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Abstract 

Osteogenesis imperfecta (OI) is an inherited heterogeneous rare skeletal disorder characterized 

by increased bone fragility and low bone mass. The disorder mostly segregates in an autosomal 

dominant manner. However, several rare autosomal recessive and X-linked forms, caused by 

mutations in 18 different genes, have also been described in the literature. 

Here, we present five consanguineous families segregating OI in an autosomal recessive pattern. 

Affected individuals in the five families presented severe forms of skeletal deformities. It 

included frequent bone fractures with abnormal healing, short stature, facial dysmorphism, 

osteopenia, joint laxity, and severe scoliosis. In order to search for the causative variants, DNA 

of at least one affected individual in three families (A-C) were subjected to whole exome 

sequencing (WES). In two other families (D-E), linkage analysis using highly polymorphic 

microsatellite markers was followed by Sanger sequencing. Sequence analysis revealed two 

novels and three previously reported disease-causing variants. The two novel homozygous 

variants including [c.824G>A; p.(Cys275Tyr)] in the SP7 gene and [c.397C>T, p.(Gln133*)] in 

the SERPINF1 gene were identified in families A and B, respectively. The three previously 

reported homozygous variants including [c.497G>A; p.(Arg166His)] in the SPARC gene, (c.359-

3C>G; intron 2)  and [c.677C>T; p.(Ser226Leu)] in the WNT1 gene were identified in family C, 

D, and E. 

In conclusion, our findings provided additional evidence of involvement of homozygous 

sequence variants in the SP7, SERPINF1, SPARC and WNT1 genes causing severe OI. It also 

highlights the importance of extensive genetic investigations to search for the culprit gene in 

each case of skeletal deformity.  
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1 Introduction 

Osteogenesis imperfecta (OI) is genetically heterogeneous heritable skeletal dysplasia also 

known as “brittle bone disease” and prevails in about 1 in 10,000 to 20,000 live births (Monti et 

al., 2010). It is mostly characterized by progressive bone deformity, increased fracture 

susceptibility, low bone mass, and growth retardation. Osteogenesis imperfecta is mostly caused 

(85%) by dominant variants in the type I collagen genes (COL1A1, COL1A2) exhibiting mild to 

lethal phenotypic spectrum. Additional features associated with OI include bone deformities, 

short stature, mild osteopenia to severe osteoporosis, wormian bones, blue/grey sclera, 

dentinogenesis imperfecta (DI), increased vascular fragility and hearing loss. Recently, advances 

in rapid diagnostic technologies such as next generation sequencing have led to identification of 

multiple genes causing autosomal recessive and X-linked forms of OI, such as CRTAP, 

P3H1/LEPRE1, PPIB, FKBP10, PLOD2, SERPINH1, BMP1, SERPINF1, IFITM5, SP7, 

TMEM38B, WNT1, SPARC, SEC24D, TENT5A, MESD, PLS3 and MBTPS2 (Caparros-Martin et 

al., 2016; Diener et al., 2016; Umair et al., 2016, 2017; Moosa et al., 2019). 

A functional metabolic classification has been propsoed for OI for genetic and clinical 

requirements. OI types were classified into five functional groups based on the mechanism that 

gene product having the same function and pathway might share the same disease mechanism 

(Forlino and Marini, 2016). These include group A, involving genes having defect in the 

collagen processing or structure (COL1A1, COL1A2, BMP1); group B, genes responsible for 

defect in collagen modification (CRTAP, PPIB, TMEM38B, and LEPRE1); group C, involved in 

cross-linking and collagen folding defects (FKBP10, SERPINH1, PLOD2, MBTPS2); group D, 

genes influencing bone mineralization (SERPINF1, IFITM5, FAM46A); and group E includes 
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gene involved in osteoblast development (CREB3L1, WNT1, SP7, MESD) (Forlino and Marini, 

2016). 

In the present study, we have investigated five families exhibiting severe features of OI 

segregating in an autosomal recessive pattern. Using linkage analysis and whole exome 

sequencing we have identified two novel and three previously reported mutations in the four 

genes SP7, SERPINF1, WNT1 and SPARC causing severe recessive form of OI. Our findings 

indicate an overlap in the phenotypic presentation and underscore the need for extensive genetic 

investigations to identify the causative gene defect in similar cases of severe OI from Pakistani 

population. 

2 Materials and Methods 

2.1 Ethics Statement 

Five families, exhibiting severe form of skeletal fragility, were recruited from different remote 

areas of Pakistan. The study was approved by the Institutional Review Board (IRB) of Quaid-i-

Azam University, Islamabad and Abdul Wali Khan University Mardan, Pakistan. Written 

informed consent to conduct the the study and presenting the data including radiographs and 

photographs in research journals and conferences was obtained from the proband, patients and 

other family members in compliance with the Helsinki declaration. Pedigrees (Fig. 1-2a, 3-4a, 

b) were constructed after careful interview with elders in the families. Clinical and 

radiological assessments were performed at local government hospitals. Further, the authors 

reviewed the data and compared it with previously reported clinical spectrum of the patients with 

similar disorder. Genomic DNA was extracted from peripheral-blood lymphocytes and 

quantified using standard methods. 

