
Universidade de Aveiro Departamento de Engenharia Mecânica
2021

Pedro Miguel
Monteiro da Rocha

Optimisation of Light-Weight Armour Plates for
Energy Absorption

Otimização de Proteções Balísticas de Baixo Peso para
Absorção de Energia

Universidade de Aveiro Departamento de Engenharia Mecânica
2021

Pedro Miguel
Monteiro da Rocha

Optimisation of Light-Weight Armour Plates for
Energy Absorption

Otimização de Proteções Balísticas de Baixo Peso para
Absorção de Energia

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob orientação científica de João Alexandre Dias de
Oliveira, Professor Auxiliar da Universidade de Aveiro, e de Filipe Teixeira-
Dias, Reader da School of Engineering da The University of Edinburgh
(United Kingdom).

o júri / the jury

presidente / president Prof. Doutor António Gil D’Orey de Andrade Campos
Professor Auxiliar c/ Agregação da Universidade de Aveiro

Doutora Ana Virgínia Ferreira Azevedo
Researcher da Royal Military Academy

Prof. Doutor João Alexandre Dias de Oliveira
Professor Auxiliar da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Ao Professor Doutor João Alexandre Dias de Oliveira pelo apoio e disponi-
bilidade contínuos, a sua mentoria neste projeto foi de grande importância
e completamente indispensável. Também gostaria de agradecer toda a
motivação e conhecimento transmitido.

Ao Professor Doutor Filipe Teixeira-Dias que sempre esteve disponível
para apoiar e orientar neste trabalho.

À minha família, que foi muito importante no meu percurso académico e
que me forneceram sempre apoio incondicional. Sem ela, este meu percurso
não seria possível.

Aos meus amigos, que constituem muitas boas memórias desta etapa
da minha vida e que me ajudaram bastante no meu desenvolvimento pessoal
e profissional.

Finalmente, queria agradecer a todas as pessoas que influenciaram o
meu percurso académico e com quem aprendi bastante.

keywords Ballistic impact, lightweight armour, layer optimisation, finite element
analysis, wave propagation, non-linear material behaviour, Abaqus Python
API, particle swarm optimisation

abstract Technology advances continue to revolutionise military equipment. The
development of new firepower induces an interest in the enhancement of
protection gear, both for transportation vehicles and personnel. There has
been a significant amount of research of methods to increase protection
capabilities without increases in the weight of a given defence system. This
dissertation seeks to develop an optimisation tool that results in light-weight
armour plates without compromising protection capabilities. A thorough
study on the propagation of elastic and plastic stress waves aims for a
better understanding of how an armour system behaves upon ballistic impact.

The first part of this dissertation focuses on the development of a
Python script that provides an efficient approach to model generation
in Abaqus. It enables the user to avoid time consuming actions when
designing ballistic test models to later simulate through the software. This
script is also used to validate the theory behind elastic and plastic stress
wave propagation while also being able to access output databases and
interpret obtained results. The importance of the script is relevant for
the second part of the dissertation, which takes advantage of the Abaqus
Python Application Programming interface (API) to perform optimisation
procedures automatically. Focusing particularly on the application of the
particle swarm optimisation algorithm, this work continuously improves
the efficiency and accuracy of the mentioned algorithm by dividing three
different optimisation problems into several experiments. Each one of
the experiments is carefully defined to highlight the impact of a specific
operating parameter of the algorithm.

A validation of the stress wave propagation and how it is affected
upon contact with layered media is carefully conducted through a series
of different analysis approaches. It is shown that the plastic stress wave
propagates slower than the elastic one and that plastic deformation affects
the properties of the generated stress wave, such as wavelength. The
implemented particle swarm optimisation algorithm proved to be an effective
approach to problem solving, however, for complex problems the operational
parameters must be carefully chosen.

palavras-chave Impacto balístico; proteção de baixo peso; otimização de camadas, análise
de elementos finitos, propagação de onda, comportamento não-linear de
material, Abaqus Python API, otimização por enxame de partículas (PSO)

resumo Os avanços na tecnologia continuam a revolucionar equipamentos militares.
O desenvolvimento de novas armas de fogo induz interesse no aprimora-
mento de equipamento de proteção, para veículos de transporte e pessoal.
Tem havido uma quantidade significativa de investigação de métodos para
aumentar as capacidades de proteção sem aumento de peso de um dado
sistema de proteção. Esta dissertação tem como objetivo o desenvolvimento
de uma ferramenta de otimização que resulta em placas de armadura
de baixo peso sem comprometer capacidades de proteção. Um estudo
cuidadoso acerca da propagação de ondas de tensão elásticas e plásticas
procura compreender a forma como um sistema de armadura reage após
um impacto balístico.

A primeira parte desta dissertação foca-se no desenvolvimento de um
código em Python que fornece uma abordagem eficiente à geração de
modelos no Abaqus. Isto permite que o utilizador evite ações que consumam
tempo ao criar modelos de teste balístico para simular mais tarde através
do software. Este código é também usado para validar a teoria por detrás
da propagação de ondas de tensão elásticas e plásticas e ao mesmo tempo
habilitar o acesso a dados de saída do software e interpretar resultados
obtidos. A importância do código é relevante para a segunda parte da
dissertação, que tira vantagem da interface de aplicação e programação
do Abaqus Python (API) para executar procedimentos de otimização de
forma automática. Com foco em particular na aplicação do algoritmo de
otimização por enxame de partículas, este trabalho melhora continuamente
a eficácia e precisão do algoritmo mencionado através da divisão de três
diferentes problemas de otimização em várias experiências. Cada uma das
experiências é cuidadosamente definida para destacar o impacto de um
parâmetro operacional específico do algoritmo.

A validação da propagação da onda de tensão e como é afetada após
contacto com um meio material de múltiplas camadas é cuidadosamente
estudada através de séries de diferentes análises. É mostrado que a
onda de tensão plástica se propaga mais lentamente que a elástica e que
deformação plástica afeta as propriedades da onda de tensão gerada, tal
como o comprimento de onda. O algoritmo de otimização por enxame de
partículas implementado prova ser uma abordagem eficaz para a resolução
de problemas, no entanto, para problemas complexos os parâmetros
operacionais devem ser escolhidos com cuidado.

Contents

1 Introduction 1
1.1 Design and Material Choices for Armour Systems 2
1.2 Optimisation Studies . 3
1.3 Objectives . 4
1.4 Dissertation Structure . 5

2 Stress Wave Dynamics 7
2.1 Types of Stress Waves . 7
2.2 Propagation of Stress Waves . 8

2.2.1 Elastic Stress Waves . 9
2.2.2 Wave Transmission and Reflection 9
2.2.3 Plastic Stress Waves . 11

3 Model Generation 13
3.1 Model Design . 13
3.2 Python-Abaqus Scripting Interface . 14
3.3 Materials . 16
3.4 Numerical Simulation . 17

3.4.1 Boundary Conditions . 18
3.4.2 Transient Analysis Setup and Part Interactions 20

3.5 Mesh Parameters . 20
3.6 Model Validation . 22

3.6.1 Elastic Wave Speed . 22
3.6.2 Wave Interaction between Layers 25
3.6.3 Plastic Stress Wave Speed . 28

3.7 Plasticity Effects on the Stress Wave Propagation 34
3.7.1 Pulse Duration . 34
3.7.2 Stress Magnitude . 36
3.7.3 Wave Progression . 38

4 Setup for the Optimisation Process 41
4.1 Optimisation Fundamentals . 41

4.1.1 Mathematical Formulation . 41
4.1.2 Penalty Function Method . 41

4.2 Optimisation Algorithms . 42

i

4.2.1 Particle Swarm Optimisation (PSO) Algorithm 43
4.3 Optimisation Process through Scripting 44
4.4 Benchmark — Multi-layer Armour Plate Impacted by Projectile with a

Velocity of 5 m/s . 45
4.4.1 Problem Formulation . 46
4.4.2 Setup and Implementation . 47
4.4.3 Results and Discussion . 52

5 Optimisation Procedure and Implementation 55
5.1 Problem I — Multi-layer Armour Plate Impacted by Projectile with a

Velocity of 25 m/s . 56
5.1.1 Problem Formulation . 57
5.1.2 Setup and Implementation . 58
5.1.3 Results and Discussion . 63

5.2 Problem II — Multi-layer Armour Plate Impacted by Projectile with a
Velocity of 40 m/s . 65
5.2.1 Problem Formulation . 66
5.2.2 Setup and Implementation . 67
5.2.3 Results and Discussion . 72

6 Final Remarks 79
6.1 Main Conclusions . 79
6.2 Further Work . 80

Bibliography 80

A Complementary Topics 85
A.1 Wave Progression Graphics . 85
A.2 Flowchart of the Particle Swarm Optimisation algorithm 89
A.3 Additional Remarks on the Model Generation 90

A.3.1 Geometry (Plate) Parameters . 90
A.3.2 Geometry (Projectile) Parameters 91
A.3.3 Material Database Parameters . 91
A.3.4 Part Section Parameters . 91
A.3.5 Creating the Assembly . 91
A.3.6 Boundary Conditions Parameters 92
A.3.7 Create Step Parameters . 92
A.3.8 Interactions and Constraints Parameters 92
A.3.9 Mesh Parameters . 92
A.3.10 Job Parameters . 92
A.3.11 Parameters Overview . 92

A.4 Benchmark . 94
A.5 Problem II . 94

B Optimisation Python Code 97

ii

List of Tables

3.1 Materials and respective mechanical properties for elastic stress waves tests. 16
3.2 Materials and respective mechanical properties for elastic and plastic stress

waves tests. 16
3.3 Data for stress wave speed calculation. 22
3.4 Calculated stress wave speed. 23
3.5 Properties and theoretical longitudinal stress wave speeds for the materials

to use in wave interaction analysis. 26
3.6 Transmitted and incident stress relation based on the first stress peak,

calculated for different material combinations. 27
3.7 Transmitted and incident stress relation based on the second stress peak,

calculated for different material combinations. 28
3.8 Elastic properties of the fictional steel to use in plastic wave speed validation. 28
3.9 Data for plastic stress wave speed calculation. 31
3.10 Calculated plastic stress wave speed. 32

4.1 Plate materials and corresponding mechanical properties. 46
4.2 PSO Operational parameters for Experiment α. 47
4.3 PSO Operational parameters for Experiment β. 49
4.4 Number of evaluations and computational times for the benchmark. 52
4.5 Results obtained for the benchmark. 52

5.1 Plate materials and respective mechanical properties. 56
5.2 Problem I - PSO operational parameters for the experiments. 58
5.3 Problem I results. 63
5.4 Number of evaluations and computational times for Problem I. 63
5.5 Variation of kinetic energy of the projectile. 64
5.6 Problem II - PSO operational parameters for the experiments 68
5.7 Problem II results. 73
5.8 Number of evaluations and computational times for Problem II. 73
5.9 Details of the thickness of the plates to analyse as different solutions to

Problem II. 73
5.10 Variation of kinetic energy of the projectile in Problem II. 75

iii

.

Intentionally blank page.

List of Figures

2.1 Motion characteristics of particles under longitudinal stress waves [Survey
2004]. 7

2.2 Motion characteristics of particles under distortional stress waves [Survey
2004]. 8

2.3 A mass drops in water, generating a wave. The cork in the right will move
in a elliptical trajectory [Meyers 1994]. 8

2.4 When a stress wave (σI) reaches an interface, it is reflected back as a
different stress wave (σR) while still propagating into the adjacent media
with different amplitude (σT). 10

2.5 Stress-strain curves for ductile materials: (a) bilinear elastoplastic; (b)
power law work hardening [Meyers 1994]. 11

2.6 Shape of plastic wave front as a function of time; dispersion of wave is
observed due to decrease in wave velocity with increasing stress [Meyers
1994]. 12

3.1 Model dimensions (in mm) and basic configuration. 13
3.2 Each plate is divided in nine cells for easier analysis. 14
3.3 Abaqus Scripting Interface and Abaqus/CAE interactions flowchart [Sys-

tèmes 2011]. 15
3.4 True stress-strain curve for the 1100 series aluminium alloy [Li and You

2019]. 17
3.5 True stress-strain curve for the AISI 4340 Steel [Li et al. 2019]. 17
3.6 Surfaces chosen for the symmetry boundary condition. 18
3.7 Three boundary condition studies [Reis 2019]: (a) plate clamped by the

side surfaces of the plate, (b) plate pinned at the side edges of the rear
surface of the plate, (c) plate clamped at the rear surface of the plate. . . 19

3.8 Average Stress in the Frontal Impact Region. 21
3.9 Example of the mesh for testing. 21
3.10 Front and rear impact regions selected for elastic stress wave speed vali-

dation tests. 22
3.11 Average stress measured on the frontal impact region and rear impact

region for an impact velocity of 5 m/s. 23
3.12 Stress state of the geometry at the four different analysed times: (a) first

stress peak measured at the front impact region (t = 0.90 µs), (b) first
stress peak measured at the rear impact region (t = 5.15 µs), (c) end of
pulse measured at the Front Impact Region (t = 59.85 µs), (d) end of
pulse measured at the Rear Impact Region (t = 63.95 µs). 24

v

3.13 A generic stress wave generated by the impact of a projectile in a square
metal plate. 25

3.14 Example of the square impact region used for the analysis ran for studies
on wave interaction between the different layers of materials. 26

3.15 Example of the chosen instants for the analysis of the relation between
transmitted and incident stresses, with the green and blue circles marking
the sets of data for first and second stress peaks, respectively. 27

3.16 Relation between transmitted and incident stress across different impact
velocities: (a) measured at the first stress peak, (b) measured at the second
stress peak. 28

3.17 Stress-strain plot of the fictional steel used for the velocity test of plastic
stress waves. 29

3.18 Stress wave speed as a function of the induced stress. 29
3.19 Chosen finite elements for the velocity test of plastic stress waves. 30
3.20 Measured stress in the OZ direction of the two selected finite elements. . . 31
3.21 Measured von Mises stress of the two selected finite elements. 31
3.22 Stress state on the plate at the four different analysed times: (a) first

stress peak measured at Element N2 (t = 1.458 µs), (b) first stress peak
measured at Element N6 (t = 3.190 µs), (c) last stress peak measured at
Element N2 (t = 31.790 µs), (d) last stress peak measured at Element N6
(t = 39.680 µs). 33

3.23 Stress-strain plot for two different modelling approaches of steel, a per-
fectly plastic model (Steel-PP) and a work hardened model (Steel-PH). . . 35

3.24 Pulse duration results. 35
3.25 Stress magnitude measured in Element N2. 36
3.26 Stress magnitude measured in Element N6. 37
3.27 Percentage of stress dampened between Elements N2 and N6. 37
3.28 Stress progression along the thickness for the steel plate. 38
3.29 Normalised stress progression along the thickness for the steel plate. . . . 39
3.30 Normalised stress progression along the thickness for the aluminium plate. 39
3.31 Normalised stress progression along the thickness for the titanium plate. . 40

4.1 Flowchart of the optimisation process. 45
4.2 Diagram for the Benchmark. 46
4.3 The evolution of the best, worst and average values of the objective func-

tion returned in Experiment α. 48
4.4 The evolution of: (a) the weight function, (b) maximum stress returned

for Experiment α. 48
4.5 The evolution of: (a) the weight function, (b) maximum stress returned

for Experiment β. 49
4.6 Comparison between the number of evaluations from each test. 50
4.7 Comparison between the standard deviation from each experiment. 50
4.8 Diagram for Experiment Ω. 51
4.9 The evolution of the thickness for Experiment Ω. 52

vi

4.10 Average stress in OZ direction for the resulting configuration from Exper-
iment α and β (plate width = 140 mm) and from Experiment Ω (plate
width = 300 mm) measured at: (a) impact region in front surface of Plate
A, (b) impact region in front surface of Plate B, (c) impact region in front
surface of Plate C, (d) impact region in rear surface of Plate C. 53

4.11 Average shear stress in OXZ plane for the resulting configuration from
Experiment α and β (plate width = 140 mm) and from Experiment Ω
(plate width = 300 mm) measured at the impact region in the front surface
of Plate A. 54

4.12 Evolution of the kinetic energy of the projectile and strain energy of the
plates. 54

5.1 Diagram for Problem I. 56
5.2 Representation of the region where the stress is measured for Problem I. . 57
5.3 Problem I - The evolution of: (a) the weight function, (b) maximum stress

returned for Experiment α. 59
5.4 Problem I - The evolution of: (a) the weight function, (b) maximum stress

returned for Experiment β. 60
5.5 The evolution of: (a) the objective function, (b) best, average and worst

values of the objective function returned for Experiment β. 60
5.6 Problem I - The evolution of: (a) the weight function, (b) maximum stress

returned for Experiment Ω. 61
5.7 Problem I - The evolution of the objective function with applied penalties

for Experiment Ω. 62
5.8 Problem I - The evolution of: (a) the weight function, (b) maximum stress

returned for Experiment γ. 62
5.9 The evolution of the measured stress in the frontal impact region of Plates

A, B and C and in the rear impact region of Plate C. 64
5.10 Generated elastic and plastic strain energies at each plate. 65
5.11 Evolution of the kinetic energy of the projectile, the internal energy of the

plates and the artificial strain energy of the model. 65
5.12 Diagram for Problem II. 66
5.13 Representation of the region where the stress is measured for Problem II. 67
5.14 Problem II - The evolution of: (a) the weight function, (b) maximum

stress returned for Experiment α. 68
5.15 Problem II - The evolution of the objective function with applied penalties

for Experiment α. 69
5.16 Problem II - The evolution of: (a) the weight function, (b) maximum

stress returned for Experiment β. 70
5.17 Problem II - The evolution of the objective function with applied penalties

for Experiment β. 70
5.18 Problem II - The evolution of: (a) the weight function, (b) maximum

stress returned for Experiment Ω. 71
5.19 Problem II - The evolution of: (a) the objective function with applied

penalties (b) the evolution of the thickness assigned to Plate A (c) the
evolution of the thickness assigned to Plate B (d) the evolution of the
thickness assigned to Plate C. 72

vii

5.20 Average stress in OZ direction for the resulting configuration from Tests 1
to 3, measured at: (a) impact region in front surface of Plate A, (b) impact
region in front surface of Plate B, (c) impact region in front surface of Plate
C, (d) impact region in rear surface of Plate C. 74

5.21 Plastic equivalent strain throughout the centre elements of the armour
plate, starting from the front surface of Plate A and ending in the rear
surface of Plate C. 75

5.22 Analysis of the strain and plastic dissipation energy in the three plates
for all the configurations: (a) plastic dissipation energy in the model, (b)
elastic strain energy in Plate A, (c) elastic strain energy in Plate B, (d)
elastic strain energy in Plate C. 76

5.23 Evolution of the kinetic energy of the projectile, internal energy of the
plates and generated artificial strain energy. 77

A.1 First stress peak progression along the thickness of the plate, measured
for an impact velocity of 5 m/s. 85

A.2 First stress peak progression along thickness of the plate, measured for an
impact velocity of 40 m/s. 86

A.3 First stress peak progression along thickness of the plate, measured for an
impact velocity of 100 m/s and 80 m/s specifically in the case of Aluminium. 86

A.4 Second stress peak progression along thickness measured for an impact
velocity of 5 m/s. 87

A.5 Second stress peak progression along thickness measured for an impact
velocity of 40 m/s. 87

A.6 Second stress peak progression along thickness measured for an impact
velocity of 100 m/s and 80 m/s specifically in the case of Aluminium. . . . 88

A.7 A basic flowchart of the PSO algorithm. 89
A.8 Parameters in the script for effortless model editing purposes, in the form

of a flowchart. 93
A.9 The evolution of the thickness assigned for Experiment α. 94
A.10 Problem II - The evolution of the total thickness of the armour system for

Experiment Ω. 94
A.11 Maximum vertical displacement of the centre area in the rear surface of

Plate C. 95

viii

Chapter 1

Introduction

Protection systems have been very important throughout the years. Warfare and criminal
activity demand development of new protection resources. Prevention is essential and
therefore the need for defensive gear is unavoidable. There are many high-risk professions
that, due to the natural risks involved, require some type of safety ensurance. Nowadays,
the bullet-proof vest is an example of protection gear that greatly increases the rate of
survivability in violent scenarios.

Since thousands of years ago, the efficiency of a soldier has both been proved by
agility proficiency or defensive endurance [Yadav et al. 2016]. This means that having
soldiers who are faster than their enemies results in tactical advantage. On the other
hand, having soldiers with better defensive gear helps withstanding more blows and
therefore increasing their resilience. The focus on developing improved defensive gear
has clear purposes. Increasing the endurance capabilities of soldiers without sacrificing
their speed and comfort is the key to maximise the ratio of survivability. Engineers
have been studying new materials and physical phenomena in order to improve existing
products or develop new ones. New materials have been replacing metals for defence
purposes and the introduction of fibres has revolutionised this industry. For example,
the development of Kevlar® fabric armour meant a great reduction in weight while
maintaining impact absorption capabilities. Modular protective gear has been improving
as well, depending on the type of threat.

A documentary produced by [DeHart et al. 2012] depicts the constant need for im-
provement in relation to armoured vehicles. They were highlighted in the two world wars
and were a force to be reckoned with. Although with each improvement made to ar-
moured vehicles, enhancements on firepower were made as well, such as armour piercing
projectiles. To be able to withstand such projectiles, new ideas had to be tested. Increas-
ing thickness was not a viable option since it would make the vehicle too heavy and hard
to manoeuvre. Changes in geometry were proven to be helpful at absorbing stronger
impacts. Moreover, combinations between metal plates and ceramic plates would help
absorbing heat rounds which otherwise penetrated thick armour plates. Explosive de-
vices such as HESH (High Explosive Squash Head), IED (Improvised Explosive Device)
and EFP (Explosively Formed Penetrator) are strong forces to be reckoned with and
purposely built protection systems would be developed to deal with such threats. Bulky
and heavy vehicles have been replaced by lighter and faster vehicles for evasion purposes.
The combination of geometrical, material and structural factors would result in strong
and light-weight armoured vehicles.

1

2 1.Introduction

Throughout time, the development of armour systems has been in the context of
action-reaction events. A new armour concept is developed and, in order to overcome its
improved defensive capabilities, new firepower is developed, which results in the need for
new armour enhancements for it to withstand that type of weaponry. Researchers study
new materials and designs every day to come up with new defence prototypes.

1.1 Design and Material Choices for Armour Systems

Advances in science and technology are constantly enabling the production of new ma-
terials and enhancing them. Biomimetics, hybrid and composite materials introduce a
new level of complexity when designing security devices for armour applications. [Mar-
tini and Barthelat 2016] developed a flexible bio-inspired armour based on overlapping
ceramic scales. This armour proved to be more flexible, resistant and damage toler-
ant compared to a continuous layer of uniform ceramic. [Grujicic et al. 2017] research a
new class of biomimetic ceramic-tablet-reinforced polymer-matrix composite materials,
modelled after natural nacre, the inner layer of mollusc shells that is characterised by
a superb combination of mechanical properties. This new class of composite materials
would reduce the weight of military vehicles, that due to heavy metallic armour, have
reduced fuel efficiency and mobility.

Hybrid materials are combinations of two or more materials assembled in such a way
to have attributes not offered by either one alone [Ashby 2005]. The sandwich structure is
a type of hybrid that is used in many armour systems. [Azevedo 2012] tested the influence
of cores of micro-agglomerated cork in sandwich armour plates and demonstrated how this
implementation can raise impact energy absorption capabilities. The use of composite
materials and hybrid structures opened the door to many light-weight armour solutions.
In 2006, an article covering an innovative composite armour system demonstrated that
improved ballistic performance can be achieved through the design process [Zheng-Dong
et al. 2006]. The authors also declared that the hybrid materials have the advantage of
providing additional important design variables besides thickness and size. [Medvedovski
2006] proved that combining a light-weight ceramic-polymer layer between a backing
layer of aramid and a ceramic plate would result in high level ballistic performance.
With interest in light-weight armour solutions, [Sangamesh et al. 2018] conducted a
research on jute-epoxy and natural rubber sandwich composites. The authors proved the
enhanced ballistic protection provided by combination of the two materials, due to higher
energy absorption from the rubber and superior structural stability from the presence of
jute-epoxy. An article written by [Crouch 2019] mentions light-weight material solutions
such as Ultra High Molecular Weight Polyethylene (UHMWPE) that are being used as
a backing material in layered armour systems as a revolutionising new material solution.

[Tasdemirci and Hall 2007] mention the importance of wave reflection and trans-
mission phenomena at the interface of two dissimilar elastic solids. In their paper, the
propagation characteristics of impact waves across a planar interface between ceram-
ic/metal and metal/metal layers are reported and plasticity effects are shown for the
first time to be particularly important in these multi-layer materials comprising metal
layers. These authors also sought to demonstrate and understand the effect of plastic
deformation on stress wave propagation. [Saleh et al. 2020] stated that ballistic perfor-
mance can be evaluated in the light of complex interaction of the impact stress waves

Pedro Miguel Monteiro da Rocha Master Degree

1.Introduction 3

and material strength and its fracture/failure properties. Testing how pressure waves
propagate throughout armour and possibly causing blunt trauma due to large displace-
ments, [Gilson et al. 2020] performed tests using ballistic gelatin which, due to similar
behaviour to soft tissues, is considered a relevant witness material. The tests and models
showed several pressure waves propagating into the gelatin over a short delay.

