
macronutrients between the diet groups during overfeeding, cor-
relations were calculated using models with and without adjust-
ment for changes in percentage of saturated, unsaturated fat and
carbohydrate intake. Several genera significantly correlated to
changes in host metabolic parameters in unadjusted and/or
adjusted model (Table 2). Notably, Coprococcus were consistently
and significantly associated with lower levels of triglycerides
(p ¼ 0.002; adj. p ¼ 0.04 in the adjusted model). Lachnospira
(stimulated by UNSAT) and Lactococcus (stimulated by CARB)
showed negative and positive significant associations with the
waist-hip ratio and fasting plasma insulin, respectively, in the
adjusted model. An unclassified genus of Ruminococcaceae (most
closely related to strictly anaerobic butyrate-producing bacterium
Agathobaculum butyriciproducens), increased by UNSAT, was
significantly negatively associated to levels of LDL cholesterol in
both models (p ¼ 0.02; adj. p ¼ 0.2 in the adjusted model).
Together, these findings suggest a potential tripartite interaction
between diet, gut microbiota and metabolic health.

Blautia that was enriched in individuals with NAFLD at baseline,
did not correlate with the change in the liver fat during over-
feeding, but showed a significant negative relationship with the
intake of mono- and polyunsaturated fat (Table 2). The rest of the
taxa that significantly co-varied with host phenotypic changes
during overfeeding (Table 2) did not show overlap with bacteria
that associated to NAFLD at baseline (Fig. 1).
Please cite this article as: Jian C et al., Impact of short-term overfeeding of s
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4. Discussion

By performing an in-depth gut microbiota analysis during
overfeeding in obese and overweight individuals, we show that a 3-
week energy surplus on top of habitual diet had neglectable
community-level effect on the gut microbiota, while a set of diet
composition-specific changes in individual bacterial taxa were
detected. The overall resilience (i.e. high intraindividual repro-
ducibility of repeated measurements) of the human gut microbiota
aligns well with the ample data from previous dietary intervention
studies [34]. It is however well known that changes in the abun-
dance of single bacteria can have a major effect on host physiology
[35]. In the present study, the abundance of specific bacteria that
may exert detrimental or protective diet-dependent effects on the
host was altered in a diet-specific manner. Specifically, the
enrichment of Proteobacteria in the saturated fat group and buty-
rate producers in the unsaturated fat group were observed. While
the baseline gut microbiota showed specific patterns associated
with the NAFLD phenotype, we found little overlap between these
bacterial signatures and the bacteria that were significantly altered
during overfeeding, as well as between the correlates of microbiota
and liver fat or other host metabolic parameters at baseline versus
after overfeeding. Instead, our results suggest that the carriage of
Bilophila is positively associated to increase of liver fat in response
to a hypercaloric diet. These findings are discussed in detail below.

At baseline, we found several features in the gut microbiota
specific to individuals with NAFLD that have been documented in
previous human studies, including depletion of Bacteroidetes
[36,37] and increased proportion of Blautia [38]. The relative
abundance of unclassified Lachnospiracecae and the Firmicute to
Bacteroidetes ratio were associated with NAFLD in our and other
cohorts of NAFLD andmetabolic disturbances despite inconsistency
in terms of directionality [39,40]. When comparing the predicted
functions of the microbiota between subjects with and without
NAFLD, the former was enriched with bacterial genes related to cell
membrane transport, while glycan biosynthesis and metabolism
genes were relatively more abundant in the latter. Previous studies
have linked obesity to overrepresentation of bacterial genes related
to cell membrane transport, supposedly by increasing the capacity
of nutrient uptake by the bacteria [41,42].

The overall community structure of the microbiota remained
stable and personalized during overfeeding with SATor UNSAT. The
lack of community-level effects corroborates the few previous
studies that have addressed effects of the type and quantity of di-
etary fat on the human microbiota in healthy subjects or general
population. A 7-day overfeeding interventionwith whipping cream
(45E% of fat, mainly SAT) among 25 lean young Germanmen did not
yield consistent changes in the gut microbiota profiles [8]; similarly
to a longer-term (18 weeks) moderate alteration in the intake of
SAT (13e14 E% vs. 7e8 E%) in a multiethnic cohort with wide age
and body mass index range [43]. Finally, no effects on beta diversity
were observed after 8 weeks of omega-3 PUFA supplements in 22
healthy British volunteers [44].