2.2 Whole exome sequencing (WES) 
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DNA of at least one affected member in three families (A-C) were directly subjected to WES on 

different platforms including Illumina HiSeq2500 (Illumina, Inc., San Diego, CA, USA) and 

Agilent 2100 Bioanalyser/Illumina HiSeq platform (BGI, Hong Kong). Exome enrichment was 

performed using standared methods and the obtained reads were aligned (BWA-MEM). Further, 

duplicates were removed (Picard), inDel were realigned and base quality was recalled. For 

variant calling different tools including PINDEL, SAM tools and Exome Depth were used. SAM 

tools varFilter script was used for variant filtering. Single nucleotide variants (SNVs) and InDels 

were detected using GATK HaplotypeCaller and annotated using the SnpEff tool. All the 

obtained reads were aligned against the human assembly hg19 (GRCh37) using Burrows-

Wheeler Aligner. The WES mechanisim was followed as described previously (Umair, Shah et 

al., 2017; Umair, Eckstein et al., 2018). Considering the family pedigrees clearly depicted 

recessive pattern of inheritance of the disorder, on priority basis the filtering process screened the 

data for previously thirteen known causative genes (SERPINF1, CRTAP, P3H1, PPIB, 

SERPINH1, FKBP10, SP7, BMP1, TMEM38B, WNT1, CREB3L1, MBTPS2, SPARC) (Table 1).  

2.3 Linkage analysis  

In two families (D-E), all the available affected and unaffected members were subjected to 

genotyping using highly polymorphic microsatellite markers mapped in the region encompassing 

previously reported genes involved in causing autosomal recessive form of OI. This included 

SERPINF1, CRTAP, P3H1, PPIB, SERPINH1, FKBP10, SP7, BMP1, TMEM38B, WNT1, 

CREB3L1, MBTPS2 and SPARC. The procedure followed for genotyping markers was as 

describe earlier (Umair, Rafique et al., 2017). Both the families showed convincing linkage to 

the markers (D12S1701, D12S1661, D12S2196, D12S1290, D12S339, D12S1627, D12S1620) 

linked to the WNT1 gene on chromosome 12q13.12.  
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2.4 Segregation of the identified variants  

Primer sequences for PCR amplification of the WNT1 exons and identified variants in the SP7, 

SERPINF1 and SPARC genes were designed using online Primer-3 software 

(http://bioinfo.ut.ee/primer3-0.4.0/). Sanger sequencing was performed using standard methods 

as described previously (Umair, Hassan et al., 2016). Sequencig data was analyzed via BIOEDIT 

sequence alignment editor version 6.0.7. 

2.5 In silico analysis  

Pathogenicity index for the detected variants was calculated using MutationTaster (http:// 

www.mutationtaster.org/), SIFT (http://sift.bii.a-star.edu.sg/), VarSome (https://varsome.com/), 

PolyPhen-2 (http://genetics. bwh.harvard.edu/pph2/), splic site variant tools (NNSplice; 

[https://omictools.com/nnsplice-tool], MutPred Splice [http://www.mutdb.org/mutpredsplice], 

SKIPPY [https://research.nhgri.nih.gov/skippy] and Human Splice Finder (v2.4.1) 

[PMC2685110]. Frequency of the variant in the general population was determined using ExAC 

(http://exac.broadinstitute.org/), genomAD (http://gnomad.broadinstitute.org/), 1000 Genomes 

and 135 Pakistani exomes (Inhouse). 

2.6 Sequence retrieval and 3D structure prediction  

UniProt  database was used to retrive the SP7 (431 aa) protein sequence in the FASTA format 

with accession number Q8TDD2-1 (Venter et al., 2001). Comparative modelling was imployed 

in the absence of expremently known structures. Thus, I-TASSER was used to predict the SP7 

protein structure. The I-TASSER model was evaluated using the provided scores (Yang et al., 

2015). Using the AMBERff14 S B force field, the selected structure was optimized through 1000 

steps of steepest- decent and 1000 steps of conjugate-gradient minimization by UCSF Chimera 
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version 1.11 (Meng et al., 2006). Finally, the Ramachandran outliers and poor rotamers were 

corrected through WinCoot and their optimized and reliable structure was constructed (Emsley et 

al., 2010). 3D structure of mutated protein was generated by MODELLER 9.19 (Webb and Sali, 

2014). The MODELLER assists in 3D structure prediction of proteins by satisfaction of spatial 

restraints (Eswar et al., 2008) and the model was selected based on MODELLER evaluation 

score. 