1.2 Optimisation Studies

Optimisation studies have been focusing on finding the best combination of given vari-
ables to achieve the best overall performance for developed armour systems. Optimisation
methods allow the researcher to minimise the weight of defence systems without sacrific-
ing defensive capabilities. [Liu et al. 2003] researched the design of functionally graded
ceramic/metal armour and, using the conjugate gradient method, the authors were able
to increase the armour’s protection capabilities. [Rahul et al. 2005] mentioned the im-
portance of heuristics approaches towards composite material selection and design. The
authors also stated that optimisation methods based on genetic algorithms have demon-
strated the potential to overcome many of the problems associated with gradient-based
methods. These algorithms are most effective when the design space is large. [Chen 2001]
introduces a practical approach for impact structure optimisation taking advantage of
the global-searching ability of the genetic algorithm while also considering the instability
of explicit finite element analysis. This metaheuristic was adopted by [Yong et al. 2008]
to optimise the response of a composite laminate subjected to impact, coupling it to
a commercial finite element package LS Dyna to perform the impact analysis. After
a comparison between the commercial optimisation package, LS OPT, and the genetic
algorithm, results showed that the adopted algorithm was a robust, capable optimisa-
tion tool that produced near optimal designs while performing well with respect to LS
OPT. [Wang and Zheng 2012] stated that the particle swarm optimisation algorithm is
conceptually simple and easy to implement and that it has demonstrated is efficiency
in a wide range of continuous and combinatorial optimisation problems. The authors
presented a new particle swarm optimisation algorithm and experimental results showed
that it was able to achieve good solution quality with low computational costs.

Having many optimisation methods at disposal, researchers have proposed the appli-
cation of these tools to increase the performance of multi-layered armour plates. [Park
et al. 2005] conducted a study for an optimal design of a multi-layered plate to endure
ballistic impact using NET2D, a Lagrangian explicit time-integration finite element code
for impact analysis. For the simulation, the Johnson-Cook model is used as the con-
stitutive models, to account the effects of strain rate hardening, strain hardening and
thermal softening. To solve this problem, the response surface method based on the
design of experiments is used to obtain the optimal design. For the objective function,
the average temperature and average EQPS (Equivalent Plastic Strain) are chosen. As
an effort to minimise the areal density of a two-component armour system, [Kędzier-
ski et al. 2015] present an approach that approximates the objective function with a
neural network and then searches for its optimum by applying a hybrid adaptive sim-
ulated annealing algorithm (ASA). Carrying out a study to find the optimal composite
configuration in a sandwich structure, [Zahir et al. 2019] selected the Analytic Hierar-
chy Process (AHP) to be used as the multi-criteria decision making method. In order

Pedro Miguel Monteiro da Rocha Master Degree

4 1.Introduction

to find the best combination of strength, weight and cost, ten design configurations of
composites laminates were evaluated. An optimisation framework for the design of light-
weight multi-layer plate configurations with high levels of blast and impact protection
is carried by [Jiang et al. 2020]. The efficient optimisation process used is based on the
reduced-order multi-layer plate model and provides a fast and reliable routing to iden-
tify the optimal multi-layer plate among a large number of alternative configurations. It
helps designers to select proper materials and determine the thickness of each sub-layer
in an early design stage of a multi-layer plate armour design, which has a capacity to
reduce the occupant injury probability and structural weight simultaneously. [Reis 2019]
wrote a dissertation with aims to develop and understanding of non-linear optimisation
algorithms applied to a complex engineering design problem: a multi-layer plate under
a ballistic impact. Due to the complexity of the development of a model that simulates
a ballistic impact, there was a need to understand the physics and mechanics behind
the propagation of stress waves. Such insights were used in Abaqus Python scripting to
construct and validate a proper simulation model of the transient event that constitutes
a low speed ballistic impact, analysing the propagation of elastic stress waves and ulti-
mately prepare a script to be fully integrated in three optimisation algorithms: Particle
Swarm Optimisation, Genetic Algorithm and Simulated Annealing.

1.3 Objectives

This dissertation is focused on developing methodologies towards the attaining of a multi-
layered armour plate that is subjected to a non-linear optimisation algorithm in search
of suitable engineering solutions for energy absorption of a ballistic impact. This work
can be divided into four different objectives:

• Study the propagation of stress waves and how it is affected by the mechanical
properties of different materials as well as how it interacts when reaching an inter-
face between two materials. Using a simple designed ballistic test model in Abaqus,
the generated stress wave from the contact between a moving projectile and a sta-
tionary rectangular plate is analysed in several different tests conditions involving
different projectile velocities and geometrical configurations.

• Create new strategies for material modelling and optimisation using the Python-
Abaqus scripting interface. The scripts are used to develop numerical models in
Abaqus Explicit FEM package, with different materials and layer configurations,
as well as additional useful parameters for the Abaqus model generation;

• Understand how interlayer interfaces and material properties influence the total en-
ergy absorption and impact mitigation in layered armour configurations. Expand-
ing on a previous work, this dissertation investigates the repercussions of different
configurations, focusing on the effects of plastic deformation in the propagation of
stress waves;

• Apply optimisation methodologies using the Python-Abaqus Scripting Interface, to
solve problems with adequate variables and parameterisation to obtain optimal lay-
ered configurations for objective functions equating such as maximising protection
to weight ratio. For this purpose, an application of the particle swarm optimisation

Pedro Miguel Monteiro da Rocha Master Degree

1.Introduction 5

algorithm is thoroughly analysed in terms of performance and accuracy in a set of
prepared optimisation problems. The obtained results are analysed in terms of
stress wave propagation and energy absorption.

1.4 Dissertation Structure

This document is divided and organised in six chapters, as follows:

• Chapter 1: This chapter contextualises the purpose of the dissertation, serving
as an introduction and framework of the field of design optimisation and regarding
relevant protection solutions. The objectives for this work are also presented in
this chapter;

• Chapter 2: Focuses on the theoretical understanding of the propagation of stress
waves, more specifically longitudinal elastic and plastic stress waves;

• Chapter 3: A development of the model generation script to implement on the
various studies throughout this work is conducted in this chapter. Furthermore,
the validation of the studied concepts on the previous chapter is carried out and
analysed;

• Chapter 4: Introduction of optimisation fundamentals and methodologies. Sets
up a preliminary structure for the optimisation problems analysed in the following
chapter;

• Chapter 5: In this chapter, two optimisation problems are defined. The purpose
of the two problems is to evaluate possible light-weight armour solutions while en-
hancing the overall performance of the implemented particle swarm optimisation
algorithm. Each problem is divided in a series of experiments which, testing the
influence of the algorithm’s operational parameters, evaluates the accuracy of so-
lutions as well as the performance in terms of computational cost. The solutions
returned by the algorithm are studied and compared in terms of stress wave prop-
agation and the energy transfers between the elements of the geometrical model:
projectile and armour plates;

• Chapter 6: The final remarks of this work, outlining major conclusions of this
dissertation and discussing recommendations for future research on this field.

Pedro Miguel Monteiro da Rocha Master Degree

.

Intentionally blank page.

Chapter 2

Stress Wave Dynamics

This dissertation focus on the dynamics of impact collisions. When two objects with
different velocities collide, it is possible to determine the latter velocities of those objects
depending on the type of impact: elastic or plastic. Classic rigid body dynamics describes
the impact between bodies, however, if a stress wave is created, instead of analysing
the problem in terms of kinetic energy, it is possible to analyse it in terms of wave
propagation [Svensson and Tell 2015].

2.1 Types of Stress Waves

In a system composed by at least one deformable object, a collision originates stress
waves in the material. Post impact, the rate of deformation along the material is a direct
consequence of the propagation of stress waves originated from the impact region. To
better understand the armour plate’s reaction to the ballistic impact, it is important to
consider the different types of stress waves originated by the collision. These stress waves
traverse the material and the most common can be presented in three distinctive kinds:
longitudinal, distortional and Rayleigh [Meyers 1994].

Longitudinal (or irrotational) waves correspond to the motion of the particles back
and forth along the direction of wave propagation such that the particle velocity (Up) is
parallel to the wave velocity (U) [Meyers 1994]. In infinite and semi-infinite media, these
waves are established as “dilatational” waves. An approach to how the particles move
under such wave can be seen in Figure 2.1.

Figure 2.1: Motion characteristics of particles under longitudinal stress waves [Survey
2004].

The propagation of a distortional (or shear, or transverse, or equivolumal) wave
causes the particles to move in a perpendicular direction to the wave. There is no change

7

8 2.Stress Wave Dynamics

in density and all longitudinal strains are null [Meyers 1994]. Figure 2.2 represent the
motion of the particles when submitted to a shear stress wave.

Figure 2.2: Motion characteristics of particles under distortional stress waves [Survey
2004].

Rayleigh waves only occur in regions adjacent to surfaces, thus they are also called
surface waves. The particle’s velocity (Up) decreases exponentially as the wave passes
by, describing an elliptical trajectory [Meyers 1994]. An approximation of this type of
wave is the motion profile on water surface upon a mass drop, as shown in Figure 2.3.

Figure 2.3: A mass drops in water, generating a wave. The cork in the right will move
in a elliptical trajectory [Meyers 1994].

2.2 Propagation of Stress Waves

This dissertation analyses the propagation of stress waves in an armour system generated
from a projectile impact. [Reis 2019] studied the formation of elastic waves generated from
a projectile impact with a velocity of 5 m/s. This work has the purpose of investigating
the propagation of elastic and plastic stress waves, testing ballistic impacts with increased
velocity in order to generate plastic deformation.

Most materials display a linear stress-strain relation for low deformation. When
stress surpasses the yield strength of the material, the relation between stress and de-
formation is no longer linear, affecting the dynamic behaviour of the system and stress
wave propagation.

Pedro Miguel Monteiro da Rocha Master Degree

2.Stress Wave Dynamics 9

2.2.1 Elastic Stress Waves

The velocity of propagation of longitudinal elastic stress waves in linear-elastic solids
such as a rod is

C0 =

√
E

ρ
, (2.1)

where E is the modulus of elasticity (or Young’s modulus) and ρ the density of the
material.

In the case of an armour system, the structure can be defined as a semi-infinite media.
For this type of media, the longitudinal velocity of propagation of the stress wave is given
by [Meyers 1994]

CL =

√
(1− ν)

(1 + ν)(1− 2ν)

E

ρ
, (2.2)

where ν is the Poisson’s ratio.
Similarly, the transverse wave speed can be written as

CT =

√
E

2(1 + ν)ρ
. (2.3)

2.2.2 Wave Transmission and Reflection

Developing layered media for energy absorption requires attention to the interaction
between the layers in the configuration and how stress propagates. According to [Meyers
1994], considering the layered interface to be in equilibrium under the three stress pulses
σI (incident), σT (transmitted) and σR (reflected), relating as

σI + σR = σT . (2.4)

Assuming the continuity of the interface, the respective particle velocities are

UpI + UpR = UpT . (2.5)

The mechanical impedance of a material is [Macaulay 2012]

Z = ρC , (2.6)

where C is the velocity of the stress wave and ρ the density of the material. The
conservation-of-momentum relationship states that [Meyers 1994]

Fdt = d(mUp) , (2.7)
σAdt = ρAdxUp ,

σ = ρ
dx

dt
Up ,

σ = ρCUp ,

Pedro Miguel Monteiro da Rocha Master Degree

10 2.Stress Wave Dynamics

Figure 2.4: When a stress wave (σI) reaches an interface, it is reflected back as a different
stress wave (σR) while still propagating into the adjacent media with different amplitude
(σT).

where F, t and m are the force, time and mass, respectively, while A and x are the surface
area and direction of the applied load, respectively. In a two-layered medium (layers A
and B) such as in Figure 2.4, through Equation 2.7, the following particle velocities are
obtained as

UpI =
σI

ρACA
, UpT =

σT
ρBCB

, UpR =
−σR
ρACA

. (2.8)

Substituting Equation 2.7 into Equation 2.5 leads to

σI
ρACA

− σR
ρACA

=
σT
ρBCB

, (2.9)

which, combined with Equation 2.4, yields:

σT
σI

=
2ρBCB

ρBCB + ρACA
, (2.10)

σR
σI

=
ρBCB − ρACA

ρBCB + ρACA
. (2.11)

The impedances of materials A and B (ρC product) determine the ratio of amplitudes
of the transmitted and reflected pulses.

Pedro Miguel Monteiro da Rocha Master Degree

2.Stress Wave Dynamics 11

2.2.3 Plastic Stress Waves

The limit of elasticity in a material defines the maximum stress it can handle without de-
forming permanently. Material strength can be strain and strain-rate dependent [Meyers
1994]. The stress strain curve of metals can be represented by a bi-linear function such
as the one in Figure 2.5a. The function is divided in two stages, the first one (blue) is
elastic and the second one (red) is plastic. The stress-strain curve of some metals can
also be represented by a power law function such that [Matusevich et al. 2012]

σ = Kεn , (2.12)

where K is the strength coefficient and n is the tensile strain-hardening exponent. This
type of stress-strain curve is illustrated in Figure 2.5b.

(a) (b)

Figure 2.5: Stress-strain curves for ductile materials: (a) bilinear elastoplastic; (b) power
law work hardening [Meyers 1994].

In Section 2.2.1, the velocity at which a stress wave propagated in finite medium is
defined by Equation 2.1 and in a semi-infinite medium in Equation 2.2. The Young’s
modulus is the slope of the stress-strain curve in the initial stages of deformation:

E =

(
dσ

dε

)
el

. (2.13)

Since the slope in the elastic range is steeper, by analysing Equation 2.1,(
dσ

dε

)
el

>

(
dσ

dε

)
pl

, (2.14)

which means that plastic waves propagate slower than elastic ones. The velocity of
propagation of the stress wave for one dimensional cases is

Cpl =

√(
dσ/dε

ρ

)
. (2.15)

It is understandable how the velocity decreases by looking at Figure 2.6.

Pedro Miguel Monteiro da Rocha Master Degree

12 2.Stress Wave Dynamics

Figure 2.6: Shape of plastic wave front as a function of time; dispersion of wave is
observed due to decrease in wave velocity with increasing stress [Meyers 1994].

Pedro Miguel Monteiro da Rocha Master Degree

Chapter 3

Model Generation

This dissertation targets the development of a ballistic impact model composed of a
projectile and a multi-layered armour plate in Abaqus. Throughout this chapter, the
model design and modelling techniques are discussed. Furthermore, the contents from
the previous chapter are implemented and validated using finite element analysis, focusing
in the elastic and plastic wave propagation.

Using a Python-Abaqus scripting interface, parameterising the model increases the
speed of the process while also providing effortless ways of changing essential input data
for model generation.

3.1 Model Design

The layout of the ballistic test is actually very simple. It consists of a minimum of two
parts: a projectile and a layered armour system (which is composed by at least one
plate). The configuration in this chapter is displayed with an assembly of a projectile
and three plates: front, middle and rear. In the following chapters, the algorithm returns
optimal configurations, with the number of plates to use as a variable. Nonetheless, a
3-plate configuration is enough to understand how the model is composed (Figure 3.1).

Figure 3.1: Model dimensions (in mm) and basic configuration.

Previous studies carried by [Pittman 2017] and [Reis 2019] serve as the starting
point for further research on the ballistic impact phenomena. [Pittman 2017] designed
his model with rectangular plates of 500 mm of length and 300 mm of width. While

13

14 3.Model Generation

starting with those model dimensions, [Reis 2019] optimised the model for low velocity
impacts, resulting in a design of square plates of 140 mm of width. With the purpose of
performing ballistic tests with higher velocities and selecting boundary conditions that
approximate to current ballistic test setups the model used in this dissertation features
square plates of 300 mm of width. This enables a fraction of the impact energy to be
absorbed by plate bending. The projectile is defined as a cylindrical 3D analytical rigid
surface of 60 mm of length, diameter of 20 mm and has an assigned point of inertia
correspondent to 0.147025 kg.

To decrease computational times, only a quarter of the plate is modelled and in order
to maximise mesh efficiency, the geometry is divided into nine cells. The most important
cells (labelled as 1 to 5 in Figure 3.2) define the area under impact and are used to
analyse the propagation of stress waves. Overall, following the mesh structure presented
by [García-González et al. 2015], the geometry is divided mainly in three zones. Zone
A (red) defines the area under impact, which is twice the area of the projectile, Zone B
(orange) defines the mesh transition zone between the impact zone and the rest of the
plate, which is Zone C (yellow).

Figure 3.2: Each plate is divided in nine cells for easier analysis.

3.2 Python-Abaqus Scripting Interface

Methods for complex problem solving often involve iterative processes which can take
advantage of multiple programming paradigms. Tools that allow quick iteration and easy
interaction are essential for such processes [James 2018]. Python has a vast toolbox that
provides data scientists with a large array of general- and special-purpose functionality.

The Abaqus Scripting Interface is an application programming interface (API) to the
models and data used by Abaqus. It is an extension of the Python object-oriented pro-
gramming language, relying on Python scripts [Systèmes 2011]. During the development
of a model in Abaqus/CAE through the graphical user interface (GUI), commands are
issued internally after every operation. The GUI generates commands in Python and
sends them to the Abaqus/CAE kernel. The kernel processes all the information and
displays it through the GUI. The Abaqus Scripting Interface provides the advantage of

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 15

communicating every operation directly with the kernel through a script. The inter-
action between Abaqus Scripting Interface commands and the Abaqus/CAE kernel is
represented in Figure 3.3.

Figure 3.3: Abaqus Scripting Interface and Abaqus/CAE interactions flowchart [Sys-
tèmes 2011].

The scripting interface is a valuable tool for this dissertation. Not only serves as a
support for the writing of optimisation algorithms (to discuss later in Chapters 4 and
5) but also optimises the whole model development process when considering a modular
design approach. Through the programming of a Python script, the repetitive tasks
during the building of the model in Abaqus/CAE GUI can be saved and later processed,
generating information, such as a library of materials, reasonably fast. It also provides
the advantage of generating a parametric study, which contributes to the development
of a modular script containing a multitude of different parameters that can be edited
effortlessly, saving valuable time. Similarly, a script can also contain useful parameters
to perform repetitive operations when accessing results from the simulations, such as
calculated stress levels. It is also possible to retrieve data and post process it from the
Python script, writing it to a text file and loading it in a post processing software. The
script used in this dissertation can be found in Appendix B.

Pedro Miguel Monteiro da Rocha Master Degree

16 3.Model Generation

3.3 Materials

A library of materials is predefined in the script, meaning that a wide selection of mate-
rials is available for any type of desired study in Abaqus. Each material is defined both
for elastic and plastic regime. The material database is essential for the optimisation
part of the dissertation since the algorithm returns the optimal material selection for all
plates used in the ballistic simulation.

Essentially, the list of materials to use are split in two main classifications: elastic and
elasto-plastic materials. While the dissertation focuses more on elasto-plastic behaviour,
it is also important to understand the behaviour of the materials studied by [Reis 2019].
The materials used in his research were applied for low energy impacts, which naturally
display elastic behaviour when subjected to low stress. The materials to be considered
in low energy impacts are detailed in Table 3.1 [Pittman 2017,Reis 2019].

Table 3.1: Materials and respective mechanical properties for elastic stress waves tests.

Material Density
(kg/m3)

Young’s
Modulus
(GPa)

Yield Strength
(MPa)

Poisson’s
Ratio

Aluminium 2700 70 276 0.33
Nylon-6 1140 3 82 0.35
Steel 7850 200 350 0.25
EPDM 960 2.5× 10−3 16.8 0.499
Cork 293 9 1 0.3

Aluminium Foam 410 103.08× 10−3 1.24 0.05
Polycarbonate 1300 1.8 63 0.3182

Epoxy 1540 3.5 15 0.33
Titanium 4430 113.8 880 0.342

This work intends to analyse the propagation of plastic stress waves. This implicates
that the ballistic impact generates stress levels that surpass the yield strength of the
material, resulting in plastic strains. In Chapter 5, the optimisation procedures feature
the elasto-plastic materials that are listed in Table 3.2. The properties of these materials
are extracted from literature and to define the plastic behaviour of each one of them, the
stress-strain plot curves are shown in Figures 3.4 and 3.5.

Table 3.2: Materials and respective mechanical properties for elastic and plastic stress
waves tests.

Material Density
(kg/m3)

Young’s
Modulus
(GPa)

Yield Strength
(MPa)

Poisson’s
Ratio

Aluminium 1100 2710 68.9 55 0.33
Nylon-6 1140 3 100 0.35

AISI 4340 Steel 7850 200 1355 0.29

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 17

Figure 3.4: True stress-strain curve for the 1100 series aluminium alloy [Li and You
2019].

Figure 3.5: True stress-strain curve for the AISI 4340 Steel [Li et al. 2019].

3.4 Numerical Simulation

In this section, the conditions of the simulation are set. Important details about boundary
conditions, duration of simulation and contacts are defined. The setup of the results is
configured throughout the following sub-sections.

Pedro Miguel Monteiro da Rocha Master Degree

18 3.Model Generation

3.4.1 Boundary Conditions

In Section 3.1, it is mentioned that only a quarter of the plate geometry is modelled.
This helps reducing the amount of total finite elements to use in calculations, which
reduces the duration of the simulation. Using symmetry conditions to the surfaces in
planes OXZ and OYZ (Figure 3.6), it is possible to perform the calculations for a quarter
of the model without compromising results.

Figure 3.6: Surfaces chosen for the symmetry boundary condition.

Displacement boundary conditions need to be applied to the geometry. In the dis-
sertation written by [Reis 2019], a study was carried out to find the optimal boundary
condition to suppress linear motion of the plates post projectile impact. For that purpose,
tests were performed on three different clamped geometries, shown in Figure 3.7.

After analysing the resultant stress on the rear surface for all the three studied cases,
throughout the entire impact period, Figure 3.7c (third scenario) provided more uniform
results throughout the entire impact time period. The explanation is that this partic-
ular boundary condition minimises the propagation of stress waves in the OX and OY
directions. Moreover, the propagating stress waves in the OZ direction suffer less inter-
ference when comparing to the results from the other boundary conditions [Reis 2019].
Under these circumstances, the results obtained for the third scenario are more reliable
for interpretation and to analyse the propagation of elastic stress waves, thus this was
the chosen configuration for his analysis.

This dissertation is focused on carrying on from the previous study by [Reis 2019],
introducing plasticity effects during stress wave propagation. In order to generate plastic
deformation, higher velocity impacts have to be considered. The third clamped configu-
ration limits strain effects in all directions, which has a considerable influence in stress
wave propagation and material deformation. Furthermore, in the interest of approaching
the model design in Abaqus to the regular experimental ballistic test setup, similar to
a backing material fixture used in National Institute of Justice (NIJ) standards [NIJ
Standard-0101.062008], the first clamped configuration (Figure 3.7a) will be used as the
main configuration for the projectile impacts.

The next and final step is to define the projectile velocity as initial condition. This

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 19

(a)

(b)

(c)

Figure 3.7: Three boundary condition studies [Reis 2019]: (a) plate clamped by the side
surfaces of the plate, (b) plate pinned at the side edges of the rear surface of the plate,
(c) plate clamped at the rear surface of the plate.

velocity is defined by a vector pointing in the OZ direction (towards the plate) and
selected magnitude. The projectile linear velocity vector is constrained exclusively to
that direction.

Pedro Miguel Monteiro da Rocha Master Degree

20 3.Model Generation

3.4.2 Transient Analysis Setup and Part Interactions

The simulation is focused on a time-based event, with the software calculating the gen-
erated stress levels on the plate upon the impact of the projectile. It is necessary to
designate the duration of the event and a results output frequency.

The last conditions of the simulation refer to the behaviour between the different parts
of the assembly, which contains one projectile and one or more plates. [Reis 2019] re-
searched the influence of different interactions combinations and concluded that “surface-
to-surface” contact algorithm between the projectile and front surface of the first plate
and “tie” constraint between surfaces of adjacent layers was the combination that re-
quired less computational processing, thus the interactions and constraints are defined
according to his studies.

3.5 Mesh Parameters

The level of discretisation defines the computational cost of the study. The optimal con-
figuration consists in a mesh sufficiently refined to be able to reproduce the propagation
of stress waves while also minimising the overall computational times.

The smallest element in the mesh defines the stable time increment necessary to which
the calculations converge. To determine the minimum element size to use in the mesh,
it is important to verify the Courant-Friedrichs-Lewy condition, which is defined by [Lin
1996]

CCFL = C
∆t

∆x
≤ (CCFL)max. (3.1)

CCFL is the Courant number, which for explicit analyses must be lower or equal to one.
To calculate the Courant number, each time increment (∆t) must be known as well as the
minimum length of the smallest element in the mesh (∆x) and the speed of the travelling
wave.

Testing for a wave speed on aluminium (properties in Table 3.1), from Equation 2.2,
a propagation velocity of C = 6198 m/s and with a projectile impact at 5 m/s, the
duration of impact is 5.94 × 10−5 s, as seen in Figure 3.8. To capture the stress wave
accurately, the mesh needs to be sufficiently refined. Multiplying the wave’s speed by
the duration of the impulse it is possible to calculate the length of the wave. Having
Lwave = CL × ∆tpulse = 6198 × 5.94 × 10−5 = 0.368 m, it is noticeable that the
resulting length is more than the thickness of the plate. This means that it is possible to
accurately capture the stress wave regardless of the number of elements. However, the
Courant-Friedrichs-Lewy condition must still be verified.

The smallest elements are present in partition 1 (Figure 3.2), for which the smallest
length is 1 mm. Using Equation 3.1, the Courant number can be calculated as CCFL =
6198× 5.0×10−8

1×10−3 = 0.31, which is lower than one, hence the conditions are valid and it is
possible to proceed with the minimum size of 1 mm for the mesh.

For faster processing, the ideal mesh consists of eight-node brick elements with re-
duced integration (C3D8R). However, this type of element uses one fewer integration
point in each direction than the fully integrated elements. This causes that the “surface-
to-surface” contact between projectile and plate generates instability when extrapolating
stress values in the area under impact. The fully integrated eight-node brick element

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 21

Figure 3.8: Average Stress in the Frontal Impact Region.

(C3D8) fixes the instabilities at the expense of slower calculations. Under these circum-
stances, cells in Zone A (Figure 3.2) feature C3D8 elements while the remaining feature
C3D8R elements. The mesh is shown in Figure 3.9.

Figure 3.9: Example of the mesh for testing.

