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Hinge-shift mechanism as a protein design
principle for the evolution of β-lactamases from
substrate promiscuity to specificity
Tushar Modi1,8, Valeria A. Risso2,3,8, Sergio Martinez-Rodriguez 2,7, Jose A. Gavira 3,4, Mubark D. Mebrat5,6,

Wade D. Van Horn 5,6, Jose M. Sanchez-Ruiz 2,3✉ & S. Banu Ozkan 1✉

TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins.

Sequence reconstruction studies indicate that it evolved from ancestral enzymes that

degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to spe-

cialist conversion involved more than 100 mutational changes, but conserved fold and cat-

alytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a

conformational dynamics computational approach to rationally mold a protein flexibility

profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the

conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme spe-

cificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements.

Our conformational dynamics design thus re-enacts the evolutionary process and provides a

rational allosteric approach for manipulating function while conserving the enzyme

active site.
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Proteins are biomolecular machines with the capacity to parti-
cipate in a wide variety of functions with remarkable effi-
ciencies and specificities. Apart from being the efficient worker

bees of the cell, proteins evolve and develop new functions over time;
this process is critical for the evolution and survival of the organism.
Proteins owe this remarkable capability to their three-dimensional
(3D) network of atomic interactions, which orchestrates the com-
munication between different parts of the protein chain in order to
accomplish their designated functions. A complete understanding of
the blueprint of their functional behavior (i.e., the relationship
between their sequence, structure, dynamics, and function) and how
it evolves with time could dramatically expand our ability to develop
protein-based catalysts with potentially far-reaching applications to
fields including chemistry, biotechnology, and medicine.

One such popular target of evolutionary studies is the TEM-1
β-lactamase. Modern β-lactamase enzymes are proteins that aid
bacteria in their fight against antibiotics by hydrolyzing β-lactam
antibiotics, like penicillin and cefotaxime (CTX), rendering the
antibiotic useless. In an attempt to understand the molecular
mechanism of antibiotic resistance in bacteria, particularly how
variations at the sequence level impact function, these enzymes
have been a target of a variety of evolutionary studies1–10. After
its discovery in 196311, ~170 other variants of TEM-1 β-lactamase
have been isolated, making it one of the most understood and
investigated enzymes from an evolutionary perspective1,7–15.

Through a Bayesian approach in a phylogenetic framework, the
Precambrian nodes in the evolution of class-A β-lactamases have
been resurrected13. This study provided us with sequences and
structures of enterobacteria (ENCA), the last common ancestor of
various Gram-negative bacteria (GNCA), and the last common
ancestor of Gram-positive and Gram-negative bacteria (PNCA).
Based on the estimates of divergence times, these enzymes existed
about 1Ga (ENCA), 1.5 Ga (GPBCA), 2 Ga (GNCA), and 3Ga
(PNCA). Comparison of ancestral β-lactamase enzymes with the
extant TEM-1 β-lactamase revealed that these share several physical
features—X-ray structures show that they share a common 3D fold
(root mean square deviation, RMSD ~0.6 Å); pairwise sequence
alignment between the sequences of GNCA and TEM-1 β-lactamases
indicates ~50% conservation in their amino acid sequence (see
Fig. 1b). In addition, they also shared the same composition and the
shape of their catalytic active site10,11. Despite these striking simila-
rities, GNCA and TEM-1 β-lactamases have very divergent catalytic
activity. The resurrected Precambrian β-lactamases were found to
degrade both penicillin and third-generation antibiotics (such as
CTX) with moderate catalytic efficiency. Of course, third-generation
antibiotics are a human invention and did not exist in the Pre-
cambrian. The results, however, support that Precambrian β-
lactamases were moderately efficient promiscuous enzymes capable
of degrading a variety of β-lactam substrates. However, with time,
these have evolved into highly specific enzymes that selectively
degrade penicillin with about two magnitudes of higher activity10,13.
These results are in stark contrast to the common structure–function
paradigm where the structure is thought to have a one-to-one cor-
relation with function. Indeed, all ancestrally reconstructed proteins
show that 3D fold is conserved as the function evolved through
amino acid substitutions. This is in agreement with the CATH16 and
SCOP17 databases showing that there is a limited number of 3D folds
and proteins with strikingly low sequence similarity and divergent
functions that can adopt a common fold18. Furthermore, a detailed
analysis by Osadchy and Kolodny19 also shows that protein struc-
tures are generally more conserved than their sequence, thereby
indicating that the structurally similar proteins can be very divergent
in their sequences as well as their functions.

To date, all resurrected ancestral protein studies have shown
that the evolution of a new function and/or adaptation to a new
environment is always accomplished while preserving the 3D

structure12,18,20–26. Our previous studies identify similar trends in
other enzymes and proteins, including thioredoxins27, GFP28,
and others9,10,29, which highlight the important role played by the
conformational dynamics in enzyme evolution, where the
structure–function model of the protein activity is replaced by an
ensemble model9,10,27–31. In this model, the native state of a
protein is represented by a collection of different conformations
visited by the protein. The protein then samples these con-
formations through a broad range of motions from atomic fluc-
tuations and side-chain rotations to collective domain
movements. Therefore, in this model, the function of a protein is
governed by the dynamics of sampling through this ensemble, as
opposed to exclusively a dominant structure.

The ensemble model of protein dynamics also fits very well with
protein evolution as it explains the emergence of a new function or
modulation of a pre-existing function for adaptation to a new
environment while conserving the dominant structure. Nature
modulates function by performing a series of subtle modifications in
the ensemble of the protein conformations such that the structure
remains conserved, but the dynamics of the protein are now different
by restricting the sampling of a group of conformers while allowing
others. Indeed, studies on protein design through directed evolution
have also highlighted the importance of conformational
dynamics32–37. However, the underlying molecular mechanism for
evolution, in particular, which position to substitute in order to
modulate the protein conformational dynamics, presents a major
challenge. This challenge also addresses the issue that the activities of
rationally designed enzymes are almost always universally less effi-
cient than their naturally occurring counterparts by a couple of
orders of magnitude38–40. However, recent efforts in the designed
enzyme methods have enabled the successful engineering of proteins
with novel catalytic functions25,35,39–41. A rigorous comparison
shows that natural and engineered enzymes have essentially
equivalent substrate-binding affinity, yet drastic differences in cata-
lytic rates. These low catalytic rates could only slightly be increased
after rounds of directed evolution experiments that allow distal
mutations39. Thus, a fundamental lack of knowledge about which
mutations will modulate the conformational dynamics towards tar-
geted functions currently prevents rational engineering of enzymes
with native-like catalytic efficiency.

In our previous computational studies9,10,27–29, we have
identified a common underlying hinge-shift mechanism that
accounts for many functional features during protein evolution.
Here, hinges are the regions in a protein with relatively lower
flexibility, which link higher flexibility regions. These computa-
tional studies suggest that an enzyme evolves with subtle changes
in dynamics, and concurrently its function, through a series of
hinge-shift mutations by interchanging and altering distinct,
flexible positions with rigid positions. In doing so, evolution
exploits an allosteric network of interactions that can modulate
the active site by making distal substitutions. Several other
studies have also validated the critical role played by allosteric
interactions for evolutionary trajectories of enzyme function42–47.

In an effort to further validate the hinge-shift mechanism, we
have engineered the minimum number of necessary substitutions
in the ancestral GNCA β-lactamase, such that the designed
mutant is closer, in its activity, to that of the specialist extant
TEM-1 β-lactamase. In order to do so, we use the dynamic
flexibility index (DFI)9,10,27–29,48–50 and dynamic coupling index
(DCI)9,10,28,29,48,51–53 as the metrics for quantifying the flexibility
profile and the coupling profile of various residue positions in
GNCA and TEM-1 β-lactamase. We propose a detailed
mechanism, according to which selected substitution mutations
are applied to GNCA, which gradually drives its dynamics (DFI
profile) towards that of TEM-1 β-lactamase. This change in
dynamics should cascade further to a change in the activity of the
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designed mutant. This is then tested and validated by functional
assays, where we observed that, as predicted by our analysis, the
activity of the designed mutant to degrade benzylpenicillin (BZ)
increases 3-fold, whereas the activity for degrading CTX showed a
remarkable decrease of 10,000-fold. These results indicate that
through mutations predicted by the hinge-shift mechanism, we
have rationally engineered the promiscuous GNCA β-lactamase
into a specialist enzyme that mimics TEM-1. These results further
highlight the significant role that allostery and conformational
dynamics play in the functional evolution of enzymes.

