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Abstract

The calibration technique ([? ]) to estimate the �nite distribution function

have been studied in several papers. Calibration seeks for new weights close

enough to sampling weights according to some distance function and that, at

the same time, match benchmark constraints on available auxiliary information.

The non smooth character of the �nite population distribution function causes

certain complexities that are resolved by di�erent authors in di�erent ways. One

of these is to have consistency at a number of arbitrarily chosen points. This

paper deals with the problem of the optimal selection of the number of points

and with the optimal selections of these points, when auxiliary information is

used by means of calibration.
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1. Introduction

Calibration is the principal theme in many recent articles on estimation in

survey sampling ([? ], [? ], [? ], [? ], [? ], [? ],...) Calibration has established

itself as an important methodological instrument in large scale production of

statistics. Several national statistical agencies have developed software designed5

to compute weights, usually calibrated to auxiliary information available in

administrative registers and other accurate sources.
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The calibration approach adapts itself to the estimation of more complex

parameters than a population total. Before calibration became popular, several

papers considered the estimation of distribution functions, with or without the10

use of auxiliary information ([? ], [? ],[? ], [? ]. As [? ] illustrates, there is

more than one way to implement the calibration approach in the estimation of

the distribution function. Some applications to missing data problems can be

seen in [? ] and [? ].

The non smooth character of the �nite population distribution function15

causes certain complexities; these are resolved by di�erent authors in di�er-

ent ways. Furthermore, in some cases it not possible to �nd an exact solution

of the calibration problem as stated.

The computationally simpler method of [? ] is an application of model

calibration, in that they calibrate with respect to a population total of predicted20

y-values. Complete auxiliary information is required. Using the known �nite

population distribution functions of auxiliary variables, compute �rst the linear

predictions. The calibrated weights are obtained by minimizing the chi-square

distance subject to calibration equations stated in terms of the predictions, so

as to have consistency at J arbitrarily chosen points. It is suggested that a25

fairly small number of arbitrarily selected points may su�ce.

The idea of to create many benchmarks based on an auxiliary variable was

proposed in [? ] (Exercise 3.35). This estimator of median can be shown as a

special case of how to use 99 known percentiles of an auxiliary variable.

The question of the optimal values in order to obtain the best estimation30

under simple random sampling without replacement for an arbitrary number of

calibration points can be seen in [? ]. This paper shows the optimal size of the

chosen points (Section 3) and the optimal vector (Section 4). In Section 5 we

de�ne the optimum estimator with estimated optimal vector and in Section 6

we include some numerical comparisons.35

2. Calibration estimation of the distribution function
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Let U = {1, 2, . . . , N} be a �nite survey population from which a realized

sample s = {1, 2, . . . , n} is drawn with a measurable design d with �rst and

second order inclusion probabilities πk and πkl. We note by yk the main variable

and by xk a vector of auxiliary variables at unit k. The values xk are known40

for the entire population but yk is known only if the kth unit is selected on the

sample, s. To estimate the distribution function of the study variable y

Fy(t) =
1

N

∑
k∈U

∆(t− yk) (1)

where

∆(t− yk) =

 1 if t ≥ yk

0 if t < yk

we consider the calibration approach, which consist in the construction of an

estimator
∑
k∈s

ωk∆(t− yk) where the calibration weights ωk are chosen to mini-

mize their average distance from the basic design weights dk = 1/πk that are

used in the Horvitz-Thompson estimator

F̂Y HT =
1

N

∑
k∈s

dk∆(t− yk) (2)

subject to conditions that use the auxiliary information provided by the auxi-

liary vector x.

45

The distance measure is most commonly chosen as

Φs =
1

2

∑
k∈s

(ωk − dk)
2

dkqk
(3)

with qk are known positive constants unrelated to dk. Following [? ] and [? ], in

the de�nition of calibration conditions, we consider a pseudo-variable gk = β̂′xk

for k = 1, 2, . . . , N where:

β̂′ =

(∑
k∈s

dkqkxkx
′
k

)−1

·
∑
k∈s

dkqkxkyk.

3



With the pseudo-variable g, we consider the minimization of (3) subject to the

following conditions:

1

N

∑
k∈s

ωk∆(tg − gk) = Fg(tg) (4)

with tg = (t1, . . . , tP )
′
is a vector chosen arbitrarily, assuming that

t1 < t2 < . . . < tP .

Note that this estimator can be seen as a particular case under a more general

model gk = a + bxk with the condition
∑

ωk =
∑

dk. AQUI HABRA QUE

AÑADIR UNA REFERENCIA PARA LA CONDICION ESTA The resulting

estimator ([? ]) is given by

F̂yc(t) = F̂Y HT (t) +
(
Fg(tg)− F̂GHT (tg)

)′
· D̂ (5)

where F̂GHT is the Horvitz-Thompson estimator of Fg and

D̂ = T−1 ·
∑
k∈s

dkqk∆(tg − gk)∆(t− yk)

assuming that the inverse of symmetric matrix T

T =
∑
k∈s

dkqk∆(tg − gk)∆(tg − gk)
′

exists.

The asymptotic variance of F̂yc(t) is studied in [? ] and is given by:

AV (F̂yc(t)) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl) (6)

where Ek = ∆(t− yk)−∆(tg − gk) ·D, with

D =

(∑
k∈U

qk∆(tg − gk)∆(tg − gk)
′

)−1

·

(∑
k∈U

∆(tg − gk)∆(t− yk)

)
.