Pedro Miguel Monteiro da Rocha Master Degree

22 3.Model Generation

3.6 Model Validation

3.6.1 Elastic Wave Speed

A series of tests are conducted to analyse the dynamics of wave propagation discussed
in Chapter 2. For a square aluminium plate with a length of 300 mm and a 25 mm
thickness, measuring the average stress of the elements in the front and rear impact
regions, shown in Figure 3.10, a 5 m/s projectile impact generates the stress plots in
Figure 3.11. Furthermore, the stress is analysed exclusively from the OZ direction and
since the plate thickness is equal to 25 mm, by measuring the time that the stress wave
takes to travel between the front and rear surfaces, it is possible to calculate the stress
wave’s speed.

Figure 3.10: Front and rear impact regions selected for elastic stress wave speed validation
tests.

Two sets of results are stored to calculate the stress wave speed and both are measured
for the two analysed impact regions. The first set contains information relative to the
generated first stress peak while the other one refers to the end of the pulse itself. Tables
3.3 and 3.4 list the results, with Tfront and Trear being the instants for the set of results
for the measured stress in the front and rear surfaces, respectively.

Table 3.3: Data for stress wave speed calculation.

Set Tfront (µs) Trear (µs) ∆Tr,f (µs)
First Stress Peak 0.90 5.15 4.25

End of Pulse 59.85 63.95 4.10

Having the time instants, from a 25 mm distance between front and rear surface,
it is possible to calculate the velocity of the wave dividing the total travelled distance
with the time the wave took to reach the rear surface, ∆Tr,f (Table 3.3). The calculated
velocity for the stress wave is listed in Table 3.4.

To help visualise how the stress propagates throughout the thickness of the plate,

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 23

Figure 3.11: Average stress measured on the frontal impact region and rear impact region
for an impact velocity of 5 m/s.

Table 3.4: Calculated stress wave speed.

Set CL,calc. (m/s) CL,t (m/s) Deviation (%)
First Stress Peak 5882.35 6197.82 5.10

End of Pulse 6097.56 6197.82 1.62

Figure 3.12 represent the stress in the OZ direction at the instants listed in Table 3.3.
It is possible to see from Figure 3.12a the peak of stress on the front impact region and
subsequently the progression of the wave towards the rear of the plate. By the end of
the pulse, the stress oscillations on the plate in Figures 3.12c and 3.12d are due to the
free vibration of the system post impact.

Pedro Miguel Monteiro da Rocha Master Degree

24 3.Model Generation

(a)

(b)

(c)

(d)

Figure 3.12: Stress state of the geometry at the four different analysed times: (a) first
stress peak measured at the front impact region (t = 0.90 µs), (b) first stress peak
measured at the rear impact region (t = 5.15 µs), (c) end of pulse measured at the Front
Impact Region (t = 59.85 µs), (d) end of pulse measured at the Rear Impact Region
(t = 63.95 µs).

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 25

3.6.2 Wave Interaction between Layers

Upon finding a new surface, a stress wave continues to propagate through the new media
as a fraction of the original stress wave. In Equation 2.4 and Figure 2.4 it is demonstrated
how the stress wave behaves when it reaches an interface.

The stress wave is similar to a square wave and, for data acquisition in terms of
stress magnitude, the analyses are run through three different stages of the wave. The
first stage is upon the contact between the projectile and the plate, where it generates
a stress disturbance, followed by a second stress peak where the stress levels stabilise
for a determined amount of time, which is the second stage. The final stage starts
after the projectile transfers its initial kinetic energy into the armour system, resulting
in strain energy from deformation. Strain energy resulting from elastic deformation
will be transferred back into the projectile under the form of kinetic energy, ultimately
contributing to the projectile moving away from the armour system at constant velocity.
At this stage, the stress levels decrease towards the final stress condition, depending
on the amount of deformation of the material. Post impact, the stress on the plate
results from plate vibration, however, depending on the plastic strain in the material,
residual stresses may be generated. The stages of the stress wave analysed can be better
understood through the graphical visualisation of Figure 3.13.

Figure 3.13: A generic stress wave generated by the impact of a projectile in a square
metal plate.

Modelling in Abaqus the same example as for the demonstration of elastic stress
waves in the previous sub-section, another plate was added at the back of the original.
The setup for this section’s validation model is composed by two square plates of 300
mm of length with the top and bottom plates having a thickness of 20 mm and 10 mm,
respectively. The conditions for the simulation are defined in Section 3.4 and to perform
the tests on how the stress wave propagates between different material layers, three
distinct impact velocities are used: 5, 40 and 100 m/s. Taking into account the spectrum
of chosen velocities, the encastre configuration is the clamping of the side surfaces of
the plates shown in Figure 3.7a, due to the considerable amount of longitudinal strain
generated from the 40 and 100 m/s projectile impacts.

Measuring the magnitude of the first and second stress peaks on adjacent surfaces,

Pedro Miguel Monteiro da Rocha Master Degree

26 3.Model Generation

specifically on the surface of cell 1, it is possible to analyse how they compare between the
contact region of each plate. To simplify denominations, the top plate will be referred
as Plate A and the bottom plate as Plate B. For comparable results, the tests to be
conducted include all combinations of materials on Plate A and Plate B, from the range
of materials listed in Table 3.5, which are extracted from Table 3.2. It is important to
note that the following materials are modelled according to the perfectly plastic material
model and that their respective longitudinal stress wave speeds are calculated using
Equation 2.2.

Table 3.5: Properties and theoretical longitudinal stress wave speeds for the materials to
use in wave interaction analysis.

Material Density
(kg/m3)

Young’s
Modulus
(GPa)

Poisson’s
Ratio

Yield Stress
(MPa)

Stress Wave
Speed
(m/s)

Steel 7850.0 200.0 0.29 972.0 5778.2

Aluminium 2700.0 68.9 0.33 276.0 6148.9

Titanium 4430.0 113.8 0.342 880.0 6313.4

The tests conducted feature all combinations between the three materials and return
the stress wave on the rear central impact region of Plate A and the front central im-
pact region of Plate B. The first and second stress peaks are measured and with results
retrieved from both impact regions it is possible to determine the transmitted and inci-
dent stresses, σT and σI. The incident stress is the one measured on Plate A while the
transmitted is the one on Plate B. The region used for measurement is depicted in Figure
3.14. The stress wave returned is the average between the stresses measured in all finite
elements which belong to the referred region.

Figure 3.14: Example of the square impact region used for the analysis ran for studies
on wave interaction between the different layers of materials.

An example of the analysed stress in the central impact region directly at the interface
of the two plates is shown in Figure 3.15. This particular plot results from the setup of
a steel Plate A and aluminium Plate B, impacted at 40 m/s. The plot draws the stress
wave for the contact region in Plate A and in Plate B. From Figure 2.4 it is possible
to infer that the incident stress is measured in the contact region in Plate A while the

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 27

transmitted stress is measured in the contact region in Plate B. Using Equation 2.10 and
the properties of the materials in Table 3.5 it is possible to calculate the theoretical ratio
of transmitted stress to incident stress. Two different instants, one for the first stress
peak (green) and one for the second stress peak (blue), are selected for the measured
stress in the two contact regions. Dividing the two magnitudes for each of the stress
peaks it is possible to compare the results with the theoretical values.

Figure 3.15: Example of the chosen instants for the analysis of the relation between
transmitted and incident stresses, with the green and blue circles marking the sets of
data for first and second stress peaks, respectively.

The results for the calculated relation between transmitted and incident stresses are
listed in Tables 3.6 and 3.7, along with the theoretical relation. The first table evaluates
the relation for the first stress peak while the second table focuses on the second stress
peak.

Table 3.6: Transmitted and incident stress relation based on the first stress peak, calcu-
lated for different material combinations.

Material of
Plate A

Material of
Plate B (σT/σI)t (σT/σI)calc.

Deviation
(%)

Steel Aluminium 0.54 0.66 23.9

Steel Titanium 0.76 0.79 3.88

Aluminium Steel 1.46 0.95 35.2

Aluminium Titanium 1.26 0.91 27.1

Titanium Steel 1.24 0.93 24.7

Titanium Aluminium 0.74 0.78 4.16

The combinations with aluminium assigned on Plate A culminated in higher deviation
of the results. For the aluminium as material for Plate A, it is not possible to conduct
the test with an impact velocity of 100 m/s due to high distortion ratio between finite
elements, thus a replacement by an impact velocity of 60 m/s is done for these cases.
Through Figures 3.16a and 3.16b, it is seen that, despite the differences in impact velocity,
the relation between transmitted and incident stresses is not affected significantly.

Pedro Miguel Monteiro da Rocha Master Degree

28 3.Model Generation

Table 3.7: Transmitted and incident stress relation based on the second stress peak,
calculated for different material combinations.

Material of
Plate A

Material of
Plate B (σT/σI)t (σT/σI)calc.

Deviation
(%)

Steel Aluminium 0.54 0.63 16.7

Steel Titanium 0.76 0.67 12.3

Aluminium Steel 1.46 0.75 48.7

Aluminium Titanium 1.26 0.73 41.9

Titanium Steel 1.24 0.69 44.4

Titanium Aluminium 0.74 0.64 14.2

(a) (b)

Figure 3.16: Relation between transmitted and incident stress across different impact
velocities: (a) measured at the first stress peak, (b) measured at the second stress peak.

3.6.3 Plastic Stress Wave Speed

The procedure implemented to test the velocity of propagation of the plastic stress wave
is equivalent to the test on the elastic stress wave in Section 3.6.1. For this test, a fictional
steel is modelled with plastic strains from the stress-strain power law in Equation 2.12
with a strength coefficient of K = 2500 MPa and the tensile strain hardening exponent
n = 0.15. To implement this material in Abaqus, its elastic and plastic properties must
be defined. The elastic properties are listed in Table 3.9 while the plastic properties
are extracted directly from the stress-strain curve shown in Figure 3.17, where the yield
strength of the material is 1160 MPa .

Table 3.8: Elastic properties of the fictional steel to use in plastic wave speed validation.

Material Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio
Fictional Steel 7850 200 0.33

As described in Chapter 2, elastic stress waves propagate faster than plastic waves.
From Equation 2.2 it is possible to calculate the theoretical longitudinal stress wave

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 29

Figure 3.17: Stress-strain plot of the fictional steel used for the velocity test of plastic
stress waves.

speed. From Equation 2.15 it is possible to calculate the velocity of the stress wave,
which is plotted in Figure 3.18 as a function of stress. Upon reaching the yield stress of
the material, the plastic stress wave is formed, propagating at a different velocity than
the elastic stress wave.

Figure 3.18: Stress wave speed as a function of the induced stress.

To validate the velocity of plastic stress waves, two finite elements are chosen to
extract data from. The model to use is exactly the same as the one from Section 3.6.1,
except for the material used and the magnitude of the projectile’s velocity, which for
this test is 40 m/s. Two finite elements are chosen to measure the elapsed time of
the first and last peaks of the stress wave. The stress is calculated in the integration
points of the elements, hence the distance between the two elements is measured from
their centroid. The chosen finite elements are represented in Figure 3.19 as well as their
designations. The reason behind the choice of the second element from the top is to avoid
the interference of the contact between finite elements upon the impact of the projectile.

In Abaqus, the plasticity model defines plastic yield in terms of von Mises stress.

Pedro Miguel Monteiro da Rocha Master Degree

30 3.Model Generation

Figure 3.19: Chosen finite elements for the velocity test of plastic stress waves.

For this reason, measured stress in the OZ direction may be higher than the material’s
maximum defined stress of ∼ 1.77 GPa, from the stress-strain plot. The von Mises yield
criterion can be expressed as [Dowling et al. 2013]

σVM =
1√
2

√
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6(τ2xy + τ2yz + τ2zx) . (3.2)

The measured stress is shown in Figure 3.20 and it should be noted that, in some
instants, the magnitude for the two elements is higher than the maximum stress in the
stress-strain plot.

The measured von Mises stress cannot exceed the maximum values from the stress-
strain plot in Figure 3.17. The von Mises stress extracted for the two selected elements
is shown in Figure 3.21 and it is possible to see that over the time of the event the
magnitude did not exceed the maximum stress from the stress-strain plot. Moreover,
the instants of the detected peaks in the von Mises stress plot coincide with the ones
detected in the plotted stresses in the OZ direction, in Figure 3.20. In the figure two
stress curves are plotted, one for each element. Measuring the time that the stress wave
takes to travel from Element N2 to Element N6, the stress wave speed can be calculated.
For that purpose, two instants where the stress is higher than the yield stress are selected.

The results are extracted for two instants, the first stress peak and the last stress
peak. Tables 3.9 and 3.10 list the results, having TFE,N2 and TFE,N6 being the instants
for the set of results for the measured stress in Element N2 and Element N6, respectively.
The distance of the elements’ centroids is 10 mm, having ∆T10mm as the time taken for
the stress wave to travel from one element to the other.

From Table 3.9 it is possible to see the time it took for the stress wave to travel from
Element N2 to Element N6. Table 3.10 lists the results for the wave speed measured at
the first and last stress peaks.

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 31

Figure 3.20: Measured stress in the OZ direction of the two selected finite elements.

Figure 3.21: Measured von Mises stress of the two selected finite elements.

Table 3.9: Data for plastic stress wave speed calculation.

Set TFE,N2 (µs) TFE,N6 (µs) ∆T10mm (µs)
First stress peak 1.458 3.190 1.732

Last stress peak 31.790 39.680 7.890

In Table 3.10 the magnitude of the first stress peak is lower than the yield strength
of the material, which means the stress wave at that instant is elastic. The magnitude of
the last stress peak, however, is higher than the yield strength of the material and thus,

Pedro Miguel Monteiro da Rocha Master Degree

32 3.Model Generation

Table 3.10: Calculated plastic stress wave speed.

Set Stress (GPa) CL,calc.

(m/s) CL,t (m/s) Deviation (%)

First stress peak 1.11 5773.67 6144.02 6.03

Last stress peak 1.37 1267.43 1198.27 5.77

at that instant, it is a plastic stress wave propagating. To help visualise how the stress
propagates throughout the thickness of the plate, Figure 3.22 represent the generated
stress in the OZ direction at the analysed instants in Table 3.9. It is possible to see the
plastic deformation at the front surface of the plate and the progression of the stress
wave towards the rear surface of the plate.

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 33

(a)

(b)

(c)

(d)

Figure 3.22: Stress state on the plate at the four different analysed times: (a) first stress
peak measured at Element N2 (t = 1.458 µs), (b) first stress peak measured at Element
N6 (t = 3.190 µs), (c) last stress peak measured at Element N2 (t = 31.790 µs), (d) last
stress peak measured at Element N6 (t = 39.680 µs).

Pedro Miguel Monteiro da Rocha Master Degree

34 3.Model Generation

3.7 Plasticity Effects on the Stress Wave Propagation

As discussed previously, an impact between two objects generates a stress wave. Depend-
ing on the magnitude of the pulse, the wave might induce large strains in the material.
The two types of stress waves analysed in the dissertation are the elastic and plastic
stress waves.

A material subjected to stresses lower than its yield strength, behaves as an elastic
material. Under those circumstances, after an impact, an elastic stress wave forms.
However, if post impact, the generated stress exceed the yield strength of the material,
two stress waves, elastic and plastic, start to propagate. These waves are initiated at the
same time but propagate at different speeds. The combination of the two stress waves
induces a non-linear material behaviour, as the stress-strain ratio of the material changes.
This section analyses a group of scenarios and verifies the consequences of plastic strain
in the material’s response to stress pulses.

3.7.1 Pulse Duration

In order to understand if the material has any influence on the duration of contact
between the projectile’s bottom surface and the plate’s front surface, which corresponds
to the impact pulse duration, a test was conducted using three different approaches to
modelling steel, which have the following common properties:

• Density = 7850 kg/m3 ;

• Young’s Modulus = 200 GPa ;

• Poisson’s Ratio = 0.29 .

Essentially, the elasticity model is the same for the three steels, what differs is the
plasticity model. For this analysis, the three developed models consist in perfectly elastic
and perfectly plastic steel as well as a steel with work (or strain) hardening. The stress-
strain curves for the perfectly plastic and work hardened steels are shown in Figure 3.23.

The assembly model used for the test consists in the same configuration used earlier in
the validation, a square plate of length 300 mm and thickness 30 mm, which is impacted
by a projectile with the dimensions from Figure 3.1. The impact pulse is measured in
the elements highlighted in Figure 3.19.

The analysis is performed using three different velocities for the projectile on each
material model and the pulse duration, which is the time between the start and end of
the pulse as seen in the example of Figure 3.13, is calculated upon the generation of
the stress curves from the measured elements. The results are displayed in Figure 3.24
and it is possible to visualise that the duration of pulse changes exclusively for the steels
with plastic regime. This means that a fraction of the kinetic energy from the projectile
is converted in plastic deformation energy. This converted energy is irreversible, which
causes that amidst impact, the energy that is transferred to the projectile is exclusively
from elastic strain energy. Consequently, the final velocity of the projectile is inferior to
its initial, extending the duration of contact with the plate. Using an impact velocity of
5 m/s, all the materials produce pulses with similar duration. The perfectly elastic steel
produces a constant pulse duration across the three measured velocities while the other

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 35

Figure 3.23: Stress-strain plot for two different modelling approaches of steel, a perfectly
plastic model (Steel-PP) and a work hardened model (Steel-PH).

two materials increase the duration proportional to the impact velocity. Furthermore,
the work hardened steel provides shorter pulses than the perfectly plastic. Analysing
Figures 3.24a and 3.24b, both plots are very similar to each other with a slight increase
on the pulse duration measured on Element N6.

(a) Element N2 (b) Element N6

Figure 3.24: Pulse duration results.

In summary, when measuring different impact velocities, plastic strain exclusively
affects the duration of the complete stress pulse. The increase in ratio is more noticeable
for materials with plasticity behaviour similar to perfectly plastic. Furthermore, an
elastic behaviour is preferable if the duration of the pulse is of importance.

Pedro Miguel Monteiro da Rocha Master Degree

36 3.Model Generation

3.7.2 Stress Magnitude

The generated impact pulse wave is similar to a square wave as seen in Figure 3.13.
The following tests aim to demonstrate how and why the magnitude of the generated
stress wave fluctuates between the two vertical aligned elements. For this test, the
selected elements remain from the previous analysis, as well as the same set of steel
modelling approaches. The evolution of the magnitude of both first and second stress
peaks throughout the pulse for the three different types of steel models is shown in Figure
3.25.

(a) First stress peak (b) Second stress peak

Figure 3.25: Stress magnitude measured in Element N2.

The three curves in Figure 3.25a show an almost linear relation across the three veloc-
ities of impact. However, the curves in Figure 3.25b show that the stress for the material
models with plasticity does not increase linearly with the impact velocity. Furthermore,
the measured stress in the elasto-plastic material models is identical for the first stress
peak. However, for the second stress peak, the 100 m/s impact velocity generates higher
stress for the material model with strain hardening.

To analyse the effects of the propagation of the elastic and plastic stress waves in the
plate, Figures 3.26a and 3.26b display the results for the stresses measured in Element
N6.

The results are similar to the ones presented in Figure 3.25b, as the generated stress
in Element N6 for the first and second stress peaks do not increase linearly. To visualise
the stress dampening in between Elements N2 and N6, retrieving the data from Figures
3.25a to 3.26b it was possible to demonstrate the dampening effect of the three steels on
the stress of the first and second peaks, shown in Figures 3.27a and 3.27b.

The dampening effect is more noticeable on the first stress peak where the perfectly
plastic and strain hardened steels contribute with an increased dampening efficiency
for higher velocity impacts. From Figures 3.27a and 3.27b it is possible to see that
the measured stress for the perfectly elastic material model decreases linearly along the
plate’s thickness, independently from the magnitude of the stress. The material models
with plasticity are affected by the amount of generated stress in the plate, as it is possible

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 37

(a) First stress peak (b) Second stress peak

Figure 3.26: Stress magnitude measured in Element N6.

(a) First stress peak (b) Second stress peak

Figure 3.27: Percentage of stress dampened between Elements N2 and N6.

to see that the percentage of dampened stress along the 10 mm distance between the two
elements varies with impact velocity. Furthermore, the percentage of dampened stress
increases with the amount of generated stress for the first stress peak while for the second,
it decreases.

In this section the magnitude of the stress wave was evaluated. The generated stresses
increase proportionally to the impact velocity for a perfect elastic material model. For
higher stress magnitudes, the increase in the generated stress with impact velocity is
lower, for the perfectly plastic material model. The work hardened steel model behaves
similarly with the perfectly plastic, although the generated stresses are slightly higher.
Finally, the difference between the amount of generated stress in the perfectly elastic steel
and the elasto-plastic models is noticeable for the impact velocity of 100 m/s, highlighting
the importance of the absorption of energy under the form of plastic deformation.

Pedro Miguel Monteiro da Rocha Master Degree

38 3.Model Generation

3.7.3 Wave Progression

In this section, the wave progression throughout the thickness of a plate is analysed,
featuring steel, aluminium and titanium as materials which mechanical properties are
listed in Table 3.5. The plate is square with a width of 300 mm and has 20 mm of
thickness. The stress wave propagates through eight C3D8 finite elements, each with 2.5
mm of thickness, and data is retrieved through the analysis of its eight integration points,
returning an average stress value to be plotted in respect to the geometrical coordinate
of the measured finite element’s centroid. To better understand the position of said
finite elements, the chosen elements for this analysis are the eight elements in the centre
along the thickness of the plate. The tests are ran for the same three projectile velocities
studied earlier in this chapter. To quantify the amount of stress generated throughout
the plate it is important to split the stress wave into three stages, which are explained
in Section 3.6.2 and illustrated in Figure 3.13. Running the tests on steel, the graphs
in Figure 3.28 describe the stress progression along the thickness of the material for the
first and second stress peaks.

(a) First stress peak (b) Second stress peak

Figure 3.28: Stress progression along the thickness for the steel plate.

The first stress peak assumes a linear relation along the plate’s thickness while the
second one progresses differently depending on the velocity of the projectile. Figure 3.28
shows three different curves for each impact velocity used for testing, thus generating
different levels of stress that are complicated to compare. In order to overcome that
issue, the stresses were computed into normalised stress values, in respect to the first
element, resulting in the plots in Figure 3.29.

With a uniform stress scale it is easier to evaluate and compare the stress wave along
the thickness of the plate. It is possible to see that the for the first stress peak along the
thickness of the plate, the slopes of the curves are approximately constant, being more
noticeable for the 100 m/s impact.

For the second stress peak, the curves’ slopes are not constant. For impact velocities
higher than 5 m/s, the magnitude of the stress does not decrease considerably between
0 and 9 mm. This is due to plastic strain that is formed in the material. It can be seen
that after ∼ 9 mm, the magnitude of the stress harshly falls and stabilises around lower

Pedro Miguel Monteiro da Rocha Master Degree

3.Model Generation 39

(a) First stress peak (b) Second stress peak

Figure 3.29: Normalised stress progression along the thickness for the steel plate.

levels between 15 and 20 mm.
In Figure 3.30 it is shown the normalised first and second stress peak plots for alu-

minium.

(a) First stress peak (b) Second stress peak

Figure 3.30: Normalised stress progression along the thickness for the aluminium plate.

The first stress peak progression analysis is fairly similar to steel while differences are
noticeable for the second stress peak. For higher impact velocities, in the lower half of
the plate’s thickness, the stress levels are very identical. Taking a look at the progression
of stress levels for steel and aluminium, it is already possible to see that the progression
in metals is similar, resembling a pattern of evolution along the plate’s thickness. For
titanium, in Figure 3.31a it is possible to see that the analysed first stress peak along the
plate for impact velocities of 5 and 40 m/s are akin. Furthermore, in Figure 3.31b the
curves resemble a middle ground between the equivalent curves for steel and aluminium,
highlighting a correlation between the Young’s modulus of the studied materials, as the
titanium’s is close to the average value of the other materials’.

Pedro Miguel Monteiro da Rocha Master Degree

40 3.Model Generation

(a) First stress peak (b) Second stress peak

Figure 3.31: Normalised stress progression along the thickness for the titanium plate.

To directly compare the generated stress along the plate’s thickness between each
material, the magnitude of the first and second stress peaks for the three selected impact
velocities is shown in Appendix A.1.

The results for the first stress peak for each chosen impact velocity indicate that
the stress magnitude decreases along the plate’s thickness identically, regardless of the
impact velocity. It is noticeable that the generated stress is higher for the steel plate,
due to its higher Young’s modulus. However, approaching the rear surface of the plate,
the stress magnitudes for the three materials are contiguous. The second stress peak
maintains the same stress level hierarchy when comparing with the first peak, with steel
generating more stress then titanium, and aluminium generating the least of all the three
metals.

Pedro Miguel Monteiro da Rocha Master Degree

Chapter 4

Setup for the Optimisation Process

Any problem in which certain parameters need to be determined to satisfy constraints
can be formulated as an optimisation problem [Arora 2016]. Optimisation methods have
a wide range of applicability in diverse fields. Throughout this chapter, necessary opti-
misation methodologies are explained as they play an important role in the optimisation
problems’ formulation and procedure.

4.1 Optimisation Fundamentals

4.1.1 Mathematical Formulation

The formal mathematical formulation of an optimisation problem can be expressed as
[Andrade-Campos et al. 2015]

minimise f(x) , (4.1)
subjected to gj(x) ≤ 0, j = 1, 2, ...,m ,

hk(x) = 0, k = 1, 2, ..., l ,

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, ..., n ,

where f(x) is the objective function to be minimised (or maximised, depending on the
problem), g(x) are m inequality constraints, h(x) are l equality constraints and x are
n variables within the established range.