2.7 Model Evaluation 

In structural bioinformatics the theoretical and expremental models of protein structures is a 

major concern (Melo et al., 1997). Thus, different evaluation tools were used for the assessment 

of protein structure such as RAMPAGE (Lovell et al., 2003), ERRAT (Colovos et al., 1993) and 

ProSA (Protein Structure Analysis). RAMPAGE generates Ramachandran plot for the 

assessment of models along with distribution of residues in favoured, allowed and outlier 

regions. ERRAT generated a plot indicating the confidence and overall quality of model and 

ProSA was used to calculate an overall quality score of the predicted structure (Wiederstein et 

al., 2007). 

3. Results 

3.1 Clinical Assessment 

Family A: The proband was 32 years old male (IV-2). Parents and siblings of the affected 

member were healthy (Fig. 1a-g). The affected individual (IV-2) suffered fractures 5-15 days 

after birth. Since then, numerous fractures occurred. His height and weight were 95 cm and 30 

kg. Physical examination of the affected member revealed bilateral bowing of femurs, tibiae and 

fibulae. Due to occurrance of numerous fractures and self-healing, the humeri, radii and ulnae 



11 

 

had zig-zag appearance. He did not have blue sclera, hearing impairment, dentinogenesis 

imperfecta, intellectual disability or skin manifestations (Fig. 1b-g, Table 2). Serum levels of 

alkaline phosphatase, phosphate, calcium and parathyroid hormone were within age-appropriate 

reference ranges. 

Radiological assessment of the proband (IV-2) demonstrated multiple fractures and deformities 

in clavicle, acromion, glenoid cavity, scapula, sternum and ribs resulting in compression of 

intercostal ribs spaces, which led to decreased total lung capacity (Table 2). The coxal bone (hip 

bone) and the femur were severely deformed. Other bones including llium, pubic, ischium, 

sacrum and acetabulum were fused and unidentifiable. Femur had severe complex 

bending/fractures along with femoral head and neck. Lower limbs had fixed flexion deformity 

(FFD), having bilateral flexion contractures of knee as a result the affected individual was unable 

to ambulate freely. Severe kyphoscoliosis associated with platyspondyly, osteopenia and 

fractures in humerus, radii and ulna were also observed (Fig. 1b-g). 

Family B: All three affected individuals (IV-1, IV-2, IV-3) in family B showed classical 

osteogenesis imperfecta phenotypes. At the time of the medical examination, the patients IV-1, 

IV-2 and IV-3 were 10 years, 12 years, and 14 years old, respectively. Patients were born at full 

term without any complications. Affected individuals showed fragile and brooked bones, and 

multiple fractures in arms, hands, legs, feet and spine (Table 2). Legs were bowed and the long 

bones were fragile and thin. The patients also had white sclerae, kyphosis, and sarcopenia. The 

long bones in the extremities were the most common sites of fractures (Fig. 2b-d). 

Family C: This family had two affected members (IV-2, IV-4) (Fig. 3a). The affected member 

IV-4 died at the age of 22 months. They suffered from moderate to severe upper and lower limbs 
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fractures (Fig. 3b, c). Afected individual IV-2 was four years old girl, born to healthy first cousin 

parents. Pregnancy was normal however she was under-weight with noticeable poor 

mineralization of the skeleton (Table 2).. Multiple recurrent fractures of long bones especially in 

the left femur occurred during the first month of life. She had extremely fragile skeleton with 

moderate to severe osteoporotic bones (Fig. 3d, e). Left femur was more prone to fracture in 

contrast to other long bones. She was short and underweight having progressive kyphoscoliosis. 

Hearing loss, dentinogenesis imperfecta and blue sclerea were not observed (Fig. 3b). Serum 

biochemistry showed normal calcium, phosphate, alkaline phosphatase and vitamin D levels. 

Radiographic examination indicated severe osteopenia and multiple fractures (Fig. 3c).  

Family D: In the family there were two affected individuals IV-2 and IV-3 aged 26 and 30 years, 

respectively. They suffered from severe long bone fractures at an early age and were confined to 

wheel chairs. Both had multiple fractures of the femur, tibia, fibula, humerus, radius and ulna, 

bowed extremities, short stature, joint laxity and severe scoliosis (Fig. 4c-f). Hearing 

impairment, facial dysmorphism and intellectual disability were not observed (Table 2).. 

Family E: The proband (IV-1) in the family was 5 years old at time of the study (Fig. 4g). He 

suffered from bone fragility and frequent fractures at an early age (Table 2). He was confined to 

bed. Radiographs of the affected individual revealed deformed irregular humerus, radius, and 

ulna, anterior bowing of bones and decreased bone mineral density. In addition, he had 

improperly healed fractures in both lower limbs resulting in to severe lower limb bowing (Fig. 

4h-i).  