The precision of F̂yc(t) changes with the selection of tg. In [? ], the authors

studied, for a �xed P , the problem of selection the optimal vector tg, under sim-

ple random sampling and qk = 1 for all k ∈ U , that gives the best estimation of50
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Fy(t), that is, the problem of determining an auxiliary vector tg = (t1, . . . , tP )
′
,

with t1 < t2 < . . . < tP that minimizes the asymptotic variance of the estimator

F̂yc(t) given a point t for which we want to estimate Fy(t).

Following [? ], the problem of determining an auxiliary vector tg that mini-

mizes the asymptotic variance (6), under simple random sampling, is equivalent

to minimizing the following function:

G(t1, t2, . . . , tP ) = 2NFy(t) · kp −
P∑

j=1

(kj − kj−1)
2

(Fg(tj)− Fg(tj−1))
− k2P (7)

where

ki =
∑
k∈U

∆(t− yk)∆(ti − gk) i = 1, 2 . . . , P.

The global minimum of the function G ([? ]) is a vector tg = (t1, t2, . . . , tP ),

with t1 < t2 < . . . < tP and ti ∈ At or ti ∈ Bt for i = 1, 2, . . . , P , where the set

At and Bt are given by

At = {gk : yk ≤ t} = {a1, a2, . . . , aM} (8)

with a1 < a2 < . . . < aM and

Bt = {b1, b2, . . . , bM} (9)

with

b1 = max
l∈U1

{gl} where U1 = {l ∈ U : gl < a1}

bh = max
l∈Uh

{gl} where Uh = {l ∈ U : ah−1 ≤ gl < ah}, h = 2, 3, . . . ,M

where b1 < b2 < . . . < bM . Since the sets At and Bt are �nite, �nding the55

global minimum is computationally simple. For some h in 1, 2, . . . ,M the cor-

responding point bh may not exist, but in this case, the minimization problem

is simpler than the current case ([? ]).

In the next section, we consider the optimal dimension P of the auxiliary vec-60

tor tg, that is, the optimal number of auxiliary points ti used in the calibration

process in order to obtain the best estimation of Fy(t).
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3. Optimal dimension P of the auxiliary vector tg

In this section, given a point t for which we want to estimate Fy(t), we study

the problem of the optimal dimension P of the auxiliary vector tg used in the65

calibration process of the estimator F̂ yc(t). The following theorem establishes

the optimal dimension of the vector tg.

Theorem 1. Suppose that we wish to estimate Fy at point t with the calibration

estimator F̂ yc(t), then the optimal dimension of the auxiliary vector tg is P =

2M , where M is the number of points of the �nite set At given by (8), provided70

that b1 exits and for all i = 1, . . . ,M − 1, bi+1 ̸= ai.

Proof.

The proof of the theorem is developed in two steps. In the �rst step, we show

that the calibration process with P −1 auxiliary points is a particular case of P

auxiliary calibration points. In the second step, we show that the minimization75

of the asymptotic variance of F̂ yc(t) with P auxiliary points, where P > 2M

is equivalent to the minimization of the asymptotic variance of F̂ yc(t) with 2M

auxiliary points. In order to develop the two steps, the function G(t1, t2, . . . , tP )

([? ]) is a piecewise function given by: G(t1, . . . , tP ) =

=



0 if tP ≤ b1

2NFy(t)KhP −
P∑

j=1

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))
−K2

hP
if ahj ≤ tj ≤ bhj+1

j = 1, 2, . . . P

hj = 0, 1, 2, . . .M

(NFy(t))
2 − (NFy(t))

2

Fg(t1)
if aM ≤ t1

(10)

where a0 = gmin; bM+1 = gmax; h0 = 0; t0 any value with t0 < a0 and

gmin = min
k∈U

{gk}, gmax = max
k∈U

{gk},
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and

Khj =



0 if tj < a1

∑
k∈U

∆(t− yk)∆(ahj − gk) if ahj ≤ tj ≤ bhj+1

hj = 1, 2, . . .M − 1,

NFy(t) = KM if aM ≤ tj .

(11)

80

First step. The functionG with an auxiliary vector tg of dimension P−1 is a par-

ticular case of functionG with an auxiliary vector tg of dimensionP : If we denote

byGP−1 the functionG when the auxiliary vector tg = (t1, t2, . . . , tP−1) have di-

mension P−1 and GP the function G when the auxiliary vector tg(t1, t2, . . . , tP )

have dimension P , then it's clear that if t1 ≥ aM , we have:

GP−1(t1, t2, . . . , tP−1) = GP (t1, t2, . . . , tP ) = (NFy(t))
2 − (NFy(t))

2

Fg(t1)
.

For tP−1 < b1, it is su�cient to consider tP < b1 and we have

GP−1(t1, t2, . . . , tP−1) = GP (t1, t2, . . . , tP ) = 0.

Finally, for ahj ≤ tj ≤ bhj+1, wih j = 1, 2, . . . P − 1 and hj = 0, 1, 2, . . .M − 1,

if we consider tP ∈ [ahP−1
, bhP−1+1], that is hP = hP−1, it is easy to see that

KhP
= KhP−1

, and consequently

GP (t1, t2, . . . , tP ) = 2NFy(t)KhP
−

P∑
j=1

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))
−K2

hP
=

2NFy(t)KhP−1
−

P−1∑
j=1

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))
−K2

hP−1
= GP−1(t1, t2, . . . , tP−1).