4.1.2 Penalty Function Method

Optimisation procedures require the use of numerical methods to aid in the solving
process. Methods that solve a constrained optimisation problem by transforming it into
one or more unconstrained problems are called transformation methods [Arora 2016].
Having a case where the purpose is to minimise f(x) while h(x) = 0 and g(x) ≤ 0,
the transformation function defined in Equation 4.2 converts the constrained objective
function f(x) into an unconstrained one. The function is [Arora 2016]

Φ(x, r) = f(x) + P
(
h(x), g(x), r

)
, (4.2)

41

42 4.Setup for the Optimisation Process

where r is a vector of penalty parameters that controls the penalty action over a real-value
function P .

The Penalty Function Method defines function P in Equation 4.2. If the constraints
of the problem are violated, the objective function f(x) is penalised by the addition of
a positive value. While there are a number of penalty functions that can be defined, the
one used in this dissertation is the quadratic loss function, defined as [Arora 2016]

P
(
h(x), g(x), r

)
= r

{
p∑

i=1

[
hi(x)

]2
+

m∑
i=1

[
g+i (x)

]2}
; g+i (x) = max

(
0, gi(x)

)
, (4.3)

where r > 0 is a scalar penalty parameter. When the g(x) and h(x) constraints are
violated, Equation 4.3 returns a positive value for the function P , penalising the cost
function f(x).

4.2 Optimisation Algorithms

There are numerous optimisation algorithms and some of them draw inspiration from
different sources. Nature-inspired algorithms are commonly used such as Genetic Algo-
rithms (GA), Differential Evolution Algorithm (DEA), Ant-Colony Optimisation (ACO)
algorithm and Particle Swarm Optimisation (PSO) algorithm [Arora 2016].

The optimisation process of a multi-layered armour plate involves the evaluation of
multiple possible configurations, whereas the combination of different materials and de-
sign variables such as order of each plate’s material and assigned thicknesses. The amount
of total possible configurations results in a wide array of possible solutions, although many
of the solutions might not identify with the optimal. Under these circumstances, it is
justifiable to resort to stochastic optimisation, which is the general class of algorithms
and techniques which employ some degree of randomness to find optimal (or as optimal
as possible) solutions to hard problems [Luke 2009]. Genetic algorithms and the particle
swarm optimisation algorithm are population methods that involve optimisation using a
collection of design points, called individuals [Kochenderfer and Wheeler 2019]. Having
a large number of individuals distributed throughout the design space can help the algo-
rithm avoid becoming stuck in a local minimum, which is advantageous for a procedure
with a diverse amount of possible solutions. Furthermore, information at different points
in the design space can be shared between individuals to globally optimise the objective
function.

[Reis 2019] studied the influence of three distinct optimisation algorithms on stress
mitigation upon ballistic impact in a three-layered armour system: Genetic Algorithm
(GA), Particle Swarm Optimisation (PSO) and Simulated Annealing (SA). Testing all the
mentioned optimisation algorithms, it was possible to evaluate their efficiency, precision
and accuracy when applied to four different benchmarks, each under the same circum-
stances and objectives. Among the four benchmarks performed, the Particle Swarm
Optimisation (PSO) algorithm proved its efficiency consistently, finding favourable solu-
tions in the least number of evaluations across five distinct runs. Proving to be the most
efficient algorithm and due to its ease of application, PSO was chosen as the algorithm
to use for the optimisation studies ahead.

Pedro Miguel Monteiro da Rocha Master Degree

4.Setup for the Optimisation Process 43

4.2.1 Particle Swarm Optimisation (PSO) Algorithm

This algorithm imitates bird flocks’ fishing methods and it belongs to the class of meta-
heuristics and swarm intelligence methods [Arora 2016]. The algorithm starts by produc-
ing a random set of solutions, called the initial population. Each solution from the initial
population is called a particle. Each particle has its own current particle position that is
updated as the algorithm proceeds with the cycle. The parameter that defines how the
position of each particle evolves is the particle velocity. The step-by-step procedure is
the following [Arora 2016]:

• Step 0: Initialisation. SelectNp, c1, c2 and tmax, assigning the maximum number
of iterations to run. c1 and c2 are the cognitive and social parameters, respectively,
and are normally set to 2. Define the starting velocity of each particle v(i,0) as zero.
Set iteration counter to t = 1.

• Step 1: Initial Population. Generate Np particles xi,0 within defined boundaries
using random procedures. Calculate f

(
x(i,0)

)
of each particle and evaluate their

fitness.

• Step 2: Update Personal and Global Best Location. Pick each particle’s
best position as its P (i,t)

best and the global best position Gt
best. The personal best and

global best are selected under the conditions of the following equations:

If f
(
x(i,t+1)

)
≤ f

(
P

(i,t)
best

)
, then P

(i,t+1)
best = x(i,t+1) ,

otherwise P
(i,t+1)
best = P

(i,t)
best for each i = 1 to Np .

(4.4)

If f
(
P

(i,t+1)
best

)
≤ f

(
Gt

best

)
, then Gt+1

best = P
(i,t+1)
best , i = 1 to Np . (4.5)

• Step 3: Calculate Velocities and Update each Particle’s Position. Each
particle updates their position according to Equations 4.6 and 4.7. The parameter
ω is the inertia weight and r1 and r2 are random numbers between 0 and 1.

v(i,t+1) = ωv(i,t) + c1r1

(
P

(i,t)
best − x

(i,t)

)
+ c2r2

(
Gt

best − x(i,t)
)

; i = 1 to Np , (4.6)

x(i,t+1) = x(i,t) + v(t,t+1); i = 1 to Np . (4.7)

• Step 4: Check Stopping Criteria. If the stopping criteria is not satisfied, the
next iteration starts, jumping to Step 2. In case the stopping criteria is satisfied,
the algorithm provides an acceptable result, returning the final Gbest as the solution
and stopping further iterations.

The algorithm is also represented in the form of a flowchart in Appendix A.2.

Pedro Miguel Monteiro da Rocha Master Degree

44 4.Setup for the Optimisation Process

4.3 Optimisation Process through Scripting

In Chapter 3, it was explained how scripting would facilitate the process of the whole
model generation. The script is the main tool used in this dissertation and provides all
the means to an easier and faster interaction with Abaqus. This section demonstrates
how the script not only has the purpose of aiding with the many possible configurations
of model generations, but also as a powerful tool to control the desired optimisation
routines, accessing different functions to acquire and process data. The script is written
in Python and is used to implement the optimisation procedure automatically using four
essential functions:

• Python Optimisation Routine: This is the main function of the script, contain-
ing the definition of the Particle Swarm Optimisation algorithm, which controls the
other three functions;

• Model Generator: A parameterized function that generates the model along with
each simulation calculation. The available parameters for the model generation are
detailed in Appendix A.3;

• Data Acquisition: Whenever the calculations for the previous function are com-
pleted, this function processes and saves the required results (e.g. maximum stress
on the rear plate);

• Objective Function: Contains the objective functions accessed by the algorithm
and relies on parameters of the Model Generator function to return the value (e.g
weight calculation).

To better understand how the four functions operate, the flowchart in Figure 4.1
illustrates the cycle of the overall optimisation process. Each evaluation of the algorithm
requires a simulation of the impact test in Abaqus, hence powerful hardware is required to
minimise computational times. A workstation provided by the Department of Mechanical
Engineering of the University of Aveiro is used to solve the optimisation problems. The
workstation has two Intel® Xeon® E5-2690 v4 @2.60 GHz processors with 35 MB
cache and 14 cores each, 256 GB of RAM and an NVIDIA® Quadro® P4000 GPU
with 8 GB of dedicated memory. Using the same settings of [Reis 2019], the simulation
procedures are previously programmed to take advantage of Abaqus parallelization and
use 8 processors to run, which results in lower calculation times.

Pedro Miguel Monteiro da Rocha Master Degree

4.Setup for the Optimisation Process 45

Figure 4.1: Flowchart of the optimisation process.

4.4 Benchmark — Multi-layer Armour Plate Impacted by
Projectile with a Velocity of 5 m/s

This section serves as a preliminary test of the Particle Swarm Optimisation algorithm.
Using as reference the first benchmark conducted by [Reis 2019], a replication attempt
is made trying different parameters for this algorithm. A diagram of the model used
for this benchmark is depicted in Figure 4.2. Serving as a starting point and with the
purpose of comparing results, the model in Abaqus uses the following configuration:

• Plate Geometry: Square plates of 140 mm of width;

• Number of plates: 3 (A, B and C, A being the front plate);

• Plate Boundary Condition: Rear surface of the rear plate is clamped;

• Projectile Velocity: 5 m/s.

The material properties for this model are listed in Table 4.1.

Pedro Miguel Monteiro da Rocha Master Degree

46 4.Setup for the Optimisation Process

Figure 4.2: Diagram for the Benchmark.

Table 4.1: Plate materials and corresponding mechanical properties.

Plate Material Density
(kg/m3)

Young’s
Modulus
(GPa)

Yield
Strength
(MPa)

Poisson’s
Ratio

A Aluminium 2700 70 276 0.33
B Nylon-6 1140 3 82 0.35
C Steel 7850 200 350 0.25

4.4.1 Problem Formulation

The objective is to minimise the weight of the system composed by the three plates by
finding the optimal thickness for the middle plate (Plate B) while respecting the condition
that the maximum stress (σz,max) on the rear impact region of Plate C (check Figure
3.2) is bellow the allowed value of 20 MPa.

Mathematically, the problem can be stated as:

minimise f(tB, r) = W (tB) + P (tB, r) , (4.8)
subjected to tB,min ≤ tB ≤ tB,max ,

g(x) = σz − σz,max ≤ 0

where

W (tB) = 4L1,AL2,A

(
ρAtA + ρBtB + ρCtC

)
(4.9)

= 4× 0.072 ×
(
67.5 + 1140tB + 196.25

)
,

where the objective function f(tB, r) is the sum of the weight of the system W (tB) and
the penalty function P (tB, r). The weight is calculated relative to Plate A’s dimensions,
L1 (length) and L2 (width), and the density of Plates A, B and C (ρA,B,C) as well as

Pedro Miguel Monteiro da Rocha Master Degree

4.Setup for the Optimisation Process 47

the thickness of each plate (tA,B,C). It is relevant to clarify that since only a quarter of
the plate is modelled, the total weight is four times greater than the numerical model
processed in Abaqus and considering that the plates are square, L1 (length) and L2

(width) are equal.
This benchmark evaluates the evolution of the total weight of the system by finding

the optimal value for the thickness of Plate B. Setting a low projectile velocity of 5 m/s,
this test focuses on a linear problem of elastic stress wave propagation.

As discussed in Chapter 3, the model consists of square plates of width 300 mm,
thus two tests are made: one with the exact same sizes used in the model of [Reis 2019]
and the other featuring the proposed size. Testing the two different plate sizes not only
serves as an opportunity to analyse the influence of different PSO operating parameters
but also as an opportunity to check how the plate size affects the overall computational
times. Moreover, these tests setup the optimisation procedures for Chapter 5.

4.4.2 Setup and Implementation

The first setup for this benchmark is the one used by [Reis 2019] in the tests conducted
for Benchmark I. The purpose is to compare the performance and effectiveness of the
PSO algorithm at finding the optimal solution. This benchmark is divided into three
experiments: Experiment α, Experiment β and Experiment Ω, in order to compare the
performance of the combination between different parameters. This strategy provides a
method to evaluate the impact of the cognitive and social parameters on the performance
and accuracy of the algorithm. The performance of the algorithm throughout the three
experiments are taken into account when setting up the higher complexity problems in
the following chapter. The parameters used for Experiment α are listed in Table 4.2.

Table 4.2: PSO Operational parameters for Experiment α.

Number of
particles

Number of
iterations ω c1 c2 r

15 30 0.5 1 2 2

Benchmark – Experiment α

Due to the stochastic nature of the PSO algorithm [Huang et al. 2012], it is necessary
to run multiple tests. Taking into account the computational weight limitations of the
optimisation procedure, as each evaluation requires a complete simulation in Abaqus,
each set of parameters is processed three times. Since this is an optimisation problem
of one variable, three runs are enough to return consistent results. The evolution of the
best, worst and average values of the objective function at each iteration is shown in
Figure 4.3. The effects of the random generated positions of the particles attributed
to the initial individuals is noticeable, as shown by the discrepancy between the three
curves, highlighting the stochastic nature of the algorithm.

The results from the optimisation procedures are computed using the average solution
at each iteration, in order to be possible to compare the results from each run. In Figure
4.4a it is possible to see that the CPU time for Test 1 is above the other two. Test 3 was
the fastest to converge to the optimal weight solution after 165 evaluations. The average

Pedro Miguel Monteiro da Rocha Master Degree

48 4.Setup for the Optimisation Process

Figure 4.3: The evolution of the best, worst and average values of the objective function
returned in Experiment α.

of the returned stress by all particles in each iteration is represented in Figure 4.4b.
As the stress constraint was set to 20 MPa, the results show that while minimising the
weight, the measured stress in the back face of Plate C is equal to the defined constraint.
This means that the solutions found result in an armour plate that when impacted by a
projectile with a velocity of 5 m/s generate approximately 20 MPa of stress in the rear
surface of the back-plate, rendering them as local optimums. It is possible to see from
Appendix A.4 that the evolution of the assigned thickness is identical to Figure 4.4a,
since the weight function is defined by Equation 4.9 and is a function of a single variable,
the assigned thickness of Plate B (tB).

(a) (b)

Figure 4.4: The evolution of: (a) the weight function, (b) maximum stress returned for
Experiment α.

Pedro Miguel Monteiro da Rocha Master Degree

4.Setup for the Optimisation Process 49

Benchmark – Experiment β

Changing the value of the cognitive parameter (c1), running three more tests it is possible
to evaluate the influence of this particular parameter in the accuracy of the algorithm
and in the overall computational time. The parameters used in Experiment β are listed
in Table 4.3.

Table 4.3: PSO Operational parameters for Experiment β.

Number of
particles

Number of
iterations ω c1 c2 r

15 30 0.5 2 2 2

In Figures 4.4a and 4.5a it can be observed that convergence is achieved before the
final iteration for both experiments. However, using the parameters for Experiment α
resulted in faster convergence times. Since the test is processed for low velocity impacts,
it is safe to assume that under the conditions established, the natural weight configuration
would be the one with the thickness of Plate B for which the maximum stress is equal to
the defined one, which is 20 MPa. In the graphs of Figures 4.4b and 4.5b it is possible
to observe that it is indeed the maximum stress for the optimal value of thickness.

(a) (b)

Figure 4.5: The evolution of: (a) the weight function, (b) maximum stress returned for
Experiment β.

To discuss how the cognitive parameter (c1) affects the performance of the algorithm,
two bar charts are created. The first one, in Figure 4.6, displays the number of evaluations
needed until the algorithm finds the solution while the second one, in Figure 4.7, evaluates
the precision of the algorithm throughout the three experiments with standard deviation
calculations. The charts contain data from the first benchmark conducted by [Reis 2019]
and the two experiments conducted in this benchmark.

Examining the bar chart in Figure 4.6, it is possible to see that setting up the cog-
nitive parameter as c1 = 1 results in fewer evaluations. The stochastic nature of the
algorithm noticeable for Experiment α, as seen by the discrepancy between the number
of necessary evaluations across the three tests. In terms of the standard deviation calcu-

Pedro Miguel Monteiro da Rocha Master Degree

50 4.Setup for the Optimisation Process

Figure 4.6: Comparison between the number of evaluations from each test.

Figure 4.7: Comparison between the standard deviation from each experiment.

lations, Experiments A and B show results with lower standard deviation. The standard
deviation calculated from Experiment β is higher than the one from Experiment α since,
as a result of a higher cognitive parameter (c1), the particles have the tendency to search
possible solutions closer to their personal best location, while also searching towards the
current global best position. The increase in the search space of solutions contributes to
a higher dispersion between them, which results in an increased standard deviation.

Pedro Miguel Monteiro da Rocha Master Degree

4.Setup for the Optimisation Process 51

Benchmark – Experiment Ω

Focusing on transitioning the model used by [Reis 2019], which is based on square plates
of 140 mm of width and with the rear surface of the back-plate fixed, to the proposed
model in Section 3.1, an Experiment Ω is created. To be able to compare the results from
this experiment with the ones from previous experiments, the boundary conditions of this
model maintain the same. The diagram of the experiment if shown in Figure 4.8. Adding
this experiment provides an opportunity to evaluate the differences in computational
times between the three of them. Furthermore, with results from this experiment it is
also possible to check how the increased plate size affects the optimal solution of the
problem.

Figure 4.8: Diagram for Experiment Ω.

In this experiment, the size of the plate transitions from 140 mm to 300 mm, which
as consequence slightly modifies the weight formula in Equation 4.9. The weight formula
for this case can then be defined as

W (tB) = 4L1,AL2,A

(
ρAtA + ρBtB + ρCtC

)
(4.10)

= 4× 0.152 ×
(
67.5 + 1140tB + 196.25

)
,

maintaining the same set of materials used previously. The PSO operational parameters
chosen for this experiment are the same as the ones from Experiment α, as it resulted in
a lower number of evaluations in all three tests.

The more effective way of finding the optimal solution of this benchmark is favour
the search towards the global best instead of the personal best, since the solution results
in a model configuration at which the maximum stress analysed on the back-face of the
rear plate is ∼ 20 MPa. It is then clear that a higher social parameter (c2) and lower
cognitive parameter (c1) is more suitable for the setup parameters on this benchmark.
Looking at the weight evolution in Figure 4.9 it is possible to see that, as expected, the
algorithm is able to find the optimal solution in a small number of evaluations, with the
fastest one converging after 225 evaluations.

Pedro Miguel Monteiro da Rocha Master Degree

52 4.Setup for the Optimisation Process

Figure 4.9: The evolution of the thickness for Experiment Ω.

4.4.3 Results and Discussion

The information regarding the number of evaluations and computational times of all tests
of this benchmark are listed in Table 4.4, while the summary of the obtained results of
the benchmark are listed in Table 4.5.

Table 4.4: Number of evaluations and computational times for the benchmark.

Experiment
α β Ω

Number of
evaluations

Test 1 360 435 240
Test 2 270 390 330
Test 3 165 405 225

Computational
times (s)

Test 1 20854 22828 11715
Test 2 17952 22880 17615
Test 3 8819 19854 12142

Table 4.5: Results obtained for the benchmark.

Experiment
α β Ω

Best solution (mm) 11.49943 11.50784 11.92474
Average (mm) 11.51718 11.54056 11.91241

Standard deviation 0.0061311 0.044825 0.021135
Resulting weight (kg) 5.43134 5.431538 24.98347

It is possible to see that the weight returned in Experiment Ω is higher than in
the other two experiments as a result of the increased size of the plates. The standard
deviation for all experiments is considerably low and every experiment is able to converge
into the optimal solution. It is also interesting to verify that the increased size of the
plates affects the optimal value for the thickness of Plate B. The reason for Experiment
Ω returning a configuration with a higher interlayer thickness is due to the difference in

Pedro Miguel Monteiro da Rocha Master Degree

4.Setup for the Optimisation Process 53

(a) (b)

(c) (d)

Figure 4.10: Average stress in OZ direction for the resulting configuration from Experi-
ment α and β (plate width = 140 mm) and from Experiment Ω (plate width = 300 mm)
measured at: (a) impact region in front surface of Plate A, (b) impact region in front
surface of Plate B, (c) impact region in front surface of Plate C, (d) impact region in
rear surface of Plate C.

the shape of the stress wave. In Figure 4.10 it is possible to see the shape of the wave
for both plate sizes analysed in four different regions: impact area of the front surface of
Plate A, B and C and the impact area of the rear surface of Plate C. In Figure 4.10a, it is
noticeable that the curves start to separate around ∼ 40 µs, resulting in the propagation
of a stress wave with different shape for the two configurations.

The shear stress in plane OXZ for the two configurations, measured in the impact
area of the front surface of Plate A, is shown in Figure 4.11. The increase in plate
size means that a larger area is clamped at the rear surface of Plate C. This affects the
bending moment in the centre of the plate, hence a divergence between the curves that
can be noticed at approximately ∼ 10 µs. As a result, the propagation of the transverse
wave in plane OXZ may interfere with the propagation of the longitudinal wave in the
OZ direction, thus resulting in a different wave shape for the two configurations. This
leads to the stress difference analysed at the rear surface of Plate C, as shown in Figure
4.10d.

To analyse the transfer of energy from the projectile to the plates, Figure 4.12 show
the evolution of the kinetic energy of the projectile and the strain energy of Plates A,

Pedro Miguel Monteiro da Rocha Master Degree

54 4.Setup for the Optimisation Process

Figure 4.11: Average shear stress in OXZ plane for the resulting configuration from
Experiment α and β (plate width = 140 mm) and from Experiment Ω (plate width =
300 mm) measured at the impact region in the front surface of Plate A.

B and C for the two configurations. The curves are extracted from the history output
database in Abaqus. It is noticeable that the projectile’s kinetic energy evolution is very
similar in the two configurations. The strain energy, however, is distributed differently,
as it is possible to see in Figure 4.12a that the maximum strain energy in Plate A is lower
than in Plate B. In Figure 4.12b, it is seen that a higher amount of energy is transferred
to Plate A, as its maximum strain energy is higher. From the graphs it can be concluded
that for both configurations the amount of energy transferred into Plate C is very low,
since the material is steel, resulting in low amount of longitudinal strain due to a higher
Young’s modulus than the other plates’ materials.

(a) Plate Width = 140 mm (b) Plate Width = 300 mm

Figure 4.12: Evolution of the kinetic energy of the projectile and strain energy of the
plates.

Pedro Miguel Monteiro da Rocha Master Degree

Chapter 5

Optimisation Procedure and
Implementation

This dissertation targets the development of an optimisation tool that can be adapted
to numerous designs of ballistic test models. The diversity in possible material config-
urations in layered armour protection systems needs to be considered when setting up
the parameters for both the Particle Swarm Optimisation algorithm and also the time
increment size and duration of event in Abaqus. Furthermore, as discussed in previous
chapters, the chosen type of boundary condition on the sides of the plates resembles the
types of backing material fixtures used in real experimental tests, allowing the plates
to bend upon impact and resulting in different generated stress magnitudes and wave
propagation.

This chapter aims to incorporate all the knowledge from the previous chapters along
two distinct optimisation problems. At the end of the previous chapter, a benchmark
was presented with intentions of comparing results obtained by [Reis 2019], serving as
a validation problem for the two problems of the current chapter. The first problem fo-
cuses on the optimisation of the interlayer thickness of a 3-layer armour plate subjected
to a projectile impact moving with a velocity of 25 m/s. The geometrical model used in
this problem is detailed in Chapter 3. The optimisation process is focused on evaluating
the performance effects of different operational parameters of the Particle Swarm Op-
timisation algorithm. The second problem consists in solving an optimisation problem
involving a multi-layered plate subjected to a projectile impact with 40 m/s of velocity,
although searching for the optimal thickness values of tree plates. Different parameters
are tested in each Problem to evaluate the impact on computational times at the end of
each Problem and how they are suitable to each type of problem. The goal is to max-
imise the overall performance of the PSO algorithm regardless of the type of problem in
question. Furthermore, the solutions obtained are analysed in terms of generated stress
and energy transfer.

55

56 5.Optimisation Procedure and Implementation

5.1 Problem I — Multi-layer Armour Plate Impacted by
Projectile with a Velocity of 25 m/s

This problem tests different PSO parameters for the designed model described in Chapter
3 in order to enhance the performance of the algorithm. The details of the model for this
problem are shown in Figure 5.1 and can be summarised as:

• Plate Geometry: Square plates of 300 mm of width;

• Number of plates: 3 (A, B and C);

• Plate Boundary Condition: Side surfaces of each plate are clamped;

• Projectile Velocity: 25 m/s.

Figure 5.1: Diagram for Problem I.

With the intention of generating plastic deformation on the plate and evaluate how
the calculations are affected, the chosen materials, extracted from Tables 3.1 and 3.2, are
listed in the Table 5.1.

Table 5.1: Plate materials and respective mechanical properties.

Plate Material Density
(kg/m3)

Young’s
Modulus
(GPa)

Yield
Strength
(MPa)

Poisson’s
Ratio

A Aluminium 1100 2710 68.9 55 0.33
B Nylon-6 1140 3 100 0.35
C AISI 4340 Steel 7850 200 1355 0.29

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 57

5.1.1 Problem Formulation

This problem sets up the optimisation of a three layer armour system. The objective of
this problem is to obtain the minimal interlayer thickness that enables the armour plate
to withstand the stress generated by a projectile impact with a velocity of 25 m/s. The
stress is analysed in the impact region of the front surface of Plate B, shown in Figure
5.2.

Figure 5.2: Representation of the region where the stress is measured for Problem I.

The scope of the procedure is based on generating plastic deformation exclusively
on Plate A, ensuring that the Nylon-6 interlayer plate is exclusively subjected to the
propagation of elastic stress waves. This enables the possibility to compare how the stress
wave propagates throughout the three different plates. The results obtained regarding
generated stresses on the plates and the energy transfers from the projectile to the plates
are analysed in Section 5.1.3. Focusing on the weight minimisation of the armour plate,
the problem can be defined as

minimise f(tB, r) = W (tB) + P (tB, r) , (5.1)
subjected to tB,min ≤ tB ≤ tB,max ,

g(x) = σz − σz,max ≤ 0 ,

where

W (tB) = 4× L1,A × L2,A ×
(
ρAtA + ρBtB + ρCtC

)
(5.2)

= 4× 0.152 ×
(
67.75 + 1140tB + 196.25

)
,

and the maximum stress is defined as σz = 90 MPa. The minimum and maximum
possible thickness values for Plate B are 1.0 mm and 50.0 mm, respectively. The stress-
strain values for the plasticity model used are displayed in Figures 3.4 and 3.5. Setting
up a 90 MPa stress constraint measured on the frontal impact region of Plate B means

Pedro Miguel Monteiro da Rocha Master Degree

58 5.Optimisation Procedure and Implementation

that the algorithm searches for solutions where the measured stress is sure to be lower
than the yield strength of the material, which is 100 MPa.