Results
Evolution conserves the 3D structure of β-lactamase while
changing the dynamics. To explain the functional differences

between the ancestral and extant β-lactamases, we employ a
comparatively recent and less explored dynamics–function
paradigm, which helps relate protein function with dynamics. We
use all-atomic molecular dynamics (MD) simulations (see
“Methods”) to obtain the equilibrium dynamics of ancestral
(GNCA) and extant (TEM-1) β-lactamases. Thereafter, we
compute the residue-specific flexibility profiles of the two proteins
using DFI (see “Methods”). Several computational studies have
been performed that predict the relationship between the function
and protein flexibility27,48,49,51,54. DFI analysis reveals regions of
low flexibility and high flexibility in a protein. Furthermore, the
residues belonging to low flexibility regions in a protein, called
hinges, are critical in coordinating collective protein dynamics.
These typically act as hubs for communication between different
parts of the protein28,55–58. Various evolutionary studies on the

Sequentially Conserved Hinges

Sequentially Non-Conserved Hinges

GNCA Hinges TEM-1 Hinges

258T/V

75L

280A

220R/L

a)

b) 184A

44V/A

Fig. 1 Differences in the flexibility profiles of GNCA and TEM-1 β-lactamases. a Comparison of the flexibility profile of ancestral β-lactamase (GNCA,
blue) with the modern β-lactamase (TEM-1, red). We identify several regions focused around residues 166, 205, 223, and 280, where key differences
(highlighted, black circles) in the dynamics of GNCA and TEM-1 β-lactamases, are observed. Typically, residues with the percentile rank of their DFI score
(%DFI) <0.2 are deemed rigid hinges. These residues have been observed to play a critical role in the functional dynamics of the protein28,55–58. b A Venn
diagram illustrating the amino acid conservation of select common and non-common hinges in GNCA and TEM-1 β-lactamase. The circles schematically
(only a subset of hinges are graphed) represent residues in GNCA and TEM-1 β-lactamase with or without amino acid substitutions. The alignment of TEM-
1 and GNCA β-lactamase amino acid sequences are color-coded based on their DFI scores. Blue is rigid and red is flexible, with a spectrum of
blue–white–red based on their DFI values. We observe several residue positions with conserved rigidity through evolution (common hinges, 41 in total) in
addition to shifts in hinges (non-common hinges, 10 in GNCA and 11 in TEM-1 β-lactamase). Many of these residue positions have conserved amino acid
identity (sequentially conserved), while others have evolved into a different amino acid (hence, sequentially non-conserved). For example, residue 220 is
arginine, which is a hinge position in GNCA, but has evolved to leucine in TEM-1 β-lactamase while losing its rigidity (shown as 220 R/L). The residue
positions that have maintained their rigidity without conserving their amino acid identity are highlighted in the sequence alignment by a green asterisk. The
residues where flexibility increased or decreased beyond 0.2 (non-common hinges) along with a substitution are highlighted with a pink asterisk. The
computed data is provided as a Source Data file.
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flexibility profiles of proteins have revealed that residues with low
flexibility have a higher propensity to be conserved in evolution,
and mutations in such low flexibility regions usually prove to be
detrimental for the function, particularly when it comes to
pathogenic mutations49,51,54,59. On the other hand, residues
found in the higher flexibility regions in a protein have a higher
conformational/vibrational entropy and efficiently sample the
conformational landscape. Therefore, these participate in func-
tions demanding a higher mobility, including ligand recognition.
Such regions are observed to be more prone to neutral or
compensatory mutations throughout evolution and are more
forgiving to the effects of amino acid substitutions.

Upon comparing the DFI profiles of the ancestral β-lactamase,
GNCA with the extant TEM-1 β-lactamase, we identify various
differences in their predicted flexibilities (Fig. 1a). This result is in
agreement with our previous DFI analyses, where we provided
insights into the puzzling question of how ancestral β-lactamases
can degrade a variety of antibiotics, exhibiting promiscuity, unlike
the specific modern homologs that can only inhibit penicillin,
while maintaining the same structure9,10,27,29. The special
structural dynamics associated with substrate promiscuity of
ancestral β-lactamases was revealed by patterns of high DFI
values in regions close to the active site, illuminating the flexibility
required for the binding and catalysis of different ligands10. In the
present study, we carefully further examined the changes in
GNCA and TEM-1 β-lactamase DFI profiles by focusing on their
respective DFI percentile ranking (%DFI). The %DFI gives the
relative ranking of each residue, such that a residue with 0.1 %
DFI score indicates that the residue is among the 10% least
flexible residues. Comparing these, we observe a number of low
flexibility residues in GNCA and TEM-1 β-lactamases (hinges
exhibiting <0.2 %DFI), which retained their flexibility through
evolution (also see Supplementary Fig. 1). We label these residues
as common hinges. On the other hand, we also identified many
hinge positions between GNCA and TEM-1, which underwent a
significant change in their flexibility by increased dynamics or
enhanced rigidity through evolution. Such residues are labeled as
non-common hinges.

Mimicking the dynamics of TEM-1 β-lactamase, by shifting the
hinges in GNCA β-lactamase. In our previous analyses of other
proteins including thioredoxins27, β-lactamase9, and GFP
proteins28, we have shown that changes in the protein flexibility
profile, through DFI, are able to accurately capture the changes in
their function. Through computational studies, we have observed
that during evolution, nature manipulates the dynamics of the
protein by shifting its hinge residues—the hinge-shift mechanism,
where some flexible residues become more rigid evolving into
hinges, and alternatively, other rigid hinge positions become
more flexible, leading to changes in dynamics to adapt to a new
environment or to evolve a new function9,27,29. In order to per-
form these hinge shifts without sacrificing the 3D fold, the resi-
dues with moderate flexibility are usually substituted, making
them rigid. This process is accompanied by a loss of rigid regions
in the ancestral proteins in the form of compensation in order to
preserve the protein fold and stability. Here, we attempt to
manipulate ancestral β-lactamase (GNCA) dynamics such that it
emulates modern β-lactamase (TEM-1) dynamics and function.
To achieve this, we target a minimum number of substitutions at
the positions involved in hinge shifts. This is done first in silico
and then computational predictions are characterized experi-
mentally in order to validate and gain a deeper understanding of
the underlying mechanism of evolution for modulation of the
function from exhibiting promiscuous activity towards antibiotics
to becoming a specialist.

We first focus on the critical role played by hinges in GNCA
and TEM-1 β-lactamases. With the help of the DFI flexibility
profile, we have identified several hinge positions in the ancestral
enzyme, GNCA, and the extant TEM-1 β-lactamase, which have
preserved their low dynamic flexibility (common hinges), and
also identified the positions that exhibit low flexibility either in
GNCA or TEM-1 β-lactamase (non-common hinges), as shown
in Fig. 1b.

