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Abstract

Molecular classification of acute myeloid leukemia (AML) aids prognostic stratification and

clinical management. Our aim in this study is to identify transcriptome-wide mRNAs that

are specific to each of the molecular subtypes of AML. We analyzed RNA-sequencing data

of 955 AML samples from three cohorts, including the BeatAML project, the Cancer

Genome Atlas, and a cohort of Swedish patients to provide a comprehensive

transcriptome-wide view of subtype-specific mRNA expression. We identified 729 sub-

type-specific mRNAs, discovered in the BeatAML project and validated in the other two

cohorts. Using unique proteomics data, we also validated the presence of subtype-specific

mRNAs at the protein level, yielding a rich collection of potential protein-based biomarkers

for the AML community. To enable the exploration of subtype-specific mRNA expression

by the broader scientific community, we provide an interactive resource to the public.

1 | INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous disease due to the

diversity of genetic alterations.1,2 These alterations determine AML

pathophysiology, progression and response to therapy, and thus dis-

ease heterogeneity complicates clinical management.3,4 Many studies

have aimed to stratify AML patients into molecular subtypes, each

with distinct clinical significance in terms of prognosis or therapy

response.5-7 For example, favorable outcomes are reported for

patients with fusion subtypes, such as PML-RARA and CBFB-MYH11,

as well as the non-fusion subtypes, such as CEBPABiallelic subtype.6,8

On the other hand, overexpression of EVI1 is a poor prognostic factor

in MLL-rearranged AML.9 A fully genomic classification of AML that

considers patterns of co-mutations has been established recently
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based on a large patient cohort.6 At least 11 molecular subtypes can

be recognized based on cytogenetic and targeted sequencing ana-

lyses. However, large-scale information on how these genetic differ-

ences manifest themselves at the transcriptome and proteome level is

not yet established. Therefore, our aim is to identify transcriptome-

wide mRNAs that are specific to each of the molecular subtypes, and

to validate their significance at the protein level. Subtype-specific

mRNAs or the corresponding protein can provide further biological

understanding and be utilized as potential biomarkers for diagnosis,

classification, therapy response, as well as disease monitoring.

Here, we use a novel method that leverages available large-scale

RNA-seq datasets to identify molecular subtype-specific mRNA

expression patterns. The specificity of the genes is established using

two statistics, one for testing the genes that are over-expressed in a

single subtype compared to all the other subtypes and the other for

testing whether the remaining subtypes are statistically different.

We analyzed next-generation RNA-sequencing (RNA-seq) data of

955 AML samples from three cohorts, including the BeatAML project

(N = 461),10 The Cancer Genomic Atlas (N = 179)2 and a cohort of

Swedish patients (N = 315),11 called the Clinseq cohort from here

on. To provide these results and findings to the broader scientific

community, we have created an interactive resource containing the

complete results of subtype-specific analysis at https://nghiavtr.

shinyapps.io/AMLSubtypeSpecificDiscovery/.

2 | MATERIALS AND METHODS

2.1 | Study cohorts

The statistical identification of subtype-specific genes is optimized

using several tuning parameters, including the choice of contrast sta-

tistics and their corresponding thresholds. The BeatAML cohort which

contains 461 AML patients is used as a discovery cohort to determine

subtype-specific genes. The TCGA cohort cohort (179 samples), and

the Clinseq cohort (315 samples) are used for validation. The details

of each cohort are described below. The FASTQ files were obtained

from the three cohorts and RNA-seq reads were aligned to the human

genome hg19. Also, XAEM12 was used to obtain the gene expression

(transcript per million - TPM) from the RNA-seq data. The calculation

process of XAEM followed the instructions provided at http://fafner.

meb.ki.se/biostatwiki/xaem/.

2.1.1 | BeatAML data

The BeatAML project generated functional genomic data of primary

bone marrow biopsies from patients with AML. The dataset includes

genomic and transcriptomic analyses, clinical annotations and drug

responses. Patients in this cohort have received standard intensive

chemotherapy analogous to TCGA and Clinseq cohorts. Samples were

first processed with the Agilent SureSelect Strand-Specific RNA

Library Preparation Kit on the Bravo robot (Agilent). Sequencing was

performed on the Illumina HiSeq 2500 platform using a 100-cycle

paired-end protocol. More details of the data can be found in the orig-

inal paper.10 In total 23 360 genes across 461 samples with complete

clinical information and drug response are used in this study.

