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Abstract

We prove Cauchy’s formula for repeated integration on time scales. The obtained relation
gives rise to new notions of fractional integration and differentiation on arbitrary nonempty
closed sets.
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Introduction

ractional calculus (FC), the study of integration and differentiation of non-integer order, is an
ld subject of current interest [21]. On the set T = R of real numbers, one can argue that FC, as a
heory, has its origins in the 1823 work of Abel [1] on the tautochrone or isochrone problem, that
s, the problem of finding the curve for which the time taken by an object sliding without friction
n uniform gravity to its lowest point is independent of its starting point on the curve [13]. FC
n T = R has been extensively studied, with many books on the topic, the encyclopedic reference
eing [18]. Similarly, on the discrete setting T = Z the pioneer work of FC appears in 1957 in
onnection with Kuttner’s study of difference sequences [14]. A few years later, in 1966, the study
f fractional quantum calculus on the set T = qZ, 0 < q < 1, of quantum numbers was initiated
y Al-Salam [3]. Two decades later, with the introduction in 1988, by Aulbach and Hilger [4], of
ime-scale calculus on any nonempty closed set T, the question as whether there exists a unified
heory of FC on an arbitrary time scale T became a natural one. The first works, which considered
he question of developing a FC on a generic time scale, are three 2011 papers by Bastos et al.
6, 7, 8]. The subject is nowadays under strong current development: see [16, 17, 19] and references
herein.

One of the approaches to define fractional integration on time scales is related with the gen-
ralization of Euler’s gamma function Γ to an arbitrary time scale T. Such approach is followed
n the quantum setting by Al-Salam [3] and Agarwal [2], where the q-gamma function Γq is used
o define fractional q-integrals. Such path is problematic on arbitrary time scales, because of the
ifficulty to define a suitable gamma function on T [10]. A different approach is proposed in [9],
here the fractional integral on time scales is introduced by integrating on the time scale but
aking use of the classical Euler’s gamma function Γ. Although such notion is now being used,
ith success, in several contexts and by different authors, see, e.g., [5, 15, 20, 22, 23], here we

how that the definition of [9] is not the most natural one on time scales.
The paper is organized as follows. In Section 2, we motivate the new definition of fractional

ntegral on time scales, explaining its difference with respect to the one of [9]. Our central result,
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he Cauchy formula for repeated integration on time scales, in then proved in Section 3. We proceed
ith Section 4, giving the fundamental definition of any FC: a notion of fractional integration –
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ee Definition 3 of fractional integral on time scales in the sense of Riemann–Liouville. We end
ith Section 5 of conclusion, commenting on some possible future directions of research based on

he results here presented.

Motivation

or an introduction to the calculus on time scales, we refer the reader to the comprehensible
onograph [11]. Brief but sufficient preliminaries on the calculus on time scales are found in
ection 2 of [9]. Here we motivate the current investigation on repeated integration on time scales,
howing why the Riemann–Liouville fractional integral on time scales given by Definition 10 of [9]
s not the best one. Let T be a time scale with forward operator σ and ∆ derivative and integral.
he product rule asserts that

(f · g)∆ = f∆ · g + fσ · g∆. (1)

or this reason, while the usual continuous calculus of T = R asserts that
(
t2
)′

= 2t, on a general
ime scale T one gets (

t2
)∆

= (t · t)∆ = t+ σ(t). (2)

or T = R one has σ(t) = t and we get from (2) the expected equality
(
t2
)′

= 2t; but for
= Z, for example, one has σ(t) = t + 1 and (2) is telling us that the forward difference of t2 is(
t2
)

= 2t+ 1. Relation (2) also means that while in T = R
∫ t

0
2sds = t2, on a general time scale

the corresponding equality is ∫ t

0

(s+ σ(s))ds = t2.

hese simple examples should be enough for the reader to suspect that the definition of fractional
ntegral on time scales proposed in [9], that is,

(
T
aI
α
f
)

(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1f(s)∆s, (3)

s not the natural one on time scales. Indeed, here we claim that the correct definition should be

(
T
aI
α
f
)

(t) :=
1

Γ(α)

∫ t

a

(t− σ(s))α−1f(s)∆s

note the appearance of σ). To show that, we generalize Cauchy’s formula for repeated integration
n time scales, proving that for n ∈ N one has

(
T
aI
n
f
)

(t) =
1

Γ(n)

∫ t

a

(t− σ(s))n−1f(s)∆s, (4)

here T
aI
n
f denotes n-times integration on the time scale T, that is,

(
T
aI
n
f
)

(tn) :=

∫ tn

a

· · ·
∫ t1

a

f(t0)∆t0 · · ·∆tn−1 (5)

cf. Theorem 2 in Section 3).