In order to shift the dynamics of GNCA towards TEM-1
β-lactamase, we aim to use a rational design principle of the hinge-
shift mechanism where we attempt to reproduce the shift in hinge
locations made through evolution. We, therefore, substitute the
positions of GNCA residues with the corresponding amino acids
identified in TEM-1 β-lactamase in the following two sets:

Non-common hinges and sequentially non-conserved residue
positions (set X): here, we identify residue positions in GNCA β-
lactamase, which have been substituted in TEM-1 β-lactamase
while becoming either flexible (hinge-loss) or rigid (hinge-gain)
(residues highlighted with a pink asterisk in Fig. 1b). As discussed
earlier, such residue positions are expected to play an important
role in describing the functional landscape of the protein. These
substitutions typically lead to the modulation of dynamics and
function (the hinge-shift mechanism for evolution9,10,27,28).
Therefore, in this set, we follow this mechanism by considering
sequentially non-conserved hinge residues in GNCA and TEM-1
β-lactamases for substitutions. In order to identify the minimum
set of such hinges to replicate the desired change where it would
shift the DFI profile of GNCA towards that of TEM-1 β-
lactamase, we select only those non-common hinges in GNCA β-
lactamase that are dynamically coupled with other non-common
hinges in TEM-1 β-lactamase. The strength of coupling of a
residue with another residue is quantified using pairwise DCI (see
“Methods”), where we select only those residues that have a %
DCI coupling score >~0.8 (see Supplementary Fig. 2a). %DCI
represents the percentile ranking of the DCI score of residues.
Therefore, a residue with a %DCI score >0.8 would imply that the
residue is among the 20% of residues with the highest score.
Further, in the DCI analysis, similar to the calculation of DFI, the
coupling between different residues of GNCA and those of TEM-
1 β-lactamase are calculated using covariance of fluctuations
between pairs of residues obtained through MD simulations (see
“Methods”). These selected GNCA β-lactamase residues are then
substituted with the amino acids at corresponding residue
identities of TEM-1 β-lactamase. These residues are shown in
Fig. 2a.

Common hinges and sequentially non-conserved residue
positions (set Y): as shown in Fig. 1, there are many residues
with a conserved low flexibility, (i.e., remained as hinges) during
the evolution from GNCA to TEM-1 β-lactamase (residues
highlighted with a green asterisk in Fig. 1b). However, many
of these positions are substituted in TEM-1 β-lactamase as we call
them sequentially non-conserved common hinges. This suggests
that these common hinges are crucial for the dynamics associated
with the function. Therefore, these positions must exhibit long-
distance communication with other non-common hinges within
the 3D interaction network. Because of the shifts in hinges in
other parts of the protein, some of these dynamically conserved
positions (aka common hinges) need to be substituted to
compensate the change in flexibility of the hinge-shift substitu-
tions in other parts. We identify the sequentially non-conserved
and common hinges in GNCA and TEM-1 β-lactamase, which
exhibit high dynamic coupling to the other sequentially non-
conserved and non-common hinge positions obtained using the
pairwise DCI among them (Fig. 2b). Moreover, as seen in
Supplementary Fig. 2b, residue 182 (which is also a non-
conserved common hinge, exhibiting %DFI values of 0.07 and
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0.18 GNCA and TEM-1 β-lactamase, respectively) is selected in
mutation set Y despite being coupled to a lesser number of non-
common and sequentially non-conserved hinges. Residue 182 was
selected to ensure that common hinge positions that are equally
distributed all over the protein sequence are selected, rather than
biasing towards a specific region. Furthermore, residue 182 is the
only non-conserved common hinge position that exhibits strong
dynamic coupling with the key non-common and non-conserved
hinges. Additional details for the selection of 182 and its dynamic
couplings are provided in Supplementary Fig. 3. Moreover, as
shown in Supplementary Fig. 6, excluding the 182 mutation from
the Y set has a deleterious effect on the dynamics of GNCA β-
lactamase. The impact on dynamics of exclusion of mutation at
182 makes intuitive sense, because residue 182 has been observed
to play an important key role in several other evolutionary studies
involving laboratory and clinical isolates14,60. Afterwards, we
substitute the residue positions selected in mutation set Y in
GNCA β-lactamase with the amino acids in the corresponding
residue indices in TEM-1 β-lactamase (Fig. 2b).

We analyzed the flexibility profiles of the GNCA mutant
models containing mutations from set X (GNCA-X), set Y
(GNCA-Y), and also mutations from the combination of both
(GNCA-XY). In order to do so, we initially ran long MD
simulations of the mutants (≥400 ns or until they converge, see
“Methods” and Supplementary Table 1 for details). Since our
earlier work has demonstrated that DFI profiles correlate well
with associated function10,18,22–24, the DFI profiles of X, Y, and
XY mutants are computed from the equilibrated dynamics. We
employ the use of principal component analysis (PCA) for
clustering in order to evaluate the impact of these substitutions on

the dynamics (the DFI profile) of GNCA β-lactamase. We align
and arrange the DFI profiles of the mutants along with those of
GNCA and TEM-1 β-lactamase such that each protein can be
represented by a vector of dimension N, where N represents
the total number of residues in each protein. Afterwards, we
compare the projection of the vectors representing proteins along
the lowest principal components in the vector space in order to
observe the salient features differentiating them (see “Methods”
for more details).

First, we compare the lowest principal component of the
flexibility profile of single set mutants GNCA-X and GNCA-Y
with the wild type (Fig. 3b). We observe that set X has impacted
the dynamics of GNCA such that a few of its residues share
their dynamic flexibility with TEM-1 β-lactamases, creating
hinge shifts particularly around residues 185 as shown by
comparing their DFI profile (see Supplementary Fig. 4). Also,
set Y significantly changes the GNCA flexibility profile, and as a
result, GNCA-Y no longer shares the dynamical similarities
with either of the two enzymes. While set X represents a
fraction of the non-common and non-conserved hinges that
exhibit dynamic coupling with the rest, mutating all of the non-
common and non-conserved hinges also significantly alters
dynamics of the catalytic pocket of GNCA β-lactamase (see
Supplementary Fig. 5). This suggests that mutating all hinge-
shift positions is not sufficient for driving the flexibility profile
GNCA towards TEM-1 β-lactamase (see Supplementary Fig. 5).
The common but substituted hinge sites (i.e., Y set substitu-
tions) could play a vital role in compensating for these changes
and contribute towards the desired flexibility profile of TEM-1
β-lactamase. Indeed, we observed that mutations in sets X and
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Fig. 2 Residue positions selected for substitution in sets X and Y. a Non-common and sequentially non-conserved residues substituted in set X shown as
sticks on the cartoon representation of GNCA and TEM-1 β-lactamase. b Common and sequentially non-conserved residues substituted in set Y shown as sticks
on the cartoon representation of GNCA and TEM-1 β-lactamase. The substituting residues are colored based on their DFI profile where blue sticks represent
residues with low DFI (hinge) and the red sticks represent residues with high DFI (flexible/non-hinge). The catalytic positions are shown in dark gray.
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Y, when combined together, bring the dynamics of GNCA
closer to TEM-1 β- lactamase (Fig. 3). Set XY mutations are
able to induce hinge shifts in the GNCA β-lactamase around
residues 220 and 280, which bring the XY mutant flexibility
profile closer to TEM-1 β-lactamase (Fig. 3). This is also
reflected by the two lowest principal components obtained from
PCA comparing the DFI profiles of mutants GNCA-XY and
GNCA-X with the wild type where we see that mutant GNCA-
XY is comparatively closer to TEM-1 β-lactamase (Fig. 3b),
suggesting that substitutions may make the designed ancestral
enzyme more specific. In addition, this analysis also indicates
that mutations from sets X and Y have a nonadditive impact on
the dynamical landscape of GNCA β-lactamase. This points
towards a possible role of epistasis32,33,61–63 between the
mutation from sets X and Y.

Even though the clustering analysis shows similarities between
the flexibility profiles of the designed mutant and wild-type TEM-
1 β-lactamase, we still see that there are some significant
differences between the hinges of TEM-1 β-lactamase and mutant
GNCA-XY. Particularly around residues 203–215, 180–190, and
the C terminus of the protein, the mutant was not able to
replicate the flexibility profile of TEM-1 β-lactamase. Particularly,
some of these positions where mutations failed to recapitulate
flexibility profiles of TEM-1 β-lactamase correspond to the
sequentially conserved non-common hinges; hence, we could not
simply introduce substitutions by inferring the sequence varia-
tions between the ancestral and the extant β-lactamases as we did
for the other non-conserved and non-common hinges. Therefore,
in an attempt to bring the GNCA-XY mutant flexibility profile
even closer to TEM-1 β-lactamase, we now focus on the flexible
sites that exhibit allosteric dynamic coupling interactions with

the catalytic site. These distal sites, which are highly coupled to
the catalytic sites through an allosteric network of dynamic
interactions, are called dynamic allosteric coupling (DARC) spots.
These play a critical role in the evolution of protein dynamics
towards new function9,29,52,59.

