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Palavras Chave cidade inteligente, iot, pasmo, plataforma, serviços publicos, fusão sensores

Resumo Nos últimos anos, as soluções Smart City amadurecem muito rapidamente em con-
junto com IoT e serviços na cloud. Estas tecnologias facilitam a criação de serviços
e a incorporação de aplicações direcionados á melhoria da qualidade de vida do ci-
dadão, oferecendo formas das empresas implementarem suas soluções. Por meio de
rápidos avanços na qualidade dos sensores, novos métodos surgiram, combinando
diferentes tipos de dispositivos para criar uma melhor imagem da realidade. O
objetivo desta dissertação é fornecer informações úteis através de serviços públi-
cos, que podem ser acedidos por pessoas que visitam ou residem na Costa Nova e
Barra. Também fornece uma solução para o problema de classificação de tráfego
que projetos baseados em dados de radar tendem a enfrentar. Estas aplicações
beneficiam dos dispositivos implementados no projeto PASMO, como sensores de
estacionamento, radares e câmeras de CFTV. Ao disponibilizar os serviços publi-
camente, as empresas têm a oportunidade de construir as suas próprias aplicações
em cima destes, usando os dados dos sensores sem estar diretamente conectado
ao armazenamento de dados. O exemplo desenvolvido nesta dissertação oferece
uma experiência de dashboard onde os utilizadores podem navegar por gráficos que
fornecem uma variedade de dados e mapas em tempo real. Também fornece uma
API pública que os investigadores e empresas podem usar para desenvolver novos
aplicativos no contexto do PASMO. A outra área abordada neste documento é a
classificação de tráfego. Embora os dados fornecidos sejam confiáveis, um grande
problema provém da precisão da classificação dos veículos fornecida pelo radar.
Ainda assim, este dispositivo oferece valores precisos quando se trata de detecção,
com as câmeras fazendo um bom trabalho na parte de classificação do tráfego. O
objetivo é combinar estes dois dispositivos para apresentar informações corretas,
usando algoritmos de detecção de objetos e métodos de fusão de sensores. No
final, o sistema irá enriquecer o projeto PASMO, tornando seus dados facilmente
disponíveis ao público e corrigindo problemas de precisão de alguns dispositivos.





Keywords smart city, iot, pasmo, plaftorm, public service, sensor fusion

Abstract Over the last few years, Smart City solutions mature very rapidly alongside IoT
and cloud computing. These technologies made it easier to create services and
incorporate applications devoted to improving citizen’s quality of life and offer
ways for businesses to implement their solutions. Through rapid advances in the
quality of sensors, new methods emerged, combining different types of devices to
create a better picture of the environment. The purpose of this dissertation is to
provide useful information thought public services, that can be accessed by people
visiting or residing in the beach area of Costa Nova and Barra. It also provides
a solution for the traffic classification problem that projects based on radar data
tend to face. These applications take advantage of the devices implemented in the
PASMO project, such as parking sensors, radars, and CCTV cameras. By making
the service public, businesses have the opportunity to build applications on top of it,
utilizing the sensor data without being directly connected to the data storage. The
example developed in this dissertation offers a dashboard experience where users
can navigate through charts that provide a variety of data and real-time maps. It
also provides a public API that researchers and businesses can use to develop new
applications in the context of PASMO. The other area tackled in this document is
traffic classification. Although the data provided is reliable for the most part, one
big issue is the accuracy of vehicle classification provided by the radar. Still, this
device offers precise values when it comes to detection, with the cameras doing a
good job in classifying traffic. The goal is to combine these two devices to present
much precise information, using state-of-the-art object detection algorithms and
sensor fusion methods. In the end, the system will enrich the PASMO project by
making its data easily available to the public while correcting the accuracy problems
of some devices.
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CHAPTER 1
Introduction

Vehicular services provide tons of information about the traffic and consequently the city.
These applications help people to have a better understanding of the world around them
through interactive and informative user interfaces. Not only that, but traffic data can
demonstrate people’s behavior, being helpful to not only the council of the city but the
businesses in the area.

1.1 Context and Motivation

Throughout the last decade, the word "smart" as being used to describe devices that provide
information about the environment and help users with regular daily tasks. This simple
concept of the technology being "smart" was used by companies throughout the years, mainly
to market their product. When searching for the interest of the word "smart" on Google trends,
a spike in interest can be seen in June of 2008, precisely when Apple introduced the iPhone
3G. This event marked a change in the cellphone world since this product had the possibility
of receiving emails and viewing full internet pages using a touch screen. Fast forward to today,
and the word cellphone was replaced by smartphone. The consumer started investing more in
these small devices since they have the appeal of being able to do tasks similar to a computer.

Following this investment by consumers comes more research, not only for smartphones but
for other smart devices that can be used in separate fields. By the mid-2010s, the Internet of
Things (IoT) technology started to gain interest, being used to tackle challenges that require
tons of data from plenty of devices. This technology has become the central building block for
smart cities owing to its potential in exploiting information and communication technologies
[2]. Thus, the rise in research on the subject of Smart Cities can be related to the popularity
of IoT. This improvement in research came to address critical issues, such as mobility, energy,
and infrastructure. These problems started to appear with the increase of population and,
most importantly, urbanization of modern cities since the beginning of the millennium [3].
Nowadays, the widespread of the internet made it easier to share data and services with the
world. Moreover, it can transfer this information fast and reliably because of all the internet

1



Figure 1.1: Comparation of internet traffic between desktops, mobile phones and tablets [1]. The
stats show that the majority of internet traffic comes from mobile devices, with the tread
revealing that these will probably continue the lead.

coverage available. Smart Cities use it to established communication between devices and
publish their services to the public, thus helping users to understand the environment around
them.

1.1.1 PASMO

This dissertation is part of a project called PASMO (Open Platform for the development
and experimentation of Mobility Solutions). This concept was developed in Instituto de
Telecomunicações - Universidade de Aveiro with the purpose to provide solutions for intelligent
mobility problems and an open platform for researchers to develop their ideas. Companies
can experiment with PASMO, using technologies and data that they may not have access to.
This collaboration exists to test those technologies and validate equipment, applications, and
services. It also strengthens the position of companies, with high innovation potential, in new
markets. [4]

PASMO is composed of three subsystems, reflecting the different layers of intelligent
transport systems:

• Data collection from roads, public spaces, and vehicular resources.
• Data transfer from telecommunications and data infrastructure.
• Applications.
This dissertation will focus on the applications and data collection layers, correlating them

to build valuable services. The latter is composed of three resources that provide different
types of information. The road resources holds an infrastructure of Road Side Units (RSU),
built to provide support for wireless vehicular communications and to allow the installation of
modules like radars, environmental sensors, or CCTV cameras. Having all these devices in one

2



unit is of interest since we can use the sensors for the function that they were designed to serve.
The public spaces contribute to the well being of citizens, providing Internet access, weather
stations, and smart parking sensors. The last two give the tourists and residents information
about the beachside so that frustrating occurrences such as searching for a parking spot and
bad weather can no longer be an inconvenience. It also provides a testing site for companies to
validate their new applications. Finally, the vehicular resources that offer support to vehicular
communication. To take advantage of this component, an On Board Unit(OBU) needs to
be installed in the vehicle if it doesn’t have it. Since a small fraction has this technology,
PASMO grants access to a portable, compact and robust OBUs, able to be used in many
types of vehicles. This unit will allow vehicle-to-vehicle and vehicle-to-RSU communication.
This resource can provide alerts of events occurring on the road, informing the user about an
accident, for example.

The equipment is installed in the municipalities of Ílhavo and Aveiro in strategic locations
to capture the most valuable information about the environment around the beaches of Barra
and Costa Nova. Some of it is installed on the regions (parking sensors), while others (RSUs)
are on the highways and roads accessing the geographical areas.

1.1.2 Motivation

Even though PASMO’s architecture is well established when it comes to the communication
between devices, it lacks services in the application layer, which is essential to provide
researchers and users with data from the sensors. This last layer is the most important to
establish a Smart City solution because if the data is collected and not provided to the public,
it just stays stored without granting any benefits to the city. This dissertation follows the
central philosophy of the project, provide services so that researchers can test their technologies.
Publicizing these applications built around the data from the sensors and providing easier
access to it drives companies to work with these services and develop their solutions. Although
the application layer has the goal to motivate researchers to use the services, it also offers
regular users applications to expand their knowledge about the regions. Applications are
useful to improve the quality of life of the residents and the traveling experience of the tourists.

When discussing the data collection layer, many of the devices already installed are not
being utilized to their fullest potential. The CCTV cameras fall in this category, where they
are sometimes used to troubleshoot radar failures but never applied in a solution. One of
the problems where these devices can shiny is on traffic classification because of the inferior
accuracy provided by the radars. By utilizing the cameras, the information provided by the
data collection layer can become more accurate, painting a more beneficial picture of the
environment.

1.2 Objectives

The goal of this dissertation can be divided into three essential services. The public services
belong to the application layer, using data collection to get the necessary sensor data. Data
from two resources were utilized, namely roads and public spaces, to provide traffic and
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parking, respectively. The last service fits in the data collection layer and provides a road
resource, offering information about traffic classification. In the end, the system will provide:

• An Application Programming Interface(API) with traffic and parking data.
• A dashboard that gets information from the above service and displays it in a user-friendly

way.
• A set of algorithms that offers better traffic classification by utilizing data from the road

resource.
The API can be accessed by the public and provides an easy way to use the data collected

from the radars and parking sensors. Here it’s crucial to develop an easy to use application
with useful information about the environment. This public service will feed a web application
developed with users and system admins in mind. This app has to be a highly interactive,
informative, and user-friendly dashboard. When implementing these two services, it’s essential
to focus on the use-cases of the public and researchers since they are the target audience.
Lastly, it’s necessary to implement a state-of-the-art detection algorithm that classifies traffic
and helps to produce accurate traffic information by using the camera’s images. The objective
is to provide a reliable way to implement an object detection algorithm inside the RSU so
that there are no delays. By developing these three services, especially the API, PASMO
will have a solid and straightforward way to provide sensor data to the public. It will give
users the ability to know the state of the environment around the beach area through the
dashboard. Moreover, it offers administrators an easy application to check the state of the
sensors. Finally, it also improves the data collection layer by increasing the accuracy of traffic
classification, together with a simple web application for diagnosing the results.

The challenge of this dissertation has a focus on managing and presenting data, as well as
full-stack solutions, image processing, and sensor fusion.

1.3 Contributions

For this dissertation, two main contributions were developed and deployed publicly, the API
and the dashboard.

The solution for providing users with an easy way to get and manipulate sensor data came
in the form of a public API. This service provides data from a laboratory weather station
to projects related to environmental monitoring. The Transportation and Road Monitoring
System for Ubiquitous Real-time Information Services(TRUST) project aims to develop a
meteorological monitoring system capable of identifying and alert risk conditions. This project
is part of the SARWS project that is an European EUREKA initiative that focuses on the
development of real-time location-aware road weather services. The API service is also used
in the official website for the PASMO project [5], where is mainly used in a real-time map
with traffic information.

The public dashboard offers users the ability to view the collected sensor data, as well as
other information created by using it. It also gives administrators a user-friendly platform to
check for possible sensor/service failures. A summary of the complete dashboard was deployed
in the official PASMO website, with a hyperlink to the full service.
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1.4 Dissertation Structure

The document starts with the Introduction, the current chapter, presenting the context
and motivation behind this dissertation. It also clarifies the goals of the dissertation, its
structure, and contributions that derive from solutions to the problems discussed. The second
chapter, State of the Art, presents a review of the literature related to the topics of this
dissertation. It is divided into several sections that provide history on various topics, such as
Smart Cities, web services, cloud computing, and object detection. It also discussed several
solutions implemented in these domains, beginning with different implementations of Smart
City solutions in Europe, followed by technologies used in web services, object detection,
and sensor fusion. The third chapter, Requirements and Solution Architecture, describes
the scope of the PASMO project, detailing its structure, the location of the sensors, and the
data they produce. It also outlines the requirements needed to develop a reliable platform
before presenting the solution for the system. Chapter four, Implementation, details the
development process, along with all the technologies and methods used to produce the most
reliable and efficient solution. The fifth chapter, Results, presents the results of the developed
work, discussing usability, efficiency, and accuracy of the whole system. In the final chapter,
Conclusion, the document closes with an overall discussion of the solution implemented, the
challenges that appear along the way, and future work that can further improve the system.
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CHAPTER 2
State of the Art

2.1 Smart Cities

Since the 2010s, when the Smart City concept started to get more researched and, consequently,
more popular, investigators from different areas argue about a definition for this concept.
Some researchers focus on reaching a concrete answer by compiling several definitions given by
different entities, in the case of [6] more than 20. This discussion happens because researchers
have distinctive views on what makes a city smart. Furthermore, not all cities suffer from the
same problems or even the same domain of issues, making the approaches used significantly
different. Even though it seems that researchers can not come up with a definition that suits
everyone, it is agreed that for a city to be smart, it needs to have services acting on a problem.
IBM had an early entry in the Smart City area, with a talk, A Smarter Planet: The Next
Leadership Agenda, dating back to 2008, offering some understanding on what a Smart City
needs as a core. The basis of the concept is summarized in marketing language as the three Is:
Instrumented, Interconnected, and Intelligent [7]. The first one means the ability to capture
live data through the use of several types of sensors. Interconnected means that the various
services communicate between themselves, integrating the data collected. Finally, Intelligent
refers to the incorporation of analytics, optimization, and visualization of services to make
better decisions.

At its core, the main goal of a Smart City is to collect data, using several types of sensors,
and build services on top of this information to solve specific problems. The best way to
achieve this objective is to provide businesses and researchers with the data collected so that
they can build platforms and offer services that may help the daily life of the citizens.

2.1.1 Smart City Implementations in Europe

Even though the Smart City concept provides excellent solutions for urban problems, it’s
the city council that decides if the investment in these technologies is worth it or not. The
answer was made apparent by the digital revolution that provides efficient solutions to urban
systems by utilizing new technologies and infrastructures. The change in mindset around
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the beginning of the 2010s to use technologies to attack urban problems influence various
industry leaders. Business opportunities appear in multiple fields, such as ICT, environmental
concerns, education, and tourism.

The European Union (EU) primary goal is to achieve highly efficient and sustainable cities
while still increasing economic growth, thus addressing and solving social and environmental
concerns. To speed and improve the development of new solutions, the cities in the EU focused
on two critical ideas: Smart City Clusters and Smart districts serving as Living Labs. The
first approach establishes the belief that with the entity’s cooperation, we reach the goals
quicker and develop a product with better quality. The alliance between private companies
and institutions enhances business performance, resource efficiency, economies of scale, and
new opportunities [8]. Using this approach ensures that each problem is being addressed
by the best organization, promoting an agile and flexible development model. Nevertheless,
these entities will need to implement their services in the city at some point. However, before
taking this big step, Smart districts provide a research-oriented place where solutions can
be designed, developed, and tested. For the most part, these are buildings that can be
radically changed to understand the impact of these modifications, acting as "incubators for
a Smart City." [9] Since these structures act as a development and testing center, they are
regarded as living labs. The Europen Commission defines Living Labs as a "user-centered,
open innovation ecosystems based on a systematic user co-creation approach integrating
research and innovation processes in real-life communities and settings". [10] Here, citizens
and users of the services are encouraged to take part in the development and testing process.
Not only this strategy builds relationships between stakeholders but also creates user-driven
services. The latter assures that user’s needs are met because they are providing feedback to
create a better product, almost erasing the risk of the users not liking and not using these
services.

Although necessary to understand the concepts used in Smart Cities, it’s crucial to study
good practices when implementing these systems. Selecting the best practices relies on not
only choosing the most suitable technology but also solving the most critical problems. An
excellent example of using the best methods can be seen when studying Barcelone, Spain.
Barcelona is in the top three smartest cities, according to a report [11] carried out by Philips
and SmartCitesWorld. This report target 150 entities, from governmental departments to
service providers. The enablers gave an eighteen question survey regarding challenges of
implementations, services and cost savings, and beliefs around smart cities. Barcelona stands
out for creating 47000 jobs through the implementation of IoT systems, saving 42.5 million
euros in water and generating 36.5 million euros in a year thanks to smart car parks [12].

At the beginning of the 2010s, the city council was determined to make Barcelona the
first smart city in Spain. The strategy consisted of using new technologies and infrastructure
to foster economic growth and give a better quality of life for its citizens. Several businesses
and universities were involved in implementing this strategy, as well as the Autonomous
Government of Catalonia that supported the more significant projects. However, one crucial
step to take when building a Smart City is the willingness to change, and this could not be
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more characteristic of innovative chief technology officer Francesca Bria. The commitment to
turn Barcelona into a Smart City and the integration of stakeholders into the city’s future
gave the city third place in smartest cities. This mentality was accompanied by meters that
monitored and optimizeed energy consumption as well as parking apps. This effort to change
provided the city with a wide range of benefits, such as:

• More efficient energy through the use of LED-based lights.
• Management of environmental variables with the help of sensors regarding humidity,

temperature, or air pollution.
• Reduction in the smell of trash and noise pollution from vehicles collecting it by using

smart bins.
• Attacking mobility problems by implementing a city bike system and thus reducing the

number of cars circulating in the city.
• Utilizing sensor information to avoid overwatering gardens and adapting the schedule of

irrigation systems.
• Improving the quality of the Smart City solutions by encouraging citizens, businesses,

and developers to join forces in its development.

As a result of this visionary system and well-coordinated collaborations, Barcelona was
named the European Capital of Innovation in 2014, and its Smart City implementation is
viewed as a system to learn from.

Not leaving the Iberian Peninsula, Portugal is a good example where the domain of Smart
tourism can thrive. Because of its geographic location, Portugal always had a high flow of
visitors and tourists, especially in the summertime. Figure 2.1 shows that this number reached
an all-time high in August of 2019, providing it 3020.03 million euros of revenue.

Figure 2.1: Portugal tourism revenues in millions of euros. [13]

Another domain highly invested in is renewable energy. Over the years, placed high in
the rankings of greenest countries to live in, holding 9th place in the world nowadays in the

9



category Planet and Climate [14]. Good Country Index created these rankings, measuring
multiple variables such as the country’s ecological footprint and the percentage of renewable
energy used. It seems that energy and tourism may be the most appropriate domains for
Portugal to focus. However, its cities are also worried about other fields, such as mobility and
developing new technologies.

Lisbon, the capital, is regarded as one of the smartest cities in Portugal by different parties.
Even though Portugal doesn’t appear in the top ten, it has several cities that rank high in
the smart index. Lisbon and Porto are regarded as the smartest cities in Portugal by different
parties. The "Índice de Cidades Digitais," developed by Inteli, is the main measure used to
rank cities. As described in Table 2.1, Lisbon went from being the smartes1t city in Portugal
in 2012 to give first place to Porto in 2016 and not appearing in the top 5. [15]

Position 2012 2016
1 Lisboa Porto
2 Almada Águeda
3 Cascais Cascais
4 Aveiro Bragança
5 Vila Nova de Gaia Guimarães

Table 2.1: INTELI (2012, 2016)

At the end of 2016, Lisbon was not in a great place in the rankings, but that would
slowly change as 2019 was approaching. In the sixth edition of the IESE Cities in Motion
Index, 174 cities of 80 countries were studied. The Cities in Motion Index (CIMI) was created
to help with the ranking process. The calculation of this index considered many variables
that describe a Smart City [16]. Between them, urban planning, technology, mobility, and
environment are the ones that characterize the intelligence of a city, with the others, such as
economy and governance, being enablers to develop the project.

In this study, Lisbon has ranked 47 places above Porto in 44º place, with a CIMI of 63.52
and performance of relatively high [16]. A victory nonetheless, but Lisbon needed to attract
more entities to boost the economy and creating jobs. The city created several projects to
met these goals, promoting solutions for energy-efficient housing, mobility, and smart living.
Some of these innovative systems can be found on a website [17] promoted by the council of
the city. It offers a clear picture of what domains are addressed and what initiatives were
implemented in each one.

One curious case study happened in July of 2017 when the city council awarded NEC
Portugal with a contract to implement a smart city infrastructure aimed at improving the
operation and coordination of multiple city services. NEC utilized its Cloud City Operations
Center (CCOC) to integrate internal systems controlled by Lisbon’s city government and
other external systems operated by partners [18]. This platform helps to plan and manage
the solutions to the problems in Lisbon regarding energy efficiency, mobility, and ICT [19].
CCOC offers ways to store large amounts of data, in this case regarding sensors in buildings

10



and information about e-vehicles charging points. It also provides users with a dashboard
that can be useful to inspect the collected data and build other applications for traffic control.

Lisbon seems to work more on problems related to mobility and energy efficiency. This
attention to these specific problems occurs due to the density of residents and tourists in the
region. Porto also focuses on the same issues for the same reasons. It tried to follow a Smart
District approach where the city functions as a living lab encouraging citizens and businesses
to attack problems that impact Porto. By building the Porto Innovation Hub (PIH), the city
tried to encourage an innovative and entrepreneurship ecosystem. This initiative incentivizes
business relationships and simplifies the processes by putting citizens in the center of the
method of innovation.