Previously we reported the phylum-level increase of Proteo-
bacteria specifically in the SATgroup [16]. Herewe further analyzed
the SAT-induced alternations on finer taxonomic levels, and iden-
tified a nominally significant increase in the proteobacterial family
Desulfovibrionaceae and specifically its genus Bilophila. A previous
intervention study including 10 healthy subjects found Bilophila
wadsworthia to increase during an animal-based (SAT-rich) diet
and correlate positively with subjects’ baseline SAT intake [45].
Three studies in mice [46e48] have also demonstrated a stimula-
tory effect of saturated fat on the abundance of Bilophila. Bilophila is
extremely bile-tolerant and produces H2S [49], which is a geno-
toxin and mucosal barrier-breaker [48,49]. A recent mouse study
aturated or unsaturated fat or sugars on the gutmicrobiota in relation
.org/10.1016/j.clnu.2020.05.008



Fig. 3. (A) Cladogram showing differences in taxonomic profiles of the baseline gut microbiota between the liver fat responders and non-responders. (B) Relative abundance of
Bilophila at baseline. The baseline levels of Bilophila were significantly higher in subjects with any increase in the liver fat (N ¼ 29; responders) than in those who did not have
increased liver fat during overfeeding (N ¼ 9; non-responders). (C) Intra-individual changes in metabolic endotoxemia (i.e. chronically elevated plasma LPS at levels 10e50 times
lower than during septic conditions) during overfeeding. The increase in the LBP to CD14 ratio as marker of metabolic endotoxemia was higher in the responders by trend.
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Table 2
Significant correlations (raw p-values < 0.05 & adj. p values < 0.2) between changes of clinical and nutritional variables and changes of abundances in bacterial genera during
overfeeding. Only variables having at least one signifigant association are included in the table and taxa whose abundances were significantly altered by overfeeding (Table 1)
are marked with a hash symbol (a).

Estimated effect sizeb p-value (adj. p)b Estimated effect sizec p-value (adj. p)c

Waist:Hip ratio
Lachnospiraa NS NS �0.04 0.02 (0.2)
Oscillibacter NS NS �0.02 0.01 (0.2)
LDL
Unclassified Ruminococcaceaea �0.02 0.01 (0.18) �0.02 0.02 (0.2)
Unclassified Coriobacteriaceaea NS NS 0.02 0.02 (0.2)
Dorea NS NS 0.03 0.01 (0.2)
Faecalibacterium NS NS �0.15 0.02 (0.2)
Triglycerides
Coprococcus �0.02 0.004 (0.1) �0.02 0.002 (0.04)
Fasting plasma insulin
Lactococcusa NS NS 0.01 <0.001 (<0.001)
Fasting plasma blood glucose
Flavonifractor 0.02 0.007 (0.08) NS NS
MUFA intake (%)
Anaerostipes �0.01 0.01 (0.09) e e

Blautia �0.03 0.02 (0.09) e e

PUFA intake (%)
Anaerostipes �0.01 0.01 (0.15) e e

Blautia �0.03 0.02 (0.15) e e

NS, not significant; LDL, low-density lipoprotein cholesterol; MUFA, monounsaturated fat; PUFA, polyunsaturated fat.
a Significantly altered by overfeeding.
b Unadjusted model.
c Model adjusted for changes in % intake of saturated, mono- and polyunsaturated fats, and cabohydrates.
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shows that B. wadsworthia aggravates high fat diet-induced meta-
bolic derangements (including hepatic steatosis) via promoting
intestinal barrier dysfunction, inflammation and bile acid dysme-
tabolism [50]. Interestingly, our exploratory analyses reveal that
Bilophila was the only taxon that significantly differed at baseline
between responders and non-responders for overfeeding-induced
liver fat, and hence suggest that higher carriage of Bilophila may
predispose subjects to overfeeding-induced increase in liver fat.