Role of allostery through noninvasive DARC spots (set Z)
brings mutant GNCA-XY closer to TEM-1 β-lactamase.
Through our previous ancestral studies, we have observed that
nature introduces substitutions at the DARC spots that are distal
from the active site, where the mutations on DARC spots act as
small perturbative changes, and distally modulate the dynamics of
the protein/catalytic site in order to evolve a new function or
adapt to new environment9,27,29. Indeed, this is also true for β-
lactamases. First, we observed that a large fraction of the muta-
tions (the clinically isolated mutations or those that emerged
from directed evolution) are far from the active site, yet they
modulate the equilibrium dynamics of the protein to confer
resistance to antibiotics9,27,29,53,59. Furthermore, the DFI and
DCI analysis of the exhaustive set of ~5000 mutations in TEM-1
β-lactamase15 have shown that the sites exhibiting mid-range
flexibility and high dynamic coupling with the active site con-
tribute most to the emergence of degrading different
antibiotics9,27,29.

Therefore, in order to emulate nature, we also identify DARC
spots, which are mid-flexible residues (having a DFI range of 0.3
< %DFI < 0.5) that are allosterically coupled to the active9,29,52,59.
Since the active site positions are the rigid sites exhibiting low DFI
throughout the evolution, they form a part of the sequentially
conserved and common hinges. Moreover, by introducing

GNCA-XY

b)

GNCA

c)

TEM-1

a)

Flexible %DFI=1Rigid %DFI=0

Fig. 3 The similarities in the flexibility profiles of GNCA-XY mutants compared to the wild-type GNCA and TEM-1 β-lactamase. a Color-coded DFI
profiles mapped onto the 3D structure where red is flexible and blue is rigid, b clustering of these profiles using principal component analysis (PCA), c the
plot of mapped DFI profiles per residue position for each protein. The PCA analysis shows that GNCA-XY is similar to TEM-1 β-lactamase as shown in the
principal component biplot. GNCA-XY mimics the flexibility profile of TEM-1 β-lactamase more closely than mutation sets X and Y alone, particularly
around residues 220 and 280 (highlighted) in panel (c), also seen in their cartoon representations color-coded with the flexibility profile of their residues,
red being flexible and blue rigid. The computed data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22089-0

6 NATURE COMMUNICATIONS |         (2021) 12:1852 | https://doi.org/10.1038/s41467-021-22089-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


substitution at DARC spots, we also aim to induce hinge shifts at
non-common hinges, which are also sequentially conserved.
Hence, we only select the DARC spot residues that are not only
distal, >8 Å away from the active site, but also exhibit high
dynamic coupling (%DCI > 0.8) with such non-common and
sequentially conserved hinge sites (see Supplementary Fig. 7).
These steps were taken in order to minimize the deleterious
impact of the substitutions on the thermal stability and the kinetic
activity of the protein. The residues closer to the active sites
typically exhibit higher dynamic coupling as they are directly
interacting. However, the substitutions at those sites are also more
invasive and most likely impact the dynamics, and hence the
function. Therefore, selecting DARC spots reduces the perturba-
tive impact of mutations as they are relatively more flexible,
which agrees with our earlier proteome-wide analysis showing
that evolving sites are usually focused to flexible sites. Due to high
degrees of freedom at those sites, they can compensate for
changes upon substitution29,51,59. However, these DARC spots
are not only flexible but also exhibit high dynamic coupling with
the active or functionally important hinges sites. Therefore, the
protein dynamics can tolerate substitutions at such residues,
thereby allowing us to fine-tune the dynamics of the other
functional sites9,10,27–29,48–50. Furthermore, the fact that these
DARC spots exhibit high dynamic coupling with the non-
common and sequentially conserved hinges allow us to exploit
their compensatory network interactions to modulate the
flexibility of these hinges.

Thereafter, we performed MD simulations of the mutant (see
“Methods”) generated by performing mutations from set Z on
GNCA-XY mutant (GNCA-XYZ) and obtained its DFI profile
from equilibrated dynamics. We then analyzed the impact of Z set

on GNCA-XY by clustering its DFI profile with the DFI profiles of
the wild-type GNCA and TEM-1 β-lactamase and those of other
mutants, as shown in Fig. 4. The comparison of the flexibility
profiles of the GNCA mutant with mutations from set XY and set
Z together and the wild-type GNCA and TEM-1 β-lactamases
(Fig. 4a, b) show that the mutant successfully recapitulates the
dynamics of TEM-1 β-lactamase. It is able to capture the
shortcomings of GNCA-XY mutant in regions close to 180–190,
203–215, and 153–157. This is also indicated by the clustering of
the mutants from sets X, XY, and XYZ with the wild-type proteins
by comparing their first two principal components, Fig. 4c. We
observe that, as expected, the mutant GNCA-XYZ lies very close
to the wild-type TEM-1 β-lactamase, which is an improvement
over mutants with mutations from sets X and XY, suggesting that
the ancestral variant GNCA-XYZ with merely 21 substitutions
should degrade only penicillin with better efficiency than GNCA
β-lactamase, mimicking the catalytic activity of TEM-1 β-
lactamase. Therefore, using these 21 substitutions, we are able to
dynamically replicate the effect of a total of 119 substitutions
observed between GNCA and TEM-1 β-lactamase.

Experimental characterization confirms antibiotic specificity of
GNCA-XYZ. Based on the mutation sets discussed above, the
mutants GNCA-X, GNCA-XY, and GNCA-XYZ were synthesized
and their activities against the antibiotics CTX and BZ were char-
acterized (see “Methods”). The experimental characterization of
wild-type ancestral and extant β-lactamases shows that, as expected,
GNCA β-lactamase is promiscuous and nonselective in its activity
towards antibiotics BZ and CTX (with turnover rates of 0.3
and 1.2 s−1 μM−1, respectively). On the other hand, evolution has

TEM-1GNCA-XYZ

a)

b)

GNCA

c)

Rigid %DFI=0 Flexible %DFI=1

Fig. 4 Substitutions from set Z bring the dynamics of GNCA-XY closer to TEM-1. Comparison of the flexibility profile of wild-type GNCA and TEM-1 β-
lactamase with the GNCA mutants created by performing mutations from set Z over GNCA-XY (GNCA-XY) as a color-coded DFI profiles mapped onto the
3D structure where red-colored residues are flexible and blue are rigid, b clustering of these profiles using principal component analysis, c the plot of
mapped DFI profiles per residue position for each protein. The PCA analysis presents that GNCA-XYZ is the closest to TEM-1 β-lactamase, when their
difference is plotted in biplot using the first two principal eigenvectors. As observed per position DFI plot, GNCA-XYZ very closely mimics the flexibility
profile of TEM-1 β-lactamase, particularly ~185, 155, 210, and the C terminus (highlighted regions in b). This is also seen in their cartoon representations
(a). The computed data are provided as a Source Data file.
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turned TEM-1 β-lactamase into a specialist, which preferentially
catalyzes only BZ with a higher turnover rate (26 s−1 μM−1) in
contrast to CTX (2.6 × 10−3 s−1 μM−1).