It is important to state that, when trying to minimise the weight of the plate, naturally
the solutions that the algorithm return result in model configurations which measured
stress is approximately ∼ 90 MPa, which is the defined maximum stress constraint. This
happens because this optimisation problem deals with a single variable, the interlayer
thickness.

5.1.2 Setup and Implementation

The benchmark in the previous chapter serves the purpose of understanding how the
cognitive and social parameters of PSO affected the performance of the algorithm. For
this problem, focusing on the values for the inertia weight ω and the penalty parameter
r, it is possible to understand how the algorithm performance is affected. Understand
how the algorithm performs when searching towards the optimal solution is important
when processing more complex problems, such as Problem II in Section 5.2, which is an
optimisation problem with three variables.

This problem is divided in four distinct experiments. The first experiment, Experi-
ment α, is conducted using the same parameters as the first experiment of the benchmark,
but reducing the number of particles used from 15 to 10 and increasing the penalty pa-
rameter r from 2 to 5. The number of particles is reduced to test how it affects the
algorithm’s performance, while an increase in the penalty parameter ensures that the
algorithm is finding solutions that do not violate the stress constraint. The second and
third experiments, Experiments β and ω, evaluate the inertia weight effects in the evolu-
tion of the particles. Finally, Experiment γ evaluates how reducing the penalty parameter
to r = 2 changes the results returned from the algorithm. The parameters used in all
the experiments are listed in Table 5.2.

Table 5.2: Problem I - PSO operational parameters for the experiments.

Experiment Number of
particles

Number of
iterations ω c1 c2 r

α 10 30 0.5 1 2 5
β 10 30 0.75 1 2 5
Ω 10 30 0.25 1 2 5
γ 10 30 0.25 1 2 2

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 59

Problem I – Experiment α

In this experiment, the penalty parameter r was set to 5 for a smoother operating algo-
rithm under the desired stress constraint.

Looking at the results in Figure 5.3a, it is possible to see that the algorithm evolves
in a very similar way as in Experiments α and Ω from the benchmark in the previous
chapter, as expected, since they share the same configuration of cognitive and social
parameters. The stress plot from Figure 5.3b confirms that the particles converge close
to a returned stress of 90 MPa.

With this configuration of parameters, the search space is well covered and the par-
ticles tend to search towards the global best location. It is noticeable that in Figure 5.3a
the particles after thirty evaluations are close to the optimal solution and then fluctuate
about it, finally starting to converge after ∼ 160 evaluations. The inertia weight of the
algorithm affects the time necessary for the particles to converge, since the evolution of
the particles’ velocities are linked to it.

(a) (b)

Figure 5.3: Problem I - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment α.

Problem I – Experiment β

The second experiment of Problem I tests the consequences on the algorithm progression
upon a higher inertia weight (ω) value. Essentially, the higher the inertia the larger
the search space of each particle. However, by covering a larger search space a slower
convergence might be induced, due to a more intense shift in position between iterations.
Nevertheless, the selected operational parameters for this experiment are listed in Table
5.2.

In Figure 5.3a it can be seen that the particles oscillate about the optimal solution,
taking longer to converge towards it. This is the effect of the increased inertia weight, as
the velocity magnitude of each particle decreases at a slower ratio when compared to the
results obtained in Experiment α. Additionally, the stopping criteria for the algorithm
is not satisfied for any of the three tests, resulting in it running the maximum amount
of iterations. In Figure 5.4b it is plotted the average of the returned stress from the
three tests along all iterations. It can also be noticed that the increased inertia weight is
resulting in many solutions that do not respect the defined maximum stress constraint.

Pedro Miguel Monteiro da Rocha Master Degree

60 5.Optimisation Procedure and Implementation

The evolution of the objective function is shown in Figure 5.5a, where it can be seen
that the particles are not being guided towards the optimal solution, with Test 1 having
the worst solutions. To understand how the particles are behaving in Test 1, Figure 5.5b
shows the evolution of the best, average and worst solutions. It is possible to see that
while the algorithm was able to return good solutions, it failed in guiding the majority
of the particles towards them, as seen in the red curve.

The algorithm showed some difficulty in finding the optimal variable in Tests 1 and
2 with considerable shifts around the defined stress constraint, only starting to stabilise
after ∼ 200 evaluations. This means that in order for the algorithm to be able to converge
into an actual solution, it needs to run additional iterations and thus this particular choice
of PSO operational parameters is not ideal.

(a) (b)

Figure 5.4: Problem I - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment β.

(a) (b)

Figure 5.5: The evolution of: (a) the objective function, (b) best, average and worst
values of the objective function returned for Experiment β.

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 61

Problem I – Experiment Ω

As seen in the previous experiment, due to a higher inertia weight (ω) parameter, no
test resulted in an early convergence. Decreasing the inertia weight to ω = 0.25 in the
algorithm results in particle velocities which are not as affected by their assigned velocity
in the precedent iteration, hence each particle has the tendency to decelerate towards
the optimal solution.

It is interesting to notice that all tests in this experiment converged quickly, around
∼ 140 evaluations. The reduced inertia guided all the particles towards the best know lo-
cation. Comparing the evolution of the objective function in Figure 5.6a, or the returned
stress in Figure 5.6b with the equivalents in Experiment β, it is seen that although the
search space is more reduced, the particles achieve the desired solution faster.

The optimal search criteria would be covering a large search space in initial iterations
and once evidences of the potential best particle location are found, all the other particles
can be guided and search towards that location.

(a) (b)

Figure 5.6: Problem I - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment Ω.

It is safe to assume that when optimising the system’s weight with only one vari-
able, a low inertia for the algorithm displays a high performance level for this problem.
Nevertheless, there is one more parameter that needs to be tested in order to evaluate
what consequences it might induce in the optimisation procedure. Furthermore, looking
at Figure 5.7 it is possible to see that the solutions that violate the maximum stress
constraint are being guided towards solutions that do not, hence starting to converge at
after ∼ 120 evaluations.

Pedro Miguel Monteiro da Rocha Master Degree

62 5.Optimisation Procedure and Implementation

Figure 5.7: Problem I - The evolution of the objective function with applied penalties
for Experiment Ω.

Problem I – Experiment γ

The objective of this experiment is to evaluate the consequences of a lower penalty param-
eter in the optimisation procedure, making r = 2. In Figure 5.8a is shown the evolution
of the weight returned by the algorithm and it is possible to see that it successfully was
able to converge into a solution. However, looking at Figure 5.8b, it is noticeable that
the returned solutions from Test 2 and Test 3 violate the defined stress constraint. Ef-
fectively, this penalty parameter is not sufficiently high to force the algorithm to search
solutions that do not violate the maximum allowed stress. Nevertheless, the algorithm
managed to find solutions that result in configurations with measured stresses close to
the defined stress limit, as a result of the values of stress being numerically superior to
the ones of the objective function.

(a) (b)

Figure 5.8: Problem I - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment γ.

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 63

5.1.3 Results and Discussion

Throughout the four experiments in this problem, Experiment Ω proved to be more
efficient in returning optimal solutions with great precision, as the standard deviation for
that experiment is significantly inferior to the other ones. Regardless, every experiment
resulted in success since the algorithm was able to find the best solution in each one of
them. The overall results can be found in Tables 5.3 and 5.4.

Table 5.3: Problem I results.

Experiment
α β Ω γ

Best solution (mm) 9.83706 9.83620 9.83739 9.84214
Average (mm) 9.86933 9.98270 9.85549 9.81015

Standard deviation 0.34084 0.31269 0.019926 0.14079
Resulting weight (kg) 24.76928 24.76919 24.76931 24.76980

Table 5.4: Number of evaluations and computational times for Problem I.

Experiment
α β Ω γ

Number of
evaluations

Test 1 210 300 120 250
Test 2 160 300 150 110
Test 3 250 300 190 240

Computational
times (s)

Test 1 10812 19160 6114 14707
Test 2 8107 14369 7586 5562
Test 3 12818 15335 11177 10943

Using the solution obtained from Experiment Ω, the model analysed features an
interlayer thickness of ∼ 9.83739 mm. In Figure 5.9 the stress wave measured in the
frontal impact region of each plate and the rear impact region of Plate C is plotted.
Focusing on the orange curve, which resembles the stress wave measured in the frontal
impact region of Plate B, it is noticeable that the maximum stress occurs approximately
at ∼ 180 µs and its magnitude is ∼ 90 MPa. It is also seen that the magnitude of
the maximum stress measured at the frontal impact region of Plate B is approximately
double of the one measured in Plate B, which means that, with this configuration, Plate
A dampens nearly half of the stress.

Analysing the model in terms of energy transfer, in Figure 5.10 it is shown the
evolution of the strain energy in the three plates as well as the energy dissipated through
plastic strain. It is important to state that, unlike the plastic strain energy, the strain
energy is recoverable because it results from elastic deformation. In Figure 5.10a, it can
be seen that the maximum strain energy generated is ∼ 2.5 J and originates from Plate
A, which resembles approximately half of the strain energy in the system at ∼ 200 µs.
The plastic dissipation energy, however, originates exclusively from Plate A, which means
that there is no plastic deformation in Plates B and C, as seen in Figure 5.10b. It is also
relevant to highlight that the amount of energy dissipated from plastic deformation is
considerably higher than the energy generated from elastic strain.

The elastic strain, plastic dissipation and artificial strain energies are a part of the

Pedro Miguel Monteiro da Rocha Master Degree

64 5.Optimisation Procedure and Implementation

Figure 5.9: The evolution of the measured stress in the frontal impact region of Plates
A, B and C and in the rear impact region of Plate C.

internal energy on the system. The artificial strain energy is primarily the energy dis-
sipated to control hourglassing deformation [Smith 2009] in the finite elements. If it is
excessive, too much strain energy may be going into controlling hourglassing deforma-
tion, hence it is important that the artificial strain energy is considerably lower than the
internal energy of the system. In case it is excessive, the mesh of the model needs to be
adjusted. In Figure 5.11 it is possible to see the evolution of the kinetic energy from the
projectile, the internal energy of each plate and the generated artificial strain energy. It
can be noticed that the majority of the kinetic energy of the projectile is transferred into
Plate A. The artificial strain energy generated is not excessive so it does not represent
an issue for the used mesh. In Table 5.5 it is possible to see the initial and final values
of the kinetic energy of the projectile, as well as its respective final velocity magnitude.

Table 5.5: Variation of kinetic energy of the projectile.

Initial kinetic
energy (J)

Final kinetic
energy (J)

Fraction of energy
transferred (%)

Final velocity
(m/s)

45.94531 0.99994 97.82363 3.68813

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 65

(a) Elastic strain energy. (b) Plastic Dissipation Energy.

Figure 5.10: Generated elastic and plastic strain energies at each plate.

Figure 5.11: Evolution of the kinetic energy of the projectile, the internal energy of the
plates and the artificial strain energy of the model.

5.2 Problem II — Multi-layer Armour Plate Impacted by
Projectile with a Velocity of 40 m/s

The second problem is very similar to the previous one. Although revolving around the
same objectives, this problem features the optimisation of a 3-plate model, focusing in
finding the optimal values for three variables: the thickness of Plate A, B and C. Since
the algorithm is searching for the optimal combination of the thickness of each plate, it
is essential that the particles are able to find that optimal location, otherwise they are
guided towards a local minimum instead of the desired global one.

Following the same structure as the previous problems, this one is broken down
in three experiments. The impact velocity for this problem is raised to 40 m/s and the
returned stress is evaluated in the back-plate (Plate C). This means that the main source

Pedro Miguel Monteiro da Rocha Master Degree

66 5.Optimisation Procedure and Implementation

of stress outputs is due to stress waves and depending on the conditions of simulation
the results might differ. The solutions obtained by the algorithm are analysed in Section
5.2.3, where it is possible to study if there is propagation of elastic and plastic stress
waves. Nevertheless, the optimal parameters are tested along the three experiments of
this problem.

The setup is represented in Figure 5.12 and described in the items below:

• Plate Geometry: Square plates of 300 mm of width;

• Number of plates: 3 (A, B and C);

• Plate Boundary Condition: Side surfaces of each plate are clamped;

• Projectile Velocity: 40 m/s.

Figure 5.12: Diagram for Problem II.

The materials to be used for this problem are the same as the ones in Table 5.1.

5.2.1 Problem Formulation

The objective of this problem is to find the lightest 3-layer armour system able to limit
the returned stress on the back-plate to the assigned amount. The material data for the
plates is the same as in Problem I. The stress is analysed in the impact region of the rear
surface of Plate C, which is shown in Figure 5.13.

This problem is formulated as

minimise f(tA, tB, tC, r) = W (tA, tB, tC) + P (tA, tB, tC, r) , (5.3)
subjected to tA,min ≤ tA ≤ tA,max ,

tB,min ≤ tB ≤ tB,max ,

tC,min ≤ tC ≤ tC,max ,

g(x) = σz − σz,max ≤ 0 ,

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 67

where the weight function is defined as

W (tA, tB, tC) = 4× L1,A × L2,A ×
(
ρAtA + ρBtB + ρCtC

)
(5.4)

= 4× 0.152 ×
(
2710× tA + 1140× tB + 7850× tC

)
,

and the variables tA, tB and tC define the thickness between a minimum of 10 mm and a
maximum of 50 mm for Plates A,B and C, respectively. The maximum stress allowed is
measured in the rear impact region of Plate C and is set as σz,max = 1 MPa. This defined
stress constraint value is numerically inferior to the values of the objective function and,
thus, serves as an opportunity to understand how it affects algorithm’s capabilities of
finding an optimal solution.

Figure 5.13: Representation of the region where the stress is measured for Problem II.

5.2.2 Setup and Implementation

This optimisation problem features three different variables, which means that there is
a large amount of possible solutions and the algorithm may struggle to find the best
one. Under this circumstances, it is important to apply the PSO operational parameter
used in Experiment Ω of Problem I, which is the one that performed better. This
problem is then divided into three different experiments. The first experiment analyses
how the best operational parameters from the previous problem while the second one
focuses on understanding, how increasing the inertia weight can lead to a larger search
space and, consequently, enhance the performance of the algorithm. Furthermore, the
number of particles is increased to 15, providing a larger number of solutions and a larger
search space. Nevertheless, given that the defined stress constraint is 1 MPa, the penalty
parameter needs to be considerably high. This leads to the development of Experiment
Ω, making the penalty parameter r = 1000. The algorithm’s operational parameters are
listed in Table 5.6.

Pedro Miguel Monteiro da Rocha Master Degree

68 5.Optimisation Procedure and Implementation

Table 5.6: Problem II - PSO operational parameters for the experiments

Experiment Number of
particles

Number of
iterations ω c1 c2 r

α 10 30 0.25 1 2 5
β 15 30 0.5 1 2 5
Ω 15 30 0.5 1 2 1000

Problem II – Experiment α

The parameters for the first experiment of this problem are imported from Experiment Ω
of the previous experiment, as it is the one with the best performance. The parameters
are listed in Table 5.6.

With this selection of parameters, an early convergence was obtained for each of the
three experiments, as seen in Figure 5.14a, however, the obtained solutions for Tests
1 and 3 do not agree with the established maximum stress limit. In Figure 5.14b the
particles in the mentioned tests tend to converge to a returned stress around σz = 1.5
MPa. The reason behind the violation of the maximum allowed stress condition comes
from an inadequate choice of the r penalty parameter. The poor choice of the mentioned
parameter reflects in solutions that do not comply with the defined stress constraint. It
can be seen in Figure 5.15 that the objective function for Test 1 is not penalised enough
for violating the defined stress constraint, returning a solution that, although violating
the defined stress constraint, the applied penalty to the weight is negligible. Furthermore,
a low inertia weight ω value and the usage of a small number of particles can harm the
overall search potential of the algorithm.

(a) (b)

Figure 5.14: Problem II - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment α.

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 69

Figure 5.15: Problem II - The evolution of the objective function with applied penalties
for Experiment α.

Problem II – Experiment β

The second experiment of Problem II serves the purpose of evaluating the impact of
an increased search space on the algorithm’s performance. The main difference is the
addition of five more particles and an increased inertia weight, making ω = 0.5.

The results in Figure 5.16a indicate an early convergence, however, taking a look
at the plot in Figure 5.16b the convergence returned stress is close to σz = 1.2 MPa,
violating the stress restrictions. While the same happened in the previous experiment, the
returned convergence maximum stress is relatively inferior to the obtained in Experiment
α, proving the importance of covering a larger search space. It is expected that having a
penalty parameter of r = 5 is not ideal, however, using the objective of this experiment is
to analyse how increasing the search space can provide a better algorithm performance,
hence a correction to the penalty parameter is left for Experiment Ω. Looking at Figure
5.17 it can be seen that the algorithm does in fact converge towards better solutions
than possible because the penalty parameter is not penalising sufficiently the objective
function.

Pedro Miguel Monteiro da Rocha Master Degree

70 5.Optimisation Procedure and Implementation

(a) (b)

Figure 5.16: Problem II - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment β.

Figure 5.17: Problem II - The evolution of the objective function with applied penalties
for Experiment β.

Problem II – Experiment Ω

In this experiment, the penalty parameter is greatly increased to ensure that the im-
posed maximum returned stress limit is respected, solving the issues in the previous
experiments.

From Figure 5.18a it is possible to see that Tests 2 and 3 converged to the optimal
solution as opposed to Test 1. The first test manages to converge into a solution that,
while respecting the defined stress constraint, is not optimal because the focus is in
minimising the plate’s weight and this solution is ∼ 13 kg heavier than the other two.
Regardless, Tests 2 and 3 were capable of finding two good solutions for this problem with
the one provided from Test 3 being the better. The stress constraint is well implemented
in this case as Tests 2 and 3 final results register a maximum returned stress of σz = 1.0
MPa as shown in Figure 5.18b.

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 71

(a) (b)

Figure 5.18: Problem II - The evolution of: (a) the weight function, (b) maximum stress
returned for Experiment Ω.

The evolution of the objective function is shown in Figure 5.19a. To visualise the
optimal variables the algorithm used to find the solutions, Figures 5.19b, 5.19c and 5.19d
display the evolution of the variable used for the thickness of each plate.

Pedro Miguel Monteiro da Rocha Master Degree

72 5.Optimisation Procedure and Implementation

(a) (b)

(c) (d)

Figure 5.19: Problem II - The evolution of: (a) the objective function with applied
penalties (b) the evolution of the thickness assigned to Plate A (c) the evolution of the
thickness assigned to Plate B (d) the evolution of the thickness assigned to Plate C.

5.2.3 Results and Discussion

Overall the results for Problem II are listed in Table 5.7 and while Experiment Ω was
the only one that was able to find the optimal solution, its first test was not able to find
converge towards a solution at all. This explains why the average value of the final weight
of the system is considerably different. Furthermore, the standard deviation calculations
testify how the results are spread out. It is also interesting to check the two returned
solutions in the Experiment Ω from Tests 2 and 3. Looking at Figure 5.18a it is possible to
see that for these two experiments, the solution is very similar. However, when visualising
Figures 5.19b and 5.19c it is possible to see that, in fact, the algorithm used two different
values of thickness for Plate A and B. This means that these two possible configurations
respect the imposed stress constraint while providing a light-weight solution.

Regardless, the results from Test 3 provide the lighter solution even if only just slightly
and with the advantage of being a more compact system, as shown in the first figure of

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 73

Appendix A.5, where it can be seen that the total thickness of the armour system is ∼ 3
mm thinner.

The computational times were longer along Experiment Ω mainly due to the termi-
nation criteria of the algorithm being satisfied towards latter iterations as opposed to the
other Experiments. The first one was undoubtedly the faster due to an inferior amount
of particles and early convergence towards the found solution.

Table 5.7: Problem II results.

Experiment
α β Ω

Best solution for Plate A (mm) 21.44406 15.10821 22.28785
Average solution for Plate A (mm) 28.59180 16.92809 25.31797
Best solution for Plate B (mm) 32.50873 50.0 42.87540

Average solution for Plate B (mm) 25.35845 46.20260 47.18425
Best solution for Plate C (mm) 10.0 10.0 10.0

Average solution for Plate C (mm) 15.59538 10.0 14.44824
Standard deviation 4.00524 0.11271 6.06289

Resulting Weight (kg) 15.63060 15.87989 16.90003

Table 5.8: Number of evaluations and computational times for Problem II.

Experiment
α β Ω

Number of
evaluations

Test 1 180 285 450
Test 2 100 255 390
Test 3 100 390 450

Computational
times (s)

Test 1 9245 20624 30658
Test 2 7268 14555 21848
Test 3 6294 24546 28323

In Experiment Ω it was possible to obtain three different solutions with the one from
Test 3 being the best. Regardless, the three solutions are analysed in terms of stress wave
propagation and energy transfers. The resulting thickness details for the configuration
of the three solutions are listed in Table 5.9.

Table 5.9: Details of the thickness of the plates to analyse as different solutions to
Problem II.

Thickness of Plate (mm) Weight (kg)Configuration A B C
Test 1 33.85171 49.99991 23.25127 29.81345
Test 2 19.88531 48.67742 10.0 16.90933
Test 3 22.2878 42.87540 10.0 16.90001

In order to analysing how the stress wave propagates in each one of the solutions
obtained, Figure 5.20 shows the stress wave analysed in four different regions for the
three resultant configurations. It is possible to see that from Figure 5.20a the shape of

Pedro Miguel Monteiro da Rocha Master Degree

74 5.Optimisation Procedure and Implementation

the stress wave for Tests 2 and 3 are identical, while for the configuration of Test 1 the
duration of the pulse is relatively shorter. Since the configuration of Test 1 involves a
thicker Plate A, the amount of plastic strain is smaller, thus resulting in shorter time
of contact between projectile and plate, as explained in Section 3.7.1. In Figure 5.21
it is plotted the plastic equivalent strain along the elements in the centre of the plate,
starting from the front surface of Plate A and ending in the rear surface of Plate C.
This graph proves that the total plastic strain generated in the configuration of Test 1
is indeed smaller. It is also noticeable that there is no plastic equivalent strain beyond
Plate A for any of the tests’ configuration, which is expected due to the large amount of
stress dampened throughout Plate A.

(a) (b)

(c) (d)

Figure 5.20: Average stress in OZ direction for the resulting configuration from Tests 1
to 3, measured at: (a) impact region in front surface of Plate A, (b) impact region in
front surface of Plate B, (c) impact region in front surface of Plate C, (d) impact region
in rear surface of Plate C.

Looking at Figure 5.22 it is possible to analyse and compare the energy transfers in
the system between the three configurations. It is interesting to notice in Figure 5.22a
that the maximum amount of energy dissipated through plastic strain is higher for the

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 75

Figure 5.21: Plastic equivalent strain throughout the centre elements of the armour plate,
starting from the front surface of Plate A and ending in the rear surface of Plate C.

configuration of Test 1, even though it was shown that the maximum amount of equivalent
plastic strain was smaller. This is a result of a smaller amount of strain energy transferred
to Plate B, as seen in Figure 5.22c. For the configurations of Tests 2 and 3 it can be seen
that a larger amount of elastic strain energy is transferred into Plate B. Regardless, it is
clear that most of the energy transferred into the armour system is absorbed in Plate A,
where there is energy dissipated under the form of plastic deformation.

The kinetic energy of the projectile and internal energy of each plate evolution is
shown in Figure 5.23, as well as the artificial strain energy. It can be noticed that in
Figure 5.23a, the kinetic energy transfer of the projectile for the configuration of Test 1
is the highest of all three, since its final kinetic energy is smaller. The artificial strain
energy generated for all three solutions is much smaller than the sum of the internal
energies of all plates, thus it does not represent an issue for the used mesh. Overall, it
can be concluded that, regardless of the three obtained solutions, Plate A absorbs the
highest amount of energy from the projectile while Plate C absorbs the least, and as a
result, the thickness of Plate C has the lesser effect on the absorption of energy. However,
the configuration from Test 1 features a higher thickness for Plate C when compared to
the other experiments and is the configuration that absorbs the highest amount of energy
from the projectile, at the cost of being the heaviest solution. The initial and final values
of the kinetic energy of the projectile, as well as its respective final velocity magnitude
are listed in Table 5.10.

Table 5.10: Variation of kinetic energy of the projectile in Problem II.

Configuration
Initial
kinetic

energy (J)

Final
kinetic

energy (J)

Fraction of
energy

transferred (%)

Final
velocity
(m/s)

Test 1 117.620 1.48474 98.73768 4.49412
Test 2 117.620 4.86962 95.85987 8.13892
Test 3 117.620 4.10498 96.50996 7.47265

Finally, the last figure of Appendix A.5 shows the evolution of the vertical displace-

Pedro Miguel Monteiro da Rocha Master Degree

76 5.Optimisation Procedure and Implementation

(a) (b)

(c) (d)

Figure 5.22: Analysis of the strain and plastic dissipation energy in the three plates for all
the configurations: (a) plastic dissipation energy in the model, (b) elastic strain energy
in Plate A, (c) elastic strain energy in Plate B, (d) elastic strain energy in Plate C.

ment in the centre area of the rear surface of Plate C. While the configurations of Tests
2 an 3 have similar displacement magnitudes, the configuration of Test 1 shows a much
smaller vertical displacement. This is expected since the configuration of Test 1 resem-
bles the solution with the thickest Plate C, which is ∼ 13 mm thicker than the Plate C
of the other configurations.

Pedro Miguel Monteiro da Rocha Master Degree

5.Optimisation Procedure and Implementation 77

(a) Configuration of Test 1

(b) Configuration of Test 2

(c) Configuration of Test 3

Figure 5.23: Evolution of the kinetic energy of the projectile, internal energy of the plates
and generated artificial strain energy.

Pedro Miguel Monteiro da Rocha Master Degree

.

Intentionally blank page.