Thus, the function GP−1(t1t2, . . . , tP−1) is a particular case of GP (t1, t2, . . . , tP )

and we have

minGP−1(t1t2, . . . , tP−1) ≥ minGP (t1, t2, . . . , tP ).
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Therefore

minG1(t1) ≥ minG2(t1, t2) ≥ . . . ≥ minG2M (t1, t2, . . . , t2M ). (12)

85

Second step. Minimization of GP (t1, t2, . . . , tP ) with P > 2M is equivalent to

the minimization of G2M (t1, t2, . . . , t2M ):

First, to demonstrate the second step, we consider the case where P =

2M + 1, that is, the function G(tg) = G2M+1(t1, t2, . . . , t2M+1) has dimension90

2M + 1. Because the number of di�erent points in the set At is M , we have

M +1 sets [ai, bi+1] with i = 0, 1, . . . ,M and it's clear that the auxiliary vector

tg = (t1, t2, . . . , t2M+1) satis�es one of three conditions:

• t1, t2 or more points of tg are in [a0, b1].

• t2M+1, t2M or more points of tg are in [aM , bM+1].95

• For some l = 1, 2, . . .M−1, exits i ∈ {1, 2, . . . 2M−1} such that ti, ti+1, ti+2

or more points of tg are in [al, bl+1].

Case 1) t1, t2 or more points of tg are in [a0, b1]:

If t2M+1 ∈ [a0, b1], then

G2M+1(t1, t2, . . . , t2M+1) = 0 = G2M (t2, . . . , t2M+1) = G2M (T1, . . . , T2M )

where Ti = ti+1 and Ti ∈ [a0, b1] for i = 1, 2, . . . 2M , and therefore the minimiza-

tion of G2M+1(t1, t2, . . . , t2M+1) is equivalent to the minimization of G2M (t1, t2,100

. . . , t2M ).

If t2M+1 /∈ [a0, b1], the values Kh1 = Kh2 = 0 and the function G2M+1(t1, t2,

. . . , t2M+1) is given by

G2M+1(t1, t2, . . . , t2M+1) = 2NFy(t)Kh2M+1
−

2M+1∑
j=3

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))
−K2

h2M+1
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where for j = 3, . . . 2M , ahj
≤ tj ≤ bhj+1 with hj = 0, 1, 2, . . .M , and for

j = 2M + 1 we have ah2M+1 ≤ t2M+1 ≤ bh2M+1+1 with h2M+1 = 1, 2, . . .M .

Thus, if we denote by Ti = ti+1 for i = 2, . . . , 2M , it is easy to see that

G2M (T1, . . . , T2M ) = G2M+1(t1, . . . , t2M+1)

and the minimization of G2M+1(t1, t2, . . . , t2M+1) is equivalent to the minimi-

zation of G2M (t1, t2, . . . , t2M ).105

Case 2) t2M+1, t2M or more points of tg are in [aM , bM+1]:

If t1 ∈ [aM , bM+1] we have:

G2M+1(t1, t2, . . . , t2M+1) = (NFy(t))
2 − (NFy(t))

2

Fg(t1)
= G2M (T1, . . . , T2M )

where Ti = ti and Ti ∈ [aM , bM+1] for i = 1, 2, . . . 2M , and consequently, the

minimization of G2M+1(t1, t2, . . . , t2M+1) is equivalent to the minimization of110

G2M (t1, t2, . . . , t2M ).

If t1 /∈ [aM , bM+1], the values Kh2M
= Kh2M+1

= NFy(t) and we have

G2M+1(t1, t2, . . . , t2M+1) =
(
NFy(t)

)2 − 2M∑
j=1

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))

where for j = 1 we have ah1 ≤ t1 ≤ bh1+1 with h1 = 0, 1, . . .M − 1, and for

j = 2, . . . 2M − 1; ahj ≤ tj ≤ bhj+1 with hj = 0, 1, 2, . . .M . Then, if we de�ne

Ti = ti, we have:

G2M (T1, . . . , T2M ) = G2M+1(t1, . . . , t2M+1)

and the minimization of G2M+1(t1, t2, . . . , t2M+1) is equivalent to the minimi-

zation of G2M (t1, t2, . . . , t2M ).

Case 3) For some l = 1, 2, . . .M − 1, exits i ∈ {1, 2, . . . 2M − 1} such that115

ti, ti+1, ti+2 or more points of tg are in [al, bl+1].
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In this case, hi = hi+1 = hi+2 = l and the values Khi
= Khi+1

= Khi+2
= kl.

Therefore:

G2M+1(t1, t2, . . . , t2M+1) = 2NFy(t)Kh2M+1
−

i∑
j=1

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))

−
2M+1∑
j=i+3

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))
−K2

h2M+1

and it's clear that the function G2M+1 does not depend on ti+1.

Thus, if we consider Tj = tj for j = 1, . . . , i and Tj = tj+1 for j = i +120

1, . . . , 2M , the minimization of G2M+1(t1, t2, . . . , t2M+1) is equivalent to the

minimization of G2M (T1, T2, . . . , T2M ).

Thus, for all cases, the minimization of G2M+1(t1, t2, . . . , t2M+1) is equiva-

lent to the minimization of G2M (T1, T2, . . . , T2M ).