3.2 Sequencing candidate genes 
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As described above, search for the disease causing variants was carried out using WES in three 

families (A-C) and by genotyping microsatellite markers followed by Sanger sequencing in 

family D and E. In family A-C step-by-step filtering and validation by Sanger sequencing of 

different homozygous and compound heterozygous variants revealed two novel and one 

previously reported variant. The novel homozygous variants included a missense [c.824G>A, 

p.(Cys275Tyr)] in exon 2 of the SP7 gene (NM_152860.1; NG_023391.1; LOVD:00295528) in 

family A and a nonsense [c.397C>T, p.(Gln133*)] in exon 4 of the SERPINF1 gene 

(NM_002615.7; NP_002606.3; LOVD:00295529) in family B. A previously reported 

homozygous missense variant [c.497G>A, p.(Arg166His)] in exon 7 of the SPARC gene 

(NM_152860.1; NG_042174.1; LOVD:00295530) was identified in family C. Filteration steps 

for WES data are presented in Supplementary Table 1. 

In family D and E analysis of the haplotypes established linkage to the WNT1 gene 

(NM_005430.3; NG_033141.1) located on human chromosome 12q13.12. Subsequently, all 

exons and 5ÚTR and 3ÚTR of the WNT1 gene were Sanger sequenced in both the families. 

Sequence analysis revealed two previously reported homozygous variants including a splice 

acceptor site (c.359-3C>G; intron 2; LOVD:00295531)  in family D (Fig. 4l-m) and a missense 

[c.677C>T, p.(Ser226Leu)] in family E [LOVD:00295532] (Fig. 4o-q). All the four identified 

homozygous sequence variants were present in the heterozygous state in the obligate carriers in 

the families. The identified variants were not present in 135 Pakistani exomes and 230 ethnically 

matched control individuals. 

The pathogenicity index of the detected variants was calculated using different online analysis 

tools including MutationTaster, SIFT, VarSome, PolyPhen-2, splic site variant tools, MutPred 

Splice, SKIPPY, Human Splice Finder and were predicted as disease causing. The variants were 
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also not reported in online public databases (ExAC, genomAD, 1000 Genomes) in homozygous 

form. 

3.3 3D-modeling of SP7 

Homology/3D modeling of a mutated SP7 protein [p.(Cys275Tyr)] revealed substantial 

structural changes. It is highly likely that such changes altered secondary structure and also 

affect binding ability of the SP7 protein. A heavy tyrosine (Molar mass: 181.19 gm/mol) 

replaced cysteine residue (Molar mass: 121.16 gm/mol) in a beta sheet which distorted protein 

conformation in the local structure (Fig. 1n-q). Relative thermal stability indicated that the 

mutant protein was less stable (stability=–11.05 kcal/mol) as compared to the wild-type 

(stability=–13.75 kcal/mol). 

4. Discussion 

The study, presented here, describes clinical and genetic characterization of five consanguineous 

families segregating osteogenesis imperfecta (OI) in autosoml recessive manner. Previously 

reported OI-related clinical features including frequent fractures and poor healing, osteopenia, 

and kyphoscoliosis with platyspondyly (Umair et al., 2016, 2017; Mendoza-Londono et al., 

2015; Kausar et al., 2018) were found in affected individuals of all five families. Severity of the 

features however varied among the families. Affected members in four families (A, B, D, E) had 

severe forms of various skeletal deformities. An affected member in family A showed decreased 

bone density, bowing of the tibia and fibula, fracture of tibia, improper healing of the bones and 

multiple craniofacial features. Similar features were reported previously by Lapunzina et al. 

(2010). In both the cases mutations in the same SP7 gene caused such severe form of bone 

deformities. Features such as white sclera, multiple fracures, kyphosis and muscle sarcopenia 

recorded in affected members in family B were reported previously in families of French, UAE, 
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and Turkish origin (Homan et al., 2011; Becker et al., 2011). Hearing impairment reported 

previously in several studies (Fiscaletti  et sal., 2018; Lindahl  et al., 2018; Carré et al., 2019) 

was not observed in the affected individuals in our families.   

Using whole exome sequencing in three families and genotyping followed by Sanger sequencing 

in two other families revealed two novel and two previously reported disease causing variants in 

four culprit genes. The novel homozygous variants including a missense p.(Cys275Tyr) and a 

nonsense p.(Gln133*) were identified in the SP7 and SERPINF1, respectively. The other two 

previously known homozygous missense variants p.(Arg166His) and p.(Ser226Leu) were 

detected in the SPARC and WNT1, respectively.  