Still, some cities, like Aveiro, have a higher focus on creating new technologies and perfect
existing ones to improve the quality of life of their residents. Even though the objective
is slightly different when comparing to other cities, the strategies used are quite similar.
Aveiro also possesses an initiative that brings various stakeholders together, such as people,
companies, and research institutes, to build a smart and digital city. This project is called
Aveiro Tech City [20] and has the goal to build a more connected city to create new jobs,
better healthcare, safer roads, and innovative technologies.

Some research even goes further by studying the university campus to classify the smartness
of a city. The results show that students consider the University of Aveiro to be a very high
level of smartness [21] but, mixed opinions were made about its infrastructure and care for
zero-emissions vehicles, like bikes and electric cars. Nevertheless, throughout the last two
years, the university provided more parking slots for bicycles, open areas to study, build new
infrastructures, and reduce paper waste by digitalizing canteen payments. Even though much
more can be done, the establishment is on the right track. The University of Aveiro must be a
place where technology can thrive since its investigation provides enormous help in developing
new services. The researchers become even more relevant when knowing that Aveiro wants
to be one of the first cities to implement the use of 5G technology into its startups. The
project Aveiro Steam City [22] is trying to reach this achievement, and it’s here that the
concept of Smart Clusters comes into the picture. This initiative is a collaboration of several
parties, including Instituto de Telecomunicações, located in the University Campus and some
companies, such as INOVARIA and Altice Labs.

Although Aveiro is more focused on developing technology, some of the cities around it
are investing in Smart Cities projects related to tourism. Ílhavo was two parishes with beach
areas, Barra and Costa Nova, with a high flow of tourists to these regions. Even during
seasons with a low tide of visitants, there is still a decent number of residents occupying these
areas, especially Barra. It also has few roads connecting these areas, making it easy to study
traffic flow. Due to these advantages, many entities like Portugal Telecom and Altice Labs
rush to develop, implement, and test solutions incorporated in a Smart City context. However,
PASMO was the project where the council of Ílhavo invested the most since it offered the
best solutions for mobility, parking, and weather analysis.
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2.1.2 Platforms used in Smart City Development

A typical Smart City architecture possesses a massive amount of sensors describing the
conditions of the environment. The fact that there are thousands of devices always connected,
gathering different types of information causes one of the biggest problems in this context.
All these problems arise because the whole point of a smart solution is to collect, analyze,
and act on data from a wide variety of sources.

The number of devices installed and connected for IoT purposes is at an all-time high,
with CISCO predicting that we will reach the 1.8 billion device mark by 2022, with more than
14 billion M2M connections [23]. It is also noted that Smart Cities related topics, such as
energy, connected cities, and mobility, are the fastest growing.

The solutions for these obstacles need to provide a service that is not very complex since
it’s highly likely that several entities will use it. Communication protocols, types of databases,
and varying types of sensor data are the three main factors that needed to be taken into
account when building these types of platforms. The last one is probably the hardest to solve
because the platform needs to be completely abstract to the type of data received.

Because of the complexity of this problem, many entities chose to use already well-
established platforms, like FIWARE. However, there are more local solutions, like the Smart
Cloud of Things (SCoT), developed in Instituto de Telecomunicações located in the University
of Aveiro.

2.1.2.1 FIWARE

FIWARE is an open-source platform funded by the European Commission, whose mission is to
build an open ecosystem to eases the development of new applications in a smart city context.
It focuses on public and implementation-driven software standards to help researchers and
developers of various sectors [24].

To approach Smart City problems described in the introduction of this section, FIWARE
created an OpenStack-based cloud environment. This approach makes it easier for researchers
and developers to access the services that FIWARE provides. The system contains a set of
open standard APIs to access context information. Context information is represented by
values assigned to attributes that characterize those entities relevant to applications [25]. This
data can come from several sources, such as mobile apps and sensors. However, the crucial
thing is that its type doesn’t change when the platform receives it from different devices.
For example, if several devices have a humidity sensor and are storying this information, the
platform will save the data as describing humidity values, regardless of the type of device.

The component that handles the context information is the Context Broker. It provides
data independently of the source, meaning that it can create standardized API, even if
the low-level devices in two separate cities are different. The platform gives developers a
straightforward way of exploring the sensor data without them worrying about all the details
about these devices or how the data is stored. Using this approach, that considers a set of
universal standards for context data management, FIWARE can facilitate the development of
solutions for various smart domains.
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2.1.2.2 SCoT

One of the many platforms that follow a similar concept is the Smart Cloud of Things. SCoT
is a Machine-to-Machine (M2M) platform that combines two major concepts, IoT and Internet
of Services (IoS), to provide a straight forward service creation in scenarios related to IoT
and M2M.

The platform is built to follow a Service Oriented Architecture (SOA), meaning that it
offers several services to analyze, process, and manipulate sensor data, making it accessible for
researchers to build services using SCoT. It provides several components that cover aspects
related to network, device management, services, and applications [26]. In this environment,
several tenants can use different sensors to deploy services quickly and effortlessly over a wide
range of scenarios. The goal is to connect devices to the cloud, serving as a link between the
sensors and third-party services using their data.

SCoT can be divided into four major domains: Sensor, Network, Service, and Data.

Figure 2.2: Architecture of the SCoT platform, representing the different domains.

The Sensor domain holds the sensors, actuators, and gateways. It allows any devices to
communicate with the M2M network ranging from micro-controllers to cell phones. Even
though SCoT data is JSON standardized, sensors can send other types of information, being
the gateways responsibility to adapt to the new representation. The Network domain serves
as points where the devices can connect and send data. The Service Domain provides an SOA
environment that provides the developers to build services using data from the sensors. The
Data domain follows a similar approach to FIWARE, where it offers a context storage solution
that is agnostic to the representation scheme [26]. This approach allows users to search for
complex information without the need to understand the representation of the database.

SCoT appears as an excellent solution to the problem of device management found in
the context of Smart Cities. When developing a system that will gather all types of sensor
data, it is not ideal to have a structured representation of the data sent by these devices.
The platform should be indifferent to the sensor that is publishing information, ensuring
compatibility between all devices. SCoT provides a robust platform capable of gathering data
from devices effortlessly and facilitates service development. The platform is already involved
in multiple projects, with scenarios ranging from smart agriculture to mobility and smart
lighting.
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2.2 Technologies for Web Services

Before the internet was easily accessible for the majority of people, companies produce software
to meet user needs in local networks since machines didn’t exchange data between themselves
on a global scale. With the widespread of the internet and the popularization of distributed
systems, companies started to provide services through this network. The software needs to
mature rapidly since many of the technologies used before the internet became obsolete. This
happened mainly due to the implementations of firewalls to block ports and secure networks.
The only ports available were the ones used for web traffic, and thus, HTTP was chosen to
transfer data remotely from one machine to another.

All the technologies utilized in this time would mature extremely fast to keep up with
demand. One company gives an example of the growth of web services and clouding computing.
AWS is one of the most successful cases of web services providers. After 2013 the company
saw an eruption in this domain, which made its revenue increased from 3.1 to 35 billion dollars
a year [27]. This growth shows popularity in cloud services and a significant shift from local
software to web services. This change occurs because of the appeal of these technologies
not only for developers but for users too. Most of them prefer to have all services accessible
by a browser or an easy-to-install application on their phone, instead of installing complex
software on their machine. For developers, it provides the advantage of not needing to buy
and maintain hardware to host their software. Instead, they are all deployed on a machine in
some warehouse, having only to worry about the software.

Nowadays, web services have become a popular way of offering online services and support
business-to-business application integration. By using them, Smart City’s solutions can offer
a higher level of efficiency when delivering online services to its users.

2.2.1 API Specifications

There are several technologies developed to exchange data between the internet, but nowadays
SOAP (Simple Object Access Protocol) and REST (Representational State Transfer) are
the main approaches used. Traditionally, services were accessible using SOAP over HTTP
(Hypertext Transfer Protocol), with REST being used more recently. Although many big
enterprises, such as Google, still use SOAP, there are very few that only offer this technology,
considering most of them offer REST interfaces or both.

SOAP is a standard protocol proposed by the W3C [28] that provides a XML-based
message framework to perform remote calls to distributed services. Entities that consume
SOAP services rely on a Web Service Description Language (WSDL) specification [29] to
describe the content and availability of those services. It was one of the first protocols used to
exchange messages through the internet, so companies utilized it and still provide support to
it.

The main advantages of this protocol are the fact that it can use by type of transport
protocol and be applied in any programming language. This makes it simple to exchange
information among different servers, avoiding complications such as message formats and
explicit calls. Another essential feature is SOAP’s built-in error handling. The protocol
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responds with standard error message codes that offer tons of help when debugging. It helps
clients better understand the errors returned by the web service.

Even though SOAP is a feature-rich protocol, its completeness brings some disadvantages.
Since it uses XML as its language, it makes the communications with the service more verbose,
spending more resources to decode the XML message. This limitation makes it "heavier" than
other protocols and conceptually more difficult for the client since it requires a higher effort
by the client-side. The "heaviness" of the messages translates to a bad performance since it
needs more bandwidth to exchange information [30].

Even though SOAP is quite complex, making its performance worse when comparing
to other styles [31], it’s still utilized in some web services where the aim is high security
and a distributed setting. Some examples are financial services, payment gateways or other
high-security apps, telecommunication services, and distributed environments.

After some time, an alternative architecture was introduced in the form of REST. Over the
years, REST became widely used across multiple areas in IT due to its efficiency in accessing
complex systems.

In the early days of web develop servers needed to remember specific details about clients
accessing the system, i.e., its state. REST came as a solution to this problem relying on a
client-server style, where the client initiates the request, followed by the servers processing it
and sending the response to the client. This style of communication was used in combination
with a concept where the client provides all the information needed so the server can perform
a particular action. By using this process, the need to have client information in the server
is eliminated, making the server simpler and more scalable. This simplicity makes the style
light-weight and easy to develop, compared to SOAP. Unlike SOAP, REST is not restricted
to the use of XML, being able to utilize other message formats such as JavaScript Object
Notation (JSON) or Really Simple Syndication (RSS). Supporting smaller message types
makes the transport of information faster and efficient.

Even though REST is simpler and faster, it lacks standards compared to SOAP, making
it less secure. Moreover, it is not suitable for distributed systems since it uses a client-server
approach. It’s also tied to the HTTP protocol for transport, not being able to use others if
necessary. However, one of the most common problems in REST is over and under fetching.
Over fetching means that the client gets more information than is needed, while under fetching
indicates that not enough data is provided for the requirements of the application. These
situations happen because of fixed data structures, being hard to design a REST API around
these problems.

Despite having some disadvantage that makes it impractical to be applied in some systems,
REST is still practiced in many web services that follow a client-server strategy, in particular
public APIs. Due to its popularity, REST has vast support when talking about tools for its
development, making it a more easygoing solution to be implemented.

Recently, a stable alternative was released, called GraphQL [32], that aimed to solve the
problems of under and over fetching found in REST. It was developed internally by Facebook
to solve these issues and further optimize performance and flexibility. GraphQL attacked the
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fetching problems by not relying on fixed data structures.
GraphQL is a query language, i.e., it retrieves data from a database by sending queries

that allow the user to ask for specific types of data. In some situations, this approach reduces
the number of requests to the API from several, using other specifications, to one, using
GraphQL. Here objects are represented by nodes, defined using a schema, while the edges
describe the relationship between these objects. So, quoting GraphQL Co-Inventor Lee Byron,
using GraphQL, users need to "Think in graphs, not endpoints." Endpoints provide fixed data
structures, but graphs don’t.

Using this specification, developers only need to send a query to the GraphQL server that
specifies the data requirements that they need. The server responds with an object containing
all the information that the query asked. In other specifications, like REST, the user may
have to make more than one request to fulfill its requirements since the endpoints have fixed
data structures. This query request approach solves many problems in the fetching process
with other solutions, but tooling support is limited when comparing to REST. This makes it
hard for GraphQL to support results caching, unlike REST which, takes advantage of HTTP
caching to have better performance.

Even though the three specifications provided vary a lot, complete APIs can take advantage
of all of them by implementing every approach. The development of such a service will take
time and cost resources, but in the end, it would cover almost all the use-cases of its users.

2.2.2 Web Services Architectures

Traditionally, monolithic architectures were adopted in many systems to build web services,
meaning that the service was composed of a single unified unit. Even though this trend is
going away, many businesses still adopt this style, building one self-contained and autonomous
software where its components are interconnected. This architecture would found a decline in
popularity over the years because of the numerous limitations and issues brought by this style.
Since this approach compiles multiple services in a single code base, it makes it challenging to
adopt innovative technologies, scale or implement new changes. Furthermore, if a component
needs to be updated, the majority of the application had to be rewritten. These inconveniences
made it challenging to develop software when multiple parties were involved, which goes
against the basic principles of Smart City solutions.

Nowadays, with the increase in cloud computing popularity in the DevOps field, many
companies have migrated their systems to the cloud and succeeding in building a set of
independent and modular components that are easy to test, maintain, and understand. This
type of organization where unconnected services work together to form a single application
is called microservices architecture. This approach is used by many big enterprises, such as
Netflix, Amazon, and eBay [33], that saw the benefit of having independent services that
can be developed by smaller teams working in parallel. Microservices can rely on technology
heterogeneity, which means that each service can use different technologies to achieve the
desired goals. Furthermore, we ensure that the whole system doesn’t shut down when a service
crashes. Even if these services depend on each other, they should be able to operate without

16



this connection, affecting the system performance but providing the service nonetheless.
Another great advantage when using this approach is that the process of scaling remains much
more manageable than in a monolithic architecture. Effortless scalability is possible since only
services that need scaling are updated, in contrast to the monolithic architecture, where the
whole system needs to be changed.

Microservices are a significant shift in the DevOps domain, allowing collaboration between
teams, or even companies, developing web services. Even with all these advantages, some
problems came along with this strategy, manly service discovery, security, and failure handling.
The latter doesn’t refer to total failure, i.e., crash, but to malfunctions that occur a certain
number of times or even slowness in the responses. These types of failures are much harder to
solve or even detect, for that matter. Other concerns arise because of the natural structure of
the web services, being easily accessible. Users regard the security of these online applications
as one of the most crucial elements, especially when the service provides online payment. The
survey [34] shows that abuse of functionality and spoofing are on top of the attacks performed
in cloud services. Even though some of these exploits can be related to user carelessness, the
developer needs to ensure that the least amount of attacks happen. All these difficulties come
because microservice’s architecture is composed of independent components. Nevertheless,
the advantages outdo the disadvantages, plus there are a lot of methods and tools available to
solve these problems [35], [36].

2.2.3 Deploying Web Services

It was already stated how cloud computing helped to improve solutions for IoT, Smart Cities
and web services in general. However, it is beneficial to understand how this approach works
to appreciate why it is utilized so much in IT. Besides, it is also essential to understand the
use of lightweight virtualization solutions to have a more efficient and agile system. These
solutions can run a virtual instance of a computer system in a layer abstracted from the
hardware. This method makes it easy to run multiple independent applications on a single
server, providing more effortless management of the system. Moreover, the adoption of cloud
computing has been growing so much that some reports state that, by 2021, data centers will
run half of all company’s workloads [37].

Cloud computing provides an exceptional alternative to access and deliver services over
the Internet, allowing faster innovation, low operating costs, and reliability. It enables not
only users but also businesses to access resources from anywhere when needed. Moreover,
this technology has been identified to have a major influence on small and medium-sized
enterprises, in particular, the availability of broadband internet access and data security and
privacy concerns [38]. When it comes to how the service provider implements the architecture
of its cloud, the shift from a centralized system to a more distributed approach is apparent
[39]. These environments are many times comprised of multiple virtual nodes, namely OSs
and applications. Virtualizing resources come with the advantages of being easier to manage
because of OS abstraction, which makes the service is independent of the underlying OS and
hardware. Cloud computing uses this approach to implement multiple virtual servers into a
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single physical machine. This method can provide several services using only one computer
if the hardware is powerful enough. Furthermore, this approach can be used to guarantee
availability by deploying redundancy [40], i.e., having several virtual nodes deploying the
same software so that if one fails, the service is still being provided. Finally, because it is
agnostic to the hardware and OS, the migration of these virtualized components is a trivial
task, offering developers an easy way to move services between machines.

The virtual nodes can be created using either virtualization or containerization, with
Virtual Machines(VMs) used to achieve the former, and containers used to accomplish the
latter. VMs are used to replicate servers by including a complete OS with all the drivers,
libraries, etc. Usually, they aren’t utilized to virtualize services since VMs require the
simulation of the hardware and consequently occupying a lot of space in the system. A better
way to virtualize a service is by using containers. Containers allow the virtualization of
different instances in a single OS, with them sharing the underlying kernel. By using this
approach, only the application needs to be simulated, not the whole OS, meaning that a single
OS can serve many services.

Figure 2.3: Typical container architecture.

In a typical container architecture, as represented in Figure 2.3, the container engine sits
on top of the OS, supporting services, libraries, and binaries, while still able to communicate
with each other. This strategy is very lightweight compared to VMs since, as stated, a
container will run a process and does not require virtualization of the full OS, giving them a
better performance over VMs. Although containers achieve better performance over VMs, the
latter have an edge when it comes to security and isolation [41]. Even though the use-cases
vary significantly, some researchers suggest a hybrid virtualization approach, where deploying
containers inside VMs provide the performance of the former with the security properties of
the latter [42].

2.3 Object Detection Solutions

Research in object recognition has been around since the 1960s, but only in the 21st century,
the field saw its increase in popularity when an efficient working face detector was developed.
More face detectors appear through the years, but it was at the beginning of the 2010s that
object classification would have incredible improvements by utilizing deep learning. In 2012 an
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annual competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
was held. During this year’s competition, a team of researchers trained a Convolutional
Neural Network(CNN) in ImageNet, to classify images [43]. This team’s model outperformed
every other competitor for ImageNet. Although this is a big step in object classification,
detecting things is much harder. Detection refers to both identify the position and the
class(what it is) of an object in an image. Nevertheless, CNNs helped with this challenging
task, though in conjunction with other techniques, since using only the network would have
a huge computationally cost. Lots of algorithms were developed, still using these networks,
but approaching the problem in different ways. After some years of research, the algorithms
became so good at detecting objects that the paradigm shifted to other objectives. In the
mid 2010s, researchers knew that the accuracy of the detectors was great, but they were
extremely slow. So, the next step was to improve the time an algorithm took to process an
image. Nowadays, this technology evolved to be able to perform in real-time scenarios with
high detection accuracy.

2.3.1 Non Real-Time Object Detection

The deep learning era of object detection can be divided into two genres: two-stage detection
and one-stage detection. The first one frames the detection as a "coarse-to-fine" process, while
the second is a method that "completes in one step." [44] The expression "coarse-to-fine" means
that the two-stage detection initial segmentation gives not much detail, i.e., only proposes a
set of regions of interest. Only in the second stage, when the classifier is applied, we get the
objects detected, i.e., a fine segmentation. The expression that describes one-stage detection
is rather clear, stating the process is completed in one step. The algorithm uses only one
CNN to detect and classify the objects, being finished after passing through the network only
one time.

The Regions with Convolutional Neural Networks(R-CNN) family of algorithms ruled the
first genre, improving significantly with every version. The idea of R-CNN is to begin by
selecting some regions of interest before feeding the image to the network. This process is
called selective search, and its goal is to create a set of region proposals in an image, i.e.,
select areas that might contain objects. These regions are chosen by analyzing the texture,
color, or intensity of an image. Once these are processed, they are feed through a CNN to
compute features in that area. In the end, a support vector machine reads the feature vector
and classifies the object in that region [43].

R-CNN still took extensive amounts of time to train networks, plus the selective search was
fixed, meaning that it couldn’t learn to generate better region proposals in the first stage of
the algorithm. Furthermore, its real-time performance was not even taken into consideration
since it took around 47 seconds to test each image. Thus, the efforts turned out to implement
a faster algorithm while taking advantage of the accuracy of R-CNN. Some of its popular
implementations, as well as the original, used selective search to find region proposals. This
process is quite slow and time-consuming, affecting the algorithm’s performance. Thus, the
clear performance boost was to eliminate selective search and make the network learn the
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region proposals.
Faster R-CNN [45] is one of the fastest algorithms based on R-CNN. It accomplishes

this by replacing the selective search process with a convolutional feature map that is used
to predict region proposals. Figure 2.4 shows that by using this approach Faster R-CNN
outperforms other R-CNN implementations in test time while increasing accuracy.

Figure 2.4: Comparison of test-time speed and mean average precision of algorithms based on R-CNN
[45]–[47]

With this performance, Faster R-CNN can process a video at five frames per second using
a powerfull GPU. It is a magnificent improvement of R-CNN but its a little slow to be called
real-time object detection. The processing time was high due to the nature of the algorithms
themselves, it being a two-stage detector. However, after the paradigm shifted to the genre of
one-stage detection, the real-time performance started to appear. During this era, algorithms
such as YOLO and SSD would set major milestones while constantly pushing the envelope,
both in terms of speed and accuracy.

2.3.2 Real-Time Object Detection

The previously discussed object detection algorithms use regions to locate the object within
an image, i.e., instead of the network looking at the complete picture, it scans parts of it
where there is a higher probability of having an object. To solve the object detection problem,
YOLO [48] takes a different approach that pays off since it outperforms all R-CNN versions.
YOLO is a single shot detector where the goal was to look at the image only once but cleverly,
hence its name You Only Look Once. YOLO divides the image into an SxS grid where
each cell is responsible for predicting two things, some number of bounding boxes and the
confidence values for each. These values describe the probability of a certain box containing
an object. This first process only tells the algorithm where the objects are, not what they are.
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So, following the previous step, the network will predict class probabilities and compute the
bounding boxes weighted by their likelihood of containing an object [48].