The GNCA-X mutant identified from our computational analysis
reduced the turnover rates for CTX (2.5 × 10−4 s−1 μM−1).
However, it has also diminished BZ activity by reducing its
turnover rate by a factor of ten (0.03 s−1 μM−1). Likewise,
substituting all the non-common and non-conserved hinges
(GNCA-AllNN) also yields a similar loss in function, suggesting
that whether a fraction (set X) or all substitutions at non-common,
non-conserved sites alone are not sufficient to engineer a penicillin-
specific GNCA. We did not perform an experimental characteriza-
tion of GNCA-Y as it was rejected in the initial round of
computational analysis (see above). In addition, as discussed earlier,
due to the compensatory network of interactions between X and Y
set, the turnover rates of the mutant with the combined mutations
from X and Y (GNCA-XY) showed some improvement over
GNCA-X (as predicted to be slightly closer to TEM-1 β-lactamase)
as its turnover the rate for BZ did not show appreciable change
(0.22 s−1 μM−1). The mutant, however, showed a remarkable
decrease in its turnover rate for CTX (2.6 × 10−5 s−1 μM−1), thus
agreeing with the predicted analysis that introduced substitutions
slowly drives GNCA β-lactamase from promiscuity to specificity, by
reducing the catalysis of CTX while preserving the turnover rate for
catalysis of BZ. Interestingly, with the addition of substitutions at
DARC spots from set Z, the mutant GNCA-XYZ becomes more
specific in its activity towards BZ by a three-fold increase in its
turnover rate (0.9 s−1 μM−1). Moreover, its turnover rate towards
CTX also showed a significant reduction (<1 × 10−4 s−1 μM−1) (see
Supplementary Fig. 10), making it more preferential towards BZ,
which is a functional characteristic of TEM-1 β-lactamase. These
data are shown in more detail in Table 1.

As a control, we also wanted to check if the substitutions that
drove GNCA towards being a specific enzyme with an enhanced
degradation rate for BZ are due to the ones that are closer to the
active site. Therefore, we also studied the specific mutants with
substitutions in X, Y, and Z, which lie relatively closer to the
catalytic site in β-lactamase enzymes (T235S, T237A, T243S in
GNCAT235S_T237A_T243S and T235S, T237A, T243S, C69M in
GNCAT235S_T237A_T243S_C69M) (see Supplementary Fig. 8). Upon
experimental characterization of the activity of these mutants, we
observe that these mutations alone have rendered the mutant
ineffective to catalyze both BZ and CTX as shown by their
turnover rates (Table 1). This emphasizes the importance of

allosteric interactions in modulating the function of an enzyme
and the key part they play in evolution.

Subsequently, we also obtained the crystal structure of the final
engineered enzyme, GNCA-XYZ (see “Methods”). We observed
that the substitutions from mutation set X, Y, and Z has preserved
the 3D fold of the enzyme (RMSD < 1 Å) (Fig. 5a). We
computationally characterized the flexibility profile of the mutant
by obtaining its dynamics through an MD simulation using the
crystal structure as the starting point and then calculating the DFI
flexibility profile (GNCA-XYZ(X-ray)). Afterwards, we compared
this flexibility profile with the DFI profile predicted earlier of the
mutant and that of wild-type TEM-1 β-lactamase (Fig. 5b). We
observe that, as predicted, the flexibility profile of the engineered
mutant is very similar to the DFI profile of the wild-type TEM-1
β-lactamase.

NMR analysis shows dynamic differences between wild-type
GNCA and mutant GNCA-XYZ. In the previous sections, we
have computationally designed GNCA-XYZ function through
attempts to modulate its dynamics by substituting hinge positions
and regions coupled to hinge positions with the goal of shifting the
GNCA dynamic flexibility profile towards that of TEM-1 β-lac-
tamase (Fig. 4). As DFI profiles have been shown to correlate with
functional outcomes27,29, our hypothesis that the function of the
engineered mutant (GNCA-XYZ) should behave more like TEM-1
β-lactamase, with regards to the specificity and catalytic activity.
We have shown that the experimental characterization of GNCA-
XYZ supports the hypothesis as we observe a significant difference
in the turnover rates of GNCA-XYZ with antibiotics CTZ and BZ
as compared to ancestral and extant enzymes (Table 1). Moreover,
the GNCA-XYZ X-ray structure confirms that the 3D structure is
preserved, indicating that the engineered 21 substitutions have
introduced changes only in dynamics. In order to further validate
the computational predictions that the changes in dynamics
govern the function of GNCA-XYZ, we performed solution
nuclear magnetic resonance (NMR) spectroscopy experiments. A
standard protein NMR experiment couples amide proton and
nitrogen atoms giving probes throughout the protein backbone,
which results in a fingerprint type identifying 2D spectrum. These
HSQC (heteronuclear single quantum coherence)-based experi-
ments allow for a qualitative assay of the folded state and struc-
tural ensemble of a given protein in solution. One attribute of
HSQC data is the proton dimension dispersion, consistent with
the X-ray crystallography data, both GNCA and GNCA-XYZ have
broad proton dispersion, indicating that both proteins are well-
folded in solution. A qualitative assessment of dynamics can also
be gleaned by these experiments. For a well-structured rigid
protein, there is nearly a one-to-one correlation between the
number of NMR spectral resonances and the number of residues,
which arises naturally as the HN bond is a de facto probe and gives
rise to a discreet resonance. In the context of a protein with
increased dynamics, the correlation between the resonance num-
ber and residue number can diverge away from parity depending
on the timescales associated with conformational fluctuations
between states. Consistent with a well-folded and relatively rigid
protein, the HSQC data from GNCA identifies >90% (253 reso-
nances) of the expected number of resonances, which is consistent
with GNCA being rigid. GNCA-XYZ, on the other hand, shows
~60% (158 resonances) of the expected resonances, which is
consistent with protein dynamics on the intermediate NMR
timescale64 (see Fig. 6).

Beyond resonance number and proton dispersion, the HSQC peak
resolution and intensity heterogeneity can also serve as qualitative
measures of protein dynamics. Comparatively, GNCA-XYZ has

Table 1 Experimental characterization of wild-type β-
lactamase GNCA and TEM-1 β-lactamase, and the mutants
created by mutation sets X, Y, and Z by calculating their
turnover rates for catalysis of antibiotics benzylpenicillin
(BZ) and cefotaxime (CTX).

Protein BZ kcat/KM

(s−1 μM−1)
CTX kcat/KM

(s−1 μM−1)

TEM-1 26 ± 4.7 2.6 × 10−3 ± 1 × 10−3

GNCA 0.3 ± 0.1 1.2 ± 0.3
GNCA-X 0.03 ± 0.01 2.5 × 10−4 ± 5 × 10−5

GNCA-XY 0.22 ± 0.1 <1 × 10−4

GNCA-XYZ 0.9 ± 0.3 <1 × 10−4

GNCAT235S_T237A_T243S 0.03 ± 0.01 3.2 × 10−4 ± 1 × 10−4

GNCAT235S_T237A_T243S_C69M 0.05 ± 0.01 3.0 × 10−4 ± 1 × 10−4

GNCA-AllNN 0.03 ± 0.01 1.7 × 10−4 ± 7 × 10−5

The experimental data are provided as a Source Data raw_rates file.
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lower peak resolution and increased peak intensity heterogeneity,
which is consistent with it having increased backbone dynamics over
the relatively rigid GNCA protein. Taken together, the NMR data
complement the crystallography by showing that GNCA-XYZ is well
structured in solution. Similarly, the data support the computational
predictions that GNCA-XYZ has increased dynamics compared to
GNCA due to the decrease in the total number of hinges after
substitutions from the XYZ set as observed from the comparison of
the DFI profile of the mutant with the wild-type GNCA β-lactamase
(see Fig. 3). This offers validation to the computationally predicted

hypothesis of protein dynamics contributing to the regulation of
protein function64.

Discussion
In this study, we developed a design principle to evolve the
antibiotic activity of ancestral β-lactamase (GNCA) to approach
that of its extant counterpart (TEM-1 β-lactamase) by focusing on
the differences in their dynamics through utilizing DFI profiles. It
has been observed that the two proteins share a relatively high
sequence identity (~50%) as well as a common 3D structure10,13.
Despite these similarities, they are functionally divergent. Speci-
fically, ancestral GNCA β-lactamase exhibits catalytic promiscuity
and degrades two types of antibiotics (CTX and BZ) with similar
turnover rates. However, the extant TEM-1 β-lactamase is specific
with a 10,000-fold increase in turnover rate for CTX and BZ10,13.

