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Abstract. The development of full-field measurement techniques paved the way for the design of new mechanical tests. However, because these 
mechanical tests provide heterogeneous strain fields, no close-form solution between the measured deformation fields and the constitutive 
parameters exists. Therefore, inverse identification techniques should be used to calibrate constitutive models, such as the widely known finite 
element model updating (FEMU) and the virtual fields method (VFM). Although these inverse identification techniques follow distinct approaches 
to explore full-field measurements, they all require using an optimisation technique to find the optimum set of material parameters. Nonetheless, 
the choice of a suitable optimisation technique lacks attention and proper research. Simply, most studies tend to use a least-squares gradient-based 
optimisation technique, such as the Levenberg-Marquardt algorithm. This work analyses optimisation techniques for the inverse identification of 
constitutive model parameters, both gradient-based and -free algorithms. To avoid needless implementation and take advantage of highly 
developed programming languages, the optimisation algorithms available in optimisation libraries are used. A FEMU based approach is considered 
in the calibration of a thermoelastoviscoplastic model. The material parameters that govern regarding strain hardening, temperature and strain rate 
are identified. Results are discussed in terms of efficiency and the robustness of the optimisation processes. 

Keywords: optimisation algorithms; finite element model updating; heterogeneous thermomechanical tests; thermoelastoviscoplasticity. 

1 Introduction 

The mechanical behaviour of sheet metals is typically sensitive to the effects of strain, strain rate and temperature. Recently, due 
to the growth of heat-assisted manufacturing processes [1], strain rate and temperature effects have gained more impact. Hence, 
accurately predicting sheet metals’ mechanical behaviour, under a wide range of strain rates and temperatures, is increasingly 
relevant to advance manufacturing processes. To predict such behaviour, thermoelastoviscoplastic constitutive models, 
characterized by their nonlinearity and a large number of material parameters, can be applied. However, based on such models’ 
traditional calibration, it is required an extensive database with tests performed at a broad range of strain rates and temperatures [2].  

The use of full-field measurement techniques, heterogeneous mechanical tests, and inverse methods has reduced the number of 
experimental tests required [3]. Applying full-field measurements techniques, such as digital image correlation (DIC), the entire 
displacement fields at the specimen’s surface can be recorded and directly used to calibrate a constitutive model. The information 
obtained from these tests can further be enriched using temperature measurements. Later, applying inverse methods, such as the 
finite element model updating (FEMU), the material parameters used to calibrate constitutive models can be retrieved [4].  

Solely using full-field measurements with inverse methods does not guarantee that suitable material parameters are found. An 
automatic strategy to find these material parameters is required by using optimisation algorithms. However, most studies calibrating 
constitutive models tend to overlook the importance of optimisation algorithms, by resorting to familiar ones, such as gradient-
based least-squares algorithms [5]. These algorithms tend to perform well and are suitable for nonlinear least-squares problems 
such as the ones formulated using the mentioned inverse methods, but also present disadvantages. A few studies have explored the 
use of other optimisation algorithms and strategies, such as direct-search and stochastic methods [6,7]. 

This paper aims to implement different optimisation algorithms in the calibration of a thermoelastoviscoplastic constitutive 
model. This methodology uses three heterogeneous thermomechanical tests performed at different average strain rates. The finite 
element model updating method is used as the inverse method, and three optimisation algorithms are applied in the optimisation 
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procedure. The results obtained with different optimisations algorithms are compared based on the achieved solution, convergence 
and successful try-outs. 

2 Methodology 

2.1 Heterogeneous Thermomechanical Test 

Three heterogeneous thermomechanical tests are used as reference data to simulate experimental data [8]. Nonetheless, this 
reference data is based on tests performed on a Gleeble 3500 thermomechanical simulator, that uses a hydraulic servo system able 
to impose tension or compression forces, as well as a direct resistance heating system [9]. A uniaxial tension loading is imposed on 
the specimen, with a heterogeneous temperature field. Finally, the tests are performed at different average strain rates  10!2, 10!3, 
and 10!4 s!1. The temperature field is imposed through the direct resistance heating system, controlling and maintaining the 
temperature at the centre of the specimen during the test. The specimen’s remaining part presents a temperature gradient due to the 
machine’s grips’ water-cooling system. This procedure’s added value is the temperature gradient triggering a heterogeneous 
deformation, providing information on the material’s mechanical behaviour for different temperatures and strain rates. 