2.1.2 | TCGA data

The systematic study of the Cancer Genome Atlas (TCGA) AML sam-

ples has provided a genomic landscape of AML and generated a cata-

logue of leukemia-related genes.2 There is, therefore, a possibility to

also make use of this sequencing data for a more refined understand-

ing of subtype-specific patterns of mRNA expression. RNA-

sequencing was performed using Illumina HiSeq 2000 PE 75 base

sequencing protocol. Patients of the TCGA-AML study received inten-

sive induction treatment (chemotherapy). A total of 22 374 genes

from the 179 samples were used in this study as a validation set.

2.1.3 | Clinseq data

The Clinseq cohort includes 315 patients diagnosed with AML in Swe-

den between February 1997 and August 2014.11 Clinical information

was retrieved from patient records and the Swedish Adult Acute Leu-

kemia Registry. All patients underwent intensive induction therapy

(including anthracyclines and cytosine arabinoside) as first-line treat-

ment. Bone marrow or peripheral blood samples were obtained at the

time of diagnosis, separated for mononuclear cells and stored at

−180°C until use. Transcriptomic RNA was sequenced using the

Illumina HiSeq-2500 platform. As a validation set, gene expressions of

23 572 genes across 315 samples are considered in the analysis.

A representative subset of 118 patient samples with sufficient bio-

logical material was selected from the original cohort for mass

spectrometry-based proteomics analysis. The corresponding protein

levels of 12 142 genes were quantified in at least one sample. Mass

spectrometry based proteomics was carried out as previously

described.13-15 Briefly, viably frozen patient samples were washed, and

the cells were lysed by 4% SDS lysis buffer and prepared for mass spec-

trometry analysis using a modified version of the SP3 protein clean up

and digestion protocol.16 Peptides were labeled with TMT10-plex

reagent according to the manufacturer's protocol (Thermo Fisher Scien-

tific) and separated by immobilized pH gradient—isoelectric focusing

(IPG-IEF) on 3–10 strips as described previously.13 Extracted peptide

fractions from the IPG-IEF were separated using an online 3000

RSLCnano system coupled to a Thermo Fisher Scientific Q Exactive-HF.

MSGF+ and Percolator in the Nextflow platform were used to match

MS spectra to the Ensembl92 human protein database.17,18

2.2 | Molecular-subtype classification of AML

A genomic classification of AML, proposed by Papaemmanuil et al.,6 is

used in this study for the identification of subtype-specific genes.
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Papaemmanuil's classification compartmentalized AML into 11 sub-

types, each with distinct diagnostic features and considerable rele-

vance to clinical outcomes. Although the 11 subtypes well reflect the

genetic characteristics of AML, the association between molecular

mutations and the gene expression level are not well described.

We applied this genomic classification to the BeatAML, TCGA

and Clinseq cohorts and found similar frequencies of membership in

each subtype, shown in Table S1. For simplicity, in this context, we

named each subtype as follows:

• NPM1—AML with NPM1 mutation;

• TP53-mutant—AML with TP53 mutation, chromosomal aneuploidy

or both;

• Splice—AML with mutated chromatin, RNA-splicing genes, or both;

• CBFB-MYH11—AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);

• PML-RARA—AML with t(15;17)(q22;q12);

• MLL—AML with MLL fusion genes, t(x;11)(x;q23) multiple fusion

partners for MLL;

• CEBPABiallelic—AML with biallelic CEBPA mutations;

• RUNX1-RUNX1T1—AML with t(8;21)(q22;q22);

• IDH2R172—AML with IDH2R172 mutations and no other class-defin-

ing lesions;

• Inv(3)—AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2);

• Other—samples that are not assigned to any of above subgroups.

More detailed information of this genomic classification for the

multiple mutations and “other” group are described in the supplemen-

tary document.

2.3 | Systematic identification of subtype-specific
genes

A subtype-specific gene must be over-expressed in a single subtype

compared to all the other subtypes while the other subtypes are not

statistically different from each other. However, the problem is com-

plicated due to the fact that we have 11 subtypes. If we just test the

difference between one subtype against the rest, it only implies that

this subtype is different from the combined distribution of the rest

but the other subtypes could also different from each other, such that

the specificity to one single subtype cannot be guaranteed.