Figure 2.5: The difference in the number of bounding boxes before and after the threshold is applied

The result given by the network is a ton of bounding boxes, the majority with low
confidence values. Thus, by applying a threshold to the predictions, the final detection image
is processed. This value is usually above 0.6, meaning that the algorithm only displays boxes
that have a 60% or more probability of having an object. YOLO is way faster than other
object detection algorithms but struggles when it comes to detecting smaller objects. Even
with some problems, it outperformed all R-CNN based algorithms in speed. Now with 45
FPS, YOLO was a better real-time object detector than Faster R-CNN, with little cost in
accuracy.

Real-Time Detectors mAP FPS
Fast YOLO 52.7 155

YOLO 63.4 45

Not Real-Time Detectors mAP FPS
Fast R-CNN 70.0 0.5

Faster R-CNN ZF 62.1 18

Table 2.2: Comparison of the performance and speed of object detectors

Another example of a single-stage detector is the Single Shot MultiBox Detector (SSD)
[49]. It works similarly to YOLO, in the sense of using a fully convolutional approach in
which the network can find all objects with one pass of the image. This algorithm shares
a lot of techniques with YOLO, but it has a feature that was very important to boost its
performance, which is anchor boxes. While some R-CNN versions use an algorithm to help
generate bounding boxes, SSD pre-computes multiple anchor boxes utilizing a network to
extract feature maps [49]. This process gives it a significant advantage considering other
algorithms have fixed selective search. YOLO didn’t utilize this method, simply predicting
the coordinates of the bounding boxes. SSD, on the other hand, predict offsets for the
pre-computed boxes because it’s much easier to adjust these values instead of computing the
exact coordinates. Moreover, SSD uses a network to generate anchor boxes so the algorithm
can learn how to create better ones.

Using this whole process, SSD outperformed the first version of YOLO, both in speed and
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accuracy. However, the developers knew that YOLO had a computationally expensive way to
predict bounding boxes and offered poor detection accuracy in small objects. Therefore, the
second version of this algorithm, YOLO9000, used modified techniques of already existing
solutions to solve these issues.

The first version of YOLO was fast but fell short in terms of accuracy compared to
other object detectors. The second version YOLO9000 [50] focused on primarily improving
the accuracy of detection while not compromising too much on speed. In some cases, the
developers took inspiration from other algorithms, such as SSD, trying to improve their
features, in this case, the use of anchor boxes. As stated previously, SSD uses pre-computed
anchor boxes to predict regions where the objects may be located, making it more efficient to
work with offsets than with exact coordinates. Even though the detector learns whose boxes
have a better intersection with the object, the aspect ratio of anchor boxes is fixed, giving
very little freedom when it comes to the shape of these boxes. YOLO9000 developers, when
looking at training data, realized that these aspect ratios do not always correspond to reality.
The solution was to run k-mean clustering on the training set to find proper dimensions. The
result was a set of boxes, called dimension clusters, that describe how close they are to overlap
an object, i.e., the best possible starting place for these boxes. This technique YOLO9000
able to surpass the accuracy of 9 anchor boxes by using only 5 clusters.

Another method used to try to fight the apparent problem that the detector had with
small objects was multi-scale training. The training process of the first version used only one
aspect ratio, 448x448, resizing all the images to that size. YOLO9000 resized the network
every few iterations, choosing a new image dimension between 320x320 and 608x608. This
procedure makes the model robust enough to run on inputs with different sizes, learning to
predict well across a variety of dimensions, ensuring that all the features learned from the
small images will translate well to a network operating bigger ones. Multi-Scale training also
avoids overfitting without influencing performance in a significant way since the only thing
changing is the image size.

Even though these changes boosted the mAP and the FPSs from 63.4% and 45, in the
first version, to 77.8% and 59, YOLO9000 was still quite bad at detecting small objects, not
performing well in CCTV footage of traffic, for example. Nevertheless, the third version of
the algorithm addresses this issue. YOLOv3 [51] utilized the multi-scale training idea of the
previous version and applied it in detection. Images are downsampled by 32, 16, and 8 to
perform prediction across different scales, helping with the small object matter. Although
other features were implemented, this method made version 3 stand out in performance.

The most recent YOLO version, YOLOv4 [52], makes a significant jump in speed and
accuracy compared to the previous algorithms. Here the researchers try to obtain performance
by not modifying the prediction algorithm itself but by changing the architecture of the object
detector, composed of the backbone, neck, and head. This means that the dense prediction
component, which is the one responsible for computing the bounding boxes and its confidences,
uses the YOLOv3 algorithm. This component is located on the head of the architecture that
connects to the neck. This part holds some layers used to collect feature maps from different
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Figure 2.6: Speed and accuracy of YOLOv3 and other algorithms. This version has the best tradeoffs
between speed and accuracy across all object detection algorithms.

stages. YOLOv4 applies two methods in this component, Path Aggregation Network (PAN)
and Spatial Pyramid Pooling (SPP), that are used to detect objects in different scales. The
former combines information from all the layers to avoid duplicated predictions, while the
latter separates the most significant context features without compromising speed. Finally,
CSPDarknet53 was used in the backbone since it was shown to be the most optimal model.

Figure 2.7: YOLOv4 architecture.

When it comes to training optimization, numerous strategies were used that can be
classified by BoF (Bag-of-Freebies) or BoS (Bag-of-Specials). The first details methods that
can be utilized without any cost to performance, i.e., for free. The second describes techniques
that only increase the inference cost by a small amount but offer large improvements in the
accuracy of the detector, i.e., getting a special offer. All these methods make YOLOv4 a state
of the art object detector, tested in various GPU architecture. Figure 2.8 shows the results of
the average precision for different values of IoU.

Object detection algorithms approached a stage where their performance surpassed the
real-time speeds, using good GPUs. Nowadays, these detectors can achieve good performance
on non-top of the line graphics cards. Moreover, with the development of smaller algorithms,
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Figure 2.8: Comparison of the accuracy and speed of object detectors in the Maxwell architecture.
The left chart shows the AP for IoU values varying between 0.50 to 0.95, at a step of
0.05, i.e., ten values tested. The AP value on the right chart is computed at a single IoU
of 0.50.

with fewer convolution layers, based on bigger ones, less powerful GPUs can achieve real-time
speeds, though with some cost inaccuracy. YOLOv4 tiny comes as an example, with some
researchers achieving 270 FPS with a top of the line graphic card [53]. These numbers mean
that even small GPUs, for example, the ones implemented in embedded systems, can achieve
real-time speeds of 25 to 30 FPS. This provides a significant benefit for object detection units
that work with CCTV footage since instead of processing the video in one big machine, a
board with an embedded GPU can consume images directly from the camera. These scenarios
are quite common, so these small detectors will probably end up being more utilized than the
heavier ones.

2.4 Sensor Fusion

Over the years, radars and sensors technology matured fast, and became cheaper, due to the
rise in popularity of IoT and Smart Cities [54]. Other components used in these fields, like
cameras, are also getting better, but their image quality in certain conditions suffers a lot.
The most common are bad weather and low luminosity, which sometimes influence the image
quality so severely that it becomes almost impossible to extract any information from the
camera. Nevertheless, these devices provide a much better classification of the environment
than radars, being worst when it comes to detection. The limitation and qualities of each
are well known, so the best solution to get a better picture of the environment is to fuse
data from the two. This information is combined from areas where these devices shine, i.e.,
classification data from the cameras and detection data from the radars. Thus, sensor fusion’s
goal is to combine information from various devices to produce more precise data or, in this
case, making object detection more accurate.

This method offers a reliable solution when it comes to traffic problems, being either in the
domain of autonomous vehicles or IoT. Even though these two fields are distinct at its core,
the solutions for object detection vary little. The more reliable approach is, as detailed above,
to combine data from a camera and a radar. We can’t escape the basics when discussing

24



the latter since, even though the quality of the sensors influences the final data, most of the
radars measure the same types of information. Furthermore, the user doesn’t need much
work since the radar provides well-structured data. We can’t say the same about cameras
considering that it is much harder to get quantifiable information from a video. Object
detection algorithms help solve this problem since they can not only predict the coordinates of
an object in a video/image but also classifying this object. Moreover, with further calculations,
other variables, like distance from the object or its speed, can be predicted from the values
provided by the detector.

Many methods are being designed to optimize results when combining these devices. One
of them uses a radar sensor that outputs a sparse 2D point cloud in conjunction with the
channels red, green, and blue of a stream from a camera. All this information is collected and
feed into a neural network built on RetinaNet that they called CRF-Net [55]. This approach
tries to outperform image-only object detectors by using radar and camera data. It can
calculate the distance from a detected object, making it perfect to be applied in autonomous
driving. However, the network needs 43ms to process the fused data at an image resolution
of 360x640 pixels. For higher resolutions, CRF-Net needs 103ms to process the information,
which equates to 9 FPS, making it impossible to use in real-time scenarios.

Another approach based on object detection algorithms [56] combines one millimeter-wave
radar with a camera to solve the problem of low visibility video in foggy weather. Here
YOLO9000 is used to recognized traffic and later be fused with the radar information. The low
visibility problem is solved by defogging the image to have a better view of the environment.
After the fusion, regions of interest are drawn in the video based on this whole process. Even
though this approach solves a real common problem(low visibility in cameras), the real-time
performance was not meet, running at 15 FPS. However, it uses an obsolete version of YOLO,
being very likely to meet real-time performance if a newer algorithm was utilized.

Even though these strategies provide high precision of object detection when combining
data from devices, most of them lack real-time performance. This obstacle, however, can be
easily solved, in some cases, by using a better and faster detector or even the right hardware.
The latter is crucial to extract all the performance out of the detectors. After the increase in
popularity of the Rasberry Pi products, some companies saw a great opportunity to invest in
creating products that provided something that the Rasberry’s lacked, a good GPU. Nowadays,
UDOO, with the UDOO BOLT line of products, and NVIDIA with the Jetson kit, provide
excellent solutions for compact and power-efficient modules that can be implemented in the
field of artificial intelligence.

2.5 Technologies applied in a Smart City context

Sensors are the backbone of a Smart City, allowing real-time monitoring of the environment.
Focusing on the context of traffic management, this section is majorly dominated by stationary
radars [57]. These devices are normally spread throughout the roads of a city, being able to
observe the traffic and measure its flow or speed. Even though radars are the traditional way
to monitor traffic, many cities try to implement different solutions using other types of devices.
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One example is Pittsburgh, which deployed a system called SURTRAC [58]. The sensor
infrastructure of this project can range from cameras, radars, or even induction loops. All
these devices help the platform to craft the most efficient plan to then apply to the connected
intersections. This process helps with the management of traffic queues by focusing on higher
flows. With the help of this system, the traffic efficiency improved by 25% to 40% while also
reducing carbon emissions by over 20%.

Even though this solution didn’t apply any object detection algorithms discussed previously,
other smart cities took advantage of the classification power provided by these detectors.
YOLO is being used by Elan Electronics as a traffic solution, being deployed in Taiwan [59].
Although there aren’t many examples of fully developed solutions since these algorithms only
became reliable quite recently, researchers are working on solutions as close to a smart city
scenario as possible. MME-YOLO [60] uses YOLOv3 as a base, adding posterior adjustments
to make traffic detection more reliable. The tests are performed with CCTV images, mimicking
what a sensor infrastructure in a city might look like. One particularity of this setup is the
way the cameras are installed and where they are pointing. Instead of surveilling the occlusion
spots, where the density of traffic is high, like near a traffic light, it records the whole stretch
of road. This approach, illustrated in Figure 2.9, even with clear disadvantages such as greater
exposure to vehicle lights, provides a better picture of the movement of traffic, making it
easier to detect large traffic jams.

Figure 2.9: Difference between the tradicional CCTV setup and one capturing the whole streach of
road.

Many more applications can be found in the same scenario, where an object detector is
receiving video footage from a CCTV device to identify some type of traffic behavior. In
[61] YOLOv3 was used as a base of object detection to identify illegally parked vehicles.
This algorithm was complemented with a movement tracking to understand if the vehicle
was parked or not. Even though this approach and MME-YOLO are not implemented in a
smart city solution yet, they are inserted in a scenario related to this concept, which is smart
mobility.

Nevertheless, the use of only CCTV as a form of detection can produce misleading
results in some conditions, such as bad weather or poor lighting. To solve this issue, many

26



solutions combine two types of sensors (radars and cameras) to achieve the best detection
and classification possible. The examples discussed above were applied in a self-driving car
context, but other solutions solve issues more related to smart cities, like level crossing. In
[62] a system was developed to detect vehicles and pedestrians in a level crossing area. This
system makes use of both radars and cameras to achieve better detection and provide risk
management in these areas. The algorithm relies on features instead of raw pixels, which
provide better performance in terms of speed but less accuracy when comparing to detectors
discussed previously. The document not only provides a robust system but also discusses a
crucial idea that can be applied to almost every level crossing. In most of these areas, radars
are already installed, so it would be easy to deploy a camera next to it and implement the
system. It also states that this approach is less cost-efficient than deploying other devices like
ultrasonic sensors. These are more expensive than radars, needing to be complemented with
other devices because of their lack of efficiency in adverse weather conditions.

Even though these types of solutions help the city residents or tourists, they can be obscure
to people, in the sense that they will probably not even know that the system exists. To
publicize these solutions, many smart cities develop public services where users can access
information provided by the sensors previously installed. Barcelona took this approach by
building a dashboard to monitor data, called Smart Citizen Kit [63], measured by the citizens.
This approach involves people in the measurement process, raising awareness of environmental
concerns. The dashboard receives all the data collected from the low-cost sensors deployed
throughout the city, indoors and outdoors, and displays it on an interactive map. Here the
user can search for the active sensors in a certain area to know the light conditions, air
temperature, humidity, noise, and much more.

Figure 2.10: Dashboard from the Smart Citizen project, derived from [64].

By giving the residents part of the responsibility of monitoring environmental data, they
can feel more involved in the project and be a helping hand in the city’s progress.

Even though the systems discussed differ a lot in their approach and use of sensors,
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the diversity of implementations and data is what builds an excellent smart city solution.
Nevertheless, the core of these applications is the same, which is actively using sensor’s data
to build solutions that help the residents of the city.
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CHAPTER 3
Requirements and Solution

Architecture

3.1 Scope

The initial plan was to explore three types of domains (parking, traffic, and traffic classification)
to solve the issues regarding this dissertation. These areas are linked to the sensors used to
implement its systems. The objective of the Parking domain is to utilize the information
provided by the parking sensors to build a map with icons, describing their state and location.
The second domain would be more focused on a dashboard component to visualize the state
of the radars and traffic, being complemented with a map that provides real-time information.
The last domain will use both the cameras and the radar’s data to achieve a more precise
traffic classification. An object detection algorithm will be implemented in some piece of
hardware, utilizing the CCTV images to reach the goal estabilshed.

Before discussing the solutions themselves, we have to understand the target user of these
services. As stated before, this dissertation falls in the context of the PASMO project, where
the goal is to provide a platform for companies to experiment with solutions and offer users
services to better their quality of life. Still, system administrators need a simple way to
visualize failures in the sensors, to act rapidly and accordingly. Therefore, we need to consider
these two parties since the data displayed must reflect the user’s needs.

The base idea behind the two first domains was not only to provide a complete dashboard
example on how researchers can use PASMO sensor data but also help administrators to
detect failures. The dashboard also has user-friendly maps that show what is happening in
the region. The traffic classification domain would be complementing the platform to provide
more reliable traffic information. The goal of this component is not to offer a public service.
Instead, the purpose is to be implemented as a way to utilize the cameras and produce more
precise data.

To understand the sensor data that describes the real world, one needs to acknowledge
the location and orientation of the sensors. For the parking sensors, only location is relevant
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since they are all pointing up to detect a vehicle. However, when discussing the radars, their
orientation matters a lot because vehicle detection depends on this variable.

PASMO infrastructure has 17 RSUs installed, but only three are giving radar data. The
RSUs portrayed as the icons with the numbers in Figure 3.1 represent the ones that publish
radar information, while the ones with a letter don’t produce any data.

Figure 3.1: Map displaying all the RSUs installed though by the PASMO project.

These numbers 1, 2, and 3 identify the Ponte, DunaMeio, and RiaAtiva radars, respectively.
The Ponte device is located at the beginning of the Barra bridge (latitude 40.628265 and
longitude -8.733521), aiming east southeast. The DunaMeio radar is located at the north
entrance of Costa Nova, near a restaurant with the same name (latitude 40.629108 and
longitude -8.746947), and points north. Finally, RiaAtiva is located at the south entrance
of Costa Nova, near a surfing school with the same name (latitude 40.607589 and longitude
-8.748826), and it’s pointing south. Another essential thing to understand is the limitation of
the regions Barra and Costa Nova, as well as which radars work in which areas. The Ponte
radar solely handles traffic in Barra while RiaAtiva only manages Costa Nova. The device
DunaMeio handles traffic from the two regions since it is within the limit of both of them.
Figure 3.2 illustrates what was described in above. Region borders and the location of the
radars are identified as well as the orientation of the devices.

When it comes to the parking sensors, these were installed only in Barra. The devices are
placed along the road near the beach and in the area near the lighthouse.

Even though both of these devices, radars and parking sensors, publish data in the SCoT
platform in a JSON format, the information stored is reasonably different. It’s crucial to
understand the types of data that the devices give.

Beginning with the parking sensors, these publish simple information, providing their
state, the timestamp of the read, and their latitude and longitude. The first variable only
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Figure 3.2: Map describing regions borders as well as the location of the radars and its orientation.

has two values, 1 and 0, them meaning spot occupied and free, respectively. In contrast, the
radars offer much more information about the world. These devices provide their ID, latitude,
longitude, and azimuth, as well as the ID, speed, position, and length of the object detected.
The speed and position are defined by two variables each, describing the value in the x and
y-axis. This information, in conjunction with the latitude, longitude, and azimuth of the
radar, can be used to calculate the location(latitude and longitude) of the object detected.

The third domain uses the cameras to provide a better classification of the traffic. These
devices are installed alongside the radars, in the same RSUs presented above. Since the
content of the cameras cannot be shared, this component will not be provided to the public.
Still, it gives PASMO developers the ability to examine real-time traffic flow with precise
classification.

By completing the goals presented and developing the services for each domain, PASMO
will be a complete Smart City solution, providing accurate data to the public about the
beachside of Gafanha da Nazaré.
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3.2 Requirements

As stated previously, to have this whole system working, a full-stack solution is required,
together with the traffic classification component, which is a crucial element to produce
reliable data.

When it comes to storing information collected by the various sensors, the SCoT platform
provides a reliable and versatile way to save and access sensor data from its databases. One
of the most important features it offers for the context of this dissertation is giving users the
ability to choose between different types of databases. With this freedom of choosing where
the data is retrieved, users can improve application performance on this factor alone. Even
though data can be retrieved directly from SCoT, the front-end applications should not have
direct access to it for security reasons. Furthermore, the sensor information stored will be
accessed not only by the platform developed in this dissertation but by the public, so a more
effortless and fast way to access data is required.

Here we arrive at another crucial component, which is the backend server that serves as
an API. This element will be responsible for accessing SCoT, process its data, and provide
it in a standard format for all to use. This web service was developed to follow PASMO
purpose, an open platform for researchers to develop their ideas. Such a service needs to
provide fast access to information and an excellent way to load balance requests so that user’s
applications do not get bottlenecked by it. Furthermore, it is essential to have a well-described
documentation page where all the services provided are specified since we are building a public
service.

The API should have requests that give raw sensor data, but other essential measurements
can also be calculated by using the basic information that the devices provide. In the parking
domain, one of the most relevant information to give to the user is the occupation of the
parking spaces in real-time. Still, other data can be produced, such as the number of vehicles
that parked and departed on a given day. Using these two values, we can also calculate the
average time that a spot stays occupied to understand how much time visitors spend in the
area. In contrast with the parking sensors, the radars give more information about the object
they detect, and consequently, more measurements can be computed using the data from
these devices. Since they provide the object’s location, length, and velocity, the user can be
alerted about traffic jams, average speeds in the area, and even the number of vehicles in each
region. More specific information can also be known, such as traffic flow throughout time or
the relation between a vehicle’s class and speed. Furthermore, all of this information can be
merged to offer the user a better picture of the real world.

The API will feed data to a web page where users can view an example of how PASMO
data can be utilized. Furthermore, this application must make use of all the API’s requests
to be a more visual and straightforward way for administrators to examine the state of the
system and its sensors.

Therefore, at least three pages need to be created to accomplish all the objectives discussed.
The first page will include all the information related to the parking sensors, where it is
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crucial to have a map with all the sensor’s location and their current state. This feature will
be the focus of the page since it is one of the most relevant information to the users. To be
straightforward to read, the map needs icons representing the sensor’s position and colors to
describe the different states. The second page will cover information about the radars, where
the central feature must be a chart displaying traffic flow in both the regions, accompanied by
another graph showing the speeds registered in each radar. These components will mainly
help the administrators to check for radar failures and act accordingly. The final page, still
using the radar data, should offer an essential feature for visitors, a map with real-time traffic
information. The most critical information that we can provide to both the residents and
tourists is current data about congestions and waiting time, as well as an estimation of how
many vehicles are in each area.