Chapter 6

Final Remarks

6.1 Main Conclusions

This dissertation analyses the propagation of stress waves in layered material structures,
generated from an impact of a moving projectile. Based on a previous work, a Python
script that is able to be interpreted by Abaqus was developed, resulting in an easy and
fast method of building models to be simulated by the software. The development of
the script facilitated numerous tasks during the development and testing of the model,
providing a useful amount of possible parameters while also eliminating several time
consuming tasks. Furthermore, it continuously expanded into a versatile utensil that
could be used for post processing and monitoring while particularly accessible.

Chapter 3 played a vital role in developing the script as well as providing tools to
incorporate the knowledge discussed in Chapter 2 and to test it in Abaqus, towards stress
wave propagation validation purposes. In Section 3.6, the conducted analyses confirm
the theoretical elastic and plastic stress wave speeds. Additionally, a study is conducted
throughout Section 3.7 to further understand the effects of plastic deformation on the
properties of the produced stress wave, such as the wavelength and magnitude. It is
demonstrated that, with plastic deformation, the wavelength of the pulse increases, while
the magnitude of the induced stress on the plate decreases. It is also shown throughout
Chapter 3 that the generated stress waves generally display two characteristic peaks of
stress. The magnitude of the measured stress in these two peaks evolve differently along
the thickness of the plate, with the dampening of the first stress peak being higher as the
velocity of the projectile increases, while the second one decreases with higher impact
velocities. Moreover, for three different tested metals, it is shown that, despite differences
in magnitude of stresses according to the material being used, the extracted stress peaks
along the plate’s thickness evolve in similar ways for the three tested metals.

In this work, the Particle Swarm Optimisation algorithm is successfully implemented
and, despite its stochastic nature, is able to perform efficiently and find solutions to
the assigned problems. In the latter part of Chapter 4, a simple optimisation problem
aimed to find the optimal thickness for the interlayer plate in a 3-layer armour system is
conducted. Serving as an opportunity for preliminary operating parameter adjustments
of the algorithm, it is possible to find how the algorithm behaves and how it affects
its capabilities in finding the optimal solution for the assigned problem. Furthermore,
clamping the side surfaces of the plates resulted in lower generated stress magnitudes,
when comparing to similar configurations with a clamped rear surface of the back plate.

79

80 6.Final Remarks

Additionally, it is shown that, despite using the same boundary conditions, increasing the
length of the plates slightly affects the protection capabilities of the armour, resulting in
a need to increase the thickness of the plate in order to withstand the maximum defined
amount of stress.

Taking into account a realistic approach to ballistic tests, Chapter 5 explores the
effects of higher velocity impacts and, consequently, plastic deformation when searching
for the ideal value for the thickness of the interlayer plate. Problem I serves the purpose
of further enhance the computational efficiency of the algorithm. It is demonstrated that
for an impact velocity of 25 m/s, a thickness of ∼ 9.8 mm for the Nylon-6 interlayer plate
is needed to prevent plastic deformation in it. The stochastic nature of the algorithm is
noticeable throughout Problem II, as it is solved through the search of a three variables.
The problem aims to find the best combination of thickness of all three plates in order
for the armour system to be able to withstand the generated stress on the centre region
of the back plate, when impacted at a velocity of 40 m/s. The algorithm struggles to
find solutions that do not violate the maximum stress restrictions, however, dividing
the problem in various experiments helped setting up the ideal operating parameters
in order to guide the algorithm towards the desired solution. In this problem, it is also
possible to notice that the thickness of the steel back plate played the lesser role in weight
minimisation, as the algorithm continually finds solutions where the thickness of the
mentioned plate is set up to the minimum allowed value. Overall, a weight minimisation
problem with three variables generates a spectrum of local minimums that the algorithm
often converges into, without finding the global minimum, which is the best possible
solution for this problem. Moreover, the importance of tuning the operational parameters
of the algorithm to enhance its efficiency and accuracy is highlighted throughout this
problem.

6.2 Further Work

This dissertation provides a useful tool through a flexible Python script, which facilitates
the Abaqus model generation process. The script contains a large number of customisable
parameters and the Particle Swarm Optimisation algorithm. It constitutes a powerful
tool that can be used to find light-weight armour solutions efficiently and accurately,
focusing on the minimisation of time consuming actions and inputs when developing a
ballistic test model in Abaqus. Taking a more realistic approach to modern protection
systems, incorporating new types of materials such as composites and fibres and exploring
different designs can lead to interesting ballistic configurations. Furthermore, integrating
damage models in the material’s properties may provide scenarios where simulating high
velocity impacts is possible. Applying the damage models can provide opportunities
to study the behaviour of the material with penetration from the projectile, which can
result in various modes of penetration depending on the type of projectile. Moreover, the
Particle Swarm Optimisation can be improved to be versatile towards solving of complex
and dynamic problems with different types of variables such as number of plates or
different combinations of complex materials. Other interesting design variables may be
incorporated into the algorithm to provide a light-weight, non expensive armour system
that can be experimentally tested to compare results.

Pedro Miguel Monteiro da Rocha Master Degree

Bibliography

[Andrade-Campos et al. 2015] A. Andrade-Campos, J. Dias-de Oliveira and J. Pinho-da
Cruz. Otimização Não-Linear em Engenharia. ETEP, 2015.

[Arora 2016] J. S. Arora. Introduction to Optimum Design. Elsevier Science, 2016.

[Ashby 2005] M. F. Ashby. Hybrids to fill holes in material property space. Philosophical
Magazine, 85(26-27 SPEC. ISS.):3235–3257, 2005.

[Azevedo 2012] A. V. F. Azevedo. Desempenho balístico de sistemas de proteção com
núcleos de MAC. Master’s thesis, Universidade de Aveiro, Portugal, 2012.

[Chen 2001] Shen Yeh Chen. An approach for impact structure optimization using the
robust genetic algorithm. Finite Elements in Analysis and Design, 37(5):431–446,
2001.

[Crouch 2019] I. G. Crouch. Body armour – New materials, new systems. Defence
Technology, 15(3):241–253, 2019.

[DeHart et al. 2012] G. DeHart, L. Ellis, L. Givens, M. P. Hickey and J. Terp. Combat
Tech [Episode 3], 2012.

[Dowling et al. 2013] N.E. Dowling, K.S. Prasad and R. Narayanasamy. Mechanical Be-
havior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue.
Always learning. Pearson, 2013.

[García-González et al. 2015] D. García-González, M. Rodríguez-Millán, A. Vaz-Romero
and A. Arias. High impact velocity on multi-layered composite of polyether ether
ketone and aluminium. Composite Interfaces, 22(8):705–715, 2015.

[Gilson et al. 2020] L. Gilson, L. Rabet, A. Imad and F. Coghe. Experimental and nu-
merical assessment of non-penetrating impacts on a composite protection and bal-
listic gelatine. International Journal of Impact Engineering, 136:103417, 2020.

[Grujicic et al. 2017] M. Grujicic, J. Snipes and S. Ramaswami. Ballistic-penetration
resistance and flexural-stiffness optimization of a nacre-mimetic, B4C-reinforced,
polyurea-matrix composite armor. International Journal of Structural Integrity,
8(3):341–372, 2017.

[Huang et al. 2012] Han Huang, Hu Qin, Zhifeng Hao and Andrew Lim. Example-based
learning particle swarm optimization for continuous optimization. Information Sci-
ences, 182(1):125–138, 2012.

81

82 BIBLIOGRAPHY

[James 2018] D. James. Introduction to Machine Learning with Python: A Guide for
Beginners in Data Science. CreateSpace Independent Publishing Platform, North
Charleston, SC, USA, 1st edition, 2018.

[Jiang et al. 2020] W. Jiang, A. Bennett, N. Vlahopoulos and G. Zhang. A Reduced-
Order Modeling Based Design and Optimization for a Lightweight Multilayer Armor
Plate Against Blast and Impact. in R. Fangueiro and S. Rana, editores, Advanced
Materials for Defense, pp. 79–93, Cham, 2020. Springer International Publishing.

[Kochenderfer and Wheeler 2019] M. J. Kochenderfer and T. A. Wheeler. Algorithms
for Optimization. The MIT Press. MIT Press, 2019.

[Kędzierski et al. 2015] P. Kędzierski, A. Morka, G. Sławiński and T. Niezgoda. Opti-
mization of two-component armour. Bulletin of the Polish Academy of Sciences:
Technical Sciences, 63(No 1):173–179, 2015.

[Li and You 2019] Y. Li and Z. You. Open-section origami beams for energy absorption.
International Journal of Mechanical Sciences, 157-158:741 – 757, 2019.

[Li et al. 2019] H. Li, Q. Duan, P. Zhang, R. Qu and Z. Zhang. A new method to
estimate the plane strain fracture toughness of materials. Fatigue & Fracture of
Engineering Materials & Structures, 42(2):415–424, 2019.

[Lin 1996] X. Lin. Numerical Computation of Stress Waves in Solids. John Wiley &
Sons, Incorporated, 1996.

[Liu et al. 2003] L. Liu, Q. Zhang and P. Zhai. The Optimization Design on Metal/Ce-
ramic FGM Armor with Neural Net and Conjugate Gradient Method. Materials
Science Forum, 423-425:791 – 796, 2003.

[Luke 2009] S. Luke. Essentials of Metaheuristics. Lulu, 2009.

[Macaulay 2012] M. Macaulay. Introduction to Impact Engineering. Springer Nether-
lands, 2012.

[Martini and Barthelat 2016] R. Martini and F. Barthelat. Stretch-and-release fabrica-
tion, testing and optimization of a flexible ceramic armor inspired from fish scales.
Bioinspiration & Biomimetics, 11(6):066001, oct 2016.

[Matusevich et al. 2012] A. E. Matusevich, J. C. Massa and R. A. Mancini. Computation
of tensile strain-hardening exponents through the power-law relationship. Journal
of Testing and Evaluation, 40(4), jul 2012.

[Medvedovski 2006] E. Medvedovski. Lightweight ceramic composite armour system.
Advances in Applied Ceramics, 105(5):241–245, 2006.

[Meyers 1994] M. A. Meyers. Dynamic Behavior of Materials. Wiley-Interscience publi-
cation. Wiley, 1994.

[NIJ Standard-0101.062008] Ballistic Resistance of Body Armor. Standard, U.S. Depart-
ment of Justice Office of Justice Programs, 810 Seventh Street N.W. Washington,
DC 20531, July 2008.

Pedro Miguel Monteiro da Rocha Master Degree

BIBLIOGRAPHY 83

[Park et al. 2005] M. Park, J. Yoo and D. Chung. An optimization of a multi-layered
plate under ballistic impact. International Journal of Solids and Structures,
42(1):123–137, 2005.

[Pittman 2017] S. Pittman. Layered Armour Systems: the Influence of a Material’s Prop-
erties on its Ability to be an Effective Interlayer. Technical report, The University
of Edinburgh, 2017.

[Rahul et al. 2005] Rahul, D. Chakraborty and A. Dutta. Optimization of FRP com-
posites against impact induced failure using island model parallel genetic algorithm.
Composites Science and Technology, 65(13):2003–2013, 2005.

[Reis 2019] I. B. C. Reis. Optimization of Layer Configurations for Ballistic Impact on
Light-Weight Armour Plates. Master’s thesis, Universidade de Aveiro, Portugal,
2019.

[Saleh et al. 2020] M. Saleh, V. Luzin, M. A. Kariem, K. Thorogood and D. Ruan. Ex-
perimental Measurements of Residual Stress in ARMOX 500T and Evaluation of
the Resultant Ballistic Performance. Journal of Dynamic Behavior of Materials,
6:78–95, 2020.

[Sangamesh et al. 2018] Sangamesh, K. S. Ravishankar and S. M. Kulkarni. Ballistic
Impact Study on Jute-Epoxy and Natural Rubber Sandwich Composites. Materials
Today: Proceedings, 5(2):6916–6923, 2018.

[Smith 2009] M. Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Sys-
tèmes Simulia Corp, United States, 2009.

[Survey 2004] U.S. Geological Survey. Types of seismic waves, 2004.

[Svensson and Tell 2015] T. Svensson and F. Tell. Stress Wave Propagation Between Dif-
ferent Materials. Master’s thesis, Chalmers University of Technology, Gothenburg,
Sweden, 2015.

[Systèmes 2011] Dassault Systèmes. Abaqus Scripting User’s Manual, Version 6.11. 2011.

[Tasdemirci and Hall 2007] A. Tasdemirci and I.W. Hall. The effects of plastic deforma-
tion on stress wave propagation in multi-layer materials. International Journal of
Impact Engineering, 34(11):1797 – 1813, 2007.

[Wang and Zheng 2012] K. Wang and Y. Zheng. A new particle swarm optimization
algorithm for fuzzy optimization of armored vehicle scheme design. Applied Intelli-
gence, 37(4):520–526, 2012.

[Yadav et al. 2016] R. Yadav, M. Naebe, X. Wang and B. Kandasubramanian. Body
armour materials: from steel to contemporary biomimetic systems. RSC Advances,
6(116):115145–115174, 2016.

[Yong et al. 2008] M. Yong, B. G. Falzon and L. Iannucci. On the application of genetic
algorithms for optimising composites against impact loading. International Journal
of Impact Engineering, 35(11):1293–1302, 2008.

Pedro Miguel Monteiro da Rocha Master Degree

84 BIBLIOGRAPHY

[Zahir et al. 2019] N. Zahir, A. Ghani, M. Daud, D. Malingam and R. Mansur. Opti-
misation of Hybrid Composite Reinforced Carbon and Glass Using AHP Method.
Defence S&T Technical Bulletin, 12(1):101–112, 2019.

[Zheng-Dong et al. 2006] M. Zheng-Dong, W. Hui, C. Yushun, D. Rose, A. Socks and
D. Ostberg. Designing an Innovative Composite Armor System for Affordable Bal-
listic Protection. 25th Army Science Conference, 2006.

Pedro Miguel Monteiro da Rocha Master Degree

Appendix A

Complementary Topics

This appendix intends to complement Chapters 3, 4 and 5 with additional plots and
figures.

A.1 Wave Progression Graphics

This section contain the plots with the evolution of the first and second stress peaks,
measured for different tests using different impact velocities and compare the generated
stresses for the three different materials: steel, aluminium and titanium. The plots in
Figures A.1 to A.6 provide additional data from Section 3.7.3.

Figure A.1: First stress peak progression along the thickness of the plate, measured for
an impact velocity of 5 m/s.

85

86 A.Complementary Topics

Figure A.2: First stress peak progression along thickness of the plate, measured for an
impact velocity of 40 m/s.

Figure A.3: First stress peak progression along thickness of the plate, measured for an
impact velocity of 100 m/s and 80 m/s specifically in the case of Aluminium.

Pedro Miguel Monteiro da Rocha Master Degree

A.Complementary Topics 87

Figure A.4: Second stress peak progression along thickness measured for an impact
velocity of 5 m/s.

Figure A.5: Second stress peak progression along thickness measured for an impact
velocity of 40 m/s.

Pedro Miguel Monteiro da Rocha Master Degree

88 A.Complementary Topics

Figure A.6: Second stress peak progression along thickness measured for an impact
velocity of 100 m/s and 80 m/s specifically in the case of Aluminium.

Pedro Miguel Monteiro da Rocha Master Degree

A.Complementary Topics 89

A.2 Flowchart of the Particle Swarm Optimisation algo-
rithm

This section contains the flowchart of the Particle Swarm Optimisation algorithm imple-
mented in the optimisation procedures of Chapters 4 and 5.

Figure A.7: A basic flowchart of the PSO algorithm.

Pedro Miguel Monteiro da Rocha Master Degree

90 A.Complementary Topics

A.3 Additional Remarks on the Model Generation

The upcoming optimisation analyses are established through a model generation script
that is flexible enough to provide a large number of possible different models in Abaqus.
In the context of optimisation studies, the possibility to easily change some parameters
and generate the model without the surge of unexpected problems and errors is very
convenient.

To better understand the flexibility of the script to alterations for a number of models,
a summary of the steps on generating a model in Abaqus can be stated as:

1. Geometry (Plate)

• Builds a rectangular plate

2. Geometry (Projectile)

• Builds a cylindrical projectile

3. Material Database

4. Part Section

5. Create Assembly

6. Assign Boundary Conditions

7. Create Step (Dynamic Explicit for Transient Analysis)

8. Create Interactions and Constraints

9. Create Mesh

10. Create and Submit Job

A.3.1 Geometry (Plate) Parameters

Following the ten steps above, the script provides a very useful number of parameter to
quickly adjust and edit the model.

The plate geometry step has the following parameters:

• Plate Length (longest side of the plate in mm);

• Plate Width (second longest side of the plate in mm);

• Number of Plates: defines the number of plates the assembly has;

• Plate Thickness: sets the thickness for each plate.

Pedro Miguel Monteiro da Rocha Master Degree

A.Complementary Topics 91

A.3.2 Geometry (Projectile) Parameters

The projectile geometry step presents a similar structure of parameters:

• Projectile Length (in mm);

• Projectile Diameter (in mm);

• Fillet Radius (in mm);

• Projectile Mass (in kg).

It is important to note that plate partition dimensions adapt according to projectile
dimensions, appropriately setting up the impact region’s diameter.

A.3.3 Material Database Parameters

A database of materials is stored along matrices and vectors with the objective of having
a constant list of available materials to choose from when defining the model, each one
of them with its own index. The parameters are:

• Density (in kg/m3);

• Young’s Modulus (in Pa);

• Poisson’s Ratio;

• Yield Stress (in Pa): A vector containing the yield stress data for the plasticity
stress-strain curve of the respective material;

• Plastic Strain: A vector containing the plastic strain data for the plasticity stress-
strain curve of the respective material.

A.3.4 Part Section Parameters

In this step, each plate has its own material section assignment. In the script each
plate has a section parameter pointing towards the material database. The value of the
parameter is the index on the material database.

A.3.5 Creating the Assembly

While there is no parameters assigned onto this step, the script is assembling all the
created parts together while maintaining a distance of 0.0011 mm between the projectile
and plate contact surfaces.

Pedro Miguel Monteiro da Rocha Master Degree

92 A.Complementary Topics

A.3.6 Boundary Conditions Parameters

The boundary conditions applied to the model are mostly constant, except for the velocity
of the projectile, which can be controlled in the script and is defined in m/s.

A.3.7 Create Step Parameters

In this step, the conditions of analysis are set. Naturally creating a transient analysis,
controlling the simulation settings is very important and may change depending on the
type of study and situation itself. The parameters in this step are:

• Duration of Event (in s): Controls the time length of the analysis;

• Number of Frames: This number sets up the number of calculations during the
analysis, between time steps.

A.3.8 Interactions and Constraints Parameters

The only parameter assigned to this step is the value for the Friction Penalty, which is
normally equal to 0.2 .

A.3.9 Mesh Parameters

These parameters ease the meshing process while also simplifying it. It is possible to
control the essential parameters of the mesh such as:

• Thickness of the elements;

• Number of Elements in each cell (from Number 1 to Number 9);

• Element Type Choice.

A.3.10 Job Parameters

A very simple parameter to setup a job submission automatically or manually as well as
the name of the job in particular.

A.3.11 Parameters Overview

The combination of all the parameters described above result in a versatile script that
provides plenty of possible different models and setups while also saving the user valuable
time. A flowchart in Figure A.8 summarise the information detailed above.

Pedro Miguel Monteiro da Rocha Master Degree

A.Complementary Topics 93

Figure A.8: Parameters in the script for effortless model editing purposes, in the form of
a flowchart.

Pedro Miguel Monteiro da Rocha Master Degree

94 A.Complementary Topics

A.4 Benchmark

This section aims to provide additional plots to further understand the optimisation
analyses undergoing in Chapter 4.

Figure A.9: The evolution of the thickness assigned for Experiment α.

A.5 Problem II

To support the discussion of results in Chapter 5, this section contains supplementary
plots.

Figure A.10: Problem II - The evolution of the total thickness of the armour system for
Experiment Ω.

Pedro Miguel Monteiro da Rocha Master Degree

A.Complementary Topics 95

Figure A.11: Maximum vertical displacement of the centre area in the rear surface of
Plate C.

Pedro Miguel Monteiro da Rocha Master Degree

.

Intentionally blank page.

Appendix B

Optimisation Python Code

This appendix contains the Python code used for the optimisation procedures present
in Chapters 4 and 5. The script contains four essential functions, which are detailed in
Section 4.3 and each one of them can be run independently.

The particular code in this appendix is used for the optimisation procedure used for
the Problem II, in Section 5.2. Accordingly, the contained parameters are set to generate
and process the model for Problem II. Nevertheless, all the parameters contained can be
edited. To run the code, the user must launch the Abaqus CAE application and click
“File”, “Run Script” and then select the script to run, which is named “PSO_Opti.py”.

1 # File Name: PSO_Opti.py ---
2 # --
3 #
4 # Pedro Rocha
5 # pedro.miguel.rocha97@ua.pt
6 # Master ’s Dissertation
7 # MSc in Mechanical Engineering
8 # University of Aveiro
9 #

10 # --
11

12 ’’’
13 Description:
14 This file contains a Particle Swarm Optimisation algorithm
15 used to optimise a 3-layer armour plate , while also containing
16 all the functions used for the model generation in Abaqus.
17 ’’’
18

19 # IMPORT PACKAGES
20 from part import *
21 from material import *
22 from section import *
23 from assembly import *
24 from step import *
25 from interaction import *
26 from load import *
27 from mesh import *
28 from optimization import *
29 from job import *
30 from sketch import *
31 from visualization import *
32 from connectorBehavior import *

97

98 B.Optimisation Python Code

33 from caeModules import *
34 from driverUtils import executeOnCaeStartup
35

36 import numpy as np
37 import random
38 import time
39 import string
40

41 LETTERS = string.ascii_uppercase
42

43 #---
44 # Model Name is Rocha Ballistic Test
45 mdb.models.changeKey(fromName=’Model -1’, toName=’RochaBallisticTest ’)
46

47 # Define Materials ---------------------------
48

49 #Material Matrix (Lines -> Materials | Column 1 -> Density | Column 2 ->
Young’s Modulus | Column 3 -> Poisson ’s Modulus)

50 IsaacMat =[[7850.0 , 200000000000.0 , 0.33] , #Steel
51 [2700.0 , 70000000000.0 , 0.33] , #Aluminium
52 [1140.0 , 3000e6 , 0.35], #Nylon -6
53 [960.0 , 2.5e6, 0.499] , #EPDM
54 [293.0 , 900e6, 0.3], #Cork
55 [410.0 , 103.08e6, 0.05]] #AlFoam
56

57 RochaMat =[[7850.0 , 200000000000.0 , 0.29] , #AISI 4340 Steel
58 [2710.0 , 68900000000.0 , 0.33] , #Al 1100 Aluminium
59 [1140.0 , 3000e6 , 0.35], #Nylon -6
60 [960.0 , 2.5e6, 0.499] , #EPDM
61 [293.0 , 900e6, 0.3], #Cork
62 [410.0 , 103.08e6, 0.05]] #AlFoam
63

64 # Isaac Steel ---
65 mdb.models[’RochaBallisticTest ’]. Material(description=
66 ’Generic Steel used by Isaac (for validation purposes)’, name=’Steel ’)
67 mdb.models[’RochaBallisticTest ’]. materials[’Steel ’]. Density(table =((

IsaacMat [0][0] ,),))
68 mdb.models[’RochaBallisticTest ’]. materials[’Steel ’]. Elastic(table =((
69 IsaacMat [0][1] , IsaacMat [0][2]) ,))
70

71 # Isaac Aluminium --
72 mdb.models[’RochaBallisticTest ’]. Material(description=
73 ’Generic Aluminium used by Isaac (for validation purposes)’, name=’

Aluminium ’)
74 mdb.models[’RochaBallisticTest ’]. materials[’Aluminium ’]. Density(table =((

IsaacMat [1][0] ,),))
75 mdb.models[’RochaBallisticTest ’]. materials[’Aluminium ’]. Elastic(table =((
76 IsaacMat [1][1] , IsaacMat [1][2]) ,))
77

78 # Isaac Nylon -6
79 mdb.models[’RochaBallisticTest ’]. Material(description=
80 ’Generic Nylon -6 used by Isaac (for validation purposes)’, name=’Nylon

-6’)
81 mdb.models[’RochaBallisticTest ’]. materials[’Nylon -6’]. Density(table =((

IsaacMat [2][0] ,),
82))
83 mdb.models[’RochaBallisticTest ’]. materials[’Nylon -6’]. Elastic(table =((
84 IsaacMat [2][1] , IsaacMat [2][2]) ,))

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 99

85

86 # Isaac EPDM
87 mdb.models[’RochaBallisticTest ’]. Material(description=
88 ’Generic EPDM used by Isaac (for validation purposes)’, name=’EPDM’)
89 mdb.models[’RochaBallisticTest ’]. materials[’EPDM’]. Density(table =((

IsaacMat [3][0] ,),
90))
91 mdb.models[’RochaBallisticTest ’]. materials[’EPDM’]. Elastic(table =((
92 IsaacMat [3][1] , IsaacMat [3][2]) ,))
93

94 # Isaac Cork
95 mdb.models[’RochaBallisticTest ’]. Material(description=
96 ’Generic Cork used by Isaac (for validation purposes)’, name=’Cork’)
97 mdb.models[’RochaBallisticTest ’]. materials[’Cork’]. Density(table =((

IsaacMat [4][0] ,),
98))
99 mdb.models[’RochaBallisticTest ’]. materials[’Cork’]. Elastic(table =((

100 IsaacMat [4][1] , IsaacMat [4][2]) ,))
101

102 # Isaac AlFoam
103 mdb.models[’RochaBallisticTest ’]. Material(description=
104 ’Generic AlFoam used by Isaac (for validation purposes)’, name=’AlFoam ’