If we consider a dimension P > 2M +1 for the auxiliary vector tg, in a simi-125

lar way we can establish that the minimization of GP (t1, t2, . . . , tP ) is equivalent

to the minimization of GP−1(t1, t2, . . . , tP−1) and applying L times, with L =

P−2M , this property recursively, the minimization of GP (t1, t2, . . . , tP ) is equi-

valent to the minimization of GP−L(t1, t2, . . . , tP−L), and it's clear that the mi-

nimization of GP (t1, t2, . . . , tP ) is equivalent to the minimization of G2M (t1, t2,130

. . . , t2M ).

Now, we consider the case where for some i1, i2, . . . iR ∈ {0, 1, . . . ,M − 1};

ai1 = bi1 + 1 with R ≤ M and ih ̸= ij if h ̸= j. In this case the next theorem

establish the optimal dimension of the auxiliary vector tg.

Theorem 2. Suppose that we wish to estimate Fy at point t with the calibration135

estimator F̂ yc(t) and suppose that for some i1, i2, . . . iR ∈ {0, 1, . . . ,M − 1};

ai1 = bi1+1 with R ≤ M and ih ̸= ij if h ̸= j, then the optimal dimension of

the auxiliary vector tg is P = 2M −R, where M is the number of points of the

�nite set At given by (8).

Proof.140

It is clear that the function G with an auxiliary vector tg of dimension P −1

is a particular case of function G with an auxiliary vector tg of dimension P
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(previous theorem) and in a similar way, we have

minG1(t1) ≥ minG2(t1, t2) ≥ . . . ≥ minG2M (t1, t2, . . . , t2M−R). (13)

Now, we consider the case where the dimension of function G is P = 2M −

R + 1, and ih ̸= 0 for all h = 1, . . . , R. Then, we have M + 1 sets [ai, bi+1]

with i = 0, 1, . . . ,M but for h = 1, . . . , R the set [aih , bih+1] = {aih}. Thus, we

have R sets {aih} and M +1−R intervals [ai, bi+1]. If we consider an auxiliary

vector tg = (t1, . . . , t2M−R+1), the points ti with i = 1, . . . , 2M−R satis�es one145

of four conditions:

• t1, t2 or more points of tg are in [a0, b1].

• t2M−R+1, t2M−R or more points of tg are in [aM , bM+1].

• For some l = 1, 2, . . .M − 1, with l ̸= ih for h = 1, . . . , R, exits i ∈

{1, 2, . . . 2M−1} such that ti, ti+1, ti+2 or more points of tg are in [al, bl+1]150

• For some l = i1, . . . iR exits i ∈ {1, 2, . . . 2M −1} such that ti, ti+1 or more

points of tg are in {al}, that is ti = ti+1 = al.

Similarly to previous theorem, the minimization of G2M−R+1(t1, . . . , t2M−R+1)

is equivalent to the minimization of G2M−R(t1, . . . , t2M−R) in the �rst three

cases. For the last case, it is easy to see that:

G2M−R+1(t1, . . . ti, ti+1, . . . , t2M−R+1) = G2M−R+1(t1, . . . al, al, . . . , t2M−R+1) =

G2M−R(t1, . . . , ti−1, al, ti+2, . . . , t2M−R+1).

Therefore, if we consider

Tj = tj for j = 1, 2 . . . , i− 1 and Tj = tj+1 for j = i+ 1, . . . 2M −R

it is clear that the minimization of G2M−R+1(t1, . . . ti, ti+1, . . . , t2M−R+1) is

equivalent to the minimization of G2M−R(T1, . . . Ti−1, al, Ti+1 . . . , T2M−R).

Thus, if ih ̸= 0 for all h = 1, . . . , R the optimal dimension of tg is 2M −R.155

If for some h ∈ {i1, . . . , iR}, ih = 0; then a0 = a1 and we have M intervals

[ai, bi+1] where R of them are of the form {aih}. In this case, the auxiliary
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vector tg = (t1, . . . , t2M−R+1) ful�lls one of the last three above conditions and

consequently the optimal dimension of tg is 2M −R.

4. Optimal auxiliary vector topt160

In this section, we will obtain the optimal auxiliary vector topt of the optimal

dimension, given a point t for which we want to estimate Fy(t), that is, we obtain

a vector topt of the optimal dimension obtained in the previous section, such

that the value of AV (F̂ yc(t)) calibrated with topt the value is less than the value

of AV (F̂ yc(t)) calibrated with any vector tg.165

Theorem 3. Suppose that we wish to estimate Fy at point t with the calibra-

tion estimator F̂ yc(t), and suppose that b1 exits and for all i = 1, . . . ,M − 1;

bi+1 ̸= ai, then the optimal auxiliary vector topt = (tO1, . . . , tO2M ) is a vector

of dimension 2M given by:

topt = (tO1, . . . , tO2M ) = (b1, a1, b2, a2, . . . , bM , aM ) (14)

If for some i1, i2, . . . iR ∈ {0, 1, . . . ,M−1}; ai1 = bi1+1 with R ≤ M and ih ̸= ij

if h ̸= j the optimal auxiliary vector topt = (tO1, . . . , tO(2M−R)) is a vector of

dimension 2M −R given by:

topt = (b1, a1, b2, a2, . . . , bi1 , ai1 , ai1+1, bi1+2, . . . , bih , aih , aih+1, bih+2, . . . bM , aM )

(15)

Proof.

