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Abstract 

Objective: Schizophrenia has one of the highest heritability estimates in psychiatry, but the genetically-

based underlying neuropathology has mainly remained unclear. We conducted a multimodal coordinate-

based meta-analysis (CBMA) to investigate brain structural and functional alterations in individuals with 

high familial risk for schizophrenia, i.e. in first-degree relatives of schizophrenia patients (FRs). Methods: 

We conducted a systematic literature search from two electronic databases to find studies that examined 

differences between FRs and healthy controls using whole-brain functional magnetic resonance imaging 

(fMRI) or voxel-based morphometry (VBM). A CBMA of 30 fMRI (754 FRs; 959 controls) and 11 VBM 

(885 FRs; 775 controls) datasets were conducted using the anisotropic effect-size version of signed 

differential mapping. Further, we conducted separate meta-analyses about functional alterations in different 

cognitive tasks: social cognition, executive functioning, working memory, and inhibitory control. Results: 

When compared to healthy controls, FRs showed higher fMRI activation in the right frontal gyrus during 

cognitive tasks. In VBM studies, there were no differences in grey matter density between FRs and healthy 

controls. Furthermore, multi-modal meta-analysis obtained no differences between FRs and healthy 

controls. Finally, by utilizing the BrainMap database, we showed that the brain region which showed 

functional alterations in FRs (i) overlapped only slightly with the brain regions that were affected in the 

meta-analysis of schizophrenia patients and (ii) correlated positively with the brain regions that exhibited 

increased activity during cognitive tasks in healthy individuals. Conclusions: Based on this meta-analysis, 

FRs may exhibit only minor functional alterations in the brain during cognitive tasks, and the alterations are 

much more restricted and only slightly overlapping with the regions that are affected in schizophrenia 

patients. The familial risk did not relate to structural alterations in the grey matter. 

 

Keywords: Schizophrenia; Psychosis; Genetic risk; Familial risk; Brain structure; Brain activity  
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1 Introduction 

 

The heritability of schizophrenia and psychotic disorders may be as high as 80% (Sullivan et al., 2003), but 

the genetically-based underlying neuropathology is mostly unknown. First-degree relatives of schizophrenia 

patients (FRs) compose a particular risk group since their lifetime morbidity risk for schizophrenia is 

increased ten-fold to 10% (Gottesman et al., 2010; Lichtenstein et al., 2006). Consequently, when evaluating 

an individual’s risk for schizophrenia, the familial risk is among the most important factors (Mäki et al., 

2005). 

Cognitive impairment is very common in prodromal schizophrenia (Cornblatt et al., 2004; 

Lencz et al., 2006). Furthermore, large cognitive deficits are present prior to illness onset and represent 

vulnerability markers for the onset of the disorder (Carrión et al., 2018). Along with this, cognitive 

impairment is also included as a diagnostic criterion for schizophrenia in the DSM-V classification. Overall, 

cognitive functioning is shown to be more severely impaired in genetic than clinical high-risk populations 

(Seidman et al., 2010). The most affected cognitive abilities are executive functioning, such as working 

memory and inhibitory control (Snitz et al., 2005), and social cognition (Cornblatt et al., 2003; Hans et al., 

2010). Consequently, cognitive impairment is a crucial element when aiming to identify predictors for the 

onset of schizophrenia. 

Previous meta-analyses suggest that relatives of schizophrenia patients have increased activity 

in the right-side parietal, temporal, and frontal regions (Cooper et al., 2014; Scognamiglio et al., 2014; 

Zhang et al., 2016). Findings on brain regions with decreased activity in FRs have been inconclusive, with 

findings in the thalamus, cerebellum, cingulate, or frontal lobes (Cooper et al., 2014; Scognamiglio et al., 

2014; Zhang et al., 2016; Niu et al., 2017). Regarding structural alterations, FRs seem to have decreased 

gray matter in the insula and frontal regions, even though the findings have varied somewhat (Cooper et al., 

2014; Niu et al., 2017; Boos et al., 2007). Multimodal meta-analyses in FRs have been inconclusive (Cooper 

et al., 2014; Niu et al., 2017). 

  An updated meta-analysis on this topic is very much needed for several reasons. Firstly, a 

growing number of original studies have been conducted on this topic during recent years, so a higher 
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number of participants are available for a meta-analysis. Secondly, previous meta-analyses have not 

investigated functional alterations in FRs separately in different cognitive tasks. This might be important 

since there is evidence that different cognitive abilities may be selectively impaired among individuals at 

risk for schizophrenia (Cornblatt et al., 2003; Hans et al., 2000). Thirdly, there is a possibility that alterations 

in genetic high-risk individuals are located in overlapping regions but are more subtle than in schizophrenia 

patients. However, this has remained uninvestigated in the previous meta-analyses. Finally, previous meta-

analyses have not examined if the functional alterations during cognitive tasks in FRs are located in the 

brain regions that exhibit increased activity during cognitive tasks in healthy individuals. This is a crucial 

question since there is evidence about compensating mechanisms in the brain among individuals at risk for 

psychosis (Cooper et al., 2014; Fusar-Poli et al., 2010; Pulkkinen et al., 2015). For example, it is possible 

that before any psychotic symptomatology has emerged, FRs can compensate for mild cognitive 

impairments by activating more extensive brain networks (i.e. different/additional brain regions than in 

healthy individuals) during a cognitive task.  