All these services need a way to be accessible to the public, needing another component
to fulfill this task. A web server will be responsible for processing incoming network requests
and redirect them to the API server, the documentation page, or the web application.

As stated before, the traffic classification solution will not be available publicly, staying
independent from the system detailed above. The development of this component requires
an analysis of both hardware and software solutions. Beginning with the latter, it is well
established in the literature that using an object detection algorithm is the best way to achieve
quality traffic classification when using video from cameras. Since the detectors are based
on CNNs, we will need to train a model for the algorithm to learn to classify traffic. The
data created by this component can then be fused with radar values to produce more precise
information. The object detector model needs to be running on some type of machine, desktop,
or board. The desktop can handle a large model because of its processing power, which will
provide better detection. However, the board is more compact, yet less powerful, needing a
smaller model and costing in accuracy. Still, this board can be applied in the RSU, capturing
the video directly from the camera, while the desktop needs a live broadcast, meaning that a
stream needs to be sent from the RSU to the building, costing in time and bandwidth. One
thing to note is that even if the board is the better solution, the training process still needs
to be executed in a powerful machine. Using a board with a weak GPU(performance-wise) is
not efficient because the process takes too long to complete.

The laid down requirements should be sufficient to achieve all the goals for this dissertation
but, other minor details or components may be added along with the implementation of the
system if needed.

3.3 Proposed Solution

The final proposed solution expresses a lot of valuable data about the region, such as the
number of vehicles flowing between areas, traffic classes, parking sensors states, number of
vehicles parking and departing, and more. All these variables help tourists to avoid stressful
situations like traffic congestions or looking for a parking lot. The system not only helps
the tourists but the city consul too, with data that describes the critical times of the year,
in terms of traffic congestion. It also presents a solution for the poor traffic classification
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produced by the radars. The goal is to combine different sensor data and create a platform
where the public can access useful information.

As stated previously, the API platform stores data from all the sensors in different
databases, utilized according to the context of the problem. SCoT will be the solution used for
data storage, being accessed by both the API and the traffic classification system. Regarding
the API the objective is to create as much data as possible using the databases queries. This
approach will make the process more efficient since if we retrieve data from SCoT to then be
heavily modified in the API, the response time will increase, costing in performance.

The server-side implements two components, the API and the front-end, that will perform
data processing in distinct ways. The former gets the sensor data from SCoT to be able to
compute information for its requests. The latter accesses the API and build charts or maps
from the data given by its requests. Next, it establishes communication with a client so that
the page is displayed on its web browser.

Most of the frameworks developed to build APIs can’t handle multiple requests by
themselves, usually only serving one client at a time. The solution to this problem is to
implement a component that offers load balance multiplying the resources and making the
process of getting data more efficient. Another issue appears when discussing the fact that
these services must be public and the clients need t to be forwarded to the correct application.
The solution comes in the form of a reverse proxy server that provides features that make
the communication between clients and servers much faster and smoother, such as caching
common content. This component also defines the traffic allowed on certain ports and from
what sources, plus the URL paths where the services are implemented.

Discussing the front-end component, it will provide three dashboard-type pages and a
map with real-time traffic data. To understand how to build these types of pages, it’s better
to start from the end, i.e., thinking about what features the users will have access to. Use
cases are used in these kinds of situations, defining the main features of a system and their
interaction with the user. In the context of this system, every user performs the same role,
which is consulting the dashboard for information.

Figure 3.3: Use cases diagram.
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After defining the main features, and the user’s interactions, several mockups were created
as user interface solutions for the four pages.

Figure 3.4: Parking Dashboard page mockup. Figure 3.5: Radar Dashboard page mockup.

Figure 3.6: Compare Dates page mockup. Figure 3.7: Map page mockup.

Firstly, the parking dashboard will display the sensor’s location and current state, described
by its color green(free), red(occupied), or blue(inactive). Above it, the number of active and
available sensors will be given followed by the current occupation and details about other
events. The radar dashboard’s main goal is to provide information about traffic flow and
vehicle speed. This page will have two line charts, one describing the variation of traffic flow
and the other displaying the vehicle’s speed in each radar. To the left of the last graph, a
pie chart will show the percentage of vehicles of each type, pedestrian, bikes, cars, and heavy.
All these elements will be influenced by a calendar found on the top of the page, where the
user can filter information by selecting a particular time interval. The page "Compare Dates"
provides a way for users to compare data from two dates, side by side, by replicating the
traffic flow chart from the radar dashboard. The final page will hold a map, where users
can view real-time traffic information. It will show a colored area that imitates both regions,
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Barra and Costa Nova, which will activate a pop-up box when hovered. This element will
provide information about the number of vehicles in the region hovered, plus crucial traffic
data about its entrances, such as average speeds, congestion’s details, and waiting time.

In the end, the system will be composed of three components, with the backend being the
main element that serves the information to the public and the dashboard. This component
will implement an API that serves as a link between the raw sensor data stored in the SCoT
platform and the end-user. It works not only as a standardizer of data but also as a security
measure since SCoT could not be linked directly to the front-end. The dashboard will utilize
the requests available in the API to build charts, maps and display information in a way that
a regular user can understand. This element composes the front-end part of the system, where
information about the regions, its traffic, and parking state is displayed in comprehensible
form.

Thus, if the user wants to check the state of traffic in real-time, for example, it will access
the dashboard through its browser, communicating with the front-end. This component will
then perform one or more requests to the API depending on the data needed to build the map,
in this case, with all the information. Then, the back-end establishes a connection with SCoT,
retrieving the necessary data to fulfill the request. After the API returns the standardized
data, the front-end builds the page and communicates with the web browser so that the user
can visualize the information requested. This flow is illustrated in Figure 3.8.

Figure 3.8: Architecture of the system that provide the web services.

The solution to the last component, which performs the task of traffic classification and
independent from the system above, was to use an object detection algorithm to train a model
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and incorporate it into the system. As stated before, the model can run either on a desktop
or a specific board. In the context of this dissertation, a board with a good GPU is the best
option since it can be later embedded into the RSU, getting the video directly to the camera.
With this approach, the information transferred to the building is much smaller. If a desktop
were to be used, the RSU needed to send a live video. Therefore, using the board, the video
is directly fed into the device, and only the data processed is sent, saving in bandwidth. Since
the board is the better choice, in this case, we have to train a smaller model of the detection
algorithm. Even though the board has good performance, it can’t handle large models with
too many convolutional layers in real-time.

The information from the detection needs to be available to a program, which is a separate
component that merges the data. We will call this piece of software the Fuser. This program
needs to be connected to the object detector and SCoT so that it can receive data from
both the radars and the detection algorithm. Finally, to better visualize the data that is
being produced, and for debugging purposes, a web app is created. This component will
communicate with the Fuser so that this can provide all the data to be displayed. This
application will display a map with icons describing the position and class of the traffic
alongside the real-time stream.

Therefore, the system will be composed of two algorithms that fetch and provide data
to various components. The CCTV video will be feed into the object detector so that it can
perform the classification of traffic. This component will provide the detection data, mainly
coordinates and sizes of the bounding boxes generated, to the Fuser using a communication
established at the start. The Fuser will access SCoT to retrieve radar data and merge it with
the information from the detection. The final step is to send this processed information to
the web application so that this component can build a page with it to be presented in a web
browser. The flow described in this paragraph is illustrated in Figure 3.9.

One important thing to note is that the system lay down above is for test purposes. The
objective of using a board is to embed it in the RSU, which will minimize time differences
between the radar data stored and the stream considering both the radar and webcam will be
connected to the board. The detector will get the video directly from the camera, and the
Fuser will get the traffic data right from the radar.
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Figure 3.9: Architecture of the sensor fusion system.
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CHAPTER 4
Implementation

With all requirements for the system laid down, the implementation came about. Some
challenges that are very important to take into consideration when talking about public APIs
are their speed, the usefulness and accurateness of the data provided, and how accessible it is.
Users need to have fast, effortless, and reliable access to the service while receiving accurate
and useful information. On the other hand, the difficulties of dashboard development are
mainly the way the data is presented to the end-user. This data needs to be very organized and
clear to make its analysis simple. Many times it’s clear to the developer how the application
works and what the data tells, but not to the user. Documentation can easily solve these
kinds of problems, getting the user to understand what the information means or how to
interact with the application. Finally, when discussing traffic recognition, it is crucial to take
into consideration the error associated with classification results given by detection algorithms
and how to properly fuse data from two sensors to have a better picture of the environment.
Furthermore, when discussing CCTV images, it is essential to consider both the position
of the cameras and their image quality. Other common problems are the synchronization
between the radars and cameras and how to solve situations where one detects an object
while the other doesn’t. Nonetheless, these challenges are quite intriguing to solve to create a
system that provides the necessary information for tourists so that they can have a better
time when visiting the regions of Barra and Costa Nova.

4.1 Platform

This system provides two web services, an API to access information processed using sensor
data, and a dashboard that provides a user-friendly way to view and analyze this information.

4.1.1 System Structure

Beginning from the data storage component, the SCoT platform stores data from all the
sensors in different databases, utilized according to the context of the problem, them being
InfluxDB and PostgreSQL.
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In the server-side, the API will establish communication with SCoT, using the HTTP or
TLS1.3 depending on the database. When considering the framework that would be utilized
to develop this component, two popular ones written in Python 3.7 were considered. These
were Django and Flask, the most complete and with better support used to develop web
services. Although both are applied in web development, there is a clear difference in the
context of their usage. Django is a full-stack web framework, whereas Flask is a micro and
lightweight framework. Django is primarily used to develop a full web application, taking
advantage of its features, such as Django’s Admin page and built-in database support. Flask,
on the other hand, is primarily used in an SOA context when building API services. It is
also lighter and faster than Django, making it the perfect choice in this context. Nonetheless,
other types of software can be utilized to help with building not only the API server but its
documentation page as well. These are used to describe the components and structure of
the API before developing it, focusing first on the essential feature that the service needs to
provide. Swagger was chosen for this task since it offers a complete ecosystem of tools that
help with the design, development, and documentation of RESTful services. Furthermore,
requests can be tested on the page, giving users an easy way to experiment with API calls
without the use of other applications like Postman. The documentation page generated by
Swagger will be part of the front-end alongside the dashboard.

In the universe of frameworks used to build web applications, React, Angular, and Vue
stand out in popularity, community support, and runtime performance. Unlike React and Vue,
Angular is very feature-rich, i.e., many things that are needed to build applications are already
built-in. This characteristic is an advantage for Angular considering the built-in features
will always be compatible with the framework. Plus, both Angular and Vue separate the
HTML and the script language used, unlike React. The structure used is more of a personal
preference than an objective advantage, but it needs to be considered nonetheless. Due to the
reasons stated, the framework chosen to develop the front-end application was Angular for its
feature-rich nature and structure.

The last component on the server-side, that will be connected to both the API and the
front-end is the reverse proxy. Nginx will fulfill this task, staying at the edge of the server,
forwarding client HTTP requests to the right service. To be able to perform this action, both
the API and the front-end need to be connected to it, communicating thought HTTP as well.
The dashboard will also utilize Nginx to send its requests to the API so that it can get the
necessary data to build the pages to send to the users.

Figure 4.1 illustrates the structure of the system, as well as the interactions described in
the previous paragrahps.
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Figure 4.1: System structure of the platform that provides web services.

4.1.2 Backend

The backend is the core of the system, connecting all the components, and establishing a
link between the user and the raw sensor data that is hard to read. In the context of this
dissertation, the dashboard uses the processed information that the backend provides but,
one must not forget that because API will be public, the data will be used by other users,
most likely at the same time. To develop this service and make it accessible to the public, this
component needed to have several layers of software, each one with different responsibilities.
Figure 4.2 describes the structure of the backend, in which the client that is communicating
with the service will go through several layers of software to reach the Flask server, where the
sensor data is processed. Nginx is responsible to send the user requests to the appropriate
service while the uWSGI provides load balance.
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Figure 4.2: Software layers of the web service component.

4.1.2.1 Swagger

As stated before, building APIs from scratch can be a difficult challenge. Plus, when the
development begins by trying to create data without a well-established use case, some
information may end up never used because it is simply not useful. Thus, the process of
building an API should begin with establishing what information each request will provide.
Some software frameworks, like Swagger, help with this process by providing an environment
where the developer can modify the API’s requests, their parameters, and the data they
provided. Swagger is an open-source software with a vast ecosystem of tools that help
design, build, and document RESTful web services. By using the Swagger Editor tool, it
is possible to generate a well-structured Flask server with a YAML file that describes the
API’s specifications. This file specifies all the API requests, as well as their parameters and
data models. Furthermore, using another tool, called Swagger UI, it is possible to generate a
documentation page from a JSON conversion of that same YAML file.

We start to set some essential values before working on the section where all the requests
are defined. These are the host and basePath, specifying the URL where the server will reside,
which is pasmo.es.av.it.pt, and the base path for the application, which is /api. As disclosed
before, there are two key domains when it comes to sensor data, them being parking and
radars. Thus, two main paths were defined, /parking and /radars. As the names imply, the
first describes the requests that use data from the parking sensors, while the second describes
the ones that utilize data from the radars. This separation by domains helps the user identify
what data belongs to what type of sensor. After this configuration is set, the requests can
be designed. Usually, these hold several parameters where the user can send values to filter
information and be more specific with how and what data they want. They are defined
by two types, one of them being query that is attached to the end of an URL, and path,
which is a part of an URL. Even though every request will be detailed individually in the
following paragraphs, Table 4.1 provides a compact way to visualize all of them and their
query parameters. The first two need to be provided in a datetime format, and it is here
where the user defines the period from when the data will be retrieved. The other parameters,
order, limit and offset, give the user more freedom to work with the sensor data. The first
field describes how the data is ordered, ascendant and descendant, the second defines a limit
of information given, and the third an offset. The state parameter describes the state of
the parking sensors, available or active, and the last but one(day) specifies a date. Finally,
groupby defines the amount of time, in seconds, that the data will be aggregated. This
parameter is used in requests where there is some calculation. The user can group the data
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by any amount of time, within limits, giving the possibility of knowing an average of a value
per hour, for example.

initialDate finalDate order limit offset state day groupby
/parking X* X* X X X

/parking/{sensorID} X* X* X X X
/parking/availableSensors X*

/parking/events X*
/parking/latestValues

/radars
/radars/location

/radars/vehicleEstimation
/radars/{radar_id} X* X* X X X

/radars/{radar_id}/{measurement} X* X* X X X X
/radars/events/{region}/{event} X* X* X X X X

Table 4.1: API query parameters per request. The checkmark tells what parameters are used while
the asterisk describes the ones that are required.

Regarding the parking domain, five requests were defined. The first two, /parking
and /parking/{sensorID}, have the same five query parameters, with two of them being
required(initialDate and finalDate). The difference between these two relies on the path
parameter present on the second request, where the user can provide a sensor ID. Both these
requests will give the user a list of JSON objects describing the state of a specific sensor.

{
" sensor_id ": ( integer ),
" status ": ( integer ),
" timestamp ": ( datatime )

}

Listing 4.1: Response from the requests /parking and /parking/{sensorID}

The next request, /parking/availableSensors, gives the identification and location of the
sensors, depending on the parameters state, which can only be available or active. The
meaning of these values is detailed when discussing the Flask server. The result of this request
is a JSON object specifying the location of all the sensors with the given state.

{
" sensor_info ": [

{
" sensor_id ": ( integer ),
"lat": ( double ),
"long": ( double )

}
],
"state": ( string )

}

Listing 4.2: Response from the requests /parking/availableSensors
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The fourth request in the table only has one field, day, which is specified in the format
date. It provides a list of JSON objects describing the vehicles that parked, departed, and
the average time of the stay. This data relates to the day given.

{
" arrived ": ( integer ),
" departed ": ( integer ),
" avgTime ": ( integer )

}

Listing 4.3: Response from the requests /parking/events

The last request of this domain, /parking/latestValues, doesn’t require any parameters
and gives the latest value posted by every sensor in a certain time window. This period will
be clarified when discussing the Flask server. The request provides the same data type as the
first two, /parking and /parking/{sensorID}.

For the radar domain, six requests were defined. The first, /radars, returns recent
information provided by the radars. No parameters need to be provided, and it gives a list of
JSON objects describing all the values provided by the radar.

{
" radar_id ": ( string ),
" radar_lat ": ( double ),
"radar.lon": ( double ),
" radar_azm ": ( double ),
" xSpeed ": ( double ),
" ySpeed ": ( double ),
" xPoint ": ( double ),
" yPoint ": ( double ),
" oLength ": ( double ),
" object_id ": ( integer )

}

Listing 4.4: Response from the requests /radars

The next request of this domain, /radars/location, also doesn’t need parameters and simply
returns a list of JSON objects that describe the location of a radar(latitude and longitude)
together with its identification.

{
" radar_id ": ( string ),
"lat": ( double ),
"long": ( double )
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}

Listing 4.5: Response from the requests /radars/location

Another request that doesn’t require parameters is /radars/vehicleEstimation, and gives a
JSON object with an estimation of the current number of vehicles in Barra and Costa Nova.

{
" costa_nova ": ( integer ),
"barra": ( integer )

}

Listing 4.6: Response from the requests /radars/vehicleEstimation

The two following requests, /radars/{radar_id} and /radars/{radar_id}/{measurement},
have many fields in common. Firstly, radar identification needs to be provided in the path,
with the only possible values being ponte, dunaMeio, riaAtiva, and all. The query parameters
initialDate, finalDate, order, limit, and offset are present on both requests, with the first two
being required. These fields perform the same functions described previously. The difference
between the two is that the request /radars/{radar_id}/{measurement} has one more path
that filters data by type of measure(speed or class) as well as a query parameter(groupby)
that can group the results by a certain length of time. Although similar in parameters, these
requests differ a lot in the structure of the data provided. The first one returns a list of JSON
objects that describe the relationship between vehicle class and speed.

{
" object_id ": ( integer ),
"speed": ( double ),
"class": ( integer ),
" device ": ( string ),
" timestamp ": ( datetime )

}

Listing 4.7: Response from the requests /radars/{radar_id}

The second one also gives a list of JSON objects but describing only one of the two
measurements. The data type varies depending on the one that users select, being the left
JSON the result of choosing class, and the right object the result of choosing speed.
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{
" timestamp ": ( datetime ),
" device ": ( string ),
"class": ( integer )

}

Listing 4.8: Response from the requests
/radars/{radar_id}/{measurement}
by choosing class

{
" timestamp ": ( datetime ),
" device ": ( string ),
" speed_in ": ( integer ),
" speed_out ": ( integer )

}

Listing 4.9: Response from the requests
/radars/{radar_id}/{measurement}
by choosing speed

The last request, /radars/events/{region}/{event}, describes several events for the different
regions and radars. These events can either be cars_in, describing the number of cars entering
a region, cars_out describing the number of cars leaving, and cars describing the traffic flow.
In the path parameter region, the following values are available, barra, costa_nova, ponte,
dunaMeio, and riaAtiva. The data provided is simply a list of JSON objects detailing the
number of vehicles detected.

{
" timestamp ": ( datetime ),
" number_of_cars ": ( integer )

}

Listing 4.10: Response from the requests /radars/events/{region}/{event}

After the configuration process, several files can be generated that will help with the
development of the back-end server. Going to the "Generate Server" tab in the interface, we
can see several types of frameworks. As discussed previously, Flask will be used in this context,
so the "python-flask" field is selected to generate a Flask API server with all the requests
configurated in the YAML file. We also need a JSON file that describes the configuration to
generate the documentation page. Swagger UI offers this option when selecting "Convert and
save as JSON" under the "File" tab. Using Swagger forces us to take a set back and think
about the API and data structures first before implementing the code. This approach lays a
clear ground on what features need to be implemented and what data to use, not wasting
time on implementing requests that don’t provide useful information.

4.1.2.2 API

Flask, more precisely Flask 1.1.2, has the responsibility of accessing and processing data
from the different databases in SCoT, using multiple Python libraries. The platform has
three databases implemented, Cassandra, InfluxDB, and PostgreSQL, that provide distinct
features. Only the last two were used since they were enough to meet the requirements for this
dissertation. InfluxDB is very fast when retrieving data from a single table, coming in hand
when an operation needs tons of data from a single measurement. For example, if we want to
know the average speed of vehicles from the last 24 hours, InfluxDB is the database to use
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because it’s only handling a single variable. In contrast, when a request needs to relate data
from various tables, i.e., different measurements, PostgreSQL is utilized because InfluxDB
does not offer this feature. For example, if we want to know the speed and class of a vehicle,
PostgreSQL is used. This rule is applied to almost all requests, with some exceptions that
we will be discussing later. Although this is the main followed rule when considering what
database to use, other features such as simplicity of commands and speed are taken into
consideration when making this choice. To access the databases described above, two Python
libraries were used, influxdb to reach InfluxDB and psycopg2 to access PostgreSQL.

At this point, we can start to work with the sensor data, but one detail that we tend to
forget is the timestamp, more precisely in the context of timezones. Here it’s necessary to
decide if the API will give the timestamp of the data following the Greenwich Mean Time
Zone (GMT) or the Western European Standard Time, which is the one where Portugal is
located. Even though this is mainly a Portuguese project, it’s better to provide the timestamp
as the sensors publish it, which is in GMT, leaving the conversion to the frontend applications.