As shown by our previous studies9,10,27–29,49,54, such func-
tional diversity between ancestral and extant enzymes can be
explained by focusing on the preserved and evolving features in
the flexibility profile of their residues obtained through our
computational analysis (DFI). DFI flexibility profiles obtained
from MD simulations were used to categorize enzyme residues
based on their flexibilities. Thus, allowing us to mimic the evo-
lutionary pathway by manipulating the catalytic activity of the
enzyme by subtle shifts in the hinge regions of their DFI profiles.
This mechanism of hinge shift was also observed in the evolu-
tionary history of other protein systems like thioredoxin27 and
GFP28. Following this, the hinges in GNCA and TEM-1 β-lac-
tamase were classified based on residue identity and rigidity
conservation.

In order to mimic the evolutionary identified hinge shifts, we
first focused on a subset of hinges that have altered their
dynamics by gaining flexibility. On the other hand, some other
flexible sites were rigidified and turned to hinges through sub-
stitutions (set X). Through this, we were able to successfully
emulate hinge shifts in several regions of the protein (see Fig. 3).
Second, we turned our attention to hinges, which have retained
their rigidity despite having substitutions. This indicates the cri-
tical role played by these residues in the enzyme’s 3D network of
interactions to mediate dynamics. However, these common hin-
ges need to be substituted to compensate for the new hinge for-
mations observed by substitution in X set. Thus, we identified Y
set substitutions by measuring the long-range dynamic

a) b)

Fig. 5 GNCA-XYZ structure obtained through X-ray crystallography reproduces predicted flexibility profile. a Superimposing the cartoon
representation of the crystal structure of GNCA-XYZ (blue) obtained from X-ray crystallography over the wild-type GNCA (green) and TEM-1 β-lactamase
(red) shows that it shares the same 3D fold as the wild-type proteins (RMSD <1 Å). b Comparing the DFI profile of the mutant GNCA-XYZ calculated
through the dynamics from an MD simulation starting from the crystal structure obtained by X-ray crystallography (black broken line) with the DFI profile
of the wild-type TEM-1 β-lactamase (red). We observe that the mutant, as predicted (blue), is able to successfully mimic the rigid regions of TEM-1 β-
lactamase, and also its flexible regions with remarkable accuracy. Moreover, the DFI profile of the mutant calculated using the structure obtained through
X-ray crystal also matches with our prediction obtained by the mutations performed computationally. This shows the relative robustness of the
computational procedure followed in the analysis. The computed data are provided as a Source Data file.
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Fig. 6 HSQC NMR data indicate that GNCA-XYZ is more dynamic than
GNCA β-lactamase. An overlay of GNCA-XYZ (black) and GNCA (blue)
15N-HSQC spectra. Both proteins are well-structured as noted in the >3 p.p.m.
proton dispersion and consistent with the X-ray structures of a mixed α-helix
and β-sheet structure. However, GNCA-XYZ shows spectral features
consistent with increased protein dynamics. Specifically, GNCA-XYZ shows
fewer resonances, less peak resolution, and increased peak intensity
heterogeneity; all are markers of increased protein dynamics relative to
GNCA. Data were collected at 850MHz 1H frequency and 30 °C. The
experimental data are provided as a Source Data file.
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interactions with the X set positions through our DCI metric.
Substitutions from set Y, on their own, had a deteriorating impact
on the dynamics of the protein (Fig. 3). However, as predicted,
together with set X (called set XY), these substitutions compen-
sate for the impact of the previous substitutions and bring the
flexibility profile of the mutant very close to the target profile of
TEM-1 β-lactamase (Fig. 4).

Last, we fine-tuned the enzyme function by modulating the
dynamic allosteric interactions. We focused on the residues with
medium flexibility (due to their less-invasive nature upon
substitution29,51,59), which also exhibit high dynamic coupling
with the catalytic sites (DARC spots9,29,52,59) obtained through
DCI. Of these, a subset was selected that shows stronger coupling
with other non-common hinge residues that are not substituted
during evolution (set Z). This was a key step in our design
strategy as it allowed us to distally modulate the flexibility of these
hinge positions without directly mutating them. Adding sub-
stitutions in set Z with the previous substitutions (set XYZ), we
managed to shift the DFI profile of the engineered mutant
towards that of TEM-1 β-lactamase beyond what was accom-
plished by the XY substitutions alone (Fig. 4). Experimental
characterization of the mutant also corroborates with our pre-
diction as we are able to introduce a 10,000-fold disparity in the
turnover rates for antibiotics by enhancing its turnover rate cat-
alyzing BZ (by an order of 3) and decreasing the turnover rate for
CTX (by an order of 104) (Table 1). These experiments validate
the ability to use the hinge-shift mechanism for engineering the
desired functional activity.

Overall, we used an approach motivated by conformational
dynamics to rationally redesign a promiscuous enzyme, GNCA,
toward an enzyme with better efficiency to a specific substrate
similar to TEM-1 β-lactamase. First, our dynamics approach
uses the hinge-shift mechanism, presented in our earlier
studies9,27,28,55 highlighting how compensation of enhanced
flexibility of rigid (hinge) sites with rigidification of flexible sites
modulate the conformational dynamics toward the desired
function. Second, our approach uses the protein flexibility profiles
as an optimization criterion towards the desired function such
that it checks whether the substitutions shift the flexibility profile
of the mutant from that of wild type to the flexibility profile of the
enzyme with the desired function. The success of our dynamics-
based design approach brings to light the importance of protein
dynamics and allosteric interactions in engineering new dynamics
for an enzyme, which is a current Achilles’ heel in enzyme
design21,22,40,41. It provides dynamics-based computational
design principles to enhance or fine-tune the activity of enzymes
based on conformational dynamics and allosteric networks as
opposed to the traditional methods to optimize the interaction
within a 3D structure near a catalytic site32,35.

Methods
MD simulation protocol. The dynamics of the wild-type proteins and their
mutants were obtained by performing their all atomistic MD simulations. The
starting structures for the wild-type proteins were obtained from the protein data
bank (PDB) (TEM-1 β-lactamase, from PDB ID: 1BTL65 and GNCA from PDB ID:
4B8813). The mutants were generated using the mutagenesis tool of PyMol66 using
the wild-type structures as a template and by replacing the wild-type amino acids
with the mutant amino acid templates where the initial rotameric state is selected
in order to have minimum steric hindrance in the structure. The software package
AMBER1767 was used to provide tools for creating the topology files and running
the simulations. The topology files are created by loading the starting structures
into TLEAP and using the force field ff14SB68. The protein hydrogens were added,
and the protein was solvated in a 14 Å cubic water box (TIP3P) with neutralizing
ions69,70. The energy of the system is minimized using SANDER module of
Amber1767 by minimizing the solvent molecules first and then followed by the
whole solution. The water box is then heated up from 0 to 300 K over a duration of
250 ps. The equilibration of density and then a production run is performed by
GPU-accelerated PMEMD module of AMBER1767,71. During simulations, periodic

boundary conditions are used, and bond lengths of all covalent hydrogen bonds are
constrained using SHAKE67. Direct-sum, non-bonded interactions are cutoff at 9.0
Å, and long-range electrostatics were calculated using the particle mesh Ewald
method. During production and heat-up, we use Langevin thermostat to control
the temperature at 300 K and Berendsen barostat to adjust the pressure at 1 bar. A
time step of 2 fs for the integrator is used for heat-up and production run. All
simulations are performed until the dynamic obtained from DFI were converged
(see next section).