Cauchy’s formula for repeated integration

here is nothing to prove when n = 1, because in this case (4) reduces to

(
T
aI

1
f
)

(t) =

∫ t

a

f(s)∆s,
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hich is just definition (5) for n = 1. For simplicity and illustrative purposes, we begin by proving
4) when n = 2. As we shall see, the proof of (4), for a general n, is similar, just more technical.
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roposition 1. Let T be a time scale with a, t, τ ∈ T, t > a and τ > a, and f an integrable
unction on T. Then, ∫ t

a

∫ τ

a

f(s)∆s∆τ =

∫ t

a

(t− σ(s))f(s)∆s. (6)

roof. Let g(t) be the right hand side of (6):

g(t) :=

∫ t

a

(t− σ(s))f(s)∆s. (7)

bserve that g(t) can be written as

g(t) = t

∫ t

a

f(s)∆s−
∫ t

a

σ(s)f(s)∆s. (8)

ifferentiating (8), we get from the product rule (1) and the fundamental theorem of the calculus
n time scales that

g∆(t) =

[∫ t

a

f(s)∆s+ σ(t)f(t)

]
− σ(t)f(t) =

∫ t

a

f(s)∆s. (9)

ince by definition (7) of g(t) one has g(a) = 0, we know that

g(t) = g(t)− g(a) =

∫ t

a

g∆(τ)∆τ. (10)

sing (9) in (10), we arrive to

g(t) =

∫ t

a

∫ τ

a

f(s)∆s∆τ,

hich proves the intended relation.

We now do the proof of Cauchy’s formula of repeated integration on time scales by expanding
he term (t− σ(s))n−1 of (4) with the help of the binomial theorem and then writing g(t) in the
anner of (8), with all the terms tj outside the integral sign. Proposition 1 is just the particular

ase of Theorem 2 with n = 2.

heorem 2 (Cauchy’s result on time scales). Let n ∈ N, T be a time scale with a, t1, . . . , tn ∈ T,

i > a, i = 1, . . . , n, and f an integrable function on T. Then,

∫ tn

a

· · ·
∫ t1

a

f(t0)∆t0 · · ·∆tn−1 =
1

(n− 1)!

∫ tn

a

(tn − σ(s))n−1f(s)∆s. (11)

roof. Let g(tn) be the right hand side of (11):

g(t) :=
1

(n− 1)!

∫ t

a

(t− σ(s))n−1f(s)∆s. (12)

y the binomial theorem, we observe that g(t) can be written as

g(t) =
1

(n− 1)!

∫ t

a

n−1∑

k=0

[(
n− 1

k

)
(−1)ktn−1−kσk(s)

]
f(s)∆s

=

n−1∑

k=0

(−1)k

k!(n− 1− k)!
tn−1−k

∫ t

a

σk(s)f(s)∆s.

(13)
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ifferentiating (13), we get from the product rule and the fundamental theorem of the calculus
n time scales that

g∆(t) =

n−1∑

k=0

[
(−1)k(n− 1− k)

k!(n− 1− k)!
tn−2−k

∫ t

a

σk(s)f(s)∆s+
(−1)k

k!(n− 1− k)!
σn−1(t)f(t)

]
. (14)

ince
n−1∑

k=0

(−1)k

k!(n− 1− k)!
= 0,

t follows from (14) that

g∆(t) =
n−2∑

k=0

(−1)k

k!(n− 2− k)!
tn−2−k

∫ t

a

σk(s)f(s)∆s. (15)

n general, differentiating (13) i times, we obtain that

g∆i

(t) =

n−1−i∑

k=0

(−1)k

k!(n− 1− i− k)!
tn−1−i−k

∫ t

a

σk(s)f(s)∆s, (16)