Our first aim was to conduct a multimodal meta-analysis in order to investigate the functional 

and structural alterations in first-degree relatives of schizophrenia patients. We included peer-reviewed 

functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) studies with whole-

brain scanning. Our second aim was to investigate whether brain regions with structural or functional 

alterations in FRs overlap with the regions (i) that are affected in schizophrenia patients or (ii) that exhibit 

increased activity during cognitive tasks in healthy individuals. For this purpose, we utilized the publically 

available meta-analysis database BrainMap. We did not set a-priori hypotheses in this study.  

 

2 Methods 

 

2.1 Search strategies 

The MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist was followed throughout 

the meta-analysis (https://www.elsevier.com/__data/promis_misc/ISSM_MOOSE_Checklist.pdf). The 

fulfilled form of the MOOSE Checklist can be found in Supplementary Table 1. A systematic literature 

https://www.elsevier.com/__data/promis_misc/ISSM_MOOSE_Checklist.pdf
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search was carried out between August and November 2018 using the electronic databases of PubMed and 

Web of Science. For fMRI studies, we used the following search terms: “schizophrenia” AND (“genetic 

risk” OR “familial risk” OR “parental risk” OR “relatives” OR “twins” OR “offspring” OR “siblings”) AND 

(“fMRI” OR “functional MRI” OR “BOLD”). For VBM studies, the search terms included: “schizophrenia” 

AND (“genetic risk” OR “familial risk” OR “parental risk” OR “relatives” OR “twins” OR “offspring” OR 

“siblings”) AND (“VBM” OR “gray matter” OR “gray matter" OR "voxel-based morphometry"). There 

were no restrictions regarding language, publication date, or publication status, and the search was directed 

to all fields. 

After removing duplicates, all identified studies were screened based on the title and abstract 

and defined as eligible/ineligible for the meta-analysis. In addition to original research papers, all meta-

analyses and reviews identified by our search strategies were scrutinized, and their reference lists were 

manually checked for any additional eligible studies. After the abstract and title review, the identified full-

text articles were screened more precisely on the basis of the exclusion and inclusion criteria (described in 

the next section). The article selection process is illustrated in Figure 1. In each phase of the article selection 

process, the eligibility of the inclusion/exclusion was double-checked by another author 

(A.S./S.H./J.P./L.B./J.L.). The primary reasons for excluding articles are shown in Supplementary Tables 2 

and 3. 

 

2.2 Inclusion and exclusion criteria 

The inclusion criteria for the identified studies were: a peer-reviewed original article; the study included 

fMRI or VBM on gray matter; subjects were first-degree relatives of schizophrenia patients; subjects were 

compared to a healthy control group; whole-brain scanning; T or Z statistics of the observed BOLD 

response difference between FRs and healthy controls were available; p-values were available; the 

coordinates were reported using the Talairach Atlas (Tal) or the Montreal Neurological Institute (MNI) 

space. The exclusion criteria for the identified studies were as follows: only regions of interest (ROIs) were 

investigated; a small volume correction (SVC) was used; participants consisted exclusively of individuals 

with 22q11.2 deletion; the participants with familial risk for schizophrenia expressed psychotic 
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symptomatology or had antipsychotic medications; the group size of the participants with familial risk for 

schizophrenia was less than 10; or a larger sample of the same population was provided in another included 

study. We also excluded studies that reported only functional connectivity-based group differences due to 

the significant variations in these techniques.      

 

2.3 Data collection from the included studies  

We collected the following information (if available): publication year, sample size, gender distribution, age, 

the score of the Global Assessment of Functioning (GAF), intelligence quotient (IQ), the diagnostic 

classification system that was used for the identification of schizophrenia, smoothing kernel (mm), 

psychopharmacological treatment of FRs (other than antipsychotic medications), mental disorders of FRs 

(other than psychotic disorders), used analyzing software package for fMRI/VBM, magnetic field strength 

(Tesla), the use of correction for multiple comparisons, and the use of covariates. Additionally, when 

applicable, we collected the x-, y- and z-coordinates (reported using Tal or MNI) of statistically significant 

findings and the direction of the observed difference between FRs and healthy controls. In case some 

necessary information was missing, we contacted the authors of the original articles. 

 

2.4 Statistical analyses and meta-analytical models 

We performed separate voxel-based meta-analyses of findings in fMRI activation, and regional gray matter 

volume (VBM) maps in individuals with FRs relative to healthy controls using an anisotropic effect-size 

version of signed differential mapping (AES-SDM v5.141, see http://www.sdmproject.com). The analytical 

processes of AES-SDM meta-analysis have been described in detail elsewhere (Radua et al., 2012b, 2014). 

For the analysis, we extracted the peak coordinates and t-statistics of fMRI activation or gray 

matter differences between FRs and healthy controls from each included data set. We ensured that the same 

statistical threshold was used throughout the brain and throughout the study. If multiple thresholds were 

used, we selected the most stringent threshold. If t-statistics were not available, we used the web-based tool 

provided by the AES-SDM (https://www.sdmproject.com/utilities/?show=Statistics) to convert z-statistics or 

p-values into t-statistics. Next, we estimated a standard MNI-map of fMRI activation or gray matter 

http://www.sdmproject.com/
https://www.sdmproject.com/utilities/?show=Statistics
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alterations (VBM) for each study separately using an anisotropic Gaussian kernel (full width at half 

maximum=20 mm). After that, we employed a random-effects model, taking into account the sample size, 

intra-study variance, and between-study heterogeneity. It has been demonstrated that high statistical stability 

can be acquired with 20 permutations (Radua et al., 2012b). To ensure the stability of the analyses, we 

performed these analyses using 50 permutations. 