The reference data is generated by a finite element model of the tests, whose configuration is presented in Fig. 1. For simplicity, 
the finite element model is restricted only to the region of interest (ROI), defined by a width of 28 mm and length of 60 mm. The 
finite element model is two-dimensional, assuming a plane stress formulation. Abaqus/Standard [10] software is used in the finite 
element analysis, and the four-node bilinear plane stress quadrilateral element CPS4 is used, with a large strain formulation. The 
finite element mesh is composed of 1680 elements. Displacement-driven boundary conditions are imposed on the finite element 
model's extremities, at −30 and 30 mm of the reference coordinate 𝑥 (origin at the specimen’s centre). 

 

 
Fig. 1. Schematic representation of the specimen used in the heterogeneous thermomechanical tests (dimensions in mm). The grips are represented on the 

extremities of the specimen, as well as the region of interest (ROI) defined for the finite element model [8]. 
 

 The temperature field acquired with Gleeble equipment usually presents a parabolic shape, symmetrical about the specimen's 
centre. Measurements of three thermocouples placed at −40, 0 and 40 mm of the reference coordinate 𝑥, confirm the approximate 
symmetrical and parabolic shape of the profile along the specimen's length. Variations of the temperature field along the width of 
the specimen are neglected. Additionally, the temperature field was confirmed to remain constant throughout the deformation 
process [8]. Because of its parabolic shape, each test's temperature field can be described by a second-order polynomial, as presented 
in Fig. 2, between −30 and 30 mm of the reference coordinate 𝑥. For the three tests, the maximum temperature of 
approximately 500 ºC is reached at the specimen's centre, decreasing to around 360 ºC at −30 and 30 mm of the reference 
coordinate 𝑥. Therefore, the temperature field is imposed in the finite element model through the second-order polynomial and the 
nodes’ temperatures remain constant throughout the test. 

The Johnson-Cook thermoelastoviscoplastic constitutive model is adopted [11]. The model is characterized by a multiplicative 
formulation, decomposing the flow stress evolution in three terms: strain hardening, temperature and strain rate. It can be written as 

																																																																	𝜎" = [𝐴 + 𝐵(𝜀p)#] .1 − 0
𝑇 − 𝑇tr
𝑇m − 𝑇tr

2
$

3 41 + 𝐶 ln8
�̇�
p

𝜀0̇
:; ,																																																															(1) 

where 𝜀p is the equivalent plastic strain and �̇�
p
 the equivalent plastic strain rate. The first term describes the strain hardening effect, 

modelled by the material parameters 𝐴, 𝐵, and 𝑛. The temperature effect is modelled by the temperature 𝑇, the transition 
temperature 𝑇tr, governing the threshold of temperature effect, the melting temperature	𝑇m, and the exponent 𝑚. Lastly, the strain 
rate sensitivity is modelled by the material parameters 𝐶 and 𝜀0̇, defining the threshold of strain rate dependence. 
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The reference data is created using a set of reference parameters [8], characteristic of DP980 dual-phase steel (see Table 1). The 
material is considered isotropic, and Hooke’s law describes the elastic behaviour and von Mises yield criterion is adopted. The 
elastic properties of the material, Young’s modulus 𝐸 and Poisson’s ratio 𝜈, are known a priori, assumed to be constant in the 
temperature range of study and equal to 210 GPa and 0.3, respectively.  

 

Table 1. Reference set of parameters used in the Johnson-Cook thermoelastoviscoplastic constitutive model to generate the reference data [8]. 

Strain hardening Temperature Strain rate 

𝐴 [MPa] 𝐵 [MPa] 𝑛 [-] 𝑇tr [ºC] 𝑇m [ºC] 𝑚 [-] 𝐶 [-] 𝜀0̇ [s-1] 

205.210 1124.000 0.092 25 1000 1.360 0.050 0.001 

Then, the reference data is generated using the temperature field and the reference set of parameters. This reference data is 
composed of the displacement field of the ROI (longitudinal and transversal displacements) and the load for each time instant. The 
reference load for the tests performed at three different average strain rates is presented in Fig. 3. A different number of time instants 
composes the tests’ reference data, specifically, 47, 58, and 62, respectively, for tests with an average strain rate of 10!2, 10!3, 
and 10!4 s!1. It can be observed that the load is sensitive to the average strain rate, as an increase leads to higher values of 
maximum load. 