Another essential thing to discuss is the way the API handles errors and values that are
not permitted. Swagger generated some of these validations, mostly the ones that check if a
parameter is missing or invalid. The rest were created manually according to the context of
the errors. One important thing to check is the date and groupby values. Some combinations
of these two variables can result in a stall because of the amount of data being retrieved.
Some requests like /parking have a specific limit on the time frame that a user can introduce.
The result of this is an ERROR message telling the user that "Time interval higher than 1
day." The groupby hazard is solved by comparing the value introduced to the default value
calculated. The default value is calculated for the circumstances where the user doesn’t
provide any groupby value. We will come to this value later, but for now, the only thing
necessary to understand is that this restriction was created so that data doesn’t exceed a
particular size. One example of a stall happening without this regulation is when the user asks
for data from a month, grouped by five seconds. The huge discrepancy in these values means
that the database needs to retrieve a large amount of data, making the request slow. The
validation is performed by checking if the groupby value introduced is less than 20% of the
default. If this happens, an ERROR message is returned, informing the user that "groupby
value too low!". This process ensures that the values given are always in a range where the
request doesn’t stall the API.

Other more request-specific validations were made, particularly in /parking/{sensorID}, to
make sure that the user doesn’t introduce a sensor ID that doesn’t exist. Finally, for requests
where the user needs to provide a time frame, if there is no sensor data available from that
period, a NOINFO message is given saying "No data found for the time interval provided."

Turning our attention to the requests, their features are laid down in Table 4.2.
Focusing on the parking domain first, almost all of the requests produce data from a single

measurement(state), except for availableSensors. Even though it handles two measures(latitude
and longitude), we found that it’s much faster to use InfluxDB to retrieve these two then
using PostgreSQL. The difference in speed happens because InfluxDB provides some useful
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Request Functionality
/parking and /parking/{sensorID} Requests implemented to offer the users total abstract data,

giving them the freedom to process it in any way intended.
/parking/availableSensors Provides a quick view of the overall state of the parking sensors.
/parking/events Implemented to offer some values where one can understand

how the tourists/residents behave when going to Barra.
/radars Implemented to provide the user with recent data about the

state of the parking spots.
/radars Offers real-time data about the traffic in all the entrances to

both beach areas.
/radars/location Provides the location of the radars so that admins can identify

them.
/radars/vehicleEstimation Offers an estimation on how many vehicles are currently in each

region.
/radars/{radar_id} Relates the vehicle’s speed to its class, giving it identification

and reporting which device detected the object.
/radars/{radar_id}/{measurement} By user choice, provides the average speed of traffic or number

of vehicles per class in a timeframe given.
/radars/events/{region}/{event} Details various events, in a region or radar, used to describe

traffic flow, i.e., vehicles entering and leaving.

Table 4.2: Functionality by request.

functions for these cases. Knowing this and going with the rules discussed above, all the data
was retrieved from the InfluxDB database.

The first requests to be implemented were the ones that provide abstract data. The first
retrieves all the states that the sensors publish within a specified period. One can imagine
the quantity of data produced by hundreds of devices as the interval specified increases, with
tests showing around 4 to 6MB stored per day. Since we cannot reduce the size of the data
without affecting the easy access a RESTful service provides, the interval was limited to a
time frame of one day. Even though this limitation exists, the user can still retrieve data from
an entire month, for example, by making multiple requests and combining them. While this
process seems painfully slow, it is faster than getting all the data at once because the API
has a load balance mechanism, making it faster to process multiple small requests rather than
a large-sized request.

Here, the API simply gets the values from InfluxDB, without posterior calculations. The
data provided by this request gives the user information about the state of all the sensors(0 or
1, meaning free or occupied respectively), expressed by the device tag, followed by the time of
the publish, represented by the timestamp tag. Regarding error handling, the API will return
a warning when the interval provided is higher than one day, if the two required parameters
are missing or if some value is not accepted, for example, the way to order the data.

The second request, just like the previous, was also implemented to provide abstract data,
but only giving information about one sensor. The structure of the response provided is also
the same as the /parking request(state, device, and timestamp), as established previously. The
values provided doesn’t suffer any modification after the fetch from the database, expressing
the exact data that the sensors produce.

The purpose of this request is to provide the user with a way to examine the variation of
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a single parking sensor. In this context, where the user wants the information of a specific
device, it is better to use this request rather than /parking because the data given by the
API is smaller, not exceeding 100KB per day. Furthermore, because the database filters the
devices by their IDs, it is much more efficient than fetching all the data and search for the
desired sensor after. As for error handling, the same rules are applied to this request as for
the /parking one. The only thing added is the verification if the sensor exists, informing the
user if this fails.

To offer information about the overall state of the parking sensors, a request was im-
plemented to provide their ID and location according to the parameter chosen by the user.
This parameter can have the value ’active,’ which gives only the active sensors, or ’available,’
which returns all the sensors, active or inactive. Active sensors are described as ones that had
published data in the last 24 hours, while the available sensors represent all the sensors that
published data in SCoT in the last 90 days. It is essential to define this three month period
since returning all the sensors that ever published data in SCoT would be an inaccurate
representation of reality. It will give sensors that aren’t even installed anymore because some
of them were removed, leaving SCoT with data both from the removed and new sensors. With
the implementation of this interval, the number of available sensors declined roughly 5%.

The data provided by this request is the location of the sensors, expressed in latitude
and longitude. Going by the main rule established previously, PostgreSQL should be used,
since we are trying to retrieve more than one measurement. Yet, the process of retrieving
the latitude and longitude of all the sensors takes forever. This slowness happens because of
the way the database is organized in the database. Values from all the sensors are inserted
in one table, forcing PostgreSQL to go through all that information to find the data we are
looking for. Thankfully, InfluxDB offers many useful methods that help in these types of
situations. By using the function LAST while grouping the data by sensor ID, InfluxDB
can return the last values published by each sensor. Since the devices always publish their
location alongside their state, we can make sure that the latest published position is being
retrieved. This process also helps to identify sensors that are providing the wrong latitude
and longitude since we are getting its most recent value. Even though this method needs two
queries to be performed, it is still faster than PostgreSQL.

Despite trying to filter off sensors that don’t exist or, when specified, inactive ones, some
of the locations return wrong values, in most cases, near zero for both latitude and longitude.
This error occurs because of hardware malfunction since most of the sensors that give these
positions are already inactive. When discussing error handling, the same rules are applied
here as for the /parking request, with the addition of the validation of the state parameter.

One important piece of information that can be computed from the sensors data is how
much time the people stay parked and the ratio of vehicles that parked and departed. The
states of the sensors are grouped by device ID and then fetched. Using this process, we get
the variation in the state of each sensor throughout a particular day, being now possible to
calculate all the three types of values mentioned. When the state changes from 0 to 1, free to
occupied, it means that a vehicle just arrived at the spot and parked, while if it varies from 1
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to 0, occupied to free, it means that it left the parking lot. After performing these verifications,
the program will save the timestamp of each event as a "parking" or "departing" timestamp.
The difference between these two values gives us the amount of time that a parking lot stayed
occupied. However, other situations beyond the ones mentioned need to be considered. We
need to save the timestamps when the first or last values of the block of data fetched identify
a parked vehicle. If the first value is 1 we store it as a "parking" timestamp, and if the last is
1 we save it as a "departing" timestamp. This process also covers the circumstances where a
vehicle is parked for more than 24 hours. With these situations covered, all possibilities will
produce a pair of timestamp values, an arrival, and a departed timestamp. After this, the
average is calculated, and the request’s response structured, ready to be sent to the user.

A final request was implemented in this domain to provide users with recent data to apply
in real-time scenarios. As stated before, some sensors are inactive, not expressing a recent
picture of the parking lots, so the data needs to be filtered. Initially, the period considered was
24 hours, meaning that all the sensors that did not publish data in this time frame would not
count to the calculation. The problem is that 24 hours is a long period to express real-time
data. Still, this value can not be set too low, 10 minutes, for instance, because it discards
vehicles that stay parked for hours. So the solution was to set the time frame as 10% more of
the average time per stay, calculated in the /events request. This process makes the data
more accurate when comparing to using a low time frame by not discarding values and when
comparing to using a higher time frame by not getting inactive sensors into the mix.

For the radar domain, five requests were defined, working with several measurements
like vehicle class, speed, and position. Other values (latitude and longitude) were used, but
regarding the radars themselves. Going by the rules discussed previously for choosing which
database to use, the requests /radars and /radars/{radar_id} retrieve data from PostgreSQL
while the others worked with InfluxDB.

The first request servers the same purpose as the first two from the parking domain,
provide users with raw sensor data so that they have the freedom to create their own. It also
provides recent data to be applied in real-time scenarios. However, a problem arises, which
relates to the amount of data that the radars store. Data size was also an issue with the first
two requests from the parking domain, but the radars produce 15 times more values than the
parking sensors. The three devices combined publish almost 100MB of data per day, making
it hard to send it all to the user at once. Nonetheless, most values, like speed and class of
traffic, can be handled by other requests leaving only the position of the object detected for
this one to manage. Since we cannot give more than half an hour of data to the user, or
else it would take a long time to process, and the size of the data would be enormous, the
solution was to use this request to provide the current state of the environment. This method
was achieved by fetching the last 2 minutes of data published by all the radars, giving the
user the ability to analyze the speed, position, and length of the traffic detected for real-time
applications.

To provide the coordinates where each radar is installed, a new request was created. Even
though it provides two measurements(latitude and longitude), the information was retrieved
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from the InfluxDB database for the same reason as the /parking/availableSensors request. It
is faster to make two queries taking advantage of the function LAST InfluxDB provides. The
final data provides the radar’s ID, followed by their location(latitude and longitude).

Another crucial type of information is the one that describes traffic flow. A request was
created to express this realm in both radars and regions. Here the user can select one of
three events for a specific time frame. These events illustrate the number of cars entering
a region/radar(cars_in), the number of vehicles exiting a region/radar(cars_out), and the
amount of traffic flowing through a region/radar(cars), i.e., the difference between the cars_in
and textitcars_out events. Before working with data fetch from the database, it is essential to
define what does it mean to enter or exit a region or radar. Starting with the latter, the action
of entering or exiting depends on the speed of the traffic detected. If the radar publishes a
negative value, it means that the object is getting close to it, i.e., entering. On the other
hand, if the speed is positive, it means it’s moving further away from the radar, i.e., exiting.
The difference between these two variables expresses the traffic flow in the device.

Examining traffic flow in the radars seems simple enough but, when it comes to the
regions(Barra and Costa Nova), we need to consider the orientation of these devices since
entering a radar doesn’t always mean entering a region. To discuss this issue, we need to
remember Figure 3.2, in Section 3.1, describing the direction of the devices as well as region
limitations. There we can see that the radars "Ponte" and "Duna Meio" handle Barra’s traffic,
and "Duna Meio" and "Ria Ativa" manage Costa Nova.

Looking firstly at the radar "Ponte," we can see that it’s facing the outside of Barra,
meaning that whatever vehicles enter the device will also enter Barra. The same is true
regarding vehicles exiting "Ponte," where traffic leaving the radar will, consequently, leave
Barra. Turning our attention to "Duna Meio," this device operates in both regions while
facing Barra. Knowing this, we can conclude that the vehicles leaving the "Duna Meio" are
entering Barra while the ones approaching this device are leaving. Already we can write the
equations that describe the traffic flow in Barra.

barra_cars_in = cars_in_ponte+ cars_out_dunaMeio

barra_cars_out = cars_out_ponte+ cars_in_dunaMeio)
(4.1)

barra_cars = barra_cars_in− barra_cars_out

⇔ barra_cars = (cars_in_ponte− cars_out_ponte)+

(cars_out_dunaMeio− cars_in_dunaMeio)

(4.2)

As stated above, "Duna Meio" handles both areas, so it also plays a role in describing the
traffic flow in Costa Nova. Since this radar is not facing Costa Nova, the vehicles that enter
the device will also arrive in this region. The same is true for objects exiting the radar, in
which case they will also leave Costa Nova. The only radar remaining is "Ria Ativa." This
device is located at the bottom of Costa Nova and not facing the region, which puts it in
the same scenario as "Duna Meio." This means that vehicles approaching the radar will be
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entering the Costa Nova, while vehicles exiting the device will be leaving it. With all this
information, we can define the equation that describes traffic flow in Costa Nova.

costaNova_cars_in = cars_in_dunaMeio+ cars_in_riaAtiva

costaNova_cars_out = cars_out_dunaMeio+ cars_out_riaAtiva
(4.3)

costaNova_cars = costaNova_cars_in− costaNova_cars_out

⇔ costaNova_cars = (cars_in_dunaMeio− cars_out_dunaMeio)+

(cars_in_riaAtiva− cars_out_riaAtiva)

(4.4)

Figure 4.3 illustrates what was explained above to help visualize the different scenarios.

Figure 4.3: Ilustration of what was described in the previous paragraphs, using the map shown in
Section 3.1.

Now that all the concepts are defined, it’s time to discuss how to retrieve the information.
Firstly, we need to count the number of objects with a positive and negative speed to find the
vehicles entering and exiting a radar, respectively. Here, four queries were defined to perform
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this calculation since the equations of the traffic flow have four variables. This process is
achieved by using the function COUNT from InfluxDB, in conjunction with different filters
applied in the WHERE clause. Each query is filtered by time, speed, and device to help us
calculate all these values. They also take advantage of the GROUP BY clause to process
information faster and returning smaller amounts of data while not compromising accuracy.
In short, each query will count the vehicles detected in a specific length of time, defined by
the GROUP BY. Without the use of this clause, the function would count all the values and
return only one result. This information would be useless since we want variation through
time, like, for example, how do the values change per hour. Thus, we need to group the data
by the right length of time to accelerate the counting process. For instance, if we are fetching
the data from a day while grouping the information by one hour, the database will return 24
values, making the process quite fast. However, if we group the data by one second, for the
same time frame, there will be 86400 values, making the process much slower. The value of
this clause is a significant problem since the API gives the user the possibility of choosing the
amount of time(in seconds) to group the information. This number cannot be too low because
we will arrive at the scenario where too much data is begin fetched, making the response
slow. The solution to this issue is to limit the groupby to a value that varies depending on
the time frame given. This limitation was already discussed previously, it being 20% of the
default. This default variable will not only validate the user inputs but it will also be used
when the groupby parameter is not specified. The default is calculated by running the number
of seconds of the provided time frame through some equations. These were created with the
goal of not exceeding the response size of 100KB.

After knowing the number of vehicles entering and exiting each radar, the equa-
tions described above were utilized to compute the traffic flow, with an InfluxDB func-
tion(CUMULATIVE_SUM) applied to each variable in the equation. This method will add
each value to the previous one, giving a better picture of the variation of information through
time. If this function wasn’t used, each value would be independent of the rest, and the change
in traffic data overtime would be hard to understand. To better visualize the influence of this
function, two charts are displayed below, one showing the data where CUMULATIVE_SUM
was applied(Figure 4.4), and the other where it was not(Figure 4.5).

Figure 4.4: Chart that plots data where the CUMULATIVE_SUM function was applied.
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Figure 4.5: Chart that plots data where the CUMULATIVE_SUM function was not applied.

The values where the function was applied tell us much more about the traffic flow since
the variation over time is apparent. Although the other chart provides a better description
of the traffic flow at a precise time, the objective was to describe the traffic flow over time,
making the process displayed in Figure 4.4 a better candidate.

In the end, only one more thing is changed, but only in the event cars, where a data shift
occurs so that the minimum is zero, i.e., all the values are positive. This process does not
affect the accuracy of the information since the variation of data will be the same, but better
to visualize. In Section 4.1.3 when talking about the radar dashboard, this change will be
easier to visualize and understand.

To understand the density of traffic in both regions, a request was created to provide an
estimation of how many vehicles are present in Barra and Costa Nova at that time. It also
provides the maximum number of traffic registered in these regions, so that it is easier to
compare the congestion in the area. In a perfect scenario, where none of the radars fail, we
can calculate the estimation by making a cumulative sum of the quantity of traffic since the
time the devices were deployed. Next, after shifting all the data so that the minimum is zero,
the last value would give us the number of vehicles in the region. However, this is not true in
a real-life scenario because sometimes the devices fail or the platform needs a reset, leaving
this period with no data. These situations are problematic when collecting traffic information
because if a radar crashes when there are lots of vehicles entering a region, the calculation
will not include all that traffic. Although, it can get worse when the radar restarts since all
the traffic that entered when the device was down will now exit and be detected. So when
analyzing the data, the user will suddenly see a ton of vehicles leaving the area without even
entering. These inconveniences cause a problem in the estimation since this value will not
correspond to reality.

To work around these failures, we only need to consider time frames where all the devices
are up and publishing information. The first step is to find all the periods where a failure
occurred. Device crashes can be found by searching for periods where there is no traffic. Yet,
we have to be careful since this can also mean that there is low traffic circulation. For example,
before sunrise, there are periods when there is no traffic, but that does not mean the devices
are down. With these situations acknowledged, it was established that to be considered a
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failure, 4 hours need to pass without the radar publishing any data. Then, a file will store
the timestamps of the crashes and the ID of the radar that suffered problems. All of this is
necessary to find optimal values for current and maximum vehicles in the regions. After this
process, the timestamp of the last failure is saved, and we search for the max value begins.
Once more, this search can only be made in intervals where the devices are not down. To find
the current number of vehicles in the area, we use the radars/events/ request to calculate the
cumulative sum of traffic between the last failure and the present time. With this method, we
assure that the crashes are not affecting the accuracy of the estimation. Note that the server
repeats this process every day, updating the file with new device failures to provide logs of
crashes and calculate the max value.

Even though the radar produces more values, two basic measurements are saved in
InfluxDB, them being speed and class. Two requests were built around these, one to relate
the two values and another to provide each one separated. The first request provides their
relation alongside other types of data like object ID, device ID, and timestamp. Since we
have a relation between two types of measurements, PostgreSQL is used because InfluxDB
is not very efficient with relations between tables. The PostgreSQL database has a less
straightforward way to retrieve information since the data is not identified by the radar name
but by a generated ID. Moreover, all the topics save information in the same table, values,
which means that data from the radars, parking sensors, or even other projects is all in one
table. A clean way to solve this issue is by creating a dictionary that maps the radar names to
the database IDs, helping with the code structure and making it easier to understand. When
filtering for a specific radar, the WHERE clause will only have that generated ID, but when
retrieving information from all the radars, we will need to filter by all three IDs. If we don’t
perform this filtering, all the other data from different sensors will be fetched, since there are
all in one table. The usage of the function IN solves the problem, by filtering the data from
the three radars like so, id IN (id_ponte, id_dunaMeio, id_riaAtiva). The data retrieved
from the database doesn’t need any change since it provides all the variables needed.

The other request that uses the two main measurements, gives the same values as the last
one(class or speed), depending on what’s specified by the user, independent of each other.
However, this request is not limited by a time frame of one day like the other. The big
difference between this request and the last one is that only one measurement is being worked
on, and the information is grouped, making it faster to process. The groupby validation follows
the same principle as the /radars/events request, except the default value is generated using
different equations but with the same goal of not exceeding the response size of 100KB.

In this request, InfluxDB is used since each call only returns a type of measure. The way
we retrieve data is different for the two measurements because each one needs a different
calculation. For the speed, the MEAN function is used to compute the average velocity of
both the vehicles entering and exiting. For the class, we only need to separate the values 1,
2, 3, and 4, representing the different classes, and count each one. These values represent
pedestrians, bikes, light, and heavy, respectively.

In the end, many more types of data could be created if several requests were to be merged.
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However, most of the time, the more complex the data, the longer it will take to produce,
slowing down the APIs response. Most of the requests presented were developed utilizing
functions provided by the databases to create and fetch values faster. New models of data that
required merging requests were not implemented because Python would need to handle these
calculations making the process slower. The goal was to provide users with the measurements
from the sensors and other types of data that could be created quickly using the database
functions.

4.1.2.3 Load Balance and Reverse Proxy

As recommended by the Flask documentation [65], built-in server is not suitable for production
and should not run by itself because it doesn’t scale well, only serving one request at a time.
Given that this public API is expected to handle multiple requests from various users, the
solution is to use a Web Server Gateway Interface (WSGI) to perform load balance. Two of
the most popular WSGI servers are uWSGI and Gunicorn. The developer’s decision on which
one to use seems to follow the easier-to-install route, choosing Gunicorn because it is faster to
deploy applications. However, the results of the tests performed in [66] show that uWSGI has
higher throughput and fewer errors when comparing to Gunicorn. The response time is also
slower, making it a better choice.

Figure 4.6: Results from the tests performed in [66].

When it comes to its configuration, we have two variables that can be modified to boost
load balance performance. These are the process and threads fields present in the command
uwsgi. After performing tests with various configurations and analyzing the results, we
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conclude that the configuration of 16 processes and 16 threads gives the best performance,
being the fastest overall.