AES-SDM uses the following default statistical threshold: uncorrected voxel p-value of 0.005, 

peak height Z ≥ 1, and cluster extent ≥ 10 voxels. This thresholding approximates the corrected p-value of 

0.05 and creates an optimal balance between sensitivity and specificity (Radua et al., 2012b). To avoid 

spurious findings, we set a more stringent threshold by using the significance level at the uncorrected voxel 

p-value of 0.0005, peak height Z = 2, and 80 voxels. The robustness of the results was assessed by 1) 

assessing the level of heterogeneity (using I2 statistics that refers to the percentage of total variance between 

studies resulting from rather a heterogeneity than chance); 2) inspecting the funnel plots for publication bias 

using Egger's test; and 3) implementing a jack-knife sensitivity analysis. Additionally, we conducted meta-

regression analyses with age (in FR group), field strength, and sex distribution (in FR group) as a regressor 

(using even more stringent threshold of p=0.0001). 

Regarding fMRI studies, we conducted five separate analyses. The first analysis included all 

the fMRI studies (regardless of which cognitive tasks had been used). The second analysis included studies 

with executive functioning tasks. FMRI studies with executive functioning tasks were further classified into 

working memory tasks (Analysis 3) and inhibitory control tasks (Analysis 4). Analysis 5 included fMRI 

studies with social cognition tasks. The classification of cognitive tasks was based on the previous models of 

cognitive functions (Diamond et al., 2013; Miyake et al., 2012). 

Finally, since we were interested in both functional and structural abnormalities in FRs, we 

also performed a multimodal analysis on the fMRI and VBM meta-analytical maps. The multimodal 

analysis was conducted according to Radua et al. (2013) to investigate potential conjunctions between the 

VBM and fMRI modalities. Briefly, this method estimates the significance of the overlap between the actual 

p-values of the two modalities. 
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For non-neuroimaging statistical analyses, we used R (http://cran.r-project.org) version R 3.4.3 

(R Core Team, 2014) with psych (Revelle, 2017) and metafor (Viechtbauer, 2010) packages. We conducted 

random effect models (visualized in forest plots) and analyzed the heterogeneity of the studies. 

 

2.5 Comparison to the meta-analysis of previous fMRI and VBM studies in schizophrenia patients 

As an additional analysis, we investigated whether the brain regions which exhibited functional or structural 

alterations in FRs in the meta-analysis overlapped with brain regions that are affected in schizophrenia 

patients. This investigation was conducted using the BrainMap database. The data collection methods of the 

BrainMap database have been described with more detail elsewhere (Laird et al., 2011), and it has also been 

used in several previous meta-analyses (e.g. Daniel et al., 2016; Vanasse et al., 2018). Specifically, we 

conducted an additional automatic meta-analysis of the previous VBM and fMRI studies in schizophrenia 

patients (the search with Sleuth was conducted in August 2018, see http://www.brainmap.org/sleuth/). We 

identified 50 fMRI studies and 27 VBM studies. In the meta-analysis of fMRI studies, we used contrasts in 

both directions (i.e. schizophrenia>controls and schizophrenia<controls). This was because schizophrenia 

patients have exhibited both increased and decreased brain activity patterns in various brain regions. In the 

meta-analysis of VBM studies, we analyzed only schizophrenia<controls contrast because one of the most 

robust findings in the previous literature has been the lower gray matter volume in schizophrenia patients 

when compared to controls (Haijma et al., 2012). GingerALE (Turkeltaub et al., 2002; Eickhoff et al., 2009) 

with 1000 repetitions was used. The p-values for each meta-analysis were thresholded at a cluster level 

corrected threshold of p<0.05 (cluster-forming threshold at voxel-level p<0.001).  

 

2.6 Comparison to the previous fMRI studies in healthy individuals  

We investigated whether the brain regions that were found to be affected in FRs (in the fMRI and VBM 

meta-analysis) overlapped with the brain regions activated during behavioral tasks in healthy individuals. 

First, we examined the brain activity maps during a wide variety of behavioral tasks (e.g. working memory, 

language processing and emotion recognition.) in healthy individuals. This was done by using the BrainMap 

database (http://www.brainmap.org/taxonomy/behaviors.html) and conducting meta-analyses on the 

http://www.brainmap.org/sleuth/
http://www.brainmap.org/taxonomy/behaviors.html
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previous fMRI studies in healthy individuals during different behavioral tasks. We included all the 

behavioral domains that had been investigated in at least 17 previous fMRI studies, as this is suggested to be 

the minimum number of studies for running a meta-analysis on GingerAle (Eickhoff et al., 2016). Using this 

criterion, we retained 47 behavioral domains that are listed in Supplementary Table 4. Thereafter, we 

extracted Z-statistics of the unthresholded activity maps of each behavioral domain using the Automated 

Anatomical Labeling (AAL) parcellation (Tzourio-Mazoyer et al., 2002). Next, we employed principal 

component analysis (PCA) on the 47 behavioral domains to reduce the dimensionality of the domains (using 

psych package in R). Behavioral domains that had a loading greater than 0.5 were considered as primary 

indicators of a specific component. Finally, we correlated the Z-maps of the components with the 

untresholded Z-maps of the fMRI in FRs.  