The p.(Cys275Tyr) is the third homozygous variant identified in the SP7 gene located on human 

chromosome 12q13.13. The other two homozygous variants were reported in families of 

Egyptian and Australian origin (Lapunzina et al., 2010; Fiscaletti et al., 2018). In our study, 

structural modeling of the mutated SP7 revealed the variant p.(Cys275Tyr) affect secondary 

structure and ability of the SP7 to interact with other proteins. All these three variants caused 

osteogenesis imperfecta type XII. The SP7 (specific protein), also called as Osterix (OSX), 

belongs to a subgroup of the Kruppel-like family of transcription factor (NP_690599.1) 

containing zinc finger in its DNA-binding domain. It plays a major role, along 

with Runx2 and Dlx5, in driving the differentiation of mesenchymal precursor cells 

into osteoblasts and eventually osteocytes (Sinha and Zhou, 2013; Fukuda et al., 2018). During 

development, a mouse embryo model with Sp7 expression knocked out had no formation of bone 

tissue (Nakashima et al., 2002). In human, Timpson et al. (2009) have shown association of SP7 

locus with bone mass density.  
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Prior to the present study, several disease causing variants have been reported in the SERPINF1 

gene, located on human chromosome 17p13.3. The variant p.(Gln133*), identified in our family, 

is one of very few nonsense variants reported in this gene. All the variants in this gene cause OI 

type XVI (Caparrós-Martin et al., 2013; Homan et al., 2011; Wang et al., 2017). The gene 

encodes 50kDa Serpin Family F Member 1 (SERPINF1) protein, which is also called as pigment 

epithelium-derived factor (PEDF). This protein is shown to inhibit the vascular endothelial 

growth factor (VEGF) downstream actions, which is expressed during endochondral bone by the 

chondrocytes (Quan et al., 2005). It also binds to collagen type I neighboring the a1b1 and  a1b2 

integrin binding site, signifying its important role in integrin–collagen interactions, that has been 

reported in angiogenesis and cell adhesion (Meyer et al., 2002). 

In three of our families we have found previously known missense variants in two causative 

genes. One of the variant p.(Arg166His) was identified in the SPARC gene (NM_003118.4), 

located on chromosome 5q33.1, which is responsible for causing OI type XVII (MIM 616507). 

To date, only two variants have been reported in the SPARC gene (Mendoza-Londono et al., 

2015). The variant p.(Arg166His) was reported previously in a family of North African and 

Indian origin (Mendoza-Londono et al., 2015). The SPARC gene encodes a 40 kDa Secreted 

Protein Acidic and Cysteine Rich (SPARC) which is also called as osteonectin (ON). This 

protein has been implicated in several biological functions including mineralization of bone and 

cartilage, and modulation of cell proliferation (Guweidhi et al., 2005). The second known variant 

p.(Ser226Leu) was detected in the WNT1 gene (NM_005430.3). To date, only 22 variants have 

been reported in the WNT1 gene and all caused OI type XV (Umair et al., 2017). The WNT1 gene 

encodes a secreted signaling protein which has been implicated in several developmental 
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processes, including regulation of cell fate and patterning during embryogenesis (Laine et al., 

2013).  

In conclusion, we have identified five disease causing variants in four different genes 

causing various types of osteogenesis imperfecta. Severity of the phenotypes varied from mild 

to severe form in the five families presented here. Previously, only five OI families have been 

reported from Pakistan (Umair et al., 2016, 17; Kausar et al., 2018). The variant identified 

in the SP7, SERPINF1 and SPARC genes are for the first time reported from Pakistani 

population (Umair et al., 2019). Considering high rate of consanguinity, the variants identified 

here will support genetic conseling of Paksitani families segregating various types of skeletal 

deformities. In addition, the variants will further expand spectrum of mutations in the genes 

causing osteogenesis imperfecta.    
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Figure Legends 

Figure 1: (a) Pedigree of family A segregating OI in an autosomal recessive manner. (b) 

Radiographs of the proband (IV-2) showing skeletal features with severe fractures in the upper 

and lower limbs. (c) The lower limbs showing severe bending and fixed flexion deformity 

(FFD). (d) Severe kyphoscolisis along with both dorsal kyphosis and lateral scoliosis. (e) 

Shrieked rib cage. (f-g) Proband showing enlarged skull. (h) Schematic representation of SP7 

gene and red arrow indicating the missense mutation identified in the present study. Intronic and 

exonic regions are not drawn to scale. (i-k) Sanger sequence electrograms of the SP7 gene shows 

a substitution of nucleotide G with A at position 824 [c.824G>A, p.(Cys275Tyr)] in homozygous 

normal, heterozygous carrier and homozygous affected individual. (l) Conservation of 

cysteine275 across different species. (m) Schematic representation of SP7 protein with red arrow 

indicating position of the mutation p.(Cys275Tyr). Strutural modeling of wild type (n, o), 

mutated (p) and comparision of the both the proteins (q). 

Figure 2: (a) Pedigree of family B segregating OI in an autosomal recessive manner. (b-d) The 

proband (IV-1, IV-2) showed typical features of OI phenotypes such as severe fractures and 

healing of upper and lower limbs exhibiting zig zag limbs. (e) Schematic representation of 

SERPINF1 (PEDF) protein and blue arrow indicating position of the nonsense mutation 

p.(Gln133*). (f-h) Sanger sequence electrograms of the SERPINF1 gene shows a substitution of 

nucleotide C with T at position 397 [c.397C>T, p.(Gln133*)] in homozygous normal, 

heterozygous carrier and homozygous affected individual. (i) Conservation of Gln133 across 

different species. 