The uWSGI server, together with the documentation page, and the dashboard application,
were implemented in independent containers, being Nginx’s responsibility to provide the user
with the right service. To have a sense of a service-oriented architecture, Docker was used
to create, deploy, and run these services independently. Even though these applications will
interact with each other, we can rest assure that if one crashes, it will not break the other
ones. Docker-compose was also utilized so that we have a straightforward way to build and
run all the services at the same time. Since Swagger provides a container in docker hub, in
which we can build a documentation page from a JSON file, only two DockerFiles needed to
be configured, one for the API and one for the frontend. This JSON file is the one generated
back in the Swagger UI from the YAML configuration. For the other two services, Dockerfiles
were created using images from the docker hub to establish base environments, more precisely
"python:3.7-slim" to build and run the API, and "node" and "nginx:1.13.3-alpine" to build and
run the frontend, respectively. The reason why the frontend needs two different images is to
run the website in a JS-CSS-HTML format, making the image much smaller. This process of
having two separate images, one for building porpuses and another for running the application,
is called multi-stage building. This approach was also used in the API but using the same
base image. However, here we run into some issues when trying to make use of the multi-stage
building. This problem occurs because when using Python, we don’t run any compiler that
gives us an execution file. In other languages, like C, this approach is much simpler since
we can build the program in an image and run the compiled file in another. However, what
we can do is reduce the size of the packages used in the Flask server by taking advantage
of Python virtual environments. The final goal is to have an isolated directory with all the
built packages. Thus, we begin to install some dependencies on the base image, mainly for
accessing the PostgreSQL database and run the uWSGI server. After this process, a virtual
python environment is created, on the folder /opt/venv, and all the necessary packages are
installed using pip. In the end, we can make sure that /opt/venv will hold all the binaries
needed to run the Flask server. Thus, the only thing left to do is to copy this folder and all
the code to the image that will run the API. Finally, the uWSGI server can be deployed port
8080, with all the configuration discussed previously. By using this approach, the image where
the service is running becomes much smaller, making it easier to transfer between machines if
necessary and not filling the system with unnecessary content.

As stated, the frontend will follow the multi-stage approach as well, but with different
base images. This method will help reduce the size of the running image by a lot since node
is quite large. Firstly, all the files are copied to the container, and all the packages specified
in the file package.json are installed. The only thing left is to run a command(ng build) to
compile the Angular app into a directory, generating a static page. Alongside this command,
three options were introduced. The first one, prod, uses several techniques such as bundling
methods and limited tree-shaking to join multiples files together and eliminate dead code.
Another option used was build-optimizer, which increases the performance of the methods
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used, making significant improvements, especially regarding bundle size(the single file created
from multiple ones). The last one, base-href, defines the base URL of the application, which is
/dashboard. After the build stage is complete, we need to copy the static content generated by
the building process, as well as an nginx.conf file, to the running image, nginx:1.13.3-alpine.
The former goes to the folder /usr/share/nginx/html/dashboard while the latter is moved
to /etc/nginx/conf.d. This last file will hold some configurations so that Nginx can deploy
the webpage. We will discuss these configurations further ahead. Finally, by executing the
command nginx -g daemon off, the service can start. Nginx will set the global directives
according to the configuration file and run the process in the foreground. This is achieved by
setting the daemon option of the command to off. This option prevents strange situations,
like the container stopping immediately after starting, by allowing Docker to track the process
properly.

Back to the configuration file, nginx.conf, we will define a server block, or also called
context, that will serve our website. Firstly, we will use the add_header directive to set
headers that will be sent to the client. The Access-Control-Allow-Origin was set to *, which
authorizes requests outside the domain where the website is hosted. With the header set, it’s
time to work on the location block, which defines the path to the application. A location
block is used to describe how Nginx should handle requests for different resources and URIs.
In this case, we only need to define one location, to manage the dashboard requests, which is
described by the following expression:

location ~ ^/dashboard

The "~" modifier is used to perform a case-sensitive comparison while the ^/dashboard
describes the path part of the URL. It’s inside this block that the directives root, index, and
try_files are defined. The first one describes the path for the folder that holds the static
content, which is /usr/share/nginx/html. The second defines files that will be used as the
index(index.html or index.htm). The last directive checks whether the file or directory exists,
redirecting to the content if it does or returning a 404 error if it doesn’t.

At this stage, all the services are configured independently, missing the docker-compose,
that will help us deploy all of them at the same time, and the main Nginx that is responsible for
forwarding the user to the correct service. In the docker-compose file, both the documentation
and the API services were configured to listen on port 8080 and the dashboard on port 80.
Even though the Nginx previously configured serves the static content, it doesn’t handle the
other two services. For this, we need another Nginx to manage all the requests for the different
applications.

However, we first need to discuss where it will be implemented so that users can access it
from pasmo.es.av.it.pt. This domain is held in a server located in IT-UA that already serves
some applications related to PASMO. Thus, it’s possible to describe the three services in the
Nginx file already present in the machine, not being necessary to create a new one. However,
before we discuss the configuration, it is essential to understand how the file is structured.
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Firstly, the directives worker_processes and worker_connections are defined by 1 and 1024,
respectively. This layout means that this Nginx service can serve 1024 clients simultaneously.
After this, an http block is described, to handle HTTP or HTTPS traffic, with only one server
block inside, since we are only handling requests for one domain. Multiple upstream contexts
are already defined inside the http block to proxy requests to the existing applications. We
need to configure three more, one for each of our services, API, dashboard, and documentation.
The upstream for the frontend was named dash, the API was defined by restapi, and the
documentation was labeled as swagger. After this, three location contexts were defined to
describe the paths for each service. In all of them, a limit_except context was configurated to
accept only GET requests since we don’t need other types of HTTP methods. The proxy_pass
directive was defined according to each service, point to the appropriate upstream described
above. For example, for the API, the proxy_pass value should be http://restapi.

In the end, all these applications will be under the domain pasmo.es.av.it.pt, in different
paths. The API will be under /api, the /docs will serve the documentation, and the /dashboard
will host the frontend application.

4.1.3 Frontend

This section describes the process of building the user interface for the dashboard. The primary
objective was to have a more "admin page" look while also providing relevant information for
the average user. The website will be displayed as a Single Page Application(SPA), meaning
that the service will rewrite the current web page with new data instead of loading an entirely
new page. This approach offers users smoother navigation between the content of the website.
Accordingly, the fixed structure is composed of a navigation bar, a sidebar, and a footer.
The first only contains the PASMO logo and a button to collapse the sidebar. The second
component has all the pages listed, grouped by "Documentation" and "Main Navigation." The
former has two elements that correspond to the documentation of the website and the API
while the latter is composed of "Home," "Dashboard," "Devices," and "Map." The "Dashboard"
extends into three components "Parking Dashboard," "Radar Dashboard," and "Compare
Dates." The footer simply shows all the parties involved in the project PASMO.

When a user goes to URL pasmo.es.av.it.pt/dashboard the home page will appear, corre-
sponding to the option "Home" on the sidebar, showing the full name of the project as well as
a button to learn more about it. When clicked, it will redirect the user to the main website of
PASMO that provides all the details about the project.

The first element when extending the second option in the sidebar is "Parking Dashboard,"
created to display content about the parking sensors. The first row of items provides
information about the total number of sensors, the active ones, and the current number
of parked vehicles in those spots. This information is crucial to rapidly check if there are
problems with a large number of sensors since if the number of active sensors is low compared
to the available ones, it means that too many sensors aren’t communicating.

When examining the right side, two elements were built to describe more quantifiable
information. The one on top provides a percentage of the current occupation of the parking
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Figure 4.7: Top area of the Parking Dashboard.

lots. The one underneath displays the number of vehicles that arrived and departed plus the
average parking time. This information is an aggregation from all the sensors and describes
the present day. These two elements provide a straightforward way to identify the occupation
in Barra as well as the average time that people spend in the region.

Figure 4.8: Right area of the Parking Dashboard.

The focal point of this page, being essential for both users and administrators, is the map
displayed in the middle of the page. This element provides the location of all the parking
sensors as well as their current state. The latter is described by the color of the icon, with
red being the parking lots that are occupied, green the ones free, and blue depicting inactive
sensors. The main objective of this map is to give the user a way to search for free parking
when going to Barra and for an administrator to check which sensors are down. The last
component presents a chart displaying the variation in the state of a selected sensor. The
user can choose it by clicking an icon on the map, which will make a chart appear describing
its state in relation to time, as well as the identification of the sensor in the title. If the icon
selected represents a sensor that is down, the title and the content of the element alert the
user that no information is available.

The second element of the second option on the sidebar, "Radar Dashboard," displays
information related to the radars. The main objective of this page is to give the admin the
possibility to quickly identify radar failures and provide a clear picture of the state of the
traffic. Besides, it offers the council of Ílhavo a straightforward way to examine the traffic
throughout the year so that traffic trends can be studied and understood. The page starts

60



Figure 4.9: Map detailing all the sensor location and state in the Parking Dashboard.

with a header that provides two ways to filter the data presented in the charts. In the first
dropdown, identified as "Select Date," users can select a date or a range of time, while the
second one, named "Filter By," filters data by regions or radars. When the first filter is
pressed, a calendar appears with some fast click options on the left side. These options will
display the data from the recent day, the past day, and the last 7 or 30 days. By using the
calendar, any range of time can be selected between the dates 25 January 2020, which is the
day the radars start to collect data, and the current day. If the time frame picked extends to
the present day, the charts will update every 5 minutes so that the user has the most recent
information. When the period selected does not have any sensor information, an alert message
will appear informing the user of that fact. This condition only occurs when all the radars
stop communicating, making it impossible to collect data while they are down. The other
filter in this header can supply information about the three radars or the two regions. Note
that the date filter affects all the charts on the page, while the other one only changes the first
two graphs. A grey line separates the charts affected by this filter from the ones that are not.

Figure 4.10: Main two filters that affect all the charts in the page.

The first chart shows the variation of traffic depending on the time selected. This variation,
as explained in Section 4.1.3, is calculated from a cumulative sum of the difference of vehicles
entering and exiting. Here we can better understand why it is beneficial to shift the values
to make the minimum of zero. Since the significant part of this chart is the variation of the
curve, it is not very relevant to have values below zero. The rising of the curve means that
more vehicles are entering than exiting the region/radar, while its decline means that more
are leaving. The flatter it is, the less the difference between vehicles entering and leaving, or
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it could also mean that traffic is low. The values, by themselves, don’t give much information.
However, the comparison between them offers the user a good picture of what is happening in
the regions. For example, Figure 4.11 shows three instances of time that depict three different
values, with the last two expressing the maximum and the minimum of that day.

Figure 4.11: Chart that displays the cumulative traffic flow on the regions Barra and Costa Nova.

Analyzing this, we can notice that the lowest number of vehicles in Barra was in the
morning while the highest was in the afternoon. Furthermore, when comparing the two first
values, we can observe that the difference between vehicles entering and leaving Barra drops
from 476 to 0. Considering these values are from the morning, we can conclude that this data
represents people leaving to go to work. However, when comparing with Costa Nova, the
discrepancy in values for the same two instances is not so large, going from 101 to 6. This
difference means that Barra is a larger residential zone where Costa Nova appears to be a
route to reach the highway. This fact can be better noticed when looking at the same chart
describing the radars. Looking at Figure 4.12, we can observe that more vehicles are entering
Ria Ativa (South Costa Nova entrance) and leaving Duna Meio (North entrance) at almost
the same rate, seen by the rise and decline of the curve, respectively. Thus, concluding that
many people use Costa Nova in the morning on working days as a way to reach the highway.

Figure 4.12: Chart that displays the cumulative traffic flow on the three different radars.

Much more information can be extracted from this chart, such as patterns of traffic, traffic
variation differences between radars, changes in traffic on weekends and holidays, and of
course, radar failure.
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The second component on the page, a bar chart, groups the information by a certain
length of time, depending on the interval selected, and displays the exact number of vehicles
that enter or exit a region/radar during that time. For example, if the user selects only one
day, the chart will group the information by the hour, while if two days are selected, it will
group it by two hours. Both filters affect the information displayed on this graph. When
viewing region data, the chart will build two bars up and two down for each group. The bars
up describe vehicles entering while the bars down represent the ones leaving. The colors of
the former are the ones seen in the line chart, purple for Barra, light blue for Costa Nova,
black for Ponte, yellow for Duna Meio, and pink for Ria Ativa. The colors of the bars that
represent the vehicles leaving have all different tones of red. While values from the first chart,
by themselves, didn’t show useful information, the ones from the bar graph say much more
individually. Here the user can see the exact number of vehicles that circulated in a specific
hour in a day, for example. The information from this graph can also be merged with data
from the line chart to have a better understanding of the traffic state.

Figure 4.13: Bar chart that describes the exact number of vehicles entering and leaving a region/radar.

The next three graphs(one line chart and two pie charts) are separated from the top
two by a small grey line. This separation signifies that the bottom charts are not affected
by the "Filter by" button, only by the "Select Date" element. The line chart displays the
average speed of traffic in the time frame selected. The default values show information about
the three radars, utilizing the same colors as the other two charts. However, if users want
information about the traffic speed on a specific radar, they can select the button found on
the top right of the element. The dropdown displays the name of the three devices that, when
selected, will change the data displayed in the chart, showing the average speed of traffic
entering or exiting the chosen radar.

This component provides a way to check times when there was no traffic or relate vehicle
speeds to other variables. Finally, located on the right of the speed graph, two more charts
were implemented. The one on the top shows the percentage of traffic classes that were
identified in the time frame selected, while the chart below shows the percentage of vehicles
speeding. These pie charts work with data from all three radars.
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Figure 4.14: Chart depicting the average speed of traffic. The left graph appears when "All Radars"
option is selected in the filter, while the right one is built when the user selects a certain
radar, in this case "Duna Meio".

Figure 4.15: Pie charts positioned to the right of the traffic speed graph.

The final tab on the "Dashboard" category is called "Compare Dates," and it helps users
contrast values from two different time frames. It is divided into zones, left and right, each
one with two filters and two charts. These are the same filters and the first two charts from
the previous page. The filters work the same way, but the right one only affects the right
charts and vice-versa. With this format, it is possible to compare not only time frames but
also different types of data for the same period, i.e., contrast the behavior of the regions to
the radars. For example, the user can know which radar had more traffic when a rapid flow of
vehicles entered a region.

The next element of the sidebar, "Device," shows a map with all the devices installed in
the PASMO infrastructure and how the architecture is built. This page doesn’t use data from
the API.

The final page in the "Main Navigation" section provides the user with a map showing
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Figure 4.16: Traffic flow charts found in "Compare Dates". This Figure depicts the possibility of
comparing the radars and regions values, to understand how the first influences the
second.

real-time information about the regions and their entrances. When the page is loaded, two
colored areas are shown on the map depicting Barra(the one on top) and Costa Nova(the
one below). The color of these two areas will change depending on a percentage. This value
represents the current vehicles in the region compared to the maximum registered. This
percentage varies both the hue and lightness of the colors, but the former is what affects
the change most significantly. As the percentage increases, the colors vary between green,
yellow, orange, and red, i.e., as the percentage rises, the hue value decreases. Finally, the
areas can also appear black when both radars from that region are not communicating with
the platform.

Figure 4.17: Map depicting Barra and Costa Nova, with colored areas surrounding them. In this
example, both areas have a green color which means that there aren’t many vehicles in
both regions.

A white line surrounds these areas, turning grey when the user hovers them. This process
causes a box to change state on the left of the map, going from presenting an information
message to displaying current data about the region hovered. This element starts by giving
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the estimated number of vehicles in the area, along with the percentage discussed above. The
number shown and the box where this value is located have the same color as the area selected.
Below this information, data about two entrances for the region appears. Traffic can enter
Barra through Costa Nova (Duna Meio radar) or the bridge (Ponte radar). Costa Nova also
has two entrances, one on the north (Duna Meio radar) and the other on the south (Ria Ativa
radar). The best data that is needed to tell traffic status is the average speed. This value is
shown below the description of the type of information, "Average Speed," accompanied by
some arrows to represent the direction of traffic. The green arrow represents the speed of the
vehicles entering the region, while the red arrow describes the opposite. Below this data, some
unquantifiable information is shown, describing the status of the congestion. The phrases,
high congestion, medium congestion, low congestion, and no congestion, vary depending on
the waiting time. The first one appears when the waiting time is higher than 18 seconds, the
second when it is between 9 and 18, the third when it is higher than 0 and lower than 9, and
the last when there is no waiting time. Regarding the waiting time value, it is calculated
by taking into account the speed limit of the road and the detection range of the radars.
For example, for the bridge entrance, the limit was set to 80 km/h, which means that every
vehicle traveling at or above this speed will have a waiting time of zero seconds. For traffic
traveling below this value, we need to calculate some traveling times by utilizing the speed
formula. The distance considered for this calculation was 300 meters, which is the maximum
detection range of the radar. First, we calculate the time it takes for a vehicle traveling at the
limit speed to cover the distance. Then, the time it takes for traffic traveling at a speed below
the limit to cover the same space. The difference between these values will give us the time
that a vehicle traveling below the speed limit will have to wait compared to traffic traveling
at or above that speed.

speed_limit = 300
time_limit

speed_avg = 300
time_avg

waiting_time = time_limit− time_avg

(4.5)

Essentially, the slower the traffic, the more time a driver has to wait. This value accompanies
the informative phrases discussed above to provide the user with quantifiable information.
This page is more directed to regular visitors or residents, offering a way to check the current
traffic state on every lane of every entrance for the two regions. Figure 4.18 shows the box of
data that was discussed in this paragraph. The location of the radars is also present on the
map, being used for faster navigation where users can click on icons or select the entrance
text found in the pop up to zoom into that area.

The documentation section of the application helps the users to understand the system’s
services, both the API and the dashboard. The first tab, "API Docs," opens a new window
with the documentation page generated by Swagger UI. Here all requests are specified, along
with their parameters and types of data, offering the user the possibility of testing requests
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Figure 4.18: Box that pops-up when the user hovers an area. Its purpose is to provide a real-time
picture of traffic in the entrances of the two regions.

directly on the page. The following tab, "App Docs," provides users with detailed information
about how the frontend application works as well as what the different charts and maps show.
The text descriptions are accompanied by images and graphs to provide a visual component
to the explanation.

4.2 Vehicle Classification

This section details the process of training a YOLOv4 model to perform traffic classification
as well as the methods used to merge this information with the radar data.

4.2.1 System Structure

The following system needs to use an object detection algorithm to classify traffic using video
streams from the cameras, being made available to the detector by the use of the TLS1.3
protocol. YOLO has grown through its various updates to achieve real-time performance
and have close to or even better accuracy than other algorithms. YOLOv4 is their newest
version that provides better accuracy and runtime speed. Each version released offers different
configurations of models that vary in accuracy and runtime speed, influenced by the change
in the number of convolutional layers or their size. Earlier, we discussed the possibility of
using a desktop or a board to run the object detector. Since the board was considered a
better choice for the context of this dissertation, we have to train a smaller model of YOLOv4,
YOLOv4 tiny. NVIDIA offers many solutions with JETSON products. The one that will be
used in this dissertation is the Jetson Nano, which provides 128 Cuda-cores with Maxwell
architecture-based GPU. This board does not include an operating system by default, but
NVIDIA provides SDKs with some essential software already installed. These are the JetPack
SDKs, which include a Linux operating system, CUDA accelerated libraries and other SDKs

67



that up the performance. The JetPack installed in Jetson Nano was version 4.4, which holds
Ubuntu 18, CUDA 10.2, CUDNN 8.0.0, and TensorRT 7.1.3. A deep neural network library,
tkDNN, will utilize the last two to extract the best performance out of the board. The results
from its detection need to be available to the algorithm that will merge the data afterward,
the Fuser. The best solution to establish this communication is to use sockets as a way
for YOLOv4 to provide the detection values to the Fuser. This program is implemented in
Python 3.7 and has the responsibility to create more reliable data merging the detection and
radar values. The latter will be retrieved from SCoT by the same means and using the same
transport protocols as the API. Finally, the web app will communicate with the Fuser so that
this can provide all the data to be displayed in the client web browser. The framework Django
was used to build this application since it is a fast and reliable way to build a website. The
web application sets a connection with the Fuser, via WebSockets, to receive the data already
merged. Another WebSocket is established between the app and the browser to display the
information to the client. We utilize a Django feature called Channels, based in WebSockets,
to build all the communications described.

Figure 4.19: Structure of the vehicle classification system.

4.2.2 Object Detection

To achieve good accuracy on an object detection algorithm, we need to follow a particular
pipeline, which begins with configuring the model and selecting proper labels for the images.
This process starts by extracting frames from CCTV videos in varied weather and light
conditions, to then begin the slow process of labeling the images extracted. Before training,
some files need to be configured so that we end up with better detection and a smooth training
process. The latter will create several weight files that must be tested to establish what is the
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one with the best accuracy. The model can then be implemented on the Jetson Nano board
utilizing libraries that boost the performance of detection.

4.2.2.1 Extracting and Labeling CCTV Images

YOLOv4 tiny trained in the COCO dataset already offers good accuracy as is, being able
to be implemented on the board and deliver decent accuracy. However, we can obtain a
significant increase in accuracy by training weight files using custom images from the cameras.
This boost in precision happens because these devices are static, recording video with the
same background every time. With this knowledge, the model can very easily learn to ignore
the surrounding scene, focusing on the regions that matter the most.

The custom images can be extracted from the video content provided by the CCTV
cameras. These are deployed in the same location as the radars and provide a stream to the
IT building. It’s from this live video that frames can be extracted and labeled to perform the
training process. Using a Python library aimed to solve computer vision problems, OpenCV, a
script was created to save images every 13 frames. These were stored in three separate folders,
one for each camera, and then studied. Typically, there is a fair amount of time where no
traffic is circulating in those areas. Combining this with the fact that the script is extracting
around two images per second, a ton of frames did not provide much interest since no vehicles
were visible. In the end, most of the images in which no traffic appears were deleted, leaving
only those of importance. A couple of dozens were still used so that the network can learn
where the background is in the image and ignore it.