 

3 Results 

 

3.1 Description of the included studies  

The systematic literature search resulted in 29 fMRI studies (one study included two separate datasets that 

were analyzed separately, i.e. altogether 30 fMRI datasets) and 10 VBM studies (one study included two 

separate datasets, i.e. altogether 11 VBM datasets). All the studies were originally published between 2003 

and 2018. The descriptive statistics of the included studies are presented in Table 1 (fMRI studies) and 

Table 2 (VBM studies). In the fMRI studies, there were altogether 754 FRs (sample size weighted mean 

age=31.9 years; 56.8% female) and 959 healthy controls (sample size weighted mean age=30.5 years; 50.5% 

female). In the VBM studies, there were altogether 885 FRs (mean age=31.2 years; 51.6% female) and 775 

healthy controls (mean age=30.8 years; 49.6% female). IQ was reported only in 15 datasets (11 fMRI and 4 

VBM). These 15 datasets indicated that IQ was lower in FRs than in controls (sample size weighted 

mean=104.2 vs. 108.9, Z=-3.8, p<.0001) (forest plot available in Supplementary Figure 1). There was, 

however, significant heterogeneity between the included studies (I2=71.30%, Q(14)=53, p<.0001) but no 

indication of publication bias (Egger's test, p=.62).   
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 Regarding cognitive tasks in the fMRI studies, there were 19 studies with executive 

functioning tasks that were further classified into two categories: 11 datasets with working memory tasks 

(the N-back working memory task; the Sternberg working memory task; Spatial delayed-response task) and 

8 datasets with inhibitory control tasks (the Continuous Performance Task, Stop-Signal Anticipation Task; 

Dot Probe Expectancy Task; Hayling Sentence Completion Task; Pro- and Antisaccades Task). 

Additionally, there were seven studies with social cognition tasks (including Theory of Mind Task; Irony 

comprehension task; Facial processing tasks; Self-referential task).  

There were 6 fMRI studies with such cognitive tasks that could not be classified into the 

previous categories. The cognitive tasks assessed reward anticipation (1 dataset), early visual processing (2 

datasets), visual memory (1 dataset), auditory comprehension (1 dataset), and cognitive skills learning (1 

dataset). These datasets were included in the first fMRI meta-analysis (with the full set of cognitive tasks).  

 

3.2 Meta-analysis of the fMRI studies 

The results of the fMRI meta-analysis are presented in Table 3. In the first analysis with the full set of 

cognitive tasks, FRs had increased activity in the right inferior frontal gyrus (opercular part) when compared 

to healthy controls. Supplementary Figure 2 provides the individual study estimates and an overall estimate 

of the activation difference in the right inferior frontal gyrus between FRs and healthy controls. The results 

remained basically the same when excluding studies that possibly included a few second-degree relatives of 

schizophrenia patients (two studies) (see Supplementary Table 5). However, when we excluded studies that 

did not employ any correction for multiple comparisons (eight studies), we found no group differences in the 

BOLD response. The field strength, mean age of the FR group or the gender distribution in the familial risk 

group did not relate to fMRI findings as analyzed with meta-regression. In the fMRI meta-analysis, we 

detected no significant between-study heterogeneity in the right inferior frontal gyrus (I2=0.1%). 

Additionally, the jackknife sensitivity analysis confirmed that the findings in the right inferior frontal gyrus 

were reproducible (27/30). Moreover, there was no indication of publication bias in the right inferior frontal 

gyrus (Egger's test p=0.34) (see funnel plots in Supplementary Figure 3).  
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During executive functioning tasks and working memory tasks, FRs had increased activity in 

the right inferior frontal gyrus when compared to healthy controls. No other group differences during these 

tasks were detected. Further, no findings were observed in social cognition and inhibition control studies in 

BOLD response in FR vs. controls. 

 

3.3 Meta-analysis of the VBM studies 

The meta-analysis of the VBM studies showed that there were no differences in gray matter volume between 

FRs and healthy controls. No findings were also found when excluding studies that possibly included a few 

second-degree relatives of schizophrenia patients (two studies). In addition, there were no group differences 

in grey matter density when excluding studies that did not employ any correction for multiple comparisons 

(three studies).  

 

3.4 Multimodal meta-analysis of the fMRI and VBM studies 

In the multimodal analyses, we included both fMRI and VBM studies in the same meta-analysis, in order to 

assess whether some brain regions exhibited both functional and structural alterations. Multimodal analyses 

obtained no differences between FRs and healthy controls.  

 

3.5 Comparison to the meta-analysis of previous fMRI and VBM studies in schizophrenia patients 

We investigated whether brain regions that exhibited functional in FRs overlapped with brain regions that 

showed both functional and structural alterations in schizophrenia. The results are shown in Figure 2. In the 

full set of fMRI studies, FRs had increased activity in the right inferior frontal gyrus. This region was 

slightly overlapping with the brain regions that were affected in schizophrenia patients. 

 

3.6 Comparison to the meta-analysis of previous behavioral fMRI studies in healthy individuals 

Principal component analysis of the brain activity patterns of different behavioral domains resulted in a two-

component solution (76% of the variance explained). The component structure was further promax rotated. 