First, we consider the case where b1 exits and for all i = 1, . . . ,M − 1;

bi+1 ̸= ai. Because the function G2M (tg) is a piecewise function, to demonstrate

that the auxiliary vector topt given by (14) is the vector where the function G2M

attains the global minimum, we have to obtain the minimum of the function

G2M on each piece and compare the value of the function G2M at the vector

topt with the minimum obtained in each piece. For it, if we de�ne K0 = 0, the

12



value of function G2M (t1, . . . , t2M ) at the vector topt given by (14) is:

G2M (topt) =
(
NFy(t)

)2
−

M∑
j=1

(Kj −Kj−1)
2

(Fg(aj)− Fg(bj))
. (16)

It is clear that for any 2M dimensional auxiliary vector tg = (t1, . . . t2M ) with

t2i−1 ∈ [ai−1, bi]; t2i ∈ [ai, bi+1] for i = 1, 2, . . . ,M (17)

we have:

G2M (tg) ≥ G2M (topt).

Therefore, the auxiliary vector topt is the optimal choice for those vectors which170

verify (17).

Now, let's analyze the minimum of the function G on each piece. For it, if

we consider an auxiliary vector tg with t2M < b1, the function G2M is null, then

the function G2M has a local minimum at t1 = t2 = t2M = b1 and the local

minimum value is 0.175

Next, if aM ≤ t1, the function G2M attains a local minimum at t1 = aM

and t2, . . . , t2M are arbitrary chosen points of the interval [aM , bM+1). Thus,

the function G2M attains the local minimum at t1 = · · · = t2M = aM and the

local minimum value is

G2M (t1, . . . , t2M ) = (NFy(t))
2 − (NFy(t))

2

Fg(aM )
≤ 0. (18)

Therefore, the value 0 in the �rst case cannot be the global minimum of G2M .

Now, if we consider that

ahj ≤ tj ≤ bhj+1; j = 1, 2, . . . 2M ; hj = 0, 1, 2, . . .M

the function G2M is given by

G2M (t1, . . . , t2M ) = 2NFy(t)Kh2M
−

2M∑
j=1

(Khj −Khj−1)
2

(Fg(tj)− Fg(tj−1))
−K2

h2M
.

The local minimum of the function G2M is attained at tj = ahj or tj = bhj+1

([? ]), consequently the local minimum is given by:

G2M (A1, . . . , A2M ) = 2NFy(t)Kh2M
−

2M∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
−K2

h2M
(19)

13



with Aj = ahj
or Aj = bhj+1 and where we take A0 any value such that A0 < a0.

In order to compare the local minimum of function G2M on each piece with

the value of function G2M at topt, we establish the following inequalities

K2
j

Fg(aj)− Fg(b1)
≤

K2
j−1

Fg(aj−1)− Fg(b1)
+

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
for j = 1, 2, . . . ,M

(20)

(Kj+k −Kj)
2

Fg(aj+k)− Fg(bj+1)
≤ (Kj+1 −Kj)

2

Fg(aj+1)− Fg(bj+1)
+

(Kj+k −Kj+1)
2

Fg(aj+k)− Fg(bj+2)
(21)

for j = 0, 1, . . . ,M − 1 and k = 1, . . . ,M − j.

180

We begin with the proof of the inequality (20). It easy to see that the

inequality (20) for j = 1 is trivial because K0 = 0 and for j > 1, the inequality

0 ≤
K2

j−1

Fg(aj−1)− Fg(b1)
+

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−

K2
j

Fg(aj)− Fg(b1)

is equivalent to

0 ≤ A ·K2
j−1 +B ·Kj−1 + C (22)

with

A =
1

Fg(aj−1)− Fg(b1)
+

1

Fg(aj)− Fg(bj)
,

B = − 2 ·Kj

Fg(aj)− Fg(bj)
,

and

C = K2
j ·
(

1

Fg(aj)− Fg(bj)
− 1

Fg(aj)− Fg(b1)

)
.

The right hand of (22) is a parabola in Kj−1 with vertex

V =
Kj ·

(
Fg(aj−1)− Fg(b1)

)
(
Fg(aj)− Fg(bj) + Fg(aj−1)− Fg(b1)

) .
The value of the parabola at the vertex is:

14



A · V 2 +B · V + C = (23)

K2
j ·

(
Fg(bj)− Fg(b1)

)
(
Fg(aj)− Fg(bj)

)(
Fg(aj)− Fg(b1)

) −

K2
j ·

(
Fg(aj−1)− Fg(b1)

)
(
Fg(aj)− Fg(bj)

)(
Fg(aj)− Fg(bj) + Fg(aj−1)− Fg(b1)

) =

K2
j ·

(
Fg(bj)− Fg(aj−1)

)
(
Fg(aj)− Fg(b1)

)(
Fg(aj)− Fg(bj) + Fg(aj−1)− Fg(b1)

) .
Because aj ≥ bj ≥ aj−1 ≥ b1 for all j > 1 it is clear that the value of the

parabola at the vertex given by (23) is greater than or equal to zero. For the

same reason, the value of the coe�cient A of the parabola is greater or equal to

zero and consequently the inequality (20) holds.185

The proof of inequality (21) is similar. For j = M − 1 we have k = 1 and

the inequality is trivial because KM = NFy(t). For j < M − 1 and k = 1,

the inequality is trivial too. Therefore, we consider the case j < M − 1 and

k = 2, . . . ,M − j. In this case, the inequality

0 ≤ (Kj+1 −Kj)
2

Fg(aj+1)− Fg(bj+1)
+

(Kj+k −Kj+1)
2

Fg(aj+k)− Fg(bj+2)
− (Kj+k −Kj)