 
Fig. 2. Longitudinal temperature field of heterogeneous thermomechanical specimens longitudinal temperature field described by second-order polynomials. Each 

curve is identified from the average strain rate of each test (in s&1). 

 
 

 
Fig. 3. Load evolution throughout the deformation process of the heterogeneous thermomechanical tests performed at average strain rate of 10&2 (left), 

10&3	(centre), and 10&4 s&1 (right). 
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2.2 Finite Element Model Updating 

The finite element model updating (FEMU) is used to calibrate the constitutive model. This method is based on the simple idea 
of iteratively adjusting the finite element model's unknown material parameters to minimise the difference between experimental 
and numerical results. The FEMU has been largely adopted in many different applications, partly because of its ease of 
implementation and flexibility. The objective function to be minimised can be composed of different data, such as strain, 
displacement and load signal. This flexibility has contributed to an increase in the number of formulations presented in the literature. 
Recently, the use of the FEMU combined with full-field measurements has mainly been used. In that regard, the adopted objective 
function can be written as 
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where 𝛘 = (𝐴, 𝐵,	𝑛, 𝑚,	𝐶) is the vector of optimization variables. The variables 𝑡, 𝑝, and 𝑞 are the number of tests, time instants, 
and in-plane measurement points. To distinguish between experimental (reference) and numerical variables, the superscripts “exp” 
and “num” are used respectively. The variable 𝜀maxexp  represents the maximum strain value of all in-plane components and time instants 
for each test. Analogously, 𝐹maxexp represents the maximum load value of all time instants for each test. Because the displacement field 
represents the raw data, the strain field is computed from the displacement field using a total Lagrangian formulation. The reference 
strain field is computed before the calibration procedure, and the updated strain field is computed after every finite element 
simulation, from the extracted numerical displacement field.   

2.3 Optimisation 

The optimisation procedure controls the FEMU method and is performed for different algorithms. The optimisation procedure 
is implemented in Python programming language, using the optimisation algorithms from the SciPy library [12]. This library has 
several optimisation algorithms (e.g., gradient-based, stochastic), providing the user with easy implementation in its programs. 
Three optimisation algorithms of different types are selected for the optimisation procedure: Levenberg-Marquardt, Nelder-Mead 
and Differential Evolution algorithms. 

The Levenberg-Marquardt (LM) is a gradient-based algorithm that uses the approximated Hessian and Jacobian matrices [13]. 
It is largely used in the calibration of constitutive models [14–16] because it is well suited for solving nonlinear least-squares 
problems. The LM algorithm requires the user to select an initial solution, and if not well chosen, it can lead to convergence 
difficulties or to finding local minima, instead of the global minimum. Nonetheless, if the problem is well-conditioned and a suitable 
initial solution is selected, the algorithm can rapidly converge. 

The Nelder-Mead (NM) algorithm is one of the best known and simpler direct-search algorithms used in unconstrained 
optimisation [17]. The NM algorithm uses a simplex that begins with a set of points for every optimisation variable plus one, 
considered its vertices. Based on a series of transformations of the simplex, the algorithm iteratively reduces the simplex size. The 
algorithm is known to achieve satisfactory results in few iterations, but also presents problems of convergence. Comparatively to 
gradient-based algorithms, this algorithm stands out for not requiring the use of derivatives.  

The Differential Evolution (DE) is a population-based stochastic algorithm that generates new solutions from the combination 
of other solutions [18]. The DE algorithm can be characterised by its ease of implementation, robustness, and finding the global 
minimum of a problem in most attempts. However, a significant drawback of DE is its high computational cost and low convergence 
rate compared to other optimisation algorithms. On the other hand, when compared to other population-based stochastic algorithms, 
DE tends to overperform them. As is common in population-based algorithms, the number of solutions used as the population can 
significantly impact the convergence and success of the optimisation procedure [19]. Moreover, the DE algorithm requires the 
definition of variables bounds to generate the initial set of solutions, either manually, randomly or distributed over the search space.  