= 0, . . . , n− 1, where g∆0

(t) = g(t). In particular, for i = n− 1 in (16), one has

g∆n−1

(t) =

∫ t

a

f(s)∆s, (17)

hile g∆i

(a) = 0, i = 0, . . . , n− 1. Therefore, by the fundamental theorem of integral calculus, we
ave

g∆j

(tn−j) = g∆j

(tn−j)− g∆j

(a) =

∫ tn−j

a

g∆j+1

(tn−j−1)∆tn−j−1, (18)

= 0, . . . , n− 2. Relation (18) with j = n− 2 asserts that

g∆n−2

(t2) =

∫ t2

a

g∆n−1

(t1)∆t1 (19)

nd using (17) in (19) allow us to write that

g∆n−2

(t2) =

∫ t2

a

∫ t1

a

f(s)∆s∆t1. (20)

imilarly, relation (18) with j = n− 3 asserts that

g∆n−3

(t3) =

∫ t3

a

g∆n−2

(t2)∆t2 (21)

nd using (20) in (21) implies that

g∆n−3

(t3) =

∫ t3

a

∫ t2

a

∫ t1

a

f(s)∆s∆t1∆t2.

y repeating this procedure till j = 0, we arrive at

g(tn) =

∫ tn

a

∫ tn−1

a

· · ·
∫ t1

a

f(s)∆s∆t1 · · ·∆tn−1.

ince by definition (12) of g(t) one has

g(tn) =
1

(n− 1)!

∫ tn

a

(tn − σ(s))n−1f(s)∆s,

he proof is complete.
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Theorem 2 provides the foundation of a proper fractional calculus on time scales.
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A proper Fractional Calculus on Time Scales

lthough there is a myriad of different FC on the literature, all of them begin by defining a
otion of fractional integral and then proceeding from there [18]. The most common definition of
ractional integral is the one of Riemann–Liouville:

(aI
αf) (t) :=

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds. (22)

he corresponding Riemann–Liouville fractional derivative of order α is then introduced by com-
uting the nth order derivative over the fractional integral of order n−α, where n is the smallest
nteger greater than α, that is, n := dαe:

aD
αf =

dn

dtn
(
aI
n−αf

)
. (23)

nother option for computing fractional derivatives was proposed by Caputo in 1967 [12], and
onsists in interchanging the order of the operators dn

dtn and aI
n−α in (23):

aD
α
Cf = aI

n−α
(
f (n)

)
. (24)

Having in mind that Γ(n) = (n− 1)!, Theorem 2 shows that (4) holds for n ∈ N. The question
s what should be T

aI
α
f when α is any positive number? The answer should be clear since (4)

akes sense for any nonnegative n ∈ R. This provides the proper notion of fractional integral on
ime scales in the sense of Riemann–Liouville.

efinition 3 (Riemann–Liouville fractional integral on time scales). Suppose T is a time scale,
a, b] is an interval of T, and f is an integrable function on [a, b]. Let α > 0. Then, the (left)
ractional integral of order α of f is defined by

(
T
aI
α
f
)

(t) :=
1

Γ(α)

∫ t

a

(t− σ(s))α−1f(s)∆s, (25)

here Γ is the gamma function.

In the case T = R, one gets from Definition 3 the standard notion (22). The generalization
25) is not trivial, in the sense that (3), used currently in the literature, also generalizes (22).
owever, only Definition 3 is coherent with Cauchy’s formula (Theorem 2).

Using the new Definition 3, a fractional calculus on time scales can now be developed. As
xpected, the first steps of such fractional calculus are the notions of fractional differentiation on
ime scales in the sense of Riemann–Liouville,

T
aD

α
f =

(
aI
n−αf

)∆n

, (26)

nd Caputo,
T
aD

α

Cf = aI
n−α

(
f∆n

)
, (27)

here n := dαe, which are the natural extensions of (23) and (24), respectively. Such fractional
alculus on time scales is rich and technical and its development will be addressed elsewhere.

Conclusion

e have proposed a new definition of fractional integral on time scales, using Cauchy’s formula
or repeated integration on time scales. There is much further work to be done based on this
ew notion. Some next natural steps are to consider fractional differential equations on time
cales, eigenvalue problems, fractional dynamic inequalities, which are examples of very active
esearch areas in both time-scale and fractional communities. About applications, we claim that
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ur fractional calculus on time scales has a big potential in mathematical modeling, for example
n epidemiology and consensus problems.
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