2

Fg(aj+k)− Fg(bj+1)

is equivalent to

0 ≤ D ·K2
j+1 + E ·Kj+1 + F (24)

with

D =
1

Fg(aj+1)− Fg(bj+1)
+

1

Fg(aj+k)− Fg(bj+2)

E = −2 ·
(

Kj

Fg(aj+1)− Fg(bj+1)
+

Kj+k

Fg(aj+k)− Fg(bj+2)

)
F = K2

j ·
(

1

Fg(aj+1)− Fg(bj+1)
− 1

Fg(aj+k)− Fg(bj+1)

)
+ K2

j+k ·
(

1

Fg(aj+k)− Fg(bj+2)
− 1

Fg(aj+k)− Fg(bj+1)

)
+

2 ·Kj ·Kj+k

Fg(aj+k)− Fg(bj+1)
.
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Thus, the right hand of (24) is a parabola and its vertex is

V =
Kj ·

(
Fg(aj+k)− Fg(bj+2)

)
+Kj+k ·

(
Fg(aj+1)− Fg(bj+1)

)
(
Fg(aj+k)− Fg(bj+2) + Fg(aj+1)− Fg(bj+1)

)
If we replace the vertex in the expression of the parabola given by (24), we have:

D · V 2 + E · V + F = (25)(
Kj+k −Kj

)2
·
(
Fg(bj+2)− Fg(aj+1)

)
(
Fg(aj+k)− Fg(bj+2) + Fg(aj+1)− Fg(bj+1)

)
·
(
Fg(aj+k)− Fg(bj+1)

) .
For j = 0, 1, . . . ,M − 1 and k = 2, . . . ,M − j, it is clear that

aj+k ≥ bj+2 ≥ aj+1 ≥ bj+1

and consequently the value (25) and the coe�cient D are greater or equal to

zero. Thus, the inequality (21) holds.

Now, if we compare the value (18) with (16), we have

G2M (t1, . . . , t2M )−G2M (topt) =
M∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−

(
NFy(t)

)2
Fg(aM )

.

Because KM = NFy(t), if we apply the inequality (21) recursively for k = M−j

and j = 0, 1, . . . ,M − 1; it is easy to see that(
NFy(t)

)2
Fg(aM )

≤

(
NFy(t)−K0

)2
Fg(aM )− Fg(b1)

≤
M∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

Therefore

G2M (t1, . . . , t2M )−G2M (topt) ≥ 0.

Next, we compare the value (19) with (16). Thus190

G2M (A1, . . . , A2M )−G2M (topt) =

−
(
NFy(t)−Kh2M

)2
−

2M∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
+

M∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
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First, we consider the case where A2M < aM , then exits some l ∈ {1, . . . ,M−1}

such that al ≤ A2M ≤ bl+1 and consequently

G2M (A1, . . . , A2M )−G2M (topt) =

−
(
NFy(t)−Kl

)2
−

2M∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
+

M∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

with a0 ≤ Aj ≤ bl+1 for all j ∈ {1, . . . , 2M}.

Now, it is clear that

(
NFy(t)−Kl

)2
≤

(
NFy(t)−Kl

)2
Fg(aM )− Fg(bl+1)

and applying the inequality (21) recursively for j = l, l + 1, . . . ,M − 1 and

k = M − j; we have(
NFy(t)−Kl

)2
Fg(aM )− Fg(bl+1)

≤
M∑

j=l+1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

or equivalently

M∑
j=l+1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−
(
NFy(t)−Kl

)2
= HM ≥ 0

then

G2M (A1, . . . , A2M )−G2M (topt) =

HM −
2M∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
+

l∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

with HM ≥ 0 and a0 ≤ Aj ≤ bl+1 for all j ∈ {1, . . . , 2M}.195

Next, if we consider that h1 = 0, we have Kh1 = K0 = 0. Thus

2∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
=

0

Fg(A1)
+

(Kh2 − 0)2

Fg(A2)− Fg(A1)

with a0 ≤ A1 ≤ b1 and ah2 ≤ A2 ≤ bh2+1 and therefore

(Kh2
)2

Fg(A2)− Fg(A1)
≤ (Kh2

)2

Fg(ah2)− Fg(b1)
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Now, if we apply the inequality (20) recursively for j = h2, h2 − 1, . . . , 1; it is

easy to see that

(Kh2)
2

Fg(ah2)− Fg(b1)
≤

h2∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

and
h2∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−

2∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
= H1 ≥ 0

Consequently

G2M (A1, . . . , A2M )−G2M (topt) =

HM +H1 −
2M∑
j=3

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
+

l∑
j=h2+1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

with HM ;H1 ≥ 0; ah2 ≤ Aj ≤ bl+1 and h2 ≤ hj ≤ l for j = 3, . . . , 2M .

Now, for j = 3, . . . , 2M , we can consider three cases: hj = hj−1; hj =

hj−1 + 1 or exists k, with 2 ≤ k ≤ M − hj−1 such that hj = hj−1 + k. If we

consider that hj = hj−1 then

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
= 0

If hj = hj−1 + 1, then exist some c with h2 ≤ c ≤ l such that hj−1 = c;

hj = c+ 1; ac ≤ Aj−1 ≤ bc+1 and ac+1 ≤ Aj ≤ bc+2. Thus

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
=

(Kc+1 −Kc)
2

(Fg(Aj)− Fg(Aj−1))
≤ (Kc+1 −Kc)

2

(Fg(ac+1)− Fg(bc+1))
.