The LM and NM algorithms are suitable for unconstrained problems instead of the DE algorithm, requiring variable bounds. To 
limit the search space for the three algorithms, lower and upper bounds are defined for all variables (see Table 2). The bounds are 
arbitrarily defined based on the order of magnitude for each variable and are not very restricted. On the DE algorithm, the bounds 
are directly imposed, while for both LM and NM algorithms a variables transformation is used. Note that for all the algorithms, the 
optimisation variables are normalised by its bounds. Considering 𝑥M. = 𝑥. 𝑥)⁄  the variable 𝑥. normalised relatively to its initial value 
𝑥), the variables bounds are normalised as 
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Then, the variable transformation for 𝑋P. ≥ 1 corresponds to 

									 						 						 																		 							 		 																																			𝑥M. = 1 + (𝑥M.max − 1)H1 − 𝑒
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and for 𝑋P. < 1 corresponds to 

									 						 						 																		 							 		 																																			𝑥M. = 1 + (𝑥M.min − 1)81 − 𝑒
1!23!
45!
min!1: . 					 									 						 															 														 																			(5) 

3 Results 

The material parameters 𝐴, 𝐵, 𝑛, 𝑚, and 𝐶 are defined as the optimisation variables to identify. The melting temperature	𝑇m, the 
transition temperature 	𝑇tr, and the parameter 𝜀0̇ are considered known a priori and kept fixed throughout the optimisation procedure. 
Mainly, these parameters are kept fixed because the first two have specific physical meaning, and the third may increase the problem 
of non-uniqueness of the solution [20]. 

To mimic image noise from actual full-field measurements, random noise from a normal Gaussian distribution is added to the 
reference data's displacement field, while the load signals are kept without noise. To evaluate the robustness of the methodology 
and performance of algorithms, three data sets are used as reference data for the calibration: (i) without noise; (ii) with random 
noise of amplitude 10!5 mm; and (iii) with random noise of amplitude 10!3 mm. The objective function values using the variables 
reference set are 0.0, 3.130 × 10!9, and 3.017 × 10!5, respectively, for each data set. 

Because the LM and NM algorithms are sensitive to the initial solution, five different initial sets are generated using the Latin 
hyperspace sampling method, generating solutions evenly distributed over the search space (see Table 2). This sampling method 
does not consider the reference set, avoiding an initial bias towards the global minimum. The distribution of the variables of each 
generated initial set over the search space is shown in Fig 4. These five initial sets are used for the LM and NM algorithms, while 
for the DE algorithm, a population of 50 solutions is generated using the same sampling method.  

The three algorithms are, in general, used with the default settings defined in the SciPy library. The exceptions are the step size 
for the finite difference approximation of the Jacobian in the LM algorithm, set equal to 10!3, and the adaptive setting in the NM 
algorithm, which adapts the algorithm parameters to the problem’s dimensionality. 

 

Table 2. Upper and lower bound of optimisation variables and initial sets for the Levenberg-Marquardt (LM) and Nelder-Mead (NM) algorithms. 

  𝐴 [MPa] 𝐵 [MPa] 𝑛 [-] 𝑚 [-] 𝐶 [-]  

 Bound       

 Lower 50.000 100.000 0.010 0.500 0.000  

 Upper 1200.000 2000.000 0.500 4.000 1.000  

 Set       

 1 838.230 258.620 0.340 3.970 0.210  

 2 1158.140 1704.400 0.060 0.680 0.920  

 3 707.870 525.550 0.180 2.950 0.700  

 4 51.600 1368.290 0.440 2.110 0.010  

 5 397.470 1218.310 0.300 1.400 0.460  
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The final solutions and objective function values obtained in the optimisation procedures are summarised in Table 3, for the 
three algorithms. Additionally, in Fig. 5, the evolution of the objective function throughout the function evaluations is represented 
for the three algorithms. 

Considering that for final solutions within 0.1% of error from the reference solution the algorithms achieve the global minimum, 
it is observed that the LM algorithm presents the worst performance of the three algorithms. Overall, the LM achieves the global 
minimum only twice, whereas the NM algorithm achieves the global minimum six times, and the DE algorithm can find the global 
minimum in two out of three attempts. The fact that LM cannot achieve the global minimum more often can be related to the step 
size for the finite difference approximation of the Jacobian, which is probably not small enough. The algorithm would perhaps 
benefit from starting a new optimisation procedure, using the final solution as the optimisation's initial solution and reducing the 
step size. 

The results of LM and NM algorithms confirm their sensitivity to the initial set, with results varying depending on the initial set. 
This is particularly evident when the variable 𝐴 of the initial set is close to its upper bound, as is the case of set 2. In this situation, 
the solution stagnates very early, either in the upper and lower bound of variable 𝐴. Avoiding initial solutions close to the variables 
bounds can potentially decrease the chance of the algorithm converging there. In general, variables 𝑛, 𝑚, and 𝐶 present higher rates 
of success in achieving the reference solution. However, set 5 with the LM algorithm shows local minima, which are very 
susceptible to this algorithm.  