Figure 3: (a) Pedigree of family C segregating OI in an autosomal recessive manner. (b-e) 

Image and radiographs of the affected individual (IV-2) showing mild to severe fractures in the 
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lower limbs. (f, g) Schematic representation of the SPARC gene and protein  showing position of 

the muataion [c.497G>A, p.(Arg166His)]. Sanger sequence electrograms of the SPARC gene 

showing a substitution of nucleotide G with A at position 497 (c.497G>A) in homozygous 

normal, heterozygous carrier and homozygous affected individual. (i) Conservation of Arg166 

across different species. 

Figure 4: (a, b) Pedigrees of family D and E segregating OI in an autosomal recessive manner. 

(c-f) Photograph and radiographs of affected individual (IV-2) showing multiple fracures in the 

upper and lower limb, resulting in confinement of the patient to wheelchair. (g-i) Photograph and 

radiographs of affected individual (IV-1) showing severe fractures in the lowe limbs. (j, k) 

Schematic representation of the WNT1 gene and protein representing all the mutations reported 

to date including the one, in red, identified in the present study. (l-n) Sanger electrograms of 

family D in which a missense mutation [c.677C>T, p.(Ser226Leu)] was identified in the WNT1 

gene. (o-q) Sanger electrograms of family E carrying a splice site mutation (c.359-3C>G) in the 

WNT1 gene. 

Table 1: Latest OI classification. 

Table 2:  Clinical phenotypes comparison of all the five families investigated here. 

Table 3: To-date SP7 genes mutations. 

Table 4: SERPINF1 mutation update. 

Table 5: SPARC mutation update. 

Table 6: WNT1 mutation update. 

 



Table 1. Latest OI classification. 
 

Type Gene  Locus OMIM Protein Inheritance 

OI I COL1A1 17q21.33 166200 COL1A1 AD 

OI II COL1A1 17q21.33 166210 COL1A1 AD 

OI III COL1A1 17q21.33 259420 COL1A1 AD 

OI IV COL1A1 17q21.33 166220 COL1A1 AD 

OI V IFITM5 11p15.5 610967 IFITM5 AD 

OI VI SERPINF1 17p13.3 613982 PEDF AR 

OI VII CRTAP 3p22.3 610682 CRTAP AR 

OI VIII LEPRE1 1p34.2 610915 P3H1 AR 

OI IX PPIB 15q22.31 259440 CYPB AR 

OI X SERPINH1 11q13.5 613848 HSP47 AR 

OI XI FKBP10 17q21.2 610968 FKBP65 AR 

OI XII SP7 12q13.13 613848 OSX (Osterix) AR 

OI XIII BMP1 8p21.3 614856 BMP1 AR 

OI XIV TMEM38B 9q31.2 615066 TMEM38B AR 

OI XV WNT1 12q13.12 615220 WNT1 AR 

OI XVI CREB3L1 11p11.2 616229 CREB3L1 AR 

OI XVII SPARC 5q33.1 616507 SPARC AR 

OI XVIII TENT5A 6q14.1 617952 TENT5A AR 

OI XIX MBTPS2 Xp22.12 301014 MBTPS2 XLR 

OIXX MESD 15q25.1 607783 MESD AR 
 

 

 



Table 2:  Clinical phenotypes comparison of all the five families investigated here. 

Features 
observed 

Family A Family B Family C Family D Family E 

Consanguineous 
pedigree 

Yes Yes Yes Yes Yes 

Mutation type Missense Nonsense Missense Splice site Missense 
Variant c.824G>A c.397C>T c.497G>A c.359-3C>G c.677C>T 
Protein change p.Cys275Tyr p.Gln133* p.Arg166His ----- p.Ser226Leu 
Race Pakistani Pakistani Pakistani Pakistani Pakistani 
Sex (male: female) 1 Male Male Male Male Female Female Male Male 1 Male 
Patient # IV-2 IV-1 IV-2 IV-3 IV-2 IV-4 IV-2 IV-3 IV-1 
Age (years) 32 10 12 14 4 22 months 

(deceased) 
26 30 5 

Height [cm] (Z-
score) 

116.1 (-1.95) 118 (-
0.976) 

114 (-
1.12) 

121 (-
0.869) 

122 (-1.192) 111 (-
1.23) 

112 (-
1.192) 

110 (-1.939) 

Weight [kg] (Z-
score) 

30 (-1.649) 33 (-
0.735) 

34 (-
0.679) 

30 (-
0.902) 

22 (-1.658) 31 (-
1.101) 

28 (-
1.229) 

21 (-1.88) 

Head 
Circumference 
[cm] (Z-score) 

61 (-1.633) 56 
(0.304) 

55 (-
0.456) 

54 (-
1.066) 

54 (-1.3719) 58 
(0.697) 

59 
(1.27) 

53 (-1.377) 