Going by the tips on "How to improve object detection" [67] on the official repository
of the framework used for training, we see a recommendation of 2000 or more images per
class. Following this advice, 8000 were extracted for each camera and labeled. Several types
of weather and light conditions were considered, labeling about 2000 images at night time
and 1000 on a rainy day, with the rest representing normal conditions. To make the labeling
process a lit bit easier, a Python application [68] was used where the user can draw a box
around the object in an image and get a file with the labels well-formatted. YOLO only
accepts a specific syntax of object labels, structure as follows:

<object-ID> <center-position-in-x> <center-position-in-y>
<width-of-the-box> <height-of-the-box>

All these values, except the object-ID, are not expressed in pixels but rather, saved in
a percent relative to the image size, i.e., if the center position of the box in x and y is
0.5, it means that it’s located in the center of the image. In the end, after the labeling
process is complete, three folders, one per camera, hold all the files generated along with their
corresponding images.

4.2.2.2 Configurations and Training

Over the years since the first version of YOLO was available, many libraries were developed
to run the detector in different types of scenarios. However, the majority of these didn’t
improve the training process, with many of them ignoring it completely. Thus, the original
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software created to train and run YOLO algorithms, Darknet, is the go-to when it comes
to the training of models using custom images. Darknet is an open-source neural network
framework written in C and CUDA, created by the same researchers that developed the
YOLO algorithm.

To train a YOLOv4 model to detect custom objects, some configurations need to be made
before running Darknet. Firstly, we need to move all the images and label files to the data/obj/
folder. After this, a simple Python script is used o create a file(train.txt) in the directory
data/, containing the path to all the images saved previously. Another two files must be
created in the same folder, one describing the name of the four classes(pedestrian, bike, car,
and truck), and the other holding five values defining the number of classes and paths to
relevant folders. The information saved inside this last file is the following:

classes = 4
train = data/train.txt
valid = data/test.txt
names = data/obj.names
backup = backup/

This configuration means that we will train four classes, defined in data/obj.names, by
using the custom images described in data/train.txt and the weights saved in the folder
backup/. The valid configuration is later used for testing purposes. The final file we need to
configure is the model itself. Darknet offers various cfg files with different YOLO versions,
being yolov4-tiny.cfg the one we want. Here some lines need to be modified to make it right for
our detection. First, changing the max_batches to 8000, which is the number of classes times
2000. This value defines the number of iterations that will be executed in training. The steps
value will be 80% and 90% of max_batches, i.e., 6400 and 7200. These numbers represent
the iterations where the learning rate will be adjusted to a lower value, increasing training
time. The classes value, in all three YOLO layers, is set to 4, and the filters line is set to
(classes+ 5) ∗ 3 which is 27, defining the number o CNN kernels there are in a convolutional
layer. These kernels are matrices that move over the input images to extract features from
them. The last value configured, anchors, represents the initial size of the bounding boxes.
We can discover the best values for this variable by running the command ./darknet detector
calc_anchors, which will go through the training dataset and estimate the best initial size of
the bounding boxes. It is crucial to perform this step since its easier for YOLO to learn small
adjustments rather than large ones.

With all the configurations done, we simply need to download the pre-trained weights file
to run Darknet. As stated before, the program will run 8000 iterations, saving the weights
files every 1000. This process is essential to study the different iterations and choose the
one with the best performance. More iterations don’t always mean better accuracy since the
model can be overfitting, meaning that it performs well on a training dataset but not on a
testing one.
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4.2.2.3 Running the Model

After the training process, we end up with three files, one for each camera. The next step is
to configure the Jetson Nano board so that it can use these files to detect traffic in real-time.

Even though Darknet is optimized for the YOLO algorithm, Nvidia provides software that
significantly boosts the performance of its hardware, like cuDNN and TensorRT. Developers
can utilize these frameworks to build software on top of them, withdrawing the maximum
performance possible from Nvidia GPUs. This was the concept behind tkDNN [69], build a
library using cuDNN and TensorRT primitives to achieve excellent performance on NVIDIA
GPUs, especially on Jetson Boards. Considering that the SD image for the Jetson Nano
already provides an Ubuntu system with all the frameworks installed, we only need to build
the project to be able to run it.

This library comes with weights pre-trained in the COCO dataset. However, these are
of no interest since we will use the ones previously trained. Darknet comes into the picture
one more time to perform a conversion of these files. This procedure needs to occur because
tkDNN does not support the type of weights defined in Darknet. The command ./darknet
export is executed, creating a folder named layers, which holds a file for each YOLO layer
with the corresponding weights and bias.

After setting up all the files, the library can be compiled to a folder named build, that will
hold the executable files as well as the layers folder discussed above. Although, before running
the software, it is crucial to define the best values for batch size and inference mode. The
former can be configured with the values 4 and 1, while the latter can be set to FP32, FP16,
or INT8. However, only the first two interferences can be used by Jetson Nano since it has a
Maxwell GPU, which doesn’t support INT8 in hardware. These values give more accuracy
in favor of speed, so it is crucial to balance these two. Tests were performed in 20 minutes
of footage on the dunaMeio RSU to check the best candidate for this scenario. Figure 4.20
shows the results of FPS and mAP of all the combinations of the values above.

Looking at the graph, we can conclude that interference F16 with a batch size of 4 is the
right approach when it comes to balancing accuracy and performance. F32 provides better
accuracy, but it’s within the limit of what it considered real-time speeds. In this case, it’s
better to choose the interference with a higher FPS because the accuracy cost is not that
significant. The library is now able to run with the best performance possible, giving us the
result shown in Figure 4.21.

Even though we maximize performance in the interference and batch size category, some-
times the FPS’s drop to low values, which can cause a significant problem. Since tkDNN is
using OpenCV to read a stream of video, it will try to keep up with it if the software is lacking
behind. This correction makes the program jump to the recent time on stream, meaning
that if the software is, for example, two seconds behind the stream, it will skip these two
seconds to try to keep up with it. This jump will only occur if the detector is running on a
lower FPS than the stream. Initially, the stream was being sent at 30FPS, which was too
high for the program to handle. Thus, we gradually reduced the stream’s frames per second
until ending up with a value where tkDNN could keep up with the stream. This value came
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Figure 4.20: Average and median FPSs accompanied by mAP of the different possible values for
batch size and inference.

Figure 4.21: tkDNN running on a stream from DunaMeio camera.

to be 20FPS, and here the detector runs at a faster pace than the stream, meaning that the
program sometimes needs to wait for it. However, this is not a problem since no detection
values are lost, unlike in the initial scenario.

With all these configuration, we assure that the tkDNN is at maximum performance, not
skipping frames, and thus, not losing potential detection values.
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4.2.3 Sensor Fusion

When running YOLO on Jetson Nano, the algorithm provides information about the bounding
boxes as well as class identification and its probability. Although these values tell us a lot
about the object detected in the video, it doesn’t provide much information about the state
of the real world. Thus, this data needs to be converted to something useful, like geolocation
of the vehicle detected. Only after this process, we have the necessary information to merge
the two types of data, radar and camera information.

4.2.3.1 Calculating Vehicles Location

Firstly discussing the values given by the tkDNN, the specific variables are class ID, probability
of being that class, box center in x, box center in y, box width, box height. The most important
values to compute the geolocation are the last four, with the rest being useful in some scenarios.
We can perform the conversion using different approaches, such as trigonometry or machine
learning techniques. The latter was chosen since it is a more straightforward way to achieve
the required results. Thus, we need a method that can produce two outputs by using several
initial values. This can be achieved using multi-output regression, i.e., problems that involve
predicting two or more values given an input. The process is to check where the bounding
box stands on the image and save the closest geolocation possible, as seen in Figure 4.22. The
end goal is to build a CSV file with all this information. This process is made "by hand," thus
it has some error associated with it. Nonetheless, it achieves the required goal.

Figure 4.22: Example of translation from bounding box values to latitude and longitude.

After this, a model is trained using the values in the CSV file, utilizing scikit-learn, a
machine learning library for Python. Since the vehicle’s trajectories are always the same, i.e.,
traffic can’t appear in the middle of the road, the idea was to save ten of each trajectory(roadway
and sidewalk). This amount of data should be sufficient for the model to learn to compute
accurate values. Of course, we need to consider trajectories with different classes of vehicles
since bounding boxes for a heavy differs massively from the ones for a bike. Moreover, a
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pedestrian is probably will never be detected in the middle of the street. These are just some
situations where the model can rely on the class of the object to provide useful information.

By implementing this model on the Fuser, the program will be able to receive bounding
box values from tkDNN through a socket and estimate the latitude and longitude of the
vehicle detected.

4.2.3.2 Obtaining Radar Data

As detailed previously, SCoT will provide the radar data. The Fuser will get this information
by the same means as the API, but only using the psycopg2 Python library. Since we need all
the details about the object detected, PostgreSQL is used to fetch the required information.
The data is retrieved in chunks of one second to make it easier to compare. A problem arises
when looking at radar timestamps on the database and comparing them to the stream is
that these two are not at all synchronized, with the stream being way behind in time. Thus,
instead of radar information of the last second, we retrieve the data 11 seconds prior. This
shift accounts for the difference between the device and the stream. Nonetheless, this process
probably wouldn’t be necessary if the camera and the radar directly feed data to the board.

In Section 3.1, we lay down the structure of the data that the radar produced. It was
established that the device didn’t provide the latitude and longitude of the object detected
but instead, it gave information about the distance to the radar(in meters) on an axis(x and
y). In this 2D space, the radar is positioned at the point (0,0). By using these values alongside
the azimuth also given in the data produced by the device, we can calculate the geolocation
of the object detected.

Diving now in the field of navigation, the azimuth is the angle measured clockwise from
the north baseline. For example, if the azimuth is 45º, it means that the device is pointing
north-west, and 180º indicates that it is pointing south. With this value, we can understand
where the radar is oriented. Figure 4.23 provides an example using the azimuth from the
bridge radar, which is 249 degrees.

To calculate the latitude and longitude using the distances and azimuth, we have to
follow some formulas. The constants 110540 and 111320 are used to account for the earth’s
oblateness (polar and equatorial circumferences are different).

radar_azm_rad = radar_azm× ( π

180)

r =
√
x2 + y2

angle = atan2(y, x)

dx = r × sin (radar_azm_rad+ angle)

dy = r × cos (radar_azm_rad+ angle)

delta_longitude = dx

111320× cos (radar_lat)

delta_latitude = dy

110540

(4.6)
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Figure 4.23: Azimuth of the radar, which indicates to where it is pointing relative to the North.

(a) Adjustments in dunaMeio radar data. (b) Adjustments in ponte radar data.

Figure 4.24: Difference in location values when applied the offset. Red dots represent detected
objects by the radar. The dots with the offset are more inline not only with the road
but with the sidewalk as well.

Some example values were displayed on a map to check if the calculations were precise.
The results showed that the farthest way the object was to the baseline direction that the
device was pointing to, the higher error in detection. Even so, this problem can be easily
solved with an offset value that shifts the geolocation by a certain amount. Some radars are
easier to fix than others, mainly because of the way the road is aligned to the north baseline
(RiaAtiva and DunaMeio). Figure 4.24 shows the difference before and after applying this
value to the DunaMeio radar.
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The corrections that help to have a more accurate location were adding 0.000018 to the
longitude of dunaMeio, -0.00002 to the latitude and -0.00005 for the longitude of ponte, and
0.000011 to the longitude of riaAtiva. With these offsets applied to the latitude and longitude,
we end up with precise geolocations for all the radar’s reads.

4.2.3.3 Fusion

With all the things set, it was time to combine the data. One thing to remember, which
improves performance, is that the GPU handles only image processing while the CPU performs
the calculation and exchange of data. Another thing to note is that the detection produces a
large number of values in one second while the radar gives three maximum. This amount of
data can be an advantage since the average of more values is regularly more accurate than
a single one. Considering that the Fuser will receive data from two different sources, it is
essential to separate these two. The best solution is two create two threads, one to receive the
detection values, convert them to coordinates, and save them in a list and another to retrieve
radar data, calculate the geolocation, fuse it, and send it to the web application. This list
holds the latitude and longitude of the vehicles detected by the camera and will be shared
between threads. We will call the one that handles the radar calculations threadRad, and the
one responsible for the detection data threadDet.

Regarding the first one, it’s necessary to implement a way in which the detection library
and the sensor fusion program can communicate. This connection can be achieved using
sockets, with tkDNN posing as a server and the Fuser being its client. With the communication
established, the server can send the bounding box values produced by the detection process
to the client. When receiving this data, the Fuser uses the trained model to estimate latitude
and longitude values of the object detected by the tkDNN. After this, the coordinates are
stored in the shared list. A small condition is checked so that we can minimize the size of this
list. The program will compare the last saved coordinates with the ones recently calculated.
If these are close together, it means that they refer to the same vehicle so, we can store their
average instead of the two. This thread will continuously be updating the list with coordinates
calculated from the bounding boxes.

The second thread will retrieve the data from the radars with a delay, for reasons already
stated. It also calculates the latitude and longitude of the traffic detected by the radar and
applies the offset explained previously. At this point, we have both the location of the objects
detected by the camera and the radar. The program will loop through all the coordinates
calculated from the radar data and compare it to the coordinates found in the shared list.
The difference between these two positions gives us a value that we can use to check if the
data depicts the same object. If this value is in a defined threshold, it means that both devices
detected the same vehicle, and the classification from tkDNN is used. If the difference doesn’t
fall within this limit, the data provided by the radar is used to predict the vehicle’s class.
The threshold value depends on the radar and will be discussed after this paragraph. Still,
when both devices detect the same object, we will end up with detection from the radar and
classification from the cameras, taking advantage of the best of both worlds. However, there
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are times where this condition doesn’t apply, leaving us with no correlation between the two
devices. In these situations, only one device can be used to achieve classification and detection.
The reason that we choose the radar to cover these circumstances is that the detection that
it provides should be more trusted. If the cameras give a location that is not close to the
one the radar detected, it could mean an error in the prediction of coordinates or a fault on
the detection algorithm side. To achieve reasonable classification accuracy using the radar’s
values, one must understand traffic behavior in different locations. Even though the length of
the vehicle given by the device is one of the most important to classify traffic, we cannot use
it alone. For example, even if the length value says otherwise if the coordinates show that
the object is on a sidewalk, it must be a pedestrian or a bike. We utilize the same strategy
used in the translation of bounding box values to geolocations. The idea was to get data from
the radar and check the stream to see to what class of vehicle it corresponded to. A model
was then trained with a CSV file holding several correlations of radar values to vehicle class,
in the same library as before, scikit-learn. In the end, the model was implemented into the
Fuser, helping to perform a better estimation of the type of vehicle detected when the cameras
can’t be used. The past method of prediction only used the length in the calculation, causing
errors regularly when the object was far away from the baseline that the radar was pointing
to. This approach improves the previous one by using all the object values in the prediction.

In the last paragraph, it was stated that a threshold helps us identify if the data from the
radars and the cameras are related. The idea was to define a rectangle where its width would
correspond to a lane, and its length would correspond to two light vehicles. If the location
calculated from the radar and the one computed from the detection are both in this space, it
means that they are detecting the same object.

4.2.3.4 Web Application

The fusion process is complete after using the methods described above. However, to provide
better visualization of the results, the Fuser can send the refined data to a web application to
be displayed on a map. This exchange is achieved by making use of WebSockets. The web
app, created using Django, poses as a server while the Fuser, the client, connects to it. After
this, the Javascript component of the application also connects to the server so it can receive
the data. It will receive the latitude, longitude, and class, being able to draw icons on the
map on the location given that represent the class of the vehicle. These are deleted after one
second, so the map only shows recent data.

The user can select which radar to view by using a dropdown on the top of the page. This
option will affect not only the map but the stream displayed on the left of the page.
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CHAPTER 5
Results

Given the context of the services and application created, various tests were conducted to
examine the performance and usability of the applications. The methods used differ depending
on the service and their outcomes will be detailed, explaining if they translate to good
performance.

5.1 API Performance

Regarding the API, it is important to perform tests on its speed of response and understand
the size of the data that is being given. When users access this service to retrieve data from
it, they will expect the data to be delivered fast and organized. Even if the API has some
problem or there is no data to be retrieved, users expect a warning regarding these issues.
Since this service is provided to the public, it is essential to understand if the design and
structure of the service meet the user’s standards.

5.1.1 User Evaluation

An evaluation was conducted on users with good technical knowledge of data analysis. The
participants tested all the requests available, looking at speed, data structures, and error
management. Five people composed the group of evaluators, all of them studying Computing
Engineering, with the majority claiming to have a good understanding of API configurations.
The goal of this test was to conclude if the structure of the requests created, and their data
were understood by the average user.

In the evaluation, the participants were provided one to three of each request, giving it
a total of 32. All of them were retrieving data from 30 days except the ones that have a
maximum limit of one day. For these, the time frames used were one day, one hour, and 10
minutes. The users could also visit the documentation page to have a better understanding
of the structure of the data. After analyzing each one, a questionary was filled to provide
quantifiable data on various variables. The questions were the following:
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• Did you understand what type of data the request gives? The answers range from 1 to
10, with 10 being understood perfectly

• Was the data well structured? The answers range from 1 to 10, with 10 being very well
structured

• Is the URL configuration user friendly? Range from 1 to 10, with 10 being very user
friendly

• How fast was the request? The answers range from 1 to 10, with 10 being very fast

Lastly, the user was asked to type five requests that only returned error messages. The
goal of this last process was to have feedback on the effectiveness of error handling. The final
questions were regarding how the service handles errors, the documentation page, and how
experience s the participant when it comes to API specifications.

The results of the questionary were the following:

Was the data well
structured?

Is the URL
configuration
user friendly?

How fast was
the request?

Average Median Average Median Average Median
/parking 9.8 10 6.4 7 5.6 5

/parking/{sensorID} 9.8 10 6.4 7 8.2 8
/parking/availableSensors 7 7 9.4 9 8.6 9

/parking/events 8.4 8 9.8 10 8.2 8
/parking/latestValues 9.8 10 9.8 10 9.4 10

/radars 4.8 5 9 9 8.8 9
/radars/location 6.6 6 9.6 10 9 9

/radars/vehicleEstimation 8.8 9 9.6 10 8.4 9
/radars/{radar_id} 6.6 7 6.4 7 6.6 7

/radars/{radar_id}/{measurement} 9.2 9 7 7 6.6 6
/radars/events/{region}/{event} 9.4 10 6.6 7 7.2 7

Rate docu-
mentation

page

Rate
error handling

Understanding
about API

configurations
4.6 5 7.8 8 5.8 6

Table 5.1: Results of API usability tests.

As we could expect, the more abstract requests were reported as the slowest, with the one
that provides raw radar data the most confused in terms of data structure. The participants
also reported that the data could be more compact, for example, having only speed instead of
speed in the X and Y-axis. Nevertheless, after explaining the purpose of the request most of
them comprehended the choice. However, some insisted that variables, such as sensor location,
didn’t need to be separated into latitude and longitude. The error handling and the other
requests had positive scores, but many stated that the documentation page should be more
detailed. In the end, the users understood the data being given and its purpose, not criticizing
the waiting time too much, getting a good experience in the majority of the requests.

5.1.2 Speed and data size

As stated in the previous chapter, load tests were conducted to the uWSGI server to understand
how the two variables affect its performance. Even though developers advise the processes
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from the server to be the same as the CPU processes, we started with half that amount. This
configuration was P8T8, meaning eight processes and eight threads. To perform these tests,
we run 1000 requests, with 25 of them being made at the same time. The one used was
radars/events with a time frame of 7 days because we consider this to be one of the most
meaningful for users. The best practice is to start with the processes equal to the CPU cores,
but we will test lower values to see the influence on the time. The results of the different
combinations examined are displayed in Figure 5.1.

Figure 5.1: Results of the testing of several configurations test showing the average, median, and max
time of 25 requests in milliseconds. These are expressed using a letter( P for processes
and T for threads) followed by their value.

After analyzing the results, we can see that the configuration of 16 processes and 16
threads gives the best performance, being the fastest overall.

Even though an uWSGI server helps a lot with load balance, if the size of request response
is too large, it can cost an application performance when the network has low bandwidth.
Knowing this, the data size of each request is almost as important as response speed since
these two go hand in hand. The goal was to have the response time below 500 milliseconds and
the data size under 200KB. We can expect this for most of the requests except the larger ones,
like /parking, that give the raw data of the sensors. The tests were conducted in the same
network where the API is implemented, providing the best-case scenario and in a household
with a 100MB/s internet speed, providing an average scenario. We run each request ten times,
setting the time frame to 30 days except for the ones that have a maximum limit of one day.
Table 5.2 shows the results of these tests.