To overcome this issue, we apply a method that is originally described

in19 and use 11 AML subtypes, as described in section 2.2, for identifying

subtype-specific genes. This method computes two statistics— a robust

t test (T1) and chi-square test (T2) for each subtype. So, T1 is used to deter-

mine if there is a significant difference between each single subtype and all

other subtypes. And, T2 is used to test if the other subtypes have similar

expression. To be considered as subtype-specific, the statistic of T1 must

be large so that the subtype is significantly differential from the others, but

the statistic of T2 must be small to control the similarity between the

remaining subtypes. The statistical significance is expressed in terms of

false discovery rate (FDR) to account for multiple testing.20 Following,19

we set the threshold of T1-based FDR < 0.01 and T2-based FDR > 0.10.

2.4 | Code availability

The codes to compute two statistics T1 and T2 for identifying

subtype-specific genes used in this study are adapted from the origi-

nal study19 and can be downloaded from the public Zenodo repository

at https://doi.org/10.5281/zenodo.4036552.

3 | RESULTS

The pipeline of the subtype-specific genes discovery analysis is illus-

trated in Figure 1. Further experimental details are described in mate-

rials and methods section. Table S1 shows the number of patients in

each subtype; NPM1 is the largest group across three cohorts (includ-

ing 22.5% of samples), which is in agreement with previous

reports.6,21 The TP53-mutant subtype is of similar proportion to the

NPM1 subtype, and the splice subtype is in the 3rd largest group.

These three subtypes contain more than half of samples, accounting

for 54.8% of the three cohorts. Some small subgroups, that is, CBFB-

MYH11, PML-RARA, RUNX1-RUNX1T1, Inv(3) and MLL fusions, repre-

sent less than 5% of the three cohorts, in line with the WHO

classification.

The complete result for all genes can be found at an interactive

website https://nghiavtr.shinyapps.io/AMLSubtypeSpecificDiscovery/.

3.1 | Using this resource to enable the discovery
of subtype-specific genes

As an example of gene-level distributions, Figure 2 presents the

boxplots of the gene-level mRNA expression of PTPRG, a top-ranking

gene specific to the PML-RARA subtype. It shows that PTPRG expres-

sion patterns are similar across the three cohorts, with high expression

in the PML-RARA and low expression in the other subtypes, which is

in agreement with other analysis.22,23 The statistics of our method to

identify subtype-specific genes are: T1 ≈ 0 (t-statistic ≈ 73.56), T2 ≈

1 (Table S2). The PTPRG expression is also validated at the protein

level with higher protein levels in PML-RARA compared to all the other

subtypes, as shown in Figure 2D. The top five genes in each subtype

are given in Table S2. To select these, we first filter out the genes with

T2-based FDR < 0.1, then rank the genes by T1.

Figure S1 shows the number of subtype-specific genes

assigned to each subtype based on the BeatAML as the discovery

set. There were 9226 subtype-specific genes across the 11 sub-

types, with the NPM1 subtype being the largest group with 3687

genes (40%). We also investigate if the genes specific to the NPM1

subtype are able to separate patients with and without FLT3-ITD

(+/−) within this subtype. Figure S2 shows a tSNE plot of mRNA

expressions of the top 25 subtype-specific genes for the two

groups of FLT3-ITD +/−. The result shows no separation between

two groups, indicating these subtype-specific genes are specific to

NPM1 but do not contain signals for the FLT3-ITD status. The sub-

type “other” is the smallest group including only 52 genes (0.6%),
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which is reasonable since this group has no particular criteria asso-

ciated. The distribution of T1 of the identified subtype-specific

genes for each subtype based on the BeatAML dataset are shown

in Figure S3.

3.2 | Validation of subtype-specific genes

Figure S4 shows the Venn diagrams the subtype-specific genes from

the three cohorts for each subtype. In total, 729 subtype-specific

genes discovered in the BeatAML cohort are validated in both the

TCGA and Clinseq cohorts. The NPM1 and PML-RARA subtypes have

significantly higher numbers of overlapping genes across the three

cohorts, with 240 and 210 respectively, compared to other sub-

types (≤110).