Fractures of 
extremities 

Yes Yes Yes Yes Yes Yes Yes Yes 

Dentinogenesis 
imperfecta 

No No No No No No No No 

Bowing of 
extremities 

Yes Yes Yes Yes Yes Yes Yes Yes 

Hypermobility of 
joints 

Yes Yes Yes Yes No Yes Yes Yes 

Craniofacial 
features affected 

Yes Yes Yes Yes Normal Yes Yes Normal 

Hearing 
impairment 

Normal Normal Normal Normal Normal Normal Normal Normal 



Growth 
retardation 

Yes Yes Yes Yes Yes Yes Yes Yes 

Intellectual 
development 

Normal Normal Normal Normal Normal Normal Normal Normal 

flexion deformity No Yes Yes Yes Yes Yes Yes Yes 
Cardiac 
impairment 

No No No No No No No No 

Kidney stones Yes No No No No No No Yes 
Treatment Genetic counseling 

suggested 
Genetic counseling suggested Genetic counseling 

suggested 
Genetic 

counseling 
suggested 

Genetic 
counseling 
suggested 

 



Table 3: To-date SP7 genes mutations. 

S.No Amino acid 
change 

Nucleotide 
change 

Reported phenotype 

1 p.Arg316Cys   c.946C>T Autosomal recessive 
osteogenesis imperfecta, with 
bone fragility & hearing 
impairment 

2 p.Glu351Glyfs*19 c.1052delA Autosomal recessive 
osteogenesis imperfecta 

 



Table 4: SERPINF1 mutation update. 

S.No Amino acid change Nucleotide change Reported phenotype 
1 p.Met1Val  c.1A>G Osteogenesis imperfecta IV 
2 p.Ala56Gly c.167C>G Otosclerosis 
3 p.Gly62Ser c.184G>A Osteogenesis imperfecta III 
4 p.Ser81Cys c.242C>G Osteogenesis imperfecta 
5 p.Arg99* c.295C>T Osteogenesis imperfecta 
6 p.Gln133* c.397C>T Osteogenesis imperfecta III 
7 p.Gln178*  c.532C>T p Osteogenesis imperfecta 
8 p.Trp217* c.651G>A Osteogenesis imperfecta 
9 p.Tyr232* c.696C>G Osteogenesis imperfecta 
10 p.Arg303* c.907C>T Osteogenesis imperfecta III 
11 p.Val356Glu  c.1067T>A Osteogenesis imperfecta 
12 p.Trp364*  c.1091G>A Osteogenesis imperfecta 
13 p.Gln378*  c.1132C>T Osteogenesis imperfecta 
14 -------- c.283+1G>T Osteogenesis imperfecta III 
15 -------- c.439+34C>T Osteogenesis imperfecta VI 
16 -------- c.787-10C>G Osteogenesis imperfecta VI 
17 -------- c.787-617G>A Osteogenesis imperfecta IV 
18 p.Leu83Glnfs*28 c.248_249delTC Osteogenesis imperfecta III 
19 p.Ile142Serfs*9 c.423delG Osteogenesis imperfecta 
20 p.Arg167Serfs*35 c.498_499delCA  Osteogenesis imperfecta III 
21 p.Val218Glufs*22 c.653delT  

 
Autosomal recessive 
osteogenesis imperfecta 

22 p.Trp217* c.650_653delGGGT  Osteogenesis imperfecta 
23 p.Phe277del c.829_831delTTC  Osteogenesis imperfecta VI 
24 p.Leu280Glufs*20 c.838_839delCT  Osteogenesis imperfecta 
25 p.Thr294Profs*8 c.879delC  Osteogenesis imperfecta III 
26 p.Pro373Glnfs*18 c.1118_1119delCC  Osteogenesis imperfecta 
27 p.Phe384Leufs*9 c.1152_1170del19  Osteogenesis imperfecta VI 
28 p.Thr401Argfs*28 c.1202_1203delCA  Osteogenesis imperfecta III 
29 -------- c.-9+2dupT Osteogenesis imperfecta 
30 p.Glu27Glyfs*38 c.77dupC  Osteogenesis imperfecta 
31 p.Ser84Lysfs*28 c.250dupA  Osteogenesis imperfecta 
32 p.Leu89Argfs*26 c.261_265dupGGCCC  Osteogenesis imperfecta III 
33 p.Ala91_Ser93dup c.271_279dupGCCCTCTCG  Osteogenesis imperfecta VI 
34 p.yr109Serfs*5 c.324_325dupCT  Osteogenesis imperfecta 
35 p.Arg141Profs*5 c.421dupC  

 
Osteogenesis imperfecta 

36 p.His389Glnfs*4 c.1163_1166dupATCA  Osteogenesis imperfecta 
37 p.Lys147_Gly215del

insArg 
c.439+127_643+545del1310  Osteogenesis imperfecta VI 

38 -------- c.752_753insKC847088.1:g.
51_393 

 



 



Table 5: SPARC mutation update. 