Dynamic flexibility index. DFI9,10,27–29,48–50 calculates the resilience each residue
experiences to force perturbations in the protein. Computation of DFI utilizes the
perturbation response scanning (PRS)48,49,72,73 technique using small random unit
forces as probes to sample the local vibrational ensemble of each residue in the
protein. In this model, the protein is coarse-grained using Elastic Network Model
(ENM) where each residue is represented by a node at their alpha-Carbon (Cα)
atoms, and the bonds between interacting residues are replaced with springs. In
this model, the response of the protein in its native state to a perturbative force can
be calculated using Linear Response Theory (LRT)48,72 as:

ΔR3N ´ 1 ¼ H�1
3N ´ 3NF3N ´ 1 ð1Þ

where H is the 3N × 3N Hessian matrix of the protein with N interacting residues.
It is composed of the second-order derivatives of the harmonic potentials with
respect to the components of the position vectors of residues, giving the position
covariance of the residue pairs in equilibrium conformation. F is the perturbative
force vector and ΔR is the response vector of residues due to the force. In this
model, random unit Brownian kicks are used as perturbative forces in order to
mimic the effect of the stochastic nature of forces among water and protein resi-
dues in a cell.

Prior work on ENM-based PRS models suggests that such models are able to
accurately capture the global dynamics of the protein motion74,75. However, as the
use of Hessian suggests, this technique is limited by the use of harmonic
approximation on a static 3D structure. As a result, the ENM model fails to
incorporate the changes in the dynamics of the protein upon changes in the
chemistry of the protein by residue substitutions. Therefore, in order to predict the
dynamics of the mutants generated in this study, we have performed all-atomic
MD simulations on the mutants of GNCA (previous section). The simulations
provide us with pairwise correlations in the fluctuations of Cα atoms in the protein
in the form of a covariance matrix, which is proportional to Hessian inverse at
equilibrium. Thus, Eq. 1 can be rewritten as:

ΔR3N ´ 1 ¼ G3N ´ 3NF3N ´ 1 ð2Þ
where G is the covariance matrix obtained from MD simulations, which should be
sufficient to gather the differences in dynamics between proteins with a similar
native fold by the different chemical composition of the residue. With the use of
Eq. 3, the average response profile of the protein can be obtained upon application
of random Brownian kicks, uniform in all directions. The displacements of the
network are calculated as the random forces, F is applied sequentially to each Cα
atom in the protein in order to calculate the perturbation response matrix, A as,

AN ´N ¼
ΔR1j j1 � � � ΔRNj j1
..
. . .

. ..
.

ΔR1j jN � � � ΔRNj jN

2
664

3
775 ð3Þ

where, ΔRjj ji¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ΔRð Þ2

q
i is the magnitude of fluctuation response at site “i” due to

the perturbations at site “j” averaged over various random perturbations in all
directions. The perturbation matrix provides the net average displacement of the
residue from its equilibrium position when all the residues are perturbed by a unit
force one at a time. The DFI score of a residue position “i” is defined as the ratio of
its net response as all the residues in the protein chain are perturbed one by one in
a sequential manner and the net displacement of all the residues when everything is
perturbed.

DFIi ¼
∑N

j¼1 ΔR
jj ji

∑N
i¼1 ∑

N
j¼1 ΔR

jj ji
ð5Þ

Therefore, a residue with a higher DFI score is more susceptible to random
perturbations in the protein and samples the local conformation space more freely,
and hence is labeled as a flexible residue. On the other hand, residues with a lower
DFI score are more resilient to motions in the protein, and are therefore called rigid
residues.

Convergence protocol for dynamics from MD simulations. As described by
Eq. 1, when a Hessian is used to calculate the response of a perturbative force, we
are restricting ourselves to a harmonic potential. Therefore, as we sample data from
a simulation trajectory in order to calculate the covariance matrix, we are essen-
tially assuming that the data are sampled from a gaussian distribution (because of
harmonic potential). In order to achieve appropriate sampling, two of the basic
conditions discussed in the sections above have to be met: (i) All conformations
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sampled must belong to the same distribution. Otherwise, the potential energy well
underlying the distribution is different for different configurations in our sample.
(ii) The covariance matrix thus obtained should be independent of the choice of the
subset of atoms used for fitting coordinates (in order to find the equilibrium
coordinates and eliminate global motions). In order to ensure that these two cri-
teria are met following steps are taken.

First, the trajectory is divided into smaller window sizes with different starting
points separated by a time lag (25 ns). Three different window sizes (i.e., 25, 50, 75,
and 100 ns) are used. For each window size, we calculate a covariance matrix by
fitting all the configurations with the first frame of the given window. For fitting, we
use only the heavy atoms along the backbone of the protein chain. It should be
specified that, for the analysis, the first 100 ns of the trajectory is rejected to avoid
relaxation artifacts.

Afterwards, for each window size separately, we obtain the average DFI profile
by sampling over each covariance matrix of that window size throughout the
trajectory. The average DFI profile for each window size is then compared with
others to see if they exhibit common features (namely low flexibility and high
flexibility regions). If all the window sizes are sampling from the same potential
energy minima, then the final average DFI profiles will be independent of the
window size, that is, averaging of DFI profile from 25, 50, and 75 ns window size
will give similar results. Therefore, providing us with consistent and converged
dynamics. In addition, this will also ensure that the final resultant DFI profile is
independent of the choice of a subset of atoms for fitting as the initial coordinates
for fitting are different for each window.

If the condition described above is not satisfied, then we consider the trajectory
to be not converged and longer simulation times are used. An example of
convergence is shown in Supplementary Fig. 9. For all MD runs in the study, the
simulation times are provided in Supplementary Table 1 and covariance matrices
of length 50 ns are used for the calculations of DFI and DCI profiles.

Dynamic coupling index. DCI9,10,28,29,48,51–53, as the name suggests, is a metric
designed to quantify the strength of coupling between residues in a protein net-
work. Similar to DFI (described above), it utilizes the principles like PRS and LRT
in order to probe the coupling of a residue “i” with another group of residues
(Nfunctional). The DCI score of a residue “i” with another residue “j” is defined as the
ratio of the total displacement at “i” when Cα at residue “j” is perturbed by a unit
Brownian kick to the average displacement of residue “i” when all the residues in
the protein chain are perturbed by unit force Brownian kicks. It is expressed as:

DCIi ¼
∑Nfunctional

j ΔRj
�� ��

i
=Nfunctional

∑N
j¼1 ΔRj

�� ��
i
=N

ð6Þ

Here, as earlier, |ΔRj|i is the response fluctuation profile of residue “i” upon
perturbation of residue “j.” Therefore, a higher DCI score of a residue with the
functional sites would imply that perturbation at functionally important sites has a
larger impact on that residue as compared to the rest of the protein indicating a
higher coupling between the two. On the other hand, a lower DCI score would
mean otherwise.

This DCI calculation allows us to compute the dynamic coupling of the
positions with the active site. However, we also wanted to calculate pairwise
dynamic coupling among NN hinges for set X and between NN and NC hinges for
set Y. For that we slightly modify Eq. 6 to compute dynamic coupling index of
position “i” upon perturbation at position “j” as:

DCIji ¼
ΔRjj ji

∑N
j¼1 ΔR

jj ji=N
ð7Þ

Similar to the earlier criterion, residues with a higher %DCI score (>0.8) will be
considered to be highly coupled to residue “j.”

Clustering of proteins based on their DFI profile. In order to cluster the proteins
based on their DFI profiles, we compare the percentile ranking of different residues
in each protein. We create a data matrix X, where the percentile ranked DFI profile
of each protein is stored in a column after alignment of their sequence with each
other such that for each protein equal number of residues (say “n”) will be com-
pared. Therefore, if “m” proteins are being clustered, the dimensions of matrix X
will be n ×m. Afterwards, in an attempt to reduce the statistical noise in the data,
we perform dimensionality reduction using singular value decomposition. It is
done by firstly reducing the matrix X as:

X½ �n ´m¼ U½ �n ´ n Σ½ �n ´m V½ �m ´m ð7Þ

where U and V are the left and right singular vectors of X, and Σ is a diagonal
matrix with singular values of X as its diagonal elements. The singular vectors are
orthogonal with respect to each other and represent the orthogonal basis of the
vector space of the data. The singular values represent the variance in the data
along the corresponding singular vectors. Assuming that the singular values of Σ
are arranged in a decreasing order of their magnitude, we select the highest “r”
singular values such that these contain the largest variance (hence contains the
most significant features) in the data. Using these, the data can be reconstructed

with lower dimensions as:
�
X*�

m ´ r ¼
�
VT*�

m´ r

�
Σ*�

r ´ r ð8Þ
Here, Σ* is the diagonal matrix with “r” largest singular values and VT* is the

transpose of the matrix with corresponding “r” left singular vectors and X* is the
data with reduced dimensions containing “m” proteins with “r” features ready to
cluster. The data in the reduced dimensions, therefore, describe the key differences
between the DFI profile of the proteins, such that each row represents the DFI
profile of the proteins and the column gives their positions in the principal
components. The distance between the proteins can be further visualized in a
2D plot where on each axis we show their respective principal components.
Therefore, proteins farther apart in this 2D plot also have larger differences
between their DFI profiles. However, proteins closer to each other in the plot also
share a larger degree of similarities in their DFI profiles.