Finally, if exists k, with 2 ≤ k ≤ M − hj−1 such that hj = hj−1 + k, then exist

some h2 ≤ c ≤ l with

hj−1 = c; hj = c+ k; ac ≤ Aj−1 ≤ bc+1; and ac+k ≤ Aj ≤ bc+k+1.

Therefore

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
=

(Kc+k −Kc)
2

(Fg(Aj)− Fg(Aj−1))
≤ (Kc+k −Kc)

2

(Fg(ac+k)− Fg(bc+1))
.
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Now, applying the inequality (21) recursively for j = c, c+ 1, . . . , c+ k − 2 and

k = hj − hj−1; we have

(Kc+k −Kc)
2

(Fg(ac+k)− Fg(bc+1))
≤

c+k∑
j=c+1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
.

Thus, in any case, it is easy to see that

l∑
j=h2+1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−

2M∑
j=3

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
≥ 0

and consequently

G2M (A1, . . . , A2M )−G2M (topt) ≥ 0.

On he other hand, if we consider h1 > 0, then ah1 ≤ A1 ≤ bh1+1 and

(Kh1 −Kh0)
2

(Fg(A1)− Fg(A0))
=

(Kh1)
2

Fg(A1)
≤ (Kh1)

2

Fg(ah1)− Fg(b1)
.

Now, if we apply the inequality (20) recursively for j = h1, h1 − 1, . . . , 1; it is

easy to see that

(Kh1)
2

Fg(ah1
)− Fg(b1)

≤
h1∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
.

Thus, denoting by

H1 =

h1∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
− (Kh1 −Kh0)

2

(Fg(A1)− Fg(A0))
≥ 0

and replacing H1 in (26) we have200

G2M (A1, . . . , A2M )−G2M (topt) =

HM +H1 −
2M∑
j=2

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
+

l∑
j=h1+1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)

with HM ,H1 ≥ 0.

Now, similarly to the case h1 = 0, it can be shown that

G2M (A1, . . . , A2M )−G2M (topt) ≥ 0. (26)
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Thus, for the case where A2M < aM we have (26).

Finally, if we consider the case where A2M ≥ aM , then Kh2M
= NFy(t) and

G2M (A1, . . . , A2M )−G2M (topt) =

M∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−

2M∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))

In a similar way to the case A2M < aM , it can be shown that

M∑
j=1

(Kj −Kj−1)
2

Fg(aj)− Fg(bj)
−

2M∑
j=1

(Khj −Khj−1)
2

(Fg(Aj)− Fg(Aj−1))
≥ 0

and the inequality (26) holds in any case. Consequently, the auxiliary vector205

topt given by (14) is the vector where the function G2M attains the global mi-

nimum when b1 exits and for all i = 1, . . . ,M − 1; bi+1 ̸= ai.

Now, if for some i1, i2, . . . iR ∈ {0, 1, . . . ,M − 1}; ai1 = bi1+1 with R ≤ M

and ih ̸= ij if h ̸= j the vector topt is a vector with dimension 2M −R given by

(15) and the value of function G2M (t1, . . . , t2M ) at the vector topt is:

G2M (topt) =
(
NFy(t)

)2
−

M∑
j=1

j ̸=i1,...,iR

(Kj −Kj−1)
2

(Fg(aj)− Fg(bj))
−

R∑
j=1

(Kij+1 −Kij )
2

(Fg(aij+1)− Fg(aij ))

(27)

To prove that the vector topt is the vector where the function G2M attains

the global minimum, we need inequalities (20) and (21) and we also need the

following inequalities that we can establish in a similar way

(Kij+k −Kij−1)
2

Fg(aij+k)− Fg(bij )
≤

(Kij −Kij−1)
2

Fg(aij )− Fg(bij )
+

(Kij+k −Kij )
2

Fg(aij+k)− Fg(aij )
(28)

for j = 1, . . . , R and k = 1, . . . ,M − ij .

(Kij+k −Kij )
2

Fg(aij+k)− Fg(aij )
≤

(Kij+1 −Kij )
2

Fg(aij+1)− Fg(aij )
+

(Kij+k −Kij+1)
2

Fg(aij+k)− Fg(bij+2)
(29)

for j = 1, . . . , R and k = 1, . . . ,M − ij .

210

With the inequalities (20); (21);(28) and (29), we can show, as in the previous

case, that the value of the function G2M at the vector topt given by (27) is less
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than or equal to the minimum of the function G2M in each piece and therefore

the function G2M attains the global minimum at topt.

5. The optimum estimator with estimated optimal vector215

The optimal auxiliary vector topt depends on some unknown values, thus a

calibration estimator based on topt cannot be calculated. In the absence of good

a priori knowledge these characteristics, we go to replace the optimal vector topt

by sample-based estimates. For it, given a point t for which we want to estimate

Fy(t), we consider the the following sets based on the sample s

Ast = {gk ∈ s : yk ≤ t} = {a1, a2, . . . , am} (30)

with a1 < a2 < . . . < am and

Bst = {b1, b2, . . . , bm} (31)

with

b1 = max
l∈U1s

{gl} where U1s = {l ∈ s : gl < a1}

bh = max
l∈Uhs

{gl} where Uhs = {l ∈ s : ah−1 ≤ gl < ah}, h = 2, 3, . . . ,m.