)
105 mdb.models[’RochaBallisticTest ’]. materials[’AlFoam ’]. Density(table =((

IsaacMat [5][0] ,),
106))
107 mdb.models[’RochaBallisticTest ’]. materials[’AlFoam ’]. Elastic(table =((
108 IsaacMat [5][1] , IsaacMat [5][2]) ,))
109

110 # Rocha Steel (Plastic)
111 mdb.models[’RochaBallisticTest ’]. Material(description=
112 "", name=’AISI 4340’)
113 mdb.models[’RochaBallisticTest ’]. materials[’AISI 4340’]. Density(table =((

RochaMat [0][0] ,),))
114 mdb.models[’RochaBallisticTest ’]. materials[’AISI 4340’]. Elastic(table =((

RochaMat [0][1] ,
115 RochaMat [0][2]) ,))
116 mdb.models[’RochaBallisticTest ’]. materials[’AISI 4340’]. Plastic(table

=((1422388759.0 , 0.0), (1506589975.0 , 0.001552465) , (1602274025.0 ,
117 0.003704129) , (1656677772.0 , 0.00554614) , (1733470785.0 , 0.008297903) , (
118 1789161620.0 , 0.010591797) , (1869211139.0 , 0.01469589) , (1942047190.0 ,
119 0.020132245) , (2004175089.0 , 0.025095371) , (2059022278.0 , 0.031367939) , (
120 2114397671.0 , 0.037601408) , (2139159494.0 , 0.044231875) , (2172926785.0 ,
121 0.04994356) , (2185282025.0 , 0.055613446) , (2204326278.0 , 0.064290472)))
122

123 # Rocha Aluminium (Plastic)
124 mdb.models[’RochaBallisticTest ’]. Material(description=
125 "", name=’Al 1100 Aluminium ’)
126 mdb.models[’RochaBallisticTest ’]. materials[’Al 1100 Aluminium ’]. Density(

table =((RochaMat [1][0] ,),
127))
128 mdb.models[’RochaBallisticTest ’]. materials[’Al 1100 Aluminium ’]. Elastic(

table =((
129 RochaMat [1][1] , RochaMat [1][2]) ,))
130 mdb.models[’RochaBallisticTest ’]. materials[’Al 1100 Aluminium ’]. Plastic(

table =((
131 36097600.0 , 0.0), (38048800.0 , 0.0014) , (39512200.0 , 0.003) ,

(42195100.0 ,

Pedro Miguel Monteiro da Rocha Master Degree

100 B.Optimisation Python Code

132 0.0059) , (48048800.0 , 0.0137) , (52926800.0 , 0.0228) , (57317100.0 ,
0.0333) ,

133 (62439000.0 , 0.0502) , (66097600.0 , 0.0661) , (68048800.0 , 0.0798) , (
134 69268300.0 , 0.0897) , (69268300.0 , 0.0975) , (68292700.0 , 0.1008) , (
135 67317100.0 , 0.1036) , (64634100.0 , 0.1062)))
136

137 # Rocha Nylon (Plastic)
138 mdb.models[’RochaBallisticTest ’]. Material(description=’’,
139 name=’Nylon -6P’)
140 mdb.models[’RochaBallisticTest ’]. materials[’Nylon -6P’]. Density(table

=((1200.0 ,),))
141 mdb.models[’RochaBallisticTest ’]. materials[’Nylon -6P’]. Elastic(table

=((2330000000.0 , 0.39) ,
142))
143 mdb.models[’RochaBallisticTest ’]. materials[’Nylon -6P’]. Plastic(table

=((13710290.98 , 0.0), (
144 18424585.23 , 0.00787) , (22498356.87 , 0.01685) , (25288294.93 , 0.02544) , (
145 27011491.96 , 0.03663) , (28091776.37 , 0.04669) , (28316835.63 , 0.05712) , (
146 27685873.05 , 0.06717) , (26628692.07 , 0.07871) , (25999322.83 , 0.09025) , (
147 25582664.46 , 0.10067) , (25595012.85 , 0.11222) , (25607361.23 , 0.12377) , (
148 25845565.54 , 0.14649) , (25865482.28 , 0.16511) , (25881814.02 , 0.18038) , (
149 25753424.66 , 0.18212) , (25753424.66 , 0.34433) , (26301369.86 , 0.51612) , (
150 27397260.27 , 0.83105) , (27397260.27 , 1.08869) , (29041095.89 , 1.3464) , (
151 30684931.51 , 1.64228) , (34520547.95 , 1.97643) , (37808219.18 , 2.26285) , (
152 40000000.0 , 2.47288)))
153

154 MaterialsEl =("Steel", "Aluminium", "Nylon -6", "EPDM", "Cork", "AlFoam")
155 MaterialsPl =("AISI 4340", "Al 1100 Aluminium", "Nylon -6P")
156

157 # Number of Frames --
158 Frames =150
159

160 #---
161 # Selecting Parameters
162

163 # Plate Parameters (Dimentions in mm)--------------------------------
164

165 LpA =300.0 #Length
166 WpA =300.0 #Width
167

168 # Plate Thickness parameters exclusively for model generation
169 # TpA=0 #Thickness Plate A
170 # TpB=0 #Thickness Plate B
171 # TpC=0 #Thickness Plate C
172 # TpD=0 #Thickness Plate D
173 # TpE=0 #Thickness Plate E
174 # TpF=0 #Thickness Plate F
175 # TpG=0 #Thickness Plate G
176 # TpH=0 #Thickness Plate H
177

178 # TpALL=(TpA ,TpB ,TpC ,TpD ,TpE ,TpF ,TpG ,TpH)
179

180 #---
181 # Projectile Parameters (Dimentions in mm)
182

183 Lproj =60.0 #Length
184 Dproj =20.0 #Diameter
185 FilletRadius =0.5 #Radius of Contact Edge Fillet

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 101

186 ProjMass =0.147025 #Mass (kg)
187

188

189 #--
190 # Number of Plates
191

192 NPlates = 3
193

194 #--
195 # Plate Materials
196 NumMatA =1 #Index Materials
197 NumMatB =2
198 NumMatC =0
199 NumMatD =2
200 NumMatE =0
201 NumMatF =0
202 NumMatG =0
203 NumMatH =0
204

205 PlateAmat= MaterialsPl[NumMatA] #Elastic List / Plastic List
206 PlateBmat= MaterialsEl[NumMatB]
207 PlateCmat= MaterialsPl[NumMatC]
208 PlateDmat= MaterialsEl[NumMatD]
209 PlateEmat= MaterialsPl[NumMatE]
210 PlateFmat= MaterialsPl[NumMatF]
211 PlateGmat= MaterialsPl[NumMatG]
212 PlateHmat= MaterialsPl[NumMatH]
213

214 AllPlateMat =(PlateAmat ,PlateBmat ,PlateCmat ,PlateDmat ,PlateEmat ,PlateFmat ,
PlateGmat ,PlateHmat)

215

216 # Immediately run simulation if SimulON = 1 / if SimulON = 0 manual job
subimission is required

217 SimulON = 1
218

219 #---
220

221 def Rocha3PlateModel(thicknessA ,thicknessB ,thicknessC): # Model Generator
Function (3-layer plate model), number of inputs according to number

of plates
222

223 # Plate Parameters (Dimentions in mm)
224

225 LpA =300.0 #Length
226 WpA =300.0 #Width
227

228 # Plate Thickness Parameters ------------------
229

230 TpA = thicknessA #Thickness Plate A
231 TpB = thicknessB #Thickness Plate B
232 TpC = thicknessC #Thickness Plate C
233 TpD=0 #Thickness Plate D
234 TpE=0 #Thickness Plate E
235 TpF=0 #Thickness Plate F
236 TpG=0 #Thickness Plate G
237 TpH=0 #Thickness Plate H
238

239 #Plate Thickness Vector

Pedro Miguel Monteiro da Rocha Master Degree

102 B.Optimisation Python Code

240

241 TpALL=(TpA ,TpB ,TpC ,TpD ,TpE ,TpF ,TpG ,TpH)
242

243 # Assembly Details --
244

245 DistProj =0.0011 # Distance between Projectile and Plate A in mm
246

247 #--
248 # Conditions of Simulation
249

250 VelProj =40.0 # Velocity of the projectile in m/s
251 EventTime =40.0E-5 # Duration of the event analysis in s
252 NumFrames=Frames # Number of frames calculated
253 NumHOutput =50 # Number of History Output frames calculated
254 FrictionPenalty =0.2 # Friction Penalty used in the Projectile -Plate

Interaction
255

256 #---
257 # Mesh Parameters
258

259 NElemThickness=int(round(TpA /2.5 ,0) +1) # Number of elements along the
thickness of the plate

260 NElemCenter =5 # Number of Elements of the sides of the Center Square
Partition

261 NElemD1 =2 # Number of Elements along the Radius of the First
Diameter (First Diameter = Projectile Diameter)

262 NElemD2 =4 # Number of Elements between the Radius of the First
Diameter and Second Diameter (Second Diameter = 2* Projectile
Diameter)

263 NElemSQ1 =10 # Number of Elements between the Radius of the Second
Diameter and the First Large Square Partition

264 NElemSQ2 =10 # Number of Elements between the First Large Square
Partition and the Second One

265 NElemSQ3 =10 # Number of Elements between the Second Large Square
Partition and the Third One

266 NElemSQ4 =5 # Number of Elements on the last partition in X
direction (Y direction is influenced by the center square ’s number of
elements)

267

268 NElemThicknessPlateB=int(round(TpB /2.5 ,0) +1)
269 NElemThicknessPlateC=int(round(TpC /2.5 ,0) +1)
270 NElemThicknessPlateD=int(round(TpD /2.5 ,0) +1)
271 NElemThicknessPlateE=int(round(TpE /2.5 ,0) +1)
272 NElemThicknessPlateF=int(round(TpF /2.5 ,0) +1)
273 NElemThicknessPlateG=int(round(TpG /2.5 ,0) +1)
274 NElemThicknessPlateH=int(round(TpH /2.5 ,0) +1)
275

276 # Element Thickness Vector --------------------------------------
277 NElemThicknessALL =(NElemThickness , NElemThicknessPlateB ,

NElemThicknessPlateC , NElemThicknessPlateD , NElemThicknessPlateE ,
NElemThicknessPlateF , NElemThicknessPlateG , NElemThicknessPlateH)

278

279 #Finite Element Type Choice
280

281 ElemP1=C3D8R
282 ElemP23=C3D8R
283 ElemP45=C3D8R
284

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 103

285 #--
286 #--
287 #Create PlateA ---
288

289 mdb.models[’RochaBallisticTest ’]. ConstrainedSketch(name=’__profile__ ’,
290 sheetSize =0.5)
291 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. rectangle(

point1 =(0.0 ,
292 0.0), point2 =(LpA /2000, WpA /2000))
293 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

FixedConstraint(
294 entity=
295 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. vertices [0])
296 mdb.models[’RochaBallisticTest ’].Part(dimensionality=THREE_D , name=’

PlateA ’,
297 type=DEFORMABLE_BODY)
298 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. BaseSolidExtrude(depth

=TpA/1000,
299 sketch=mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’])
300 del mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]
301

302

303 #---
304 #Create Partition
305 #Partition Sketch
306

307 mdb.models[’RochaBallisticTest ’]. ConstrainedSketch(gridSpacing =0.005 ,
name=

308 ’__profile__ ’, sheetSize =0.250 , transform=
309 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. MakeSketchTransform(
310 sketchPlane=mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces

[4],
311 sketchPlaneSide=SIDE1 ,
312 sketchUpEdge=mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. edges

[7],
313 sketchOrientation=RIGHT , origin =(0.0, 0.0, LpA /2000)))
314 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. sketchOptions.

setValues(
315 decimalPlaces =3)
316 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

projectReferencesOntoSketch(
317 filter=COPLANAR_EDGES , sketch=
318 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’])
319 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. rectangle(

point1 =(
320 0.0, 0.0), point2 =(0.005 , 0.005))
321 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. PartitionFaceBySketch(

faces=
322 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
323 (’[#10]’,),), sketch=
324 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’],

sketchUpEdge=
325 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [7])
326 del mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]
327

328 mdb.models[’RochaBallisticTest ’]. ConstrainedSketch(name=’__edit__ ’,
329 objectToCopy=

Pedro Miguel Monteiro da Rocha Master Degree

104 B.Optimisation Python Code

330 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. features[’Partition
face -1’]. sketch)

331 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].
projectReferencesOntoSketch(

332 filter=COPLANAR_EDGES , sketch=
333 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’], upToFeature=
334 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. features[’Partition

face -1’])
335 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’].Line(point1

=(0.005 ,
336 0.005) , point2 =(LpA /2000, WpA /2000))
337 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]. ArcByCenterEnds(

center =(
338 0.0, 0.0), direction=CLOCKWISE , point1 =(0.0 , 0.01), point2 =(0.01 ,

0.0))
339 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]. ArcByCenterEnds(

center =(
340 0.0, 0.0), direction=CLOCKWISE , point1 =(0.0 , 0.02), point2 =(0.02 ,

0.0))
341 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]. rectangle(point1

=(0.0,
342 0.0), point2 =(LpA /4000, WpA /4000))
343

344 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. features[’Partition
face -1’]. setValues(

345 sketch=mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’])
346 del mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]
347 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. regenerate ()
348

349

350 #---
351 #Create Partition Cells
352

353 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].
PartitionCellByExtrudeEdge(

354 cells=
355 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
356 (’[#1]’,),), edges=(
357 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [15],
358 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [20]), line=
359 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [25], sense=

REVERSE)
360 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
361 cells=
362 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
363 (’[#2]’,),), edges=(
364 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [17],
365 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [21],
366 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [26],
367 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [29]), line=
368 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [16], sense=

REVERSE)
369 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
370 cells=

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 105

371 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.
getSequenceFromMask(

372 (’[#4]’,),), edges=(
373 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [17],
374 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [31]), line=
375 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [24], sense=

REVERSE)
376 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
377 cells=
378 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
379 (’[#8]’,),), edges=(
380 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [4],
381 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [33]), line=
382 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [30], sense=

REVERSE)
383 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
384 cells=
385 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
386 (’[#1]’,),), edges=(
387 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [4],
388 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [38]), line=
389 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [36], sense=

REVERSE)
390 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
391 cells=
392 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
393 (’[#8]’,),), edges=(
394 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [49],
395 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [54]), line=
396 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [42], sense=

REVERSE)
397 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
398 cells=
399 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
400 (’[#10]’,),), edges=(
401 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [52],
402 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [54]), line=
403 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [47], sense=

REVERSE)
404 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].

PartitionCellByExtrudeEdge(
405 cells=
406 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
407 (’[#20]’,),), edges=(
408 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [54],
409 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [57]), line=
410 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges [52], sense=

REVERSE)
411

Pedro Miguel Monteiro da Rocha Master Degree

106 B.Optimisation Python Code

412

413 #--
414 #Create Projectile
415

416 mdb.models[’RochaBallisticTest ’]. ConstrainedSketch(name=’__profile__ ’,
417 sheetSize =0.04)
418 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. sketchOptions.

setValues(
419 decimalPlaces =3)
420 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

ConstructionLine(
421 point1 =(0.0 , -0.02), point2 =(0.0 , 0.02))
422 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

FixedConstraint(
423 entity=
424 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. geometry [2])
425 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].Line(point1

=(0.0, 0.0)
426 , point2 =(Dproj /2000, 0.0))
427 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

HorizontalConstraint(
428 addUndoState=False , entity=
429 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. geometry [3])
430 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].Line(point1 =(

Dproj /2000,
431 0.0), point2 =(Dproj /2000, Lproj /1000))
432 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

VerticalConstraint(
433 addUndoState=False , entity=
434 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. geometry [4])
435 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

PerpendicularConstraint(
436 addUndoState=False , entity1=
437 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. geometry [3],
438 entity2=
439 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. geometry [4])
440 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

ConstructionLine(
441 point1 =(0.0 , 0.0117499999998327) , point2 =(0.0 , -0.00779504235833883))
442 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

VerticalConstraint(
443 addUndoState=False , entity=
444 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. geometry [5])
445 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’].

FixedConstraint(
446 entity=
447 mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]. vertices [0])
448 mdb.models[’RochaBallisticTest ’].Part(dimensionality=THREE_D , name=’

Projectile ’,
449 type=ANALYTIC_RIGID_SURFACE)
450 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’].

AnalyticRigidSurfRevolve(
451 sketch=mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’])
452 del mdb.models[’RochaBallisticTest ’]. sketches[’__profile__ ’]
453 mdb.models[’RochaBallisticTest ’]. ConstrainedSketch(name=’__edit__ ’,
454 objectToCopy=
455 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. features[’3D

Analytic rigid shell -1’]. sketch)

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 107

456

457 # Projectile ’s Fillet --
458

459 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’].
projectReferencesOntoSketch(

460 filter=COPLANAR_EDGES , sketch=
461 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’], upToFeature=
462 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. features[’3D

Analytic rigid shell -1’])
463 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]. FilletByRadius(

curve1=
464 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]. geometry [3],

curve2=
465 mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]. geometry [4],
466 nearPoint1 =(0.00743559375405312 , 4.74941916763783e-05), nearPoint2 =(
467 0.0100798755884171 , 0.0023565455339849) , radius=FilletRadius /1000)
468 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. features[’3D

Analytic rigid shell -1’]. setValues(
469 sketch=mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’])
470 del mdb.models[’RochaBallisticTest ’]. sketches[’__edit__ ’]
471 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. regenerate ()
472

473 #--
474 # Assign Mass to projectile
475

476 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. ReferencePoint(
point=

477 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. InterestingPoint
(

478 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’].edges[3], CENTER
))

479 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’].Set(name=’
RPProjInert ’,

480 referencePoints =(
481 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’]. referencePoints

[2],))
482 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’].

engineeringFeatures.PointMassInertia(
483 alpha =0.0, composite =0.0, mass=ProjMass , name=’ProjInertia ’, region=
484 mdb.models[’RochaBallisticTest ’].parts[’Projectile ’].sets[’

RPProjInert ’])
485

486 #---
487 # Assembly 1 Plate
488

489 mdb.models[’RochaBallisticTest ’]. rootAssembly.DatumCsysByDefault(
CARTESIAN)

490 mdb.models[’RochaBallisticTest ’]. rootAssembly.Instance(dependent=ON ,
name=

491 ’PlateA -1’, part=mdb.models[’RochaBallisticTest ’]. parts[’PlateA ’])
492 mdb.models[’RochaBallisticTest ’]. rootAssembly.Instance(dependent=ON ,

name=
493 ’Projectile -1’, part=mdb.models[’RochaBallisticTest ’]. parts[’

Projectile ’])
494

495 #--
496 # Rotate Projectile
497 mdb.models[’RochaBallisticTest ’]. rootAssembly.rotate(angle =90.0,

Pedro Miguel Monteiro da Rocha Master Degree

108 B.Optimisation Python Code

axisDirection=
498 (0.01, 0.0, 0.0), axisPoint =(0.0 , 0.0, 0.0), instanceList =(’

Projectile -1’,
499))
500

501 #--
502 # Translate Projectile
503

504 mdb.models[’RochaBallisticTest ’]. rootAssembly.translate(instanceList =(
505 ’Projectile -1’,), vector =(0.0 , 0.0, (TpA /1000) +(DistProj /1000)))
506

507

508 #--
509 # Create Step
510

511 # Boundary Conditions ---
512

513 mdb.models[’RochaBallisticTest ’]. rootAssembly.Set(faces=
514 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’PlateA -1’].

faces.getSequenceFromMask(
515 (’[#4044400 #10]’,),), name=’SurfaceXX ’)
516 mdb.models[’RochaBallisticTest ’]. XsymmBC(createStepName=’Initial ’,

localCsys=
517 None , name=’BC -SymmXX ’, region=
518 mdb.models[’RochaBallisticTest ’]. rootAssembly.sets[’SurfaceXX ’])
519 mdb.models[’RochaBallisticTest ’]. rootAssembly.Set(faces=
520 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’PlateA -1’].

faces.getSequenceFromMask(
521 (’[#8000124 #80]’,),), name=’SurfaceYY ’)
522 mdb.models[’RochaBallisticTest ’]. YsymmBC(createStepName=’Initial ’,

localCsys=
523 None , name=’BC -SymmYY ’, region=
524 mdb.models[’RochaBallisticTest ’]. rootAssembly.sets[’SurfaceYY ’])
525 mdb.models[’RochaBallisticTest ’]. rootAssembly.Set(faces=
526 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’PlateA -1’].

faces.getSequenceFromMask(
527 (’[#44484492 #800012]’,),), name=’SurfaceRear ’)
528 mdb.models[’RochaBallisticTest ’]. rootAssembly.Set(name=’ProjRP ’,
529 referencePoints =(
530 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Projectile -1

’]. referencePoints [2],
531))
532 mdb.models[’RochaBallisticTest ’]. VelocityBC(amplitude=UNSET ,

createStepName=
533 ’Initial ’, distributionType=UNIFORM , fieldName=’’, localCsys=None ,

name=
534 ’BC-Velocity ’, region=
535 mdb.models[’RochaBallisticTest ’]. rootAssembly.sets[’ProjRP ’], v1=0.0,

v2=
536 0.0, v3=UNSET , vr1=0.0, vr2=0.0, vr3 =0.0)
537 mdb.models[’RochaBallisticTest ’]. rootAssembly.Set(name=’ProjRPVel ’,
538 referencePoints =(
539 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Projectile -1

’]. referencePoints [2],
540))
541 mdb.models[’RochaBallisticTest ’]. Velocity(distributionType=MAGNITUDE ,

field=’’,
542 name=’PredField -VelocityProj ’, omega =0.0, region=

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 109

543 mdb.models[’RochaBallisticTest ’]. rootAssembly.sets[’ProjRPVel ’],
velocity1=

544 0.0, velocity2 =0.0, velocity3=-VelProj)
545

546 #---
547 # Create Transient Step (Explicit Dynamic)
548

549 mdb.models[’RochaBallisticTest ’]. ExplicitDynamicsStep(description=
550 ’Simula x segundos do evento (impacto de um projetil na placa

encastrada)’,
551 name=’TransientBulletImpact ’, previous=’Initial ’, timePeriod=

EventTime)
552 mdb.models[’RochaBallisticTest ’]. fieldOutputRequests.changeKey(fromName

=
553 ’F-Output -1’, toName=’Requested Field Outputs ’)
554 mdb.models[’RochaBallisticTest ’]. fieldOutputRequests[’Requested Field

Outputs ’]. setValues(
555 numIntervals=NumFrames , timeMarks=ON)
556

557 #---
558 # Create Interactions
559

560 mdb.models[’RochaBallisticTest ’]. ContactProperty(’IntProp -
FrictionBetween ’)

561 mdb.models[’RochaBallisticTest ’]. interactionProperties[’IntProp -
FrictionBetween ’]. TangentialBehavior(

562 dependencies =0, directionality=ISOTROPIC , elasticSlipStiffness=None ,
563 formulation=PENALTY , fraction =0.005 , maximumElasticSlip=FRACTION ,
564 pressureDependency=OFF , shearStressLimit=None , slipRateDependency=OFF

,
565 table =((FrictionPenalty ,),), temperatureDependency=OFF)
566 mdb.models[’RochaBallisticTest ’]. rootAssembly.Surface(name=’ProjSurf ’,
567 side1Faces=
568 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Projectile -1

’].faces.getSequenceFromMask(
569 (’[#3]’,),))
570 mdb.models[’RochaBallisticTest ’]. rootAssembly.Surface(name=’

FrontSurface ’,
571 side1Faces=
572 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’PlateA -1’].

faces.getSequenceFromMask(
573 (’[# f0000000 #10f]’,),))
574 mdb.models[’RochaBallisticTest ’]. SurfaceToSurfaceContactExp(

clearanceRegion=
575 None , createStepName=’TransientBulletImpact ’, datumAxis=None ,
576 initialClearance=OMIT , interactionProperty=’IntProp -FrictionBetween ’,
577 master=mdb.models[’RochaBallisticTest ’]. rootAssembly.surfaces[’

ProjSurf ’],
578 mechanicalConstraint=PENALTY , name=’Int -BulletPlate ’, slave=
579 mdb.models[’RochaBallisticTest ’]. rootAssembly.surfaces[’FrontSurface ’

],
580 sliding=FINITE)
581

582 # Create History Output --
583

584 mdb.models[’RochaBallisticTest ’]. rootAssembly.regenerate ()
585 mdb.models[’RochaBallisticTest ’]. HistoryOutputRequest(createStepName=
586 ’TransientBulletImpact ’, interactions =(’Int -BulletPlate ’,), name=

Pedro Miguel Monteiro da Rocha Master Degree

110 B.Optimisation Python Code

587 ’RequestedAddHOutput ’, rebar=EXCLUDE , sectionPoints=DEFAULT ,
variables =(

588 ’CFNM’, ’CFN1’, ’CFN2’, ’CFN3’))
589

590 mdb.models[’RochaBallisticTest ’]. historyOutputRequests[’
RequestedAddHOutput ’]. setValues(

591 numIntervals=NumHOutput)
592

593 #---
594 # Create Mesh
595

596 # Seeding ---
597

598 # Thickness Seeds --
599

600 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. seedEdgeByNumber(
constraint=

601 FINER , edges=
602 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
603 (’[#1244830a #8208 c082]’,),), number=NElemThickness)
604 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
605 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
606 (’[#1244830a #8208 c082]’,),), name=’ThicknessSeeds ’)
607

608 # Cell N1---
609

610 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. seedEdgeByNumber(
constraint=

611 FINER , edges=
612 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
613 (’[#0 #21760800]’,),), number=NElemCenter)
614 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
615 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
616 (’[#0 #21760800]’,),), name=’SeedsCell1 ’)
617

618 # Cell N2N3 --
619

620 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. seedEdgeByNumber(
constraint=

621 FINER , edges=
622 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
623 (’[# a00000 #803400]’,),), number=NElemD1)
624 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
625 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
626 (’[# a00000 #803400]’,),), name=’SeedsCell23 ’)
627