In order to cluster, we can compare the proteins based on their features (called
principal components). These principal components can be used to show the
differences in data by scattering the proteins on a plane with the principal
components as their axis as shown in Figs. 3 and 4 (also Supplementary Figs. 5 and
6). Data that lie closer to each other on this plane share more similar features than
two data points farther away from each other. Another way of clustering the data is
by creating hierarchical trees using a dendrogram. To do so, we calculate the
pairwise Euclidean distance between all pairs of proteins (say “l” and “m”) in the
reduced dimensions as:

dlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
r

i¼1
Xl
i � Xm

i

� �2r
ð9Þ

Experimental characterization of the mutants. Proteins studied in this work
were prepared as we have previously described76. Briefly, genes cloned into a
pET24 vector with resistance to kanamycin were transformed into E. coli BL21
(DE3) cells (catalog number: 200131 and vendor: Agilent (https://www.agilent.
com/store/en_US/Prod-200131/200131)). Proteins were purified by NTA affinity
chromatography, taking advantage of the presence of a His-tag at the C-terminal.
Protein solutions were prepared by exhaustive dialysis against 50 mM HEPES
buffer and protein concentrations were determined spectrophotometrically using a
known value of the extinction coefficient at 280 nm.

Catalytic parameters for the hydrolysis of lactam antibiotics were determined at
25 °C, as we have previously described13. Briefly, initial rates were determined from
the change in UV absorbance that accompanies substrate hydrolysis and values of
the Michaelis constant, turnover number, and catalytic efficiency were calculated
by fitting the Michaelis–Menten equation to the profiles of rate versus substrate
concentration. In some cases, linear plots were observed, indicating a very large
value of the Michaelis constant. In those cases, only the value of the catalytic
efficiency was calculated from the experimental profiles.

Denaturation temperatures were determined from differential scanning
calorimetry experiments, as we have previously described13. Briefly, protein
solutions were exhaustively dialyzed and the buffer from the last dialysis step was
used as the reference solution in the calorimetric experiments. Equilibration of the
instrument was ensured by recording several baselines prior to the experiment with
the protein sample. Denaturation temperature values were determined as the
temperature corresponding to the maximum of the heat capacity profiles.

Crystallization, data collection, and structure determination. Crystallization of
GNCA-XYZ was done by the counter diffusion technique77 using the 24 conditions
minimum crystallization screening kit together with the mixPEG at pH 4.0–9.077.
Protein solution, at 30 mg/mL in 25 mM HEPES pH 7.0, was loaded in capillaries
of 0.2 mm inner diameter, sealed at the top of the capillary, and confronted to the
precipitant solutions. After several days, first crystals appeared at the bottom of the
capillary, but crystals were let set until data collection. Crystals were extracted from
the capillary and cryo-protected by the equilibration with 15% (v/v) glycerol or
20% PEG 200 prepared in the mother liquid prior to flash freezing in liquid
nitrogen for transportation and data collection. Crystals were grown in several
conditions, but the best diffracting crystals were obtained in the mix of PEG
at pH 9.0

Crystals were diffracted at the beamline ID30B of the European Synchrotron
Radiation Facility (ESRF, France). Data were indexed and integrated with XDS78

and scaled with SCALA79 of the CCP4 program suite80. Molecular replacement was
done using as the search model the coordinates of GNCA, PDB ID. 4B88 in
Phaser81. Refinement was initiated with phenix.refine82 of the PHENIX suite83

followed by manual building, water inspection, and ligand identification in Coot84.
The final refinement was assessed, including Titration-Libration-Screw
parameterization. The model was verified with Molprobity85 prior deposit at the
PDB (ID: 6YRS). Additional details are provided in Supplementary Table 2.

NMR spectroscopy. The GNCA and GNCA-XYZ genes were incorporated into a
pET_24B (+) vector and transformed into BL21 (DE3) E. coli cells. Starter cultures
were prepared with one colony in 5 mL LB with 38 µg/mL kanamycin and incu-
bated overnight at 37 °C with shaking. The starter culture was used to inoculate 1 L
of minimal M9 media (12.8 g Na2HPO4·7H2O, 3.0 g KH2PO4, 0.5 g NaCl, 1 g
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15NH4Cl, 20 mL of 20% w/v D-glucose, 10 mL 100× MEM vitamin solution, 1 mM
MgSO4, 100 µM CaCl2). Protein expression was induced at 0.6 OD600 nm with 400
µM isopropyl β-D-1-thiogalactopyranoside at 37 °C for 3 h. The resulting cells were
harvested at 6000 × g for 15 min at 4 °C.

The cell pellet containing overexpressed lactamase was resuspended in 20 mL of
lysis buffer (20 mM Na2HPO4, 500 mM NaCl, pH 7.4) per 1 L of cell pellet, 1 mM
phenylmethanesulfonyl fluoride, 5 mM magnesium acetate, 23 µg/mL lysozyme,
2.3 µg/mL DNase, and 2.3 µg/mL RNase. The sample was tumbled at room
temperature for 20 min, followed by sonication on ice with S-4000 Ultrasonic
Processor (Qsonica) at a 3 s on and 5 s off pulse cycle and 65% power. The resulting
lysate was centrifuged at 38,500 × g for 20 min at 4 °C. The supernatant was
collected using a 0.45 µm filter and loaded onto 5 mL QIAGEN Ni-NTA Superflow
column at 1 mL/min rate. The column was equilibrated with 5 column volumes
(CVs) of binding buffer (20 mM Na2HPO4, 500 mM NaCl, 20 mM imidazole, pH
7.4) and washed with 2.5 CVs of 8% (58.4 mM imidazole) of elution buffer (20 mM
Na2HPO4, 500 mM NaCl, 500 mM imidazole, pH 7.4). The lactamase was eluted by
a linear gradient of the binding and elution buffers over 9 CVs and ranging from 8
to 70% elution buffer concentration. Fractions were identified by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and buffer exchanged into
NMR buffer (25 mM Na2HPO4, 250 mM NaCl, pH 6.7) and concentrated to 0.5
mL using 10 kDa cutoff (Millipore Amicon Ultra-4 10 K) for gel filtration
chromatography (16XK column with Superdex 200 Prep Grade Resin, GE
Healthcare Life Science). SDS-PAGE was used to analyze fractions with high A280

readings, and selected fractions were combined and concentrated.
The NMR sample was prepared in a 3mm NMR tube with 2.7% D2O, 0.5mM

EDTA, and 550 µM protein concentration in a final volume of 180 µL. All 1H-15N-
HSQC experiments were recorded on a Bruker Avance III HD 850MHz
spectrometer at 303.15 K and equipped with a cryogenically cooled probe. Data
were processed in NMRPipe86 and analyzed with the CcpNMR Analysis software87.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this Article is available as a
Supplementary information file. Source data are provided with this paper. PDB ID
solved: 6YRS.

Code availability
The code to perform DFI and DCI analysis is available at https://github.com/SBOZKAN/
DFI-DCI. Correspondence for the code should be addressed to S.B.O.
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