If b1 exits and for all i = 1, . . . ,m − 1; bi+1 ̸= ai, we consider the auxiliary

vector t̂OP given by:

t̂OP = (t̂O1, . . . , t̂O2M ) = (b1, a1, b2, a2, . . . , bm, am) (32)

If for some i1, i2, . . . ir ∈ {0, 1, . . . ,m − 1}; ai1 = bi1+1 with r ≤ m and ih ̸= ij

if h ̸= j we consider the auxiliary vector t̂OP given by:

topt = (b1, a1, b2, a2, . . . , bi1 , ai1 , ai1+1, bi1+2, . . . , bih , aih , aih+1, bih+2, . . . bm, am).

(33)

Thus, we can de�ne a new calibration estimator F̂CALOPT (t) based on the

auxiliary vector t̂OP obtained.
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6. Numerical comparisons220

In this section we present the results of a Monte Carlo comparison of the

various estimators of F (t). We compare the precision of the proposed optimal

calibration estimator F̂CALOPT (t) with the following estimators:

• the Horvitz Thompson estimator, F̂HT ,

• the Chamber Dunstan estimator, F̂CD(t) ([? ]),225

• the ratio estimator, F̂R(t) ([? ]),

• the di�erence estimator, F̂D(t) ([? ]),

• the Rao, Kovar and Mantel estimator, F̂RKM (t) ([? ]),

• the calibration estimator with t1 = Qg(0.5), the population median, as

point for calibration, F̂CAL(t),230

• the calibration estimator with one optimal point, F̂CALMAX(t) ([? ]),

• the calibration estimator with three points t1 = Qg(0.25), t2 = Qg(0.5)

and t3 = Qg(0.75), the population quartiles, as points for calibration,

F̂CAL.3(t).

• and �nally the optimal calibration estimator F̂CALOPT (t).235

Our simulations are programmed in R.

To investigate the e�ciency of the estimators under a variety of models for

the relationship between y and x, we consider three populations.

The �rst population is the datasets ToothGrowth included in The R Datasets

Package "The E�ect of Vitamin C on Tooth Growth in Guinea Pigs". The240

response, y, is the length of odontoblasts (teeth) in each of 10 guinea pigs at

each of three dose levels of Vitamin C (0.5, 1, and 2 mg), the auxiliary variable

x.

The other two populations are also in the library datasets. The DNase data

frame contains data obtained during development of an ELISA assay for the245
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recombinant protein DNase in rat serum. As main variable y we select density,

the measured optical density (dimensionless) in the assay and as auxiliary vari-

able, x we select the known concentration of the protein. And the Loblolly data

frame with records of the growth of Loblolly pine trees. In this case the main

variable is the tree heights (ft), and the auxiliary variable the tree ages (yr).250

In the simulation study we drawn 1000 samples of several sizes by simple

random sampling without replacement. For each sample and for each estimator,

estimates of the distribution function F (t) were calculated for 11 di�erent values

of t, namely the quantiles Qy(α) for α=0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75,

0.8 and 0.9.255

The performance of all the estimators is measured by means of the average

relative bias (avrb) and the average relative e�ciency (avre), given respectively

by

avrb(t) =
1

11

11∑
q=1

|rb(tq)|, avre(t) =
1

11

11∑
q=1

re(tq)

where rb and re are de�ned as

rb(t) =
1

B

B∑
b=1

F̂ (t)b − Fy(t)

Fy(t)
and re(t) =

MSE[F̂ (t)]

MSE[F̂HT (t)]
, (34)

where b indexes the bth simulation run, F̂ (t) is an estimator for the distribution260

function, MSE[F̂ (t)] = B−1
∑B

b=1[F̂ (t)b −Fy(t)]
2 is the empirical mean square

error for F̂ (t) and MSE[F̂HT (t)] is similarly de�ned for the Horvitz-Thompson

estimator.

Figure 1 gives the values of the average relative bias and the average relative

e�ciency for all populations.265

Some observations:

- The F̂CD estimator has a serious problem of bias, as previously indicated

by ([? ]). This is expected because the CD-estimator is most susceptible to

model misspeci�cation. F̂CD estimator has not been included in Figure 1. By

similar raison, the ratio estimator F̂r is also excluded from Figure 1.270
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Figure 1: Average relative bias (avrb) and average relative e�ciency (avre) of the estimators

compared.
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- We found no evidence of any signi�cant bias for the other estimators con-

sidered.

- In terms of precision, the best overall performance is achieved by the opti-

mal calibration estimator, F̂CALOPT (t).

Other simulations studies also show the potential gains from the use of the275

proposed calibration estimator with optimal points instead of the customary

estimators used in the literature. From a computational point of view, the

proposed optimal estimator is more e�cient that the calibration estimator with

one optimal point [? ], because last theorem yields the calibration points.

In conclusion, we suggest that the study of optimum points for calibration280

provides a practical approach to estimating distribution functions, and o�ers

useful gains in e�ciency.
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Figure 2: Average relative bias (avrb) and average relative e�ciency (avre) of the estimators

compared.
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Figure 3: Average relative bias (avrb) and average relative e�ciency (avre) of the estimators

compared.
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Figure 4: Average relative bias (avrb) and average relative e�ciency (avre) of the estimators

compared.

30 35 40

n

0.001

0.002

0.003

0.004

0.005

LOBLOLLY

AVRRE

30 35 40

n

0.1

0.3

0.5

0.7

0.9

LOBLOLLY

AVRB

RKM

CALOPT

CALMAX

CAL-3

d

CAL

RKM

CALOPT

CALMAX

CAL-3

d

CAL

28