S.No Amino acid change Nucleotide change Reported phenotype 
1 p.Arg166His  c.497G>A Osteogenesis imperfecta  
2 p.Glu263Lys  c.787G>A Osteogenesis imperfecta  
3 -------- c.*582C>G Osteogenesis imperfecta 
 



Table 6: WNT1 mutation update. 

S.No Amino acid change Nucleotide change Reported phenotype 
1 p.Met1Thr  c.2T>C Osteogenesis imperfecta  
2 p.Gly36Asp   c.107G>A Osteoporosis 
3 p.Ile37Thr  c.110T>C Osteogenesis imperfecta III 
4 p.Gln62*   c.184C>T Osteogenesis imperfecta 
5 p.Gln87*   c.259C>T Osteogenesis imperfecta 
6 p.Arg101Cys  c.301C>T Osteogenesis imperfecta III 
7 p.Trp102Cys  c.306G>T Osteogenesis imperfecta  
8 p.Glu123Asp  c.369A>C Osteogenesis imperfecta 
9 p.Thr124Met  c.371C>T Osteogenesis imperfect IV 
10 p.Phe128Val  c.382T>G Osteogenesis imperfecta III 
11 p.Ala129Thr  c.385G>A Osteogenesis imperfect IV 
12 p.Ala133Thr  c.397G>A Osteogenesis imperfecta 
13 p.Gly134Val  c.401G>T Osteoporosis 
14 p.Arg141Cys  c.421C>T Osteogenesis imperfect IV 
15 p.Cys143Phe  c.428G>T Osteogenesis imperfecta 
16 p.Gly146Arg  c.436G>C Osteoporosis 
17 p.Cys153Gly  c.457T>G Osteogenesis imperfecta 
18 p.Trp167Cys  c.501G>C Osteogenesis imperfect IV 
19 p.Gly169Asp  c.506G>A Osteogenesis imperfect IV 
20 p.Gly169Cys  c.505G>T Osteogenesis imperfecta III 
21 p.Gly177Cys  c.529G>T Osteogenesis imperfecta 
22 p.Arg207His  c.620G>A Osteogenesis imperfect IV 
23 p.Cys218Gly  c.652T>G Autosomal dominant, Osteogenesis 

imperfecta 
24 p.Gly225Val  c.674G>T Osteogenesis imperfecta 
25 p.Ser226Leu  c.677C>T Osteogenesis imperfecta 
26 p.Cys227Term  c.681C>A Osteogenesis imperfecta III 
27 p.Arg235Trp  c.703C>T Osteogenesis imperfecta 
28 p.Leu257Pro  c.770T>C Osteogenesis imperfecta I 
29 p.Tyr258*  c.774C>A Osteogenesis imperfecta III 
30 p.Ser295* c.884C>A Osteogenesis imperfecta  
31 p.Phe298Cys  c.893T>G Osteogenesis imperfecta 
32 p.Arg313Cys  c.937C>T Osteogenesis imperfecta III 
33 p.Gly324Cys  c.970G>T Osteogenesis imperfecta 
34 p.Cys330* c.990C>A Osteogenesis imperfecta 
35 p.Arg337Pro  c.1010G>C Osteogenesis imperfecta III 
36 p.Trp351Arg  c.1051T>C Osteogenesis imperfecta 
37 p.Val355Phe  c.1063G>T Osteogenesis imperfecta 
38 -------- c.105-2A>G Osteogenesis imperfecta 
39 -------- c.104+1G>A Osteogenesis imperfecta IV 
40 -------- c.359-3C>G Osteogenesis imperfecta 
41 -------- c.624+4A>G Osteogenesis imperfecta 



42 p.Leu3Serfs*36 c.6delG  Osteogenesis imperfecta 
43 p.Leu64* c.189delG  Osteogenesis imperfecta IV 
44 p.Leu86Cysfs*113 c.255delG  Osteogenesis imperfecta 
45 p.Gln96Profs*54 c.287_300del14  Osteogenesis imperfecta 
46 p.Arg156Glyfs*43 c.466delC  Osteogenesis imperfecta III 
47 p.Leu179_Arg182del c.534_545del12  Osteogenesis imperfecta 
48 p.Val229Hisfs*86 c.685_689delGTGCG  Osteogenesis imperfecta 
49 p.His287Thrfs*106 c.859delC  Osteogenesis imperfecta 
50 p.Glu343Serfs*50 c.1026delC  Osteogenesis imperfecta 
51 p.Arg73Thrfs*82 c.216dupA  Osteogenesis imperfecta 
52 p.Cys170Leufs*6 c.506dupG  Osteogenesis imperfecta 
53 p.His287Profs*30 c.859dupC  Osteogenesis imperfecta 
54 p.Ser317Lysfs*153 c.946_949dupAACA  Osteogenesis imperfecta 
55 -------- c.104+4_104+44del41 Osteogenesis imperfecta 
 