The loadings of all the 47 behavioral domains on the two components are shown in Figure 3a. The first 
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component had factor loadings from the domains of executive functioning, inhibition, attention, working 

memory, spatial reasoning, and language processing. The second component included factor loadings from 

processing negative and positive affect, interoceptive processing, and sensory processing. Consequently, the 

first component was named as “cognitive component” and the second component as “affect/sensory 

component”.  

Next, we investigated whether the untresholded FR vs. control map might correlate with the 

cognition- or affect/sensory-related brain activity maps in healthy individuals. The results are shown in 

Figures 3b and 3c. Specifically, the brain activity maps of cognitive domains (in healthy individuals) 

correlated positively with the untresholded FR vs. controls meta-analysis map. In contrast, the brain activity 

maps of affect/sensory-related domains (in healthy individuals) did not correlate with the untresholded FR 

vs. controls meta-analysis map. Taken together, the brain region that exhibited functional alterations in FRs 

seemed to correlate with the brain activity maps that are activated during cognitive tasks in healthy 

individuals.  

 

4 Discussion  

 

To the best of our knowledge, this is the largest multimodal coordinate-based meta-analysis on first-degree 

relatives of schizophrenia patients (754 FRs in fMRI studies and 885 FRs in VBM studies). We found that 

FRs exhibit very restricted and only slightly overlapping functional alterations with those seen in 

schizophrenia patients. We also found that the brain regions that exhibited altered functioning in FRs 

correlated positively with the brain regions that exhibit increased activity during cognitive tasks in healthy 

individuals. The VBM meta-analysis and multimodal analyses obtained no differences between FRs and 

healthy controls. 

 

 

4.1 fMRI meta-analyses on different cognitive tasks  

 

In the full set of cognitive tasks, FRs had higher activity in the right frontal gyrus when compared to healthy 

controls. This difference was also obtained during working memory tasks and executive functioning tasks. 
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Previously, the right frontal gyrus is found to response inhibition and attentional control (Aron et al., 2003; 

Chikazoe et al., 2007; Hampshire et al., 2010). These abilities, in turn, are known to be impaired in 

schizophrenia patients (Enticott et al., 2008; Wang et al., 2005). Hence, the findings suggest that some 

impairments in the neurobiological basis of these abilities may familial risk of psychosis. 

Previously, single studies have suggested that during executive functioning tasks, FRs might 

exhibit altered activity in regions that are not generally related to executive functioning, such as anterior 

cingulate gyrus (Filbey et al., 2008) or corpus callosum (Karch et al., 2009). However, this meta-analysis 

did not support these findings. Specifically, we obtained functional alterations in FRs during cognitive tasks 

only in the right frontal gyrus, and the untresholded group comparison map correlated positively with those 

brain regions that exhibit increased activity during cognitive tasks in healthy individuals.  

We found that the right frontal gyrus exhibited higher activity in FRs (vs. controls) during 

cognitive tasks. We speculate that this finding might relate to the neural compensatory mechanism, where 

individuals with FR compensate for the difficulty of the task via hyperactivation.  Similar conclusions have 

been made in previous studies (Cooper et al., 2014; Fusar-Poli et al., 2010; Pulkkinen et al., 2015). This 

conclusion is in line with a  previous meta-analysis that found the activity of the right inferior frontal gyrus 

decreasing in FRs during rest (Niu et al., 2017).  

The brain regions with increased activity in FRs during cognitive tasks appeared to be mostly 

located in the right hemisphere. This may be related to the lateralization hypothesis of schizophrenia (Crow 

et al., 1989), postulating that schizophrenia is linked to weaker lateralization of the brain functioning. For 

example, schizophrenia patients have an abnormal right hemisphere dominance during language processing 

tasks (Li et al., 2009). Additionally, schizophrenia patients have a higher prevalence of left-handedness, 

indicating a dominance of the right brain hemisphere in motor functioning (Dragovic et al., 2005). In line 

with this, we found that FRs had increased activity in the right hemisphere during cognitive tasks.  

It has been suggested that the differences between FRs and healthy controls may be at least 

partially explained by differences in IQ (de Zwarte et al., 2018). In this meta-analysis, we found that IQ was 

lower in FR when compared with controls. Note, nonetheless, that the average IQ in FRs was 104, which is 
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even slightly above the average IQ. Overall, we suggest that future studies should extend the neuroimaging 

research on intelligence and psychosis risk. 

 

4.2 VBM meta-analysis  

The VBM meta-analysis showed that there were no differences between FRs and healthy controls in gray 

matter density in the brain. This finding may be related to a variety of issues. Firstly, population-based 

studies have demonstrated that the gray matter volume steadily decreases from middle childhood or early 

adolescence onwards (Sowell et al., 2003). Along with this, the previous findings of greater gray matter 

volume in high-risk individuals are suggested to be explained by study sampling: in several samples, the 

participants with prodromal syndromes have been younger than healthy controls (Hirayasu et al., 2001). The 

results of our meta-analysis are in line with this since the mean age of the FRs, and healthy controls was 

approximately the same (31.9 years in FRs and 30.5 years in healthy controls), and no structural differences 

were obtained. 