The effect of noise in the results is quite interesting, as it is observed that noise can benefit the algorithm. In the case of the LM 
and NM algorithms, the final solutions achieved are, in general, very similar between the data sets without noise and with random 
noise of amplitude 10!5 mm. However, in the LM with initial set 3, it is observed that the presence of noise benefits the algorithm 
in achieving a better solution than without noise. When the level of noise is increased to an amplitude of 10!3 mm, both the LM 
and NM algorithms are not as efficient in achieving the reference solution, but the NM algorithm appears to be less negatively 
affected by the presence of additional noise. The DE algorithm appears to be less affected by noise regarding the final solution, as 
each variable solution of data set with random noise of amplitude 10!3 mm is within 0.1% of error from the reference solution. 
However, the final solution for the data set with random noise of amplitude 10!5 mm is not close to the reference one, but it can be 
related to the presence of a local minimum. To further investigate the effect of noise in the DE algorithm, more attempts should be 
performed, as the DE algorithm is not deterministic, and a component of randomness always exists. The objective function 
convergence is also affected by the presence of noise. For example, for the LM algorithm with initial set 1, where the final solutions 
are relatively similar, the algorithm converges around 1000, 600, and 50 function evaluations, respectively, for data sets without 
noise, with random noise of amplitude 10!5 and 10!3 mm.  

In summary, the differences between the LM and NM algorithms are more evident in terms of convergence rate, where the first 
tends to converge rapidly, whereas the former typically requires a higher number of function evaluations. A single attempt was 
performed for the DE algorithm with each data set, and it appears to be more robust than the other two algorithms. Nonetheless, it 
generally requires a high number of function evaluations to converge to the global optimum. Considering the use of multiple initial 
sets for the LM and NM algorithms, it can be considered a good strategy in substitute to the DE algorithm. 
 

 
Fig. 4. Distribution in the search space of the optimisation variables, normalised by its bounds, in each initial set for the Levenberg-Marquardt (LM) and      

Nelder-Mead (NM) algorithms. The reference set is also represented. 
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4 Conclusion 

A methodology to calibrate thermoelastoviscoplastic constitutive models based on full-field measurements and the FEMU is 
considered to reduce the number of thermomechanical tests involved. Three heterogeneous thermomechanical tests performed at 
different average strain rates are used as reference data required by the calibration procedure. By taking advantage of a modern 
programming language library, three optimisation algorithms are easily implemented in the calibration process, namely the 
Levenberg-Marquardt (LM), Nelder-Mead (NM), and Differential Evolution (DE) algorithms. The algorithm's results are compared 
for three data sets, involving different noise levels introduced in the displacement field of the reference data. The DE algorithm 
demonstrates to be the most robust algorithm by reaching or being very close to the global minimum in two out of the three data 
sets. However, it is also susceptible to local minima even though less than the LM and NM algorithms. Moreover, the number of  

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Evolution of objective function throughout function evaluations using the (a) Levenberg-Marquardt (LM), (b) Nelder-Mead (NM), and (c) Differential 
Evolution (DE). Results correspond to data sets without noise (left), with random noise of amplitudes 10&5 (centre) and 10&2 (right). 
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Table 3. Final solutions and objective function values obtained in the optimisation procedure using the Levenberg-Marquardt (LM), Nelder-Mead (NM) and 
Differential Evolution (DE) algorithms. Results correspond to data sets without noise, with random noise of amplitude 10&5, and 10&3 mm.  The smaller font 

size values represent the relative error (%) of each variable’s final value to the reference one. The values in bold indicate that the error to is smaller than 0.1%.  

 Set 𝐴	[MPa] 𝐵 [MPa] 𝑛 [-] 𝑚 [-] 𝐶 [-] φ(𝛘) 

LM without noise 

 1 205.779 0.277 1123.565 −0.039 0.092 0.000 1.360 0.000 0.050 0.000 1.860 × 10&11 

 2 1200.000 484.797 2000.000 77.936 0.500 443.478 0.705 −48.162 0.055 10.000 4.900 × 10&4 

 3 269.893 31.520 1147.581 2.098 0.100 8.696 1.235 −9.191 0.051 2.000 1.371 × 10&6 

 4 205.228 0.009 1123.986 −0.001 0.092 0.000 1.360 0.000 0.050 0.000 1.134 × 10&12 