In the heat map (Figure 3A) displaying the top 25 genes from each

subtype in the discovery set (BeatAML), a pattern that distinguishes

the different subtypes is evident. For patients with the NPM1,

CEBPABiallelic, CBFB-MYH11, PML-RARA, MLL and splice subtypes,

these data suggest gene expression patterns specific to the

corresponding subtypes. Similar patterns are observed in the valida-

tion sets (Clinseq and TCGA) for the NPM1, CEBPABiallelic, CBFB-

MYH11 and PML-RARA subtypes, as shown in Figure 3B, C. Taking

the NPM1 subtype as an example, the top 25 subtype-specific genes

are clearly more highly expressed in the patients classified in the

NPM1 subtype than in the other subtypes. Furthermore, this pattern

is also observed in the validation sets. Since the expression data of

some genes are not provided in the TCGA data set, we indicate these

absent genes with white lines (Figure 3C). Based on the clinical infor-

mation from the TCGA data set, no sample belongs to inv(3) subtype

with the Papaemmanuil et al. classification.

Furthermore, the Jaccard similarity coefficient was calculated to

measure the similarity between each pair of cohorts. It is defined as

the size of the intersection divided by the size of the union of the

subtype-specific gene sets (Table S3), thus a higher proportion indi-

cates a higher similarity between sample sets. In general, similar pro-

portions are shown for different pairs of cohorts. Subtypes with good

survival including CBFB-MYH11, PML-RARA and CEBPABiallelic generally

have higher Jaccard coefficients between the cohorts, ranging from

12% to 20%. The coefficients of poor survival subtypes such as TP53-

mutant and MLL are lower. The NPM1 subtype is also distinct from

the other subtypes that its Jaccard similarity coefficient between the

BeatAML and Clinseq cohorts is the highest (28%), indicating the con-

cordance between the two cohorts. However, the coefficients for the

NPM1 group between the TGCA and other cohorts are much lower

(8% and 10% for BeatAML and Clinseq, respectively). This suggests a

large difference in the NPM1 subtype between the TCGA from the

BeatAML and Clinseq cohorts. In addition, to quantify the similarity of

gene expression distributions of the identified subtype-specific genes

between cohorts, we used the set of top 25 subtype-specific genes to

calculate the correlations of median expression for each subtype

between BeatAML and other cohorts (Figure S5). The result shows

F IGURE 1 Pipeline of systematic identification of subtype-specific genes from AML RNA-seq, using the BeatAML data as discovery set, and
the TCGA and Swedish Clinseq data sets as the validation set. The statistic T1 finds genes that are over-expressed in a single subtype compared
to all the other subtypes, and T2 limits to genes where the remaining subtypes are not statistically different from each other [Color figure can be
viewed at wileyonlinelibrary.com]
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that the gene expression for the top 25 subtype-specific genes has a

strong correlation between BeatAML and other cohorts (Figure S5).

To present an overview of how well the global gene expression

data corresponds to the genomic subtypes, we performed the tSNE

analysis using: a) all genes and b) the top 25 subtype-specific genes in

each subtype of BeatAML cohort. Using top 25 subtype-specific

genes, we found a marked increase in the separation between sub-

types (Figure 4). Using all genes, only the PML-RARA subtype is well

separated (Figure S6). This suggests that most patients had gene

expression characteristics consistent with the genomic subtype in the

identified subtype-specific genes rather than all genes. We excluded

the “other” group from the tSNE analysis to maintain the pure molecu-

lar distinct subtypes. The tSNE plot including the “other” group can be

found in Figure S7. The tSNE analyses for the top 25 subtype-specific

genes identified in the TCGA and Clinseq cohorts are presented in

Figure S8A,B, respectively. Similar to results based on the BeatAML

cohort, both show a good separation between the subtypes. The

color-maps for the top 25 subtype-specific genes identified in individ-

ual cohorts are presented in Figures S13–S15. We further use the

729 subtype-specific genes identified in the BeatAML and validated in

both the TCGA and Clinseq cohorts from Figure 4 for the tSNE ana-

lyses. The results for the BeatAML, Clinseq and TCGA cohorts are

presented in Figure S8C–E, respectively. The subtypes are well sepa-

rated, especially the main subtypes such as NPM1, TP53-mutant,

CBFB-MYH11, PML-RARA, CEBPABiallelic, and RUNX1-RUNX1T11.