Secondly, it has been suggested that some of the alterations in FRs may be present only in 

those FRs who will develop psychosis later in life (Fusar-Poli et al., 2012). Further, the structural alterations 

are found to correlate with the duration of the illness and the use of medications (van Erp et al., 2018). In 

our meta-analysis, we excluded those studies that included FRs with psychotic symptomatology and 

obtained no structural alterations in FRs. Hence, it is possible that only those FRs who will convert later into 

psychosis have structural alterations in the brain. However, no firm conclusions can be made about 

converters vs. non-converters because the data did not provide possibilities to analyze structural differences 

between converters vs. non-converters. 

Previous ENIGMA studies have shown that schizophrenia patients have smaller volumes in a 

variety of subcortical regions (e.g. in the hippocampus, amygdala, thalamus, and nucleus accumbens, and 

larger lateral ventricle) and cortical regions (e.g. thinner cortex and smaller surface area especially in the 

frontal and temporal regions) (van Erp et al., 2016, 2018). Regarding FRs, however, it has been suggested 

that genetically-based abnormalities in the brain structure among FRs are “neither severe nor always 

specific” and more restricted by location in FRs than in schizophrenia patients (Lieberman et al., 2001). 
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Along with this, our findings suggest that FRs exhibit no similar alterations in gray matter volume compared 

to schizophrenia patients. The observed modest activation differences in FRs vs. controls are in line with a 

recent ENIGMA study (1228 FRs and 2246 controls) that found relatively weak effect sizes for the 

structural brain differences between FR and controls (de Zwarte et al., 2019). Overall, it appears that the 

possible FR-related neural alterations are subtle and large sample sizes are required to observe the effect of 

FR on brain structures. 

Overall, the VBM meta-analyses among FRs have resulted in inconclusive findings. For 

example, in Cooper et al. (2014) meta-analysis, FRs were found to have larger grey matter volume in the left 

medial frontal gyrus and smaller grey matter volume in left thalamus/putamen, right superior frontal gyrus, 

and left insula, when compared to controls. In our meta-analysis, however, we obtained no structural 

differences between FRs and healthy controls. The divergent findings of the VBM meta-analyses in FRs 

may be related to differences in the sample size. Although we had a larger sample size compared to Cooper 

et al. (2014), however, it is possible that our study was still underpowered, since previous large ENIGMA 

study in FRs found subtle structural alterations in FRs vs. controls. Additionally, the definition of "familial 

risk for schizophrenia" has been varying: for example, contrary to our meta-analysis, a first-degree 

relationship with schizophrenia patients was not required in Cooper's et al. (2014) meta-analysis. Finally, in 

recent years, there has been an increasing concern about false positives in neuroimaging studies. 

 

4.3 Multimodal meta-analysis  

In the multimodal analyses, we included both fMRI and VBM studies in the same meta-analysis, in order to 

see whether some brain regions exhibited both functional and structural alterations. No differences were 

obtained between FRs and healthy controls. This is in line with the previous meta-analysis that also obtained 

no differences between FRs and healthy controls in the multimodal analyses (Niu et al., 2017). Among 

patients with first episode psychosis, it has been found that the use of antipsychotics correlates with 

alterations in the regions that exhibit conjoint structural and functional alterations (Radua et al., 2012a). 

Hence, it may be that multimodal alterations may be obtained only after the onset of psychosis.  
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4.4 Methodological considerations 

 

The number of fMRI studies investigating social cognition was comparatively low (7 studies), whereas the 

optimal number of studies for meta-analysis is likely higher (Eickhoff et al., 2016). In the case of such a low 

number of studies, also differences in fMRI tasks may be a source of heterogeneity. However, this same 

challenge has also been present in other coordinate-based meta-analyses. For example, in the previous VBM 

meta-analysis investigating the functional changes during cognitive tasks in individuals at genetic risk for 

schizophrenia, there were only 6 VBM studies (Cooper et al., 2014). Thus, it appears that more research 

reporting voxel-wise results are needed in order to be able to conduct a reliable coordinate-based meta-

analysis on different behavioral tasks in the future. Overall, future meta-analyses should investigate social 

cognition-related alterations in FRs when a larger number of studies are available. 

Secondly, it could be argued that the reason for investigating alterations in FRs is that they are 

known to have an elevated risk for psychotic symptoms and for the use of antipsychotic medications. In this 

meta-analysis, however, we excluded studies where FRs had psychotic symptoms or had used antipsychotic 

medications. This is because there is evidence that the onset of psychosis is characterized by decreases of 

gray matter in a variety of brain regions (e.g. temporal and frontal regions) (Fusar-Poli et al., 2011). 

Additionally, exposure to antipsychotic drugs is shown to be related to structural alterations in the brain (e.g. 

insula and anterior cingulate) (Radua et al., 2012a; van Erp et al., 2018). Moreover, individuals with 

psychotic symptoms or antipsychotic medications have also been excluded in several previous meta-

analyses (e.g. Cooper et al., 2014; Scognamiglio et al., 2014; Zhang et al., 2016). Consequently, 

antipsychotic medications or psychotic symptoms could potentially have confounded the association of 

familial risk for schizophrenia with structural and functional alterations in the brain. 

Thirdly, this meta-analysis included studies that had investigated participants with at least one 

first-degree relative with schizophrenia. This methodological choice has also been used in the previous 

meta-analyses (Cooper et al., 2014; Scognamiglio et al., 2014). We did not conduct separate analyses among 

different types of first-degree relatives (i.e. offspring, parents, siblings). It has been shown that there may 

not exist significant structural differences in the brain between different types of first-degree relatives (de 

Zwarte et al., 2018). Generally, it has been demonstrated that cognitive deficits are more severe in relatives 
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with higher genetic risk for schizophrenia (Byrne et al., 2003; Faraone et al., 2000). Hence, the neural 

alterations in FRs may be even more evident in FRs with two first-degree relatives with schizophrenia. 