As expected the response times fell on the values stated, except the largest requests, being
the ones that retrieve raw sensor data or have a wide time frame. Nevertheless, the user
can use the limit, offset, and groupby parameters to further lower response times and data
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Requests Time Lab(ms) Time Home(ms) Size(KB)
/parking 10 minutes 38 91 34
/parking 1 hour 139 176 201
/parking 1 day 2320 2320 4278

/parking/{sensorID} 10 minutes 23 41 3
/parking/{sensorID} 1 hour 30 40 4
/parking/{sensorID} 1 day 35 85 17
/parking/availableSensors 27 69 36

/parking/events 563 591 3
/parking/latestValues 63 64 23

/radars 66 182 137
/radars/location 96 150 3

/radars/vehicleEstimation 459 642 3
/radars/{radar_id} 10 minutes 49 62 18
/radars/{radar_id} 1 hour 119 102 125
/radars/{radar_id} 1 day 846 869 1855

/radars/{radar_id}/{measurement} 30 days 1981 2293 65
/radars/{radar_id}/{measurement} 7 days 470 523 65
/radars/events/{region}/{event} 30 days 679 825 57
/radars/events/{region}/{event} 7 days 264 335 56

Table 5.2: Results of API performance tests.

size. When discussing the larger requests, other approaches can be utilized like constantly
pooling data every 10 minutes. Although these provide large amounts of values, they fulfill
their purpose of giving the user the freedom of creating new types of data with raw sensor
information.

To be noted that these results are performed in favorable situations, where only one request
is being handled. At times where the API is under heavy load, these times will increase. Some
load tests were performed, in the household scenario, to understand the effect that a large
number of requests has on the API. These were conducted by making 5000 connections to
the service, by 100 users to the
event’s request, using a time frame of seven days.

Min Mean Median Max
Connect 457 2170 2175 2865

Processing 94 244 236 1243
Waiting 94 244 235 1243
Total 706 2414 2423 3505

Table 5.3: Results of the connect, processing, waiting, and total times of the load tests in milliseconds.

We can see the change in response time when several clients are accessing the service.
During the test, 2105000 bytes of data were transferred, with the whole process lasting 122
seconds. These numbers give us a transfer rate of 17.25 Kbytes/sec, which is somewhat
low, but the times presented are not astronomically large since most users won’t leave the
website when the response lasts less than six seconds. The times are heavily influenced by the
connection, which can be handle with more paralyzation of the service.
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5.2 Usability Test

Similar to the API evaluation, two initial questions were presented to the participants
regarding their experience with user interfaces and their knowledge of the acspasmo project.
This questionary was made to separate the partakers into several groups. First, the tech
and non-technologic people, and second, the ones with(regular users) and without(admins)
knowledge of the project. This separation has the goal to provide us with opinions from very
different groups of people that will use the application. The technologic users also referred
to as power users, know the standards of web design, such as icons, buttons, and calendars,
while the others are not very familiar with the UI components. The other group is composed
of regular users who don’t fully understand how the whole system and pipeline of software,
while the admins have a clear grasp on the subject. The evaluations rely heavily on all of
these aspects, like being comfortable with the technology and knowing PASMO infrastructure
and how the different components interact with each other.

The two methods of evaluation utilized to conduct the tests were Cognitive Walkthrough
and Heuristic. These provide the evaluator with enough information to have a good under-
standing of how the users view the application.

5.2.1 Cognitive Walkthrough

Cognitive Walkthrough is a usability inspection method, i.e., a method where a facilitator
invites a participant to perform scripted tasks in a specific user interface. Thus, it’s task-
specific, meaning that the performance of the users executing that task will be evaluated to
understand the problems with the interface.

The tests were performed with the participants accompanied by the developer of the
dashboard. Since this method is highly influenced by the user’s experience, we asked them to
rate their technical understanding of websites and UIs as well as their knowledge regarding
the PASMO project. The average age of the participants was 29, varying between 16 and 52
years old, with the majority being in their mid 20s. This large age range includes various
user’s experience, making it suitable to understand how it influences the results. All the
participants in the mid 20s group were in the IT field, making them more experience. Even
thought the understanding of web interfaces ranges a lot between participants, one thing in
common is the knowledge of PASMO. Some stated that they heard about the project, but
the majority had zero familiarity with it.

Before executing the tasks, the participants had two to three minutes to explore the
application so that they could be more used to it. Initially, the page where the user should
go to perform the task was described in the script. However, to understand if the sidebar
accurately defines the content, we let the users discover on which page the task should be
performed. Still, if they got stuck, a little help directing them to the page is given. The tasks
for each page are the following:

• Parking Dashboard
– Find a free parking spot and see its ID
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– See if there is a problem with the majority of the sensors
– Find the average time that people spend on Barra
– See the variation of an occupied parking spot

• Radar Dashboard
– See the traffic variation in the regions between 03 and 10 of August of 2020
– See the number of vehicles that entered the Ponte radar in 23/08/2020 at hour 10

and
– Find the time where the highest traffic speed occurred, in that day
– Find which radar was inactive in the past seven days

• Radar Dashboard or Compare Dates
– At 02/11/2020, find which radar caused the curve to drop, in the morning

• Map
– Find the entrance, in Costa Nova, with the highest congestion or waiting time, and

in that entrance which lane has the fastest traffic

Regarding the tasks on the Parking page, most of the participants clear them with ease.
The hardest one came to be the second one, where the users needed to relate the active and
total sensors or look at the number of blue icons to arrive at a conclusion. Only 30% choose
to follow the latter approach since the former is the first information that the users see when
entering the page. Here 20% needed a little help to complete this task, such as pointing to
where they should search. It is relevant to state that this users belong to the less experience
participants and didn’t quite understand the meaning of total and active sensors at first.
Another relevant result occurred in the last task of this page, where 50% of the participants
got a little bit lost, but none needed help. The users that got lost stated that they ignore
the parts of the page with text, focusing more on the map. Nevertheless, these results were
heavily influenced by the first minutes where the users could navigate the website freely. The
ones that clicked on the icons to pop up the chart already knew how to perform the task.
Beyond these separate cases, the participants found the tasks relatively simple, and the page
very comfortable to navigate.

The Radar dashboard had more critics and not so good results compared to the previous.
This outcome can be attributed to the administration style that the page offers, i.e., presenting
many filters and tons of diverse data. Overall, 44% of the participants stated that they felt a
bit lost, and 16% claiming they got lost a lot. The hardest task, with an average of 6.5 points
of difficulty, came to be the second one since the users needed to select at least two filters
and search for the hours and radar in the bar chart. Here only 30% of the participants went
directly to the right chart, while 40% needed help to be guided to the bar chart. The last
but one also had a high difficulty, 5.6 point, because the users needed to understand what
it meant for a radar to be inactive. Another interesting result was the fact that 20% of the
participants didn’t utilize the fast option, provided in the calendar, to filter by the last seven
days. Instead of that percentage selected, one week "by hand" in the custom date. When
asked why the majority responded roughly the same, stating that they "had done it that way
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before so (they) assumed that was the right approach." The major critics of this page were the
lack of alerts when the radars were down. Participants asserted that some type of information
should be displayed, warning the user that the data could be deceptive because of a radar
crash.

Even though the ninth task can be performed on both pages, only one participant out of
the ten completed it on the Compare Dates page, because he/she remembered the page when
exploring the application in the beginning. It seems like most of the users work with the tools
that they recognize, only leaving them if there is no other option.

The final task is performed on the Map page, where the participants need to find a decent
amount of values. Most of the users, 90%, recognize that the red arrow signified the exiting
lane, while some were slow to realize what the waiting time meant. One of the less experienced
participants also got a little bit lost because, as stated, they "thought the values weren’t
separated because there was no line in the middle" of the entrances. Nonetheless, this page
received the most positive feedback of them all, with comments like "this is more important
than the charts if I wanted to go to the beach."

By studying the results of these tests, it’s evident that the majority of the users found the
application useful and packed with good information. The more experienced and knowledgeable
users advise for more alerts not only in the Radar dashboard as stated before but also on the
Parking page regarding the state of the majority of the sensors. They also suggested that a
Parking dashboard with similar filters as the Radar’s page could be of great use. The less
experienced users also advise for more alerts and real-time features, like notifications of high
congestion. Although the critics, the dashboard received positive feedback across the board.

5.2.2 Heuristic Evaluation

A more quantifiable type of evaluation is the Heuristic method. The most used and highest-
regarded set of heuristic laws are the 10 Laws of Usability by Jakob Nielsen. The original
heuristics are the ones used for the tests, which provide the most complete general principles
for interaction design, been utilized for the last 20 years[70].

• Visibility of system status: The design should always keep users informed about what is
going on, through appropriate feedback within a reasonable amount of time.

• Match between system and the real world: The design should speak the user’s language.
Use words, phrases, and concepts familiar to the user. Follow real-world conventions,
making information appear in a natural and logical order.

• User control and freedom: "Emergency exit" so users don’t have to go through an
extended process.

• Consistency and standards: Users should not have to wonder whether different words,
or actions mean the same thing.

• Error prevention: Eliminate error-prone conditions, or check for them and present users
with a confirmation option before they commit to the action.

• Recognition rather than recall: Minimize the user’s memory load by making elements,
actions, and options visible.
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• Flexibility and efficiency of Use: The use of shortcuts speeding up the interaction for
the expert user.

• Aesthetic and minimalist design: Interfaces should not contain information which is
irrelevant or rarely needed.

• Help users recognize, diagnose, and recover from errors: Error messages should be
expressed in plain language detailing the problem, not in error codes.

• Help and Documentation: Provide documentation to help users understand how to
complete their tasks.

In order for the users to understand these heuristics and evaluate the application the right
way, some other functionalities were presented. These include choosing a date where there is
no radar data available so that the evaluators can visualize the error messages and surfing the
documentation page. The latter is also complemented by little bits of information scattered
throughout each page, offering information about what data is represented in the chart or
how to use certain features.

Figure 5.2: Average heuristic results for every principle.

The feedback of this evaluation is similar to the cognitive walkthrough, where the partic-
ipants expressed the lack of alerts and information about the system state. Others stated
that some information may not be relevant to the average user, such as the variation of a
traffic sensor. The problems discussed fall in the heuristics "Visibility of system status" and
"Aesthetic and minimalist design," which are the ones with the lowest scores. However, beyond
these two, and the "Error Prevention" evaluation, which could be higher, the dashboard got a
good overall score.
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5.3 Training Results

As detailed in section 4, the training process lasted 8000 iterations, saving results every 1000.
It was also stated that it’s necessary to test all the weights and not only the last one because
other iterations can provide better accuracy. Darknet can be used to make these kinds of
tests, using labeled images to calculate the mean average precision(mAP). These images
cannot be the same as the ones used in training because it could cause deceptive results.
Therefore, 2000 more images were labeled to achieve accurate results on these tests. To check
not only the mAP but also the AP of each class, we can run ./darknet detector map on the
2000 images considered. Darknet receives them and calculates the mAP and other details
regarding the weights introduced. Even though we know that the first iterations will not have
good precision, all the weights were tested to understand the change in the mAP throughout
the training process. The following figure show the results from these tests.

Figure 5.3: Changes in mAP throughout the iterations trained in different datasets, Ponte, DunaMeio,
RiaAtiva, and COCO at IoU=0.50.

The results show great improvement in accuracy when compared to the weights trained in
the COCO dataset. Even being the same model, we have a clear advantage when it comes
to the environment recorded by the cameras. Since these devices are locked in place, the
background of the stream is always the same, making it easier for the model to learn to ignore
it. The images provided in the training process, where there is no traffic, also helped because
it gave a picture of what the background should look like. Another thing that improved
performance is the fact that we know where to expect bounding boxes, meaning that detection
should only be found near the roads and sidewalks. The model already knew this fact before
starting the training process because we pre-calculated boxes by looking at the dataset. So the
adjustments made throughout the iterations were less drastic, providing better improvements.
By computing custom anchor boxes before training instead of using the default ones, the
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mAP by 1.72% in Ponte, 4.59% in DunaMeio, and 3.47% in RiaAtiva.
The tests also provide precision in each class, giving us a clear picture of what types of

vehicles are limiting the mAP. By using the weights with the best accuracy, iteration 8000
for all the models, we run the same command stated in paragraphs above on the same test
dataset. This process gave us the following results:

Figure 5.4: Results of precision per class in every model.

Looking at the chart, it’s clear that the detection of pedestrians isn’t satisfying, especially
in Ponte. The bad results occur because of the positions of the sidewalks since it’s the only
place where pedestrians can be detected. In DunaMeio, much of the left sidewalk is covered
by plants, and in Ponte, the right side barries hide the pedestrians and bikes circulating.
RiaAtiva provides decent results because it has more of an open environment, letting the
camera detect classes. Another situation to consider is that the farther away a vehicle is from
the camera, the harder it will be to distinguish between light or heavy. Many trucks have the
same front as cars, making the classification difficult from a far distance.

The last test was performed to understand how bad weather and low luminosity affected
the detection of traffic, where the test dataset was composed of 500 images of each scenario.
The results are displayed in Figure 5.5.

It’s clear that extreme conditions affect the results, but the decrease in precision is not
that significant. The majority of problems in these situations are due to light exposure. For
example, when it’s raining, the video becomes too grey, meaning that a light grey vehicle
can disappear by "merging" with the road. In some conditions, it’s even hard for a human
to recognize the said vehicle, making it impossible for the algorithm to detect it. Another
example of poor light exposure is the detection performed at night, where the lights from
the vehicles and light poles cover almost half the video, being quite difficult to detect. This
problem majorly occurs in DunaMeio and RiaAtiva since they are almost parallel to the road.
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Figure 5.5: Difference in precision values in several conditions of light and weather.

Figure 5.6: Some examples where the light and weather conditions affect the results by a lot.

5.4 Jetson Nano Performance

It was established that the algorithm would be running on the board 24/7, detecting and
producing data along the way. In this context, it’s crucial to understand how the performance
of the hardware changes over time. Here we run the system for twelve hours straight, capturing
the FPS every hour that passes. The test started at 8 a.m in the RSU DunaMeio, where the
average, minimum and maximum values were extracted. We don’t need to test the accuracy
every hour because it’s not affected by the hardware. The results were the following:

Even though we got some low values at the start and end of the tested time frame, the
fluctuation of FPSs was not that significant, with the difference between the max and min
values being 1.43. Nonetheless, this variation was to be expected because there are periods
throughout the day where there is heavy traffic. These are usually between 7 a.m and 10 a.m
and between 6 p.m and 10 p.m. Although the FPS decrease in these situations, the drop is
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Figure 5.7: Results of the average FPS values in the 12 hour run.

not that significant. Furthermore, the performance is stable at the other times of the day.
Together with the average, we also retrieved the maximum, minimum, and median values,

them being 41.90, 3.65, and 41.67, respectively. These numbers show us that, for the most
part, the FPSs are higher than average since the mean is lower than the median, concluding
that, even thought some drops may occur, the board can sustain real-time performance for
the majority of the time.

5.5 Fuser

Finally, we arrive at the Fuser, where several tests were performed to understand how much
the algorithm improves classification. To achieve this goal, two different tests were performed,
one of them using only data from the DunaMeio camera and radar. Firstly the data structure
was modified to give the web application the two-vehicle locations computed. The object
position calculated by the radar was depicted with red points, while the location estimated
using the camera is given in green. The main goal is to understand how these two differ and if
they are synchronized. In Figure 5.8, we can observe that the data computed using the object
detector is much more abundant, with the radar providing fewer values. This happens because
of the rate that tkDNN is detecting objects in the video. This approach isn’t a disadvantage
since it’s the average of all these values that are utilized, not only one of the many produced.
Nevertheless, the locations computed by both methods seem to align quite well since we can
see the radar data surrounded by the values produced through the camera.

The final test performed had the objective of understanding how much the sensor fusion
improved the accuracy of the classification and which device contributed more to it. To
achieve this goal, a 20-minute video, with good weather and light conditions, was used to
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Figure 5.8: Values from the radar and cameras with two seconds of difference. The former is
represented by the red dots while the latter by green points.

perform the evaluation. In the end, the data from the cameras were used 55% of the time
in DunaMeio, 62% in RiaAtiva, and 41% in Ponte. These results are mainly influenced by
problems in synchronization since the estimation of the object location is accurate in both
devices, as seen above. Heavy traffic jams are also related to the synchronization issue since
it’s difficult to distinguish which vehicle is which if they are too close together.

Regarding the test for the accuracy of the algorithm, the method used was to check the
time where classification was performed correctly and compare it to the overall time that
the vehicle was visible on the stream. These results were compared to the old method of
classifying traffic, using only the length of the object, to see the improvements made.

Figure 5.9: Comparation of the old classification with the results from the custom training and the
sensor fusion.

The results clearly show an improvement over the old basic method of classification.
Nevertheless, the accuracy from the sensor fusion is not equal to the precision that we got
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when testing the custom models. This difference occurs because the classification from the
object detector isn’t always used, as discussed previously. Still, the values from tkDNN being
used 100% of the time is an unrealistic scenario, especially during traffic jams. In these
types of situations, even for the radar, it’s hard to distinguish vehicles when they are so close
together. In the end, the results came close to the perfect scenario, being a clear improvement
for the traffic classification.

These tests were performed with the help of the web application. The page displayed an
icon in the map representing the vehicle’s class, accompanied by the real-time stream.

Figure 5.10: Final result of the web application, showing the result of sensor fusion on the right and
the stream from the cameras on the left.
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CHAPTER 6
Conclusion

The increase in popularity of Smart City solutions presented several systems to attack regular
problems. Even though some of these solutions are related to traffic management, this topic not
one of the most popular when it comes to research. Smart tourism also falls way behind, but
investment in these fields would benefit all the stakeholders, such as local businesses, residents,
city council, researchers, investors themselves, and not forgetting, the tourist. The solutions
presented in this dissertation use state-of-the-art methods to solve problems encountered in
the two domains stated above.

The first system implements services for a domain that the PASMO project was lacking,
the application layer. A well-structured API gives data collected from the sensors installed
while the dashboard offers an easy way to navigate through this data that tells the state of
the environment and the sensors. This solution aims to provide a straightforward way for
researchers to utilized sensor data and for users to check the state of the areas of Barra and
Costa Nova. The second system let us learn how the conditions of the environment influence
object classification as well as traffic problems in areas with a high flow of vehicles, offering
an efficient solution to improve accuracy in traffic classification.

After analyzing the critics from the users that tested the public system, we can conclude
that the services provided an overall positive change in the way they view the beachside area.
The overall feedback from the participants to improve the platform is to implement alerts
where users can be warned of possible radar and parking sensor failures. The more advanced
evaluators recommend having some kind of interaction between charts since it would give a
better understanding of the state of the traffic. Nevertheless, while missing some features,
like a mobile application, 70% of the participants said they would use the application in the
future, especially for finding a parking spot and search for traffic jams. The API also had
a good impact on users with more programming experience, stating that it provides useful
data plus the freedom of creating new information using some requests. The majority of the
criticisms were related to the documentation page, where it seemed too complex at first view.
The lack of more types of data, like the variation in occupation throughout a day, was also an
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issue. Nonetheless, more requests can be easily created in the future if deemed necessary, plus
users can create their custom data type, like the one recommended. Every service provided
by the public system is available in the domain pasmo.es.av.it.pt.

Regarding the traffic classification, the results seem promising, offering a clear improvement
over the past method. It also provided a great picture of how object detection is influenced by
weather conditions, low luminosity, camera quality, and stream FPSs. Although this system,
in particular, could suffer some improvements, it provides a great base solution on how the
data from the two devices should be merged.

6.1 Future Work

Since this dissertation is related to the project PASMO, much more types of data can be
added to the API with the consequent addition of pages to the dashboard. In particular, the
information produced by weather stations that will be installed on the beaches of Barra and
Costa Nova in the future. A laboratory version is already available in the API for testing, but
its data is useless in the context of this dissertation. Nonetheless, future projects related to
the environment and traffic in these areas could utilize the service to offer their sensor data to
the public.

By looking at the user’s criticism, it’s clear that the majority would be happy with a
mobile application that provides information about the parking spots and traffic, plus the
state of the weather and estimation of people on the beach. This service can be developed in
the future by merging data from all the domains, radars, parking, and weather.

Regarding the classification system, the main components that can be improved are:

• The synchronization of values from the two devices
• The detection of pedestrians in Ponte and DunaMeio
• The source of energy feeding the board

Since the RSUs were already installed, we weren’t able to easily implement and test a
solution to a scenario where the board would be inside the units. Nonetheless, nothing from
the algorithm itself would change only the way data was fetched. It’s hypothesized that this
approach would minimize time differences between the radar data and the stream, considering
both devices would be connected to the board. In this scenario, tkDNN would get the camera
video like a "webcam" and the radar data through a socket.

The second topic can be solved by labeling more images where pedestrians are found,
giving more training data of this class to the model. Still, this approach would work up to a
certain extent because, for the most part, the pedestrians blend with the background when
they are far away. Another problem to consider is the fact that a bicycle can be classified as a
pedestrian as well since a person is riding it. These are both two extreme cases but must be
considered nonetheless. The clear solution to this problem is to have a powerful board that
can handle a larger model and a higher video resolution, but the cost to reward needed to be
well analyzed.
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The final point of improvement is the source of energy that feeds the board. Through
the implementation and tests, it was identified that Jetson Nano is very unstable with its
performance when using different energy sources.

Figure 6.1: The difference in performance when using different sources of energy. The charger, in
this case, produces over-current, forcing the system to throttled.

We can see that the drop in performance is significant when not using the right source,
making the board throttled due to over-current. This solution is much cheaper than the one
above since we would simply need to find the right charger for Jetson Nano.
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