We further investigated the contribution of the subtype-specific

genes to the separation of French-American-British (FAB) subtypes of

AML,24 which capture the level of maturation of the cancer cells. This

F IGURE 2 Gene-level expression distribution of PTPRG gene across 11 molecular subtypes in A, BeatAML, B, Clinseq and C, TCGA cohort
and protein expression distribution of PTPRG gene across 11 molecular subtypes in D, Clinseq cohort. Gene expression is illustrated in log2(TPM
+ 1) and the protein levels of the gene are logged relative ratios [Color figure can be viewed at wileyonlinelibrary.com]
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might indicate whether the subtype-defining mutations introduce a dif-

ferentiation block and expansion. We selected two largest subgroups

NPM1 and TP53-mutant from the BeatAML cohort, collected samples

with available FAB information and did the tSNE analysis using the

mRNA expression of top 25 subtype-specific genes of the subtypes. For

NPM1 subgroup, as shown in Figure S9A, we see a clear separation for

FAB subtypes of M1, M2, M4 and M5. However, for TP53-mutant sub-

group, some FAB subtypes such as M2 are not well clustered; see

Figure S9B. Even though the results are limited due to the few samples

with available FAB subtype information, the tSNE analysis suggests that

the expression of subtype-specific genes contain information for separa-

tion of FAB subtypes.

3.3 | Subtype-specific protein levels

The same validation process was applied to the proteomics data from

the Clinseq cohort. Taking PTPRG gene as an example (Figure 2D), the

protein levels of PTPRG gene is highly correlated with gene expres-

sions, as they all have higher values in PML-RARA subtype and lower

values in the rest subtypes. Since some genes were not detected in

the proteomics data, we included more genes from the subtype-

specific gene list and selected the top 25 overlapping genes. So, 41%

of these selected genes have high correlation between gene expres-

sion and protein levels (with correlation coefficient > 0.5). More intui-

tively, Figure 3 shows the protein levels of the selected genes for

each subtype. Although the validation at protein level is not as clear

as at the gene expression level, we still can observe consistent pat-

terns, for example in the NPM1 and PML-RARA subtypes.

3.4 | Biological pathways

To assess the relations of the identified subtype-specific genes to the

biological pathways and processes, we used the Reactome database25

to analyze the pathway enrichment analysis of the top 25 subtype-

F IGURE 3 Color-map of the top 25 subtype-specific genes from each of the 11 subtypes. A, BeatAML as the discovery set; B, Clinseq gene
expression, C, TCGA gene expression, and D, Clinseq protein levels as validation sets. Red and green indicate expression levels above and below
median, respectively. White lines in C, indicate genes that are not measured in the TCGA data [Color figure can be viewed at
wileyonlinelibrary.com]
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specific genes in each subtype. The significant pathways (p-value

<.05) and statistics for each subtype are listed in Table S4. For exam-

ple, the most significant pathway (p-value = 0.0019) related to CBFB-

MYH11 subtype-specific genes is “RUNX2 regulates osteoblast differ-

entiation”. The RUNX family of transcription factors plays a critical

role in hematopoiesis, and the RUNX1 transcription factor is fre-

quently translocated in AML.26 As a RUNX family member, the relation

of RUNX2 to CBFB-MYH11 specific genes underlines the fact that

RUNX family members can function in complex with CBFB.27 The roles

of RUNX2 and CBFB in skeletal development have also been

well studied elsewhere.28,29 In addition, the glance of pathway dia-

gram would bring an overview of the connectivity and flow of infor-

mation in biological systems. Taking the most significant pathway

related to CEBPABiallelic subtype-specific genes (p-value < .001),

“Glucuronidation”, for example, we demonstrated the pathway associ-

ated with the subtype-specific genes (Figure S10). Four of a

total 24 genes of this pathway (16.7%) including UGT2A3,

UGT2B10, UGT2B11 and UGT2B28 are represented in 25 top

subtype-specific genes of CEBPABiallelic subtype, indicating the path-

way enrichment.

4 | DISCUSSION AND CONCLUSION

We have provided a comprehensive view of the transcriptomic land-

scape of molecular subtype-specific mRNA expression of AML based

on 955 RNA-seq samples from three different cohorts. A sophisti-

cated statistical methodology has been used to identify and validate

729 subtype-specific genes across molecular subtypes. These results

suggest that the gene-expression profiles can be used to characterize

the molecular subtypes of AML. We have provided a comprehensive

data portal which can serve a public resource to be used for

hypothesis generation, that is, the discovery of new biomarkers for

drug targets.