The UNSAT overfeeding led to the highest number of significant
taxon-specific alternations compared to the other two diets. The
bacteria up-regulated by UNSAT (Lachnospira, Roseburia and un-
classified Ruminococcaceae) have been associated with leanness
and positive metabolic health in our correlative analysis and pre-
vious studies [51,52], presumably via butyrate production [52].
These bacteria were previously reported to reversibly increase in
healthy subjects supplemented with omega-3 polyunsaturated fat
[44]. Therefore, it is unexpected that we found no respective
changes in the qPCR-measured butyrate production capacity within
the UNSAT group. Nevertheless, the gut microbiota can contribute
to host metabolic health and lipid metabolism via multiple path-
ways [53]. We detected a significant negative correlation between
UNSAT-stimulated unclassified Ruminococcaceae (related to
A. butyriciproducens) and serum LDL-cholesterol during over-
feeding. Coriobacteriaceae, which was significantly reduced by
UNSATand positively associated with LDL, have been linked to poor
metabolic health outcomes via a positive correlation with plasma
non-HDL cholesterol [54] and enrichment in the obese microbiota
[52]. We also identified a strong and significant anticorrelation
between changes in the abundance of Coprococcus and levels of
plasma triglycerides, in line with their negative association in a
large cross-sectional study of Finnish men [55].

Similar to high-fat overfeeding, the CARB overfeeding did not
alter the global community structure. Instead, we found significant
increases in the relative abundances of Lactococcus and E. coli.
Simple sugars, similar to fat that contributed the extra calories in
this study, are predominantly digested in the small intestine. Their
excessive intake during overfeeding may however make these
nutrients accessible to the colonic microbiota. While most colonic
Please cite this article as: Jian C et al., Impact of short-term overfeeding of s
to liver fat in obese and overweight adults, Clinical Nutrition, https://doi
bacteria as strict anaerobes cannot utilize fat as an energy source
[56], simple sugars escaping the small intestinal absorption are
readily fermented by lactic acid bacteria and other facultative an-
aerobes such as Lactococcus and E. coli [57], likely explaining their
increased abundances during the CARB overfeeding diet. Under
anaerobic conditions, E. coli and also Lactococcus [58] typically
switch to mixed-acid fermentation pathway, leading to production
of endogenous ethanol that has been implicated in the pathogen-
esis of NAFLD [59].

Previous human cross-sectional studies have claimed to identify
specific NAFLD-associated gut microbiota signatures despite dis-
crepancies in the implicated bacterial taxa [7,60,61]. We attempted
to relate the composition and predicted functions of the microbiota
to liver fat, other metabolic parameters and dietary variables in
both cross-sectional and intervention settings. However, none of
the NAFLD-associated microbial signatures we identified at base-
line co-varied with the increase of liver fat or changes in related
host metabolic parameters as a result of overfeeding. Blautia,
enriched in subjects with NAFLD at baseline, showed significant
anticorrelation with the intake of poly- and monounsaturated fat
both at baseline and during overfeeding. The habitual intake of
poly- and monounsaturated fat was significantly lower in the
subjects with NAFLD (p < 0.05; Supplementary Table 1). Thus, the
higher abundance in Blautia in subjects with NAFLD likely reflects
the habitual dietary patterns underlying NAFLD development. In a
broader perspective, our findings may imply that the partially
inconsistent NAFLD-associated microbial signatures identified in
previous cross-sectional studies [7,38,60] are influenced by the
dietary patterns specific to the cohorts rather than directly asso-
ciated with liver fat. These results highlight the importance of
taking the habitual diet into account in dietary intervention studies
addressing the effects on the gut microbiota.

The main strengths of this study are the type of intervention
that is rarely conducted in humans, extensive clinical phenotyping
of the volunteers, and the clinical relevance and real-life resem-
blance of the study design; addressing hepatic steatosis in over-
weight subjects consuming excess of energy-dense foods. The
cohort in the present studywas also the largest compared to similar
aturated or unsaturated fat or sugars on the gutmicrobiota in relation
.org/10.1016/j.clnu.2020.05.008
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interventions [62]. Nevertheless, due to the high individuality of
gut microbiota, the sample size per dietary arm is small, limiting
statistically significant findings.

In summary, our results confirm the previously identified
detrimental association between Bilophila and saturated fat intake
in metabolic diseases and for the first time demonstrate it in the
context of NAFLD. We also identified novel associations between
the intake of unsaturated fat intake and gut bacteria that may
contribute to compensating the deleterious effects on host physi-
ology generally related to high fat diets. Taken together, these
findings reaffirm the importance of dietemicrobiota interactions in
the process of diet-induced metabolic deterioration.
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