Fourthly, after conducting the article search for this meta-analysis, two more recent studies 

have been published. The studies suggested that FRs may have a smaller total volume of the cortical and 

cerebellar gray matter and smaller volume in the thalamus, putamen, amygdala, and nucleus accumbens (de 

Zwarte et al., 2018, 2019). Hence, the continuous accumulation of new research is necessary to take into 

consideration. Additionally, it is necessary to consider is that we utilized different software for the 

comparison of our findings to previous schizophrenia studies and behavioral domains. Thus, these analyses 

should be considered as supplementary analyses. 

This meta-analysis had a variety of strengths. Firstly, we had a substantially higher number of 

studies and a higher total number of FRs (41 datasets, 1638 FRs) than in the largest previous meta-analysis 

(25 datasets, 1065 FRs) (Boos et al., 2007) that was published before the conduction of our analyses. A 

recently published ENIGMA study (de Zwarte et al., 2019), however, included more participants than our 

meta-analysis (1228 FR and 2246 controls). Secondly, we also performed a multimodal meta-analysis to 

investigate whether the functional and structural alterations occur in overlapping brain regions. Thirdly, to 

the best of our knowledge, this meta-analysis was the first to investigate functional alterations in FRs 

separately in various cognitive tasks. Finally, we investigated whether the brain regions with structural or 

functional alterations in FRs are overlapping with the brain regions (i) that are affected among schizophrenia 

patients and (ii) that exhibit increased activity during cognitive tasks in healthy individuals. 

 

4.6 Conclusions  

In summary, the fMRI meta-analysis showed that during cognitive tasks, FRs had increased activity in the 

right inferior frontal gyrus when compared to healthy controls. Overall, the functional alterations in FRs 

were very restricted and only slightly overlapping with the affected brain regions in schizophrenia patients.  

The functional alterations in FRs correlated positively with the brain regions that exhibited increased 

activity during cognitive tasks in healthy individuals. The VBM meta-analysis or multimodal analyses 

obtained no differences between FRs and healthy controls. It is necessary to consider that due to the 
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comparatively low number of studies with some types of cognitive tasks (e.g. social cognition tasks), no 

firm conclusions about task-specific alterations in FRs can be made. Consequently, more research is needed 

about functional alterations on a broader range of different cognitive tasks. In conclusion, our findings 

suggest that there may exist minor functional alterations in the brain in FRs (vs. controls) in various 

cognitive domains that have a role in the pathogenesis of schizophrenia. Instead, we did not find any 

structural alterations in FRs. 
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Table 1. Description of the fMRI studies included in the meta-analysis.  

  
Publication 

year 

FRs  Healthy controls 

Software 

package 

 
Smoothing 

kernel (mm) 

 

First author N Female (%) 
Mean age 

(years)  N Female (%) 
Mean age 

(years) Tesla Cognitive task 

Working memory             

   Callicott, J.H.a 2004a 23 74 34  18 39 30 SPM 1.5 10 N-back working memory task 

   Callicott, J.H.a 2004b 25 56 37  15 60 28 SPM 1.5 10 N-back working memory task 

   Choi, J.S. 2011 17 47 21  16 44 21 SPM 1.5 8 Spatial delayed-response task (spatial 

working memory) 

   De Leeuw, M. 2013 23 39 30  24 50 28 SPM 3 8 Sternberg Working Memory Task 

   Jiang, S. 2015 20 45 51  20 50 52 SPM 3 8 N-back working memory task 

   Karch, S. 2009 11 64 34  11 64 34 Brainvoyager 1.5 8 N-back working memory task 

   Li, X. 2016 43 71 25  32 59 25 FSL 3 8 Visual and verbal 1-back working 
memory task 

   Loeb, F.F. 2018 30 43 19  39 46 20 AFNI 3 8 1- and 2-back working memory tasks 

   Meda, S.A. 2008 23 61 51  43 53 43 SPM 3 12 Sternberg Working Memory Task 

   Stäblein, M. 2018 22 64 43  25 52 35 BrainVoyager 3 NA Visual working memory task (a masked 

change detection task) 

   Zandbelt, B.B. 2011 24 46 30  24 38 32 SPM5 3.0 6 Sternberg Working Memory Task; Stop-

Signal Anticipation Task (inhibitory 

control) 
             

Inhibitory control 
           

 

   Becker, T.M. 2008 17 65 33  17 41 33 AFNI 3 8 Stroop task 

   Delawalla, Z. 