Rather than discovery of new genomic subtypes, our aim was to

provide more characterizations to existing molecular subtypes that

have been shown to have strong clinical relevance. Currently in the

clinic, the WHO and the ELN classifications have the most impact on

the treatment decision, but these are based on biology, morphology

and medical history. We had chosen the molecular classification of

Papaemmanuil et al. as it provides purely biological distinct subtypes.

The value of the molecular classification will increase over time as we

get more information on subtype-specific markers and on treatment

response. Instead of gene signatures, we provide single gene markers

specific to each subtypes. The key advantages are that (i) the single

genes may have more biological investigations, and (ii) they are more

easily measured in terms of sample requirements, especially if they

are validated at single protein level.

The PTPRG gene, a top-ranking gene specific to the PML-RARA

subtype in Figure 2, is strongly validated across cohorts and at protein

level. This has been reported as a tumor-suppressor gene in not only

AML but also other cancers, that is, nasopharyngeal carcinoma.30 So,

PML-RARA fusion is a known initiating event for the acute pro-

myelocytic leukemia (APL), and PTPRG mutation was discovered in

APL samples.31 Note, PTPRG is a member of the protein tyrosine

phosphatase (PTP) family of signaling molecules that are involved in

cell cycle, differentiation and oncogenic transformation. It has been

identified as a significant gene in childhood acute lymphoblastic leuke-

mia since the phosphatase induces dephosphorylation of ERK which

provides a potential therapeutic target for RAS-related leukemias.32

Also, PTPs have been detected in AML previously,33 but not with

specificity to any subtypes. The current result suggests a biological

role of PTPRG specific to the PML-RARA fusion subtype. Thus, by

identifying subtype-specific genes we can discover biomarkers that

are specific to each subtype. These genomic biomarkers could have

more biological investigations by clinical researchers.

Different molecular subtypes are clearly distinguished from each

other in the discovery set (BeatAML) and similar patterns are

observed in the validation sets (TCGA and Clinseq), especially for

NPM1, CEBPABiallelic, CBFB-MYH11, PML-RARA and RUNX1-RUNX1T1.

This partially agreed with the analysis in,34 where they clustered

patients and genes on the basis of similarity of expression distribu-

tions by using unsupervised hierarchical clustering analysis and found

patients with t(8;21), inv(16) mutations—RUNX1-RUNX1T1 and CBFB-

MYH11 fusions—had gene expression patterns specific to t(8;21) and

inv(16) subtypes. Among the subtypes, the PML-RARA and NPM1 sub-

types have the largest number of subtype-specific genes. Such a large

proportion of subtype-specific genes is typically a reflection of a bio-

logically distinct entity. We observe the same phenomenon, for exam-

ple, if we compare estrogen-receptor (ER)-positive vs ER-negative

breast cancers, or lung adenocarcinoma vs squamous-cell carcinoma.

Further explorations could be made based on the identified

subtype-specific biomarkers. For example, we have found two

subtype-specific genes from CEBPABiallelic subtype, ZBTB20 and

ARHGEF6, in the set of transcription factor (TF) targets of CEBPA

F IGURE 4 The tSNE analysis on the mRNA expression data
separating genomic subtypes of AML for the top 25 subtype-specific
genes in each subtype, and the data are shown for the BeatAML
cohort [Color figure can be viewed at wileyonlinelibrary.com]

586 MOU ET AL.

http://wileyonlinelibrary.com


collected from the Molecular Signatures Database (MSigDB v7.1). The

expression distributions (Figures S11 and S12) show the specificity of

these genes to CEBPABiallelic with a higher expression of the subtype

over the rest groups in the BeatAML as well as the validated cohorts.

This suggests a role of the CEBPA mutation in the changes of expres-

sion of the TF targets.

Our study had some limitations. Because they were based on ret-

rospective samples, the sample collection in the different cohorts was

heterogeneous. For example, not all samples across the different

cohorts were taken uniformly at the time of diagnosis; also, both bone

marrow and peripheral-blood mononuclear cells were in use, identi-

fied using Ficoll gradient centrifugation rather than using the CD38+

marker. These effects tend to increase statistical variability, so may

reduce the sensitivity in detecting the subtype-specific markers and

explain some lack of replicability across the cohorts. However, they

do not reduce the specificity of our results.
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