628 # Cell N4N5 ---
629

630 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. seedEdgeByNumber(
constraint=

631 FINER , edges=
632 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 111

getSequenceFromMask(
633 (’[#114000 #260]’,),), number=NElemD2)
634 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
635 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
636 (’[#114000 #260]’,),), name=’SeedsCell45 ’)
637

638 # Cell N6N7 ---
639

640 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. seedEdgeByNumber(
constraint=

641 FINER , edges=
642 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
643 (’[#800000 d0 #9]’,),), number=NElemSQ1)
644 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
645 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
646 (’[#800000 d0 #9]’,),), name=’SeedsCell67 ’)
647

648 # Cell N8N9 ---
649

650 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. seedEdgeByNumber(
constraint=

651 FINER , edges=
652 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
653 (’[#28002800 #8010000]’,),), number=NElemSQ2)
654 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
655 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
656 (’[#28002800 #8010000]’,),), name=’SeedsCell89 ’)
657

658 #---
659 # Meshing
660

661 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
662 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
663 (’[#80]’,),))
664 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
665 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
666 (’[#20]’,),))
667 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
668 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
669 (’[#4]’,),))
670 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
671 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
672 (’[#100]’,),))
673 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
674 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
675 (’[#2]’,),))
676 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
677 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

Pedro Miguel Monteiro da Rocha Master Degree

112 B.Optimisation Python Code

getSequenceFromMask(
678 (’[#8]’,),))
679 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
680 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
681 (’[#1]’,),))
682 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
683 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
684 (’[#40]’,),))
685 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. generateMesh(regions=
686 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
687 (’[#10]’,),))
688

689 # Assign Element Type ---
690

691 #Partition 1--
692

693 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. setElementType(
elemTypes =(

694 ElemType(elemCode=ElemP1 , elemLibrary=EXPLICIT , secondOrderAccuracy=
OFF ,

695 distortionControl=DEFAULT), ElemType(elemCode=C3D6 , elemLibrary=
EXPLICIT),

696 ElemType(elemCode=C3D4 , elemLibrary=EXPLICIT)), regions =(
697 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
698 (’[#80]’,),),))
699

700 #Partition 2 and 3--
701

702 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. setElementType(
elemTypes =(

703 ElemType(elemCode=ElemP23 , elemLibrary=EXPLICIT , secondOrderAccuracy=
OFF ,

704 distortionControl=DEFAULT), ElemType(elemCode=C3D6 , elemLibrary=
EXPLICIT),

705 ElemType(elemCode=C3D4 , elemLibrary=EXPLICIT)), regions =(
706 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
707 (’[#20]’,),),))
708

709 #Partition 4 and 5--
710

711 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’]. setElementType(
elemTypes =(

712 ElemType(elemCode=ElemP45 , elemLibrary=EXPLICIT , secondOrderAccuracy=
OFF ,

713 distortionControl=DEFAULT), ElemType(elemCode=C3D6 , elemLibrary=
EXPLICIT),

714 ElemType(elemCode=C3D4 , elemLibrary=EXPLICIT)), regions =(
715 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].cells.

getSequenceFromMask(
716 (’[#4]’,),),))
717

718 #--
719 # Create Node Sets

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 113

720

721 # First Area of Impact Node Set (Nodal Area = Bullet Face Area)
722

723 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
724 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
725 (’[#0 #10a]’,),), name=’FR_IR_A ’)
726

727 # Second Area of Impact Node Set (Nodal Area = 2 * Bullet Face Area)
728

729 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
730 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
731 (’[#80000000 #10e]’,),), name=’FR_IR_B ’)
732

733 # Rear Impact Region A---
734

735 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
736 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
737 (’[#2480000]’,),), name=’R_IR_A ’)
738

739 # Rear Impact Region B---
740

741 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
742 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
743 (’[#2488080]’,),), name=’R_IR_B ’)
744

745 # Nodes on Impact Region along thickness --------------------------
746

747 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(edges=
748 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].edges.

getSequenceFromMask(
749 (’[#448000 #2084080]’,),), name=’AlongThickness ’)
750

751 # Front Surface ---
752

753 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
754 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
755 (’[# f0000000 #10f]’,),), name=’Frontal_Surface ’)
756

757 # Rear Surface --
758

759 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
760 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
761 (’[#2488892 #200]’,),), name=’Rear_Surface ’)
762

763 #Side Surface (for Encastre)--
764

765 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
766 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
767 (’[#0 #60]’,),), name=’SideSurfaces ’)
768

769 # Symmetry XX Surface - ---

Pedro Miguel Monteiro da Rocha Master Degree

114 B.Optimisation Python Code

770

771 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
772 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
773 (’[#4044400 #10]’,),), name=’SurfaceXX ’)
774

775 # Symmetry YY Surface
776

777 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].Set(faces=
778 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’].faces.

getSequenceFromMask(
779 (’[#8000124 #80]’,),), name=’SurfaceYY ’)
780

781

782 #--
783 # Copy Plate (Creates a new plate with the same geometry but editable

thickness
784

785 n=0
786 for n in range(1,NPlates):
787 mdb.models[’RochaBallisticTest ’].Part(name=’Plate ’ + LETTERS[n],

objectToCopy=
788 mdb.models[’RochaBallisticTest ’].parts[’PlateA ’])
789

790 #--
791 # Thickness of the New Plates -------------------------------------
792

793 n=0
794 for n in range(1,NPlates):
795 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. features

[’Solid extrude -1’]. setValues(
796 depth=TpALL[n]/1000)
797 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

regenerate ()
798

799 #--
800 # Apply Section to Plates
801

802 n=0
803 for n in range(NPlates):
804 mdb.models[’RochaBallisticTest ’]. HomogeneousSolidSection(material=

AllPlateMat[n],
805 name=’Plate’ + LETTERS[n] + ’Section ’, thickness=None)
806

807 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. Set(
cells=

808 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.
getSequenceFromMask(

809 (’[#fff]’,),), name=’FullPlate_ ’ + LETTERS[n])
810 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

SectionAssignment(offset =0.0,
811 offsetField=’’, offsetType=MIDDLE_SURFACE , region=
812 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. sets[’

FullPlate_ ’ + LETTERS[n]],
813 sectionName=’Plate ’ + LETTERS[n] + ’Section ’, thicknessAssignment=

FROM_SECTION)
814

815 # Create Assembly

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 115

--
816

817 # Create Instance

818

819 # Add Plates to the assembly

820

821 n=0
822 for n in range(1,NPlates):
823 mdb.models[’RochaBallisticTest ’]. rootAssembly.Instance(dependent=ON ,

name=
824 ’Plate ’ + LETTERS[n] + ’-1’, part=mdb.models[’RochaBallisticTest ’].

parts[’Plate ’ + LETTERS[n]])
825

826 #Translate Plates
--

827

828 n=0
829 currTp =0
830 for n in range(1,NPlates):
831

832 currTp = currTp + TpALL[n] #Total Current Thickness
833 mdb.models[’RochaBallisticTest ’]. rootAssembly.translate(instanceList

=(
834 ’Plate ’ + LETTERS[n] + ’-1’,), vector =(0.0 , 0.0, -currTp /1000))
835

836 # Boundary Conditions
--

837

838 # Encastre
--

839

840 n=0
841 for n in range(NPlates):
842 mdb.models[’RochaBallisticTest ’]. EncastreBC(createStepName=’Initial ’,
843 localCsys=None , name=’BC -EncastreP ’ + LETTERS[n], region=
844 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Plate’ +

LETTERS[n] + ’-1’].sets[’SideSurfaces ’])
845

846 # Symmetry XX
847

848 n=0
849 for n in range(1,NPlates):
850 mdb.models[’RochaBallisticTest ’]. XsymmBC(createStepName=’Initial ’,

localCsys=
851 None , name=’SymmXX ’ + LETTERS[n], region=
852 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Plate’ +

LETTERS[n] + ’-1’].sets[’SurfaceXX ’])
853

854

855 # Symmetry YY--
856

857 n=0
858 for n in range(1,NPlates):
859 mdb.models[’RochaBallisticTest ’]. YsymmBC(createStepName=’Initial ’,

localCsys=
860 None , name=’SymmYY ’ + LETTERS[n], region=

Pedro Miguel Monteiro da Rocha Master Degree

116 B.Optimisation Python Code

861 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Plate’ +
LETTERS[n] + ’-1’].sets[’SurfaceYY ’])

862

863 # Tie Constraint --
864

865 n=0
866 for n in range(1,NPlates):
867 mdb.models[’RochaBallisticTest ’]. rootAssembly.Surface(name=’

Tie_R_Surf ’ + LETTERS[n-1],
868 side1Faces=
869 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Plate’ +

LETTERS[n-1] + ’-1’].faces.getSequenceFromMask(
870 (’[#2488892 #200]’,),))
871 mdb.models[’RochaBallisticTest ’]. rootAssembly.Surface(name=’

Tie_FR_Surf ’ + LETTERS[n],
872 side1Faces=
873 mdb.models[’RochaBallisticTest ’]. rootAssembly.instances[’Plate’ +

LETTERS[n] + ’-1’]. faces.getSequenceFromMask(
874 (’[# f0000000 #10f]’,),))
875 mdb.models[’RochaBallisticTest ’].Tie(adjust=ON , constraintEnforcement

=
876 NODE_TO_SURFACE , master=
877 mdb.models[’RochaBallisticTest ’]. rootAssembly.surfaces[’Tie_R_Surf ’

+ LETTERS[n-1]],
878 name=’TieSurfaces ’ + LETTERS[n-1] + LETTERS[n],

positionToleranceMethod=COMPUTED , slave=
879 mdb.models[’RochaBallisticTest ’]. rootAssembly.surfaces[’Tie_FR_Surf

’ + LETTERS[n]],
880 thickness=ON, tieRotations=ON)
881

882

883 # Thickness Seeds New Plates ---
884

885 n=0
886 for n in range(1,NPlates):
887 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

seedEdgeByNumber(constraint=
888 FINER , edges=
889 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. edges.

getSequenceFromMask(
890 (’[#1244830a #8208 c082]’,),), number=NElemThicknessALL[n])
891 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. Set(

edges=
892 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. edges.

getSequenceFromMask(
893 (’[#1244830a #8208 c082]’,),), name=’ThicknessSeeds ’)
894

895

896 # Meshing Plates --
897

898 n=0
899 for n in range(1,NPlates):
900 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
901 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
902 (’[#80]’,),))
903 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 117

generateMesh(regions=
904 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
905 (’[#20]’,),))
906 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
907 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
908 (’[#4]’,),))
909 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
910 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
911 (’[#100]’,),))
912 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
913 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
914 (’[#2]’,),))
915 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
916 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
917 (’[#8]’,),))
918 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
919 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
920 (’[#1]’,),))
921 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
922 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
923 (’[#40]’,),))
924 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]].

generateMesh(regions=
925 mdb.models[’RochaBallisticTest ’].parts[’Plate’ + LETTERS[n]]. cells.

getSequenceFromMask(
926 (’[#10]’,),))
927

928 #---
929 # Create Job
930 # Print Parameters of the model
931

932 print("Process Job")
933 print(TpA ,"Plate A Thickness")
934 print(TpB ,"Plate B Thickness")
935 print(TpC ,"Plate C Thickness")
936

937 mdb.Job(activateLoadBalancing=False , atTime=None , contactPrint=OFF ,
description=’’, echoPrint=OFF , explicitPrecision=DOUBLE_PLUS_PACK ,
historyPrint=OFF , memory =70, memoryUnits=PERCENTAGE , model=’
RochaBallisticTest ’, modelPrint=OFF , multiprocessingMode=DEFAULT , name
=’RochaPSO_V2 ’, nodalOutputPrecision=FULL , numCpus=4, numDomains =4,
parallelizationMethodExplicit=DOMAIN , queue=None , resultsFormat=ODB ,
scratch=’’, type=ANALYSIS , userSubroutine=’’, waitHours=0, waitMinutes
=0)

938

Pedro Miguel Monteiro da Rocha Master Degree

118 B.Optimisation Python Code

939 if (SimulON == 1):
940

941 mdb.jobs[’RochaPSO_V2 ’]. submit(consistencyChecking=OFF)
942 mdb.jobs[’RochaPSO_V2 ’]. waitForCompletion ()
943

944

945 def DataAcq (): # Data acquisition function
946

947 #Create rear surface stress plot
948

949 o1 = session.openOdb(name=’C:/temp/RochaPSO_V2.odb’)
950 session.viewports[’Viewport: 1’]. setValues(displayedObject=o1)
951

952 odb = session.odbs[’C:/temp/RochaPSO_V2.odb’]
953 xyList = xyPlot.xyDataListFromField(odb=odb , outputPosition=

INTEGRATION_POINT ,
954 variable =((’S’, INTEGRATION_POINT , ((COMPONENT , ’S33’),)),),
955 elementSets =(’PLATEC -1. R_IR_A ’,))
956 # Calculations
957

958 #--------------------------------
959 # Calculates Maximum Stress
960 #--------------------------------
961

962 AvgStress=np.zeros(Frames)
963

964 for a in range(Frames):
965 TensaoTotal =0
966 for b in range(len(xyList) -1):
967 TensaoTotal += xyList[b][a][1]
968 AvgStress[a]= TensaoTotal /(len(xyList))
969

970 MaxStress =0
971

972 for i in range(len(AvgStress)):
973 if (AvgStress[i] <= MaxStress):
974 MaxStress=AvgStress[i]
975

976 # Print (MaxStress)
977 MaxStress=round(MaxStress/pow (10 ,6) ,2)
978 print(MaxStress)
979

980 return MaxStress
981

982 def WeightCalc(L1 ,L2 ,tA ,rhoA ,tB,rhoB ,tC ,rhoC): # Calculates the true
weight of the armour system

983

984 wt = (L1 /1000.0) * (L2 /1000.0) * ((tA /1000.0)*rhoA + (tB /1000.0)*rhoB +
(tC /1000.0)*rhoC)

985

986 return wt
987

988 def PSO_calc (): # Particle Swarm Optimisation Algorithm
989

990 nP = 15 # Number of Particles
991 nIter = 30 # Number of Iterations
992 Inert = 0.5 # Weight Inertia
993 c1 = 1.0 # Cognitive Parameter

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 119

994 c2 = 2.0 # Social Parameter
995 rpen = 1000.0 # Penalty Parameter
996

997 Cond = 1 # Use --- Subject to --- Condition if Cond = 1
998

999 #Input (x variable)
1000 nVar=3 # Number of variables of the objective function
1001 xmin = np.zeros((nVar)) # Minimum Thickness
1002 xmax = np.zeros((nVar)) # Maxinum Thickness
1003 xmin [0] = 10.0 # Condition x min
1004 xmax [0] = 50.0 # Condition x max
1005 xmin [1] = 10.0 # Condition y min
1006 xmax [1] = 50.0 # Condition y max
1007 xmin [2] = 10.0 # Condition z min
1008 xmax [2] = 50.0 # Condition z max
1009 gmax = 1.0 # Subject to Condition | Maximum Stress (MPa)
1010

1011 CounterPb =0
1012 CounterGb =0
1013

1014 a=0
1015

1016 # 1ST ITERATION (STARTING POINT)
--

1017

1018 x = np.zeros ((nP,nIter ,nVar)) # x,y ,...(nVar) variable matrix
1019 y = np.zeros ((nP,nIter)) # y variable matrix
1020 fxP = np.zeros((nP ,nIter)) # f(x) [PENALIZED] variable matrix
1021 fx = np.zeros((nP,nIter)) # f(x) [TRUE] variable matrix
1022 gval = np.zeros((nP,nIter)) # Value of g(x)
1023 Gx = np.zeros((nP,nIter)) # g(x) variable matrix
1024 Pb=np.zeros((nP ,nIter ,nVar)) # Pb Personal Best matrix
1025 Pby=np.zeros ((nP,nIter))
1026 indPb=np.zeros ((nP ,1)) # Index of current personnel best matrix

1027 Gb=np.zeros((1,nIter ,nVar)) # Gb Global Best matrix
1028 Gby=np.zeros ((1,nIter))
1029 indGbp =0 # Current Global Best Particle
1030 indGbi =0 # Current Global Best Iteration
1031

1032 xRan = np.zeros((nVar ,nP))
1033

1034 for r in range(nVar): # Generate Initial Population
1035 xRan[r]= random.sample(range(int(xmin[r]),int(xmax[r])),nP)
1036

1037 for n in range(nP):
1038 curn = n+1
1039 print("Next particle , p. %d " %curn) # Prints which particle is

simulated
1040

1041 for b in range(nVar):
1042 x[n][0][b] = round(xRan[b][n],0) #Input x
1043

1044 fx[n][0] = WeightCalc(LpA ,WpA ,x[n][0][0] , RochaMat[NumMatA][0],x[n
][0][1] , RochaMat[NumMatB][0],x[n][0][2] , RochaMat[NumMatC][0]) #Output
f(x)

1045 # fx[n][0] = Calc2(x[n][0][0] ,x[n][0][1])
1046

Pedro Miguel Monteiro da Rocha Master Degree

120 B.Optimisation Python Code

1047 if (Cond == 0):
1048 fxP[n][0] = fx[n][0]
1049

1050 Rocha3PlateModel(x[n][0][0] ,x[n][0][1] ,x[n][0][2]) # Initialises the
simulation

1051

1052 # "Subject to" test
1053 if (Cond == 1):
1054 gval[n][0] = abs(DataAcq ())
1055 Gx[n][0] = gval[n][0]- gmax
1056 if (Gx[n][0] >0): #Penalty Condition
1057 fxP[n][0] = fx[n][0] + (pow(Gx[n][0] ,2)*rpen)
1058 else:
1059 fxP[n][0] = fx[n][0]
1060

1061 # PERSONAL BEST
1062 for b in range(nVar):
1063 Pb[n][0][b]=x[n][0][b]
1064 # Pby[n][0]=y[n][0]
1065 indPb[n][0]=0
1066

1067 #GLOBAL BEST (minimise => "<=" / maximise => ">=)
1068 if (fxP[n][0] <= fxP[a][0]):
1069 a=n
1070 for b in range(nVar):
1071 Gb [0][0][b]=x[n][0][b]
1072

1073 indGbp = n
1074 indGbi = 0
1075

1076 # PSO LOOP (2nd to n iterations)------------------------------------
1077

1078

1079 r1 = np.zeros((1,nIter)) # Random factor r1
1080 r2 = np.zeros((1,nIter)) # Random factor r2
1081

1082 v = np.zeros ((nP,nIter ,nVar)) # Velocity matrix
1083

1084 for j in range(1,nIter):
1085 curj=j+1
1086 print("Next iteration , it. %d " %curj) # Prints the number of the

next iteration
1087 r1[0][j]= random.randrange (0 ,100) /100.0
1088 r2[0][j]= random.randrange (0 ,100) /100.0
1089 for m in range(nP):
1090

1091 curm=m+1
1092 print("Next particle , p. %d " %curm) # Prints the number of the

current particle
1093 print("Current Iteration , it. %d " %curj) # Prints the number of

the current iteration
1094 print(gval[indGbp][indGbi],"Convergence Stress") # Prints current

Global Best solution
1095

1096 for b in range(nVar):
1097 v[m][j][b] = Inert*v[m][j-1][b] + c1*r1[0][j]*(Pb[m][j-1][b]-x[m

][j-1][b])+c2*r2[0][j]*(Gb[0][j-1][b]-x[m][j-1][b]) # Velocity x
1098 x[m][j][b] = (x[m][j-1][b] + v[m][j][b]) # New x value

Pedro Miguel Monteiro da Rocha Master Degree

B.Optimisation Python Code 121

1099

1100 # Make sure the particle is within the search space
1101

1102 if (x[m][j][b]<=xmin[b]): # x search space
1103 x[m][j][b]=xmin[b]
1104 if (x[m][j][b]>=xmax[b]):
1105 x[m][j][b]=xmax[b]
1106

1107 fx[m][j] = WeightCalc(LpA ,WpA ,x[m][j][0], RochaMat[NumMatA][0],x[m][
j][1], RochaMat[NumMatB][0],x[m][j][2], RochaMat[NumMatC][0]) #Output f(
x)

1108

1109 # fx[m][j] = Calc2(x[m][j][0],x[m][j][1])
1110 if (Cond == 0):
1111 fxP[m][j] = fx[m][j]
1112

1113 Rocha3PlateModel(x[m][j][0],x[m][j][1],x[m][j][2]) # Initialises
Simulation

1114

1115 gval[m][j] = abs(DataAcq ())
1116 Gx[m][j] = gval[m][j] - gmax
1117

1118 #PENALTY CONDITION
1119 if ((Gx[m][j]>0) & Cond == 1):
1120 # fxP[m][j] = fx[m][j] + pow(Gx[m][j],2)
1121 fxP[m][j] = fx[m][j] + (pow(Gx[m][j],2)*rpen)
1122 else:
1123 fxP[m][j] = fx[m][j]
1124

1125 #PERSONAL BEST (minimise => "<=" / maximise => ">=)
1126 if (fxP[m][j] <= fxP[m][indPb[m][0]]):
1127 for b in range(nVar):
1128 Pb[m][j][b] = x[m][j][b]
1129 indPb[m][0] = j
1130 else:
1131 for b in range(nVar):
1132 Pb[m][j][b] = Pb[m][j-1][b]
1133

1134 #GLOBAL BEST (minimise: "<=" / maximise: ">=")
1135 if (fxP[m][j] <= fxP[indGbp][indGbi]):
1136 for b in range(nVar):
1137 Gb[0][j][b] = x[m][j][b]
1138 indGbp = m
1139 indGbi = j
1140 CounterGb = CounterGb +1
1141 if (CounterGb == 0):
1142 for b in range(nVar):
1143 Gb[0][j][b] = Gb[0][j-1][b]
1144

1145 CounterGb =0
1146 cdif=0
1147

1148 for k in range(nP): # Termination Criteria
1149 for b in range(nVar):
1150 dif = abs(Gb[0][j][b] - x[k][j][b])
1151 if (dif <= 0.2):
1152 cdif = cdif + 1
1153 if (cdif == nP*nVar):

Pedro Miguel Monteiro da Rocha Master Degree

122 B.Optimisation Python Code

1154 break
1155

1156 print(Gb ,"Global Best (All)") # Prints the Global Best Solution
1157

1158 x1 = np.zeros((nP,nIter)) # Results Variable Thickness Plate A
1159 x2 = np.zeros((nP,nIter)) # Results Variable Thickness Plate B
1160 x3 = np.zeros((nP,nIter)) # Results Variable Thickness Plate C
1161

1162 for i in range(nIter):
1163 for n in range(nP):
1164 x1[n][i] = x[n][i][0]
1165 x2[n][i] = x[n][i][1]
1166 x3[n][i] = x[n][i][2]
1167

1168 # Results matrix -------------------------------
1169

1170 Results = np.concatenate ((x1,x2))
1171 Results = np.concatenate ((Results ,x3))
1172 Results = np.concatenate ((Results ,gval))
1173 Results = np.concatenate ((Results ,fx))
1174 Results = np.concatenate ((Results ,fxP))
1175

1176 np.savetxt(’ResultsWS.txt’, Results) # Saves the Results Matrix in a
text file

1177

1178 def Main(): # This function processes the script , it allows the user to
process the intended functions present in this script

1179 start_time = time.time()
1180

1181 PSO_calc () # Function to process , in this case it will process the
optimisation procedure of Problem II, throught the PSO algorithm

1182

1183 elapsed_time = time.time()-start_time
1184 print(time.strftime("%H:%M:%S", time.gmtime(elapsed_time)),"Time

Duration") # Prints the elapsed time of the process
1185

1186 Main() # Process the script

Pedro Miguel Monteiro da Rocha Master Degree

	Introduction
	Design and Material Choices for Armour Systems
	Optimisation Studies
	Objectives
	Dissertation Structure

	Stress Wave Dynamics
	Types of Stress Waves
	Propagation of Stress Waves
	Elastic Stress Waves
	Wave Transmission and Reflection
	Plastic Stress Waves

	Model Generation
	Model Design
	Python-Abaqus Scripting Interface
	Materials
	Numerical Simulation
	Boundary Conditions
	Transient Analysis Setup and Part Interactions

	Mesh Parameters
	Model Validation
	Elastic Wave Speed
	Wave Interaction between Layers
	Plastic Stress Wave Speed

	Plasticity Effects on the Stress Wave Propagation
	Pulse Duration
	Stress Magnitude
	Wave Progression

	Setup for the Optimisation Process
	Optimisation Fundamentals
	Mathematical Formulation
	Penalty Function Method

	Optimisation Algorithms
	Particle Swarm Optimisation (PSO) Algorithm

	Optimisation Process through Scripting
	Benchmark — Multi-layer Armour Plate Impacted by Projectile with a Velocity of 5 m/s
	Problem Formulation
	Setup and Implementation
	Results and Discussion

	Optimisation Procedure and Implementation
	Problem I — Multi-layer Armour Plate Impacted by Projectile with a Velocity of 25 m/s
	Problem Formulation
	Setup and Implementation
	Results and Discussion

	Problem II — Multi-layer Armour Plate Impacted by Projectile with a Velocity of 40 m/s
	Problem Formulation
	Setup and Implementation
	Results and Discussion

	Final Remarks
	Main Conclusions
	Further Work

	Bibliography
	Complementary Topics
	Wave Progression Graphics
	Flowchart of the Particle Swarm Optimisation algorithm
	Additional Remarks on the Model Generation
	Geometry (Plate) Parameters
	Geometry (Projectile) Parameters
	Material Database Parameters
	Part Section Parameters
	Creating the Assembly
	Boundary Conditions Parameters
	Create Step Parameters
	Interactions and Constraints Parameters
	Mesh Parameters
	Job Parameters
	Parameters Overview

	Benchmark
	Problem II

	Optimisation Python Code