2008 30 53 21  92 58 20 NA 1.5 8 Continuous performance task (the AX-

CPT) 

   Lopez-Garcia, P. 2016 16 44 57  20 60 33 SPM 3 8 Dot Probe Expectancy Task (context 

processing) 

   Raemaekers, M. 2006 16 50 34  16 50 33 IDL 

 

 

 

1.5 8 Pro- and antisaccades task (eye movement 

control) 
   Sepede, G. 2009 11 55 34  11 55 32 BrainVoyager 1.5 NA Continuous Performance Test (sustained 

attention) 
   Whalley, H.C. 2004 69 57 26  21 38 27 SPM99 1.5 6 Hayling Sentence Completion Task 

(response intiation and suppression) 
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   Zandbelt, B.B. 2011 24 46 30  24 38 32 SPM5 3.0 6 Sternberg Working Memory Task; Stop-

Signal Anticipation Task (inhibitory 

control) 

             
Social cognition             

   Dodell-Feder, D. 2014 19 74 27  18 78 26 SPM 3 6 Theory of mind tasks (Person-Description 

task; False-Belief Task) 

   Herold, R. 2018 12 50 43  12 58 37 FSL 3 5 Irony comprehension task 

   Li, X. 2012 12 66 31  12 50 29 SPM 3 6 Facial emotional valence discrimination 

   Park, H.Y. 2016 20 65 24  17 53 23 SPM 3 8 Facial emotion processing task 

   Pirnia, T. 2015 14 64 40  30 20 29 FSL 3 6 Facial memory task (face-name encoding 
and retrieval) 

   Spilka, M.J. 2017 27 63 41  27 52 41 FSL 3 7 Facial emotion and age recognition task 

   Van Buuren, M. 2012 25 56 28  25 56 28 SPM5 3.0 8 Self-referential task (social cognition) 

             
Other tasks 

 

            

   Grimm, O. 2014 54 57 34  80 51 34 SPM 3 9 Monetary reward anticipation paradigm 

   Lee, J. 2010 21 52 36  19 26 43 FSL 3 5 Visual backward masking task 

   Rajarethinam, R. 2011 15 53 15  17 47 15 SPM 4 8 Auditory comprehension task 

   Rasetti, R. 2014 65 58 36  181 52 35 SPM 3 8 Declarative memory task (visual 

encoding) 

   Stolz, E. 2012 16 63 23  28 68 27 SPM 3 8 Visual episodic memory encoding and 

retrieval task 

   Wagshal, D. 2013 10 50 13  25 40 13 FSL 3 5 Weather Prediction Task (cognitive skill 

learning task) 

             a Callicott et al. (2004) study included two datasets that were treated separately in the meta-analysis.  

NA = Information not available. AFNI = Analysis of Functional NeuroImages. SPM = Statistical parametric mapping. FSL = The FMRIB Software Library. IDL = The Interactive Data 

Language.  
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Table 2. Description of the VBM studies included in the meta-analysis.  

  Publicatio

n year 

FRs   Healthy controls Software 

package 

  Smoothing 

kernel (mm) First author N Female (%) Age (years)   N Female (%) Age (years) Tesla 

Boos, H.B.M. 2011 186 54 28  122 50 28 Other 1.5 8 

Guo, W. 2015 46 37 23  46 50 23 SPM 3.0 8 

Guo, W. 2014 25 32 23  43 42 24 SPM 3.0 8 

Honea, R.A. 2008 213 58 36  212 51 33 SPM2 1.5 6 

Job, D.E. 2003 146 49 21  36 53 21 SPM99 1.0 12 

Lei, W.a 2015a 25 48 44  40 55 43 SPM8 3.0 6 

Lei, W.a 2015b 42 55 43  40 55 43 SPM8 3.0 6 

McIntosh, A.M. 2004 24 54 39  49 53 35 SPM 1.5 8 

Tian, L. 2011 55 51 50  29 52 52 SPM5 / VBM5 3.0 6 

Van der Velde, J. 2015 89 54 32  69 45 34 SPM 3.0 8 

Wagshal, D. 2015 14 43 12   46 46 13 FSL 3.0 3 
a The study included two datasets that were treated separately in the meta-analysis.  

SPM = Statistical parametric mapping. FSL = The FMRIB Software Library.  
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Table 3. Brain regions with altered activation in FRs (fMRI studies) and altered gray matter volume in FRs (VBM studies) in the multimodal 

meta-analysis, when compared to healthy controls. 

  Coordinates (MNI) Test statistic of SDM p Voxels  Description 

fMRI studies      

      Full set of cognitive tasks      

               FRs > Controls 46, 12, 32 2.158 0.000001967 616 Right inferior frontal gyrus, opercular part, BA 44 

      Executive functioning      

               FRs > Controls 50,16,28 2. 485 0.000003099 553 Right inferior frontal gyrus, opercular part, BA 48 

          Working memory      

               FRs > Controls 50, 12, 26 2.443 0.000003219 913 Right inferior frontal gyrus, opercular part, BA 44 
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Figure 1. The selection process of the fMRI and VBM studies that were included in the meta-

analysis. 
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Figure 2. (a) Brain regions with increased (red) or decreased (blue) activity (fMRI) or volume 

(VBM) (in blue color) in FRs during different types of cognitive tasks, when compared to healthy 

controls. (b) Brain regions with overlap between meta-analyses in FRs and schizophrenia patients 

(Sch).  
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Figure 3. (a) The results of the principal component analysis: the loadings of the brain activity patterns of different behavioral domains to the 

cognition- and affect/sensory-related components in healthy individuals. (b) The correlations of the brain activation patterns during cognition- 

and affect/sensory-related processing (in healthy individuals) with the brain regions that showed altered fMRI activity in FRs. (c) The 
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correlations of the brain activation patterns during cognition and affect/sensory-related processing (in healthy individuals) with the brain regions 

that showed structural alterations in FRs. 

 

 