 5 356.294 73.624 1029.529 −8.405 0.113 22.826 1.292 −5.000 0.051 2.000 1.371 × 10&6 

 with random noise of amplitude 10&5 mm 

 1 205.860 0.317 1123.511 −0.044 0.092 0.000 1.360 0.000 0.050 0.000 3.153 × 10&9 

 2 1200.000 484.797 2000.000 77.936 0.500 443.478 0.705 −48.162 0.053 6.000 4.900 × 10&4 

 3 205.202 −0.004 1123.965 −0.003 0.092 0.000 1.360 0.000 0.050 0.000 3.134 × 10&9 

 4 205.530 0.156 1123.770 −0.020 0.092 0.000 1.360 0.000 0.050 0.000 3.139 × 10&9 

 5 375.103 82.790 1020.996 −9.164 0.116 26.087 1.280 −5.882 0.051 2.000 1.778 × 10&6 

 with random noise of amplitude 10&3 mm 

 1 210.709 2.680 1120.125 −0.345 0.093 1.087 1.358 −0.147 0.050 0.000 3.017 × 10&5 

 2 50.000 −75.635 2000.000 77.936 0.082 −10.870 0.729 −46.397 0.053 6.000 8.433 × 10&5 

 3 280.799 36.835 1074.003 −4.448 0.102 10.870 1.328 −2.353 0.050 0.000 3.046 × 10&5 

 4 200.753 −2.172 1127.190 0.284 0.091 −1.087 1.362 0.147 0.050 0.000 3.017 × 10&5 

 5 357.248 74.089 1029.400 −8.416 0.113 22.826 1.291 −5.074 0.051 2.000 3.155 × 10&5 

NM without noise 

 1 205.211 0.000 1123.999 0.000 0.092 0.000 1.360 0.000 0.050 0.000 3.781 × 10&14 

 2 1200.000 484.767 1749.794 55.676 0.201 118.478 0.501 −63.162 0.057 14.000 6.991 × 10&5 

 3 205.211 0.000 1123.998 0.000 0.092 0.000 1.360 0.000 0.050 0.000 4.990 × 10&14 

 4 50.000 −75.635 1242.019 10.500 0.076 −17.391 1.409 3.603 0.049 −2.000 7.780 × 10&7 

 5 205.210 0.000 1124.000 0.000 0.092 0.000 1.360 0.000 0.050 0.000 1.069 × 10&16 

 with random noise of amplitude 10&5 mm 

 1 205.218 0.004 1123.991 −0.001 0.092 0.000 1.360 0.000 0.050 0.000 3.131 × 10&9 

 2 1200.000 484.767 1749.755 55.572 0.201 118.478 0.501 −63.162 0.057 14.000 6.991 × 10&5 

 3 205.210 0.000 1124.000 0.000 0.092 0.000 1.360 0.000 0.050 0.000 3.130 × 10&9 

 4 124.777 −39.195 1183.018 5.251 0.083 −9.783 1.388 2.059 0.050 0.000 2.440 × 10&7 

 5 205.206 −0.002 1124.002 0.000 0.092 0.000 1.360 0.000 0.050 0.000 3.131 × 10&9 

 with random noise of amplitude 10&3 mm 

 1 206.206 0.485 1123.279 −0.064 0.092 0.000 1.360 0.000 0.050 0.000 3.017 × 10&5 

 2 1200.000 484.767 1751.275 55.807 0.200 117.391 0.500 −63.235 0.057 14.000 9.888 × 10&5 

 3 206.326 0.544 1123.261 −0.066 0.092 0.000 1.360 0.000 0.050 0.000 3.017 × 10&5 

 4 50.000 −75.635 1241.590 10.462 0.076 −17.391 1.410 3.676 0.049 −2.000 3.094 × 10&5 

 5 257.939 25.695 1082.608 −3.683 0.099 7.609 1.348 −0.882 0.050 0.000 3.032 × 10&5 

DE without noise 

  205.210 0.000 1124.000 0.000 0.092 0.000 1.360 0.000 0.050 0.000 1.690 × 10&16 

 with random noise of amplitude 10&5 mm 

  308.679 50.421 1043.777 −7.137 0.106 15.217 1.336 −1.765 0.051 2.000 5.824 × 10&7 

 with random noise of amplitude 10&3 mm 

  205.152 −0.028 1123.997 0.000 0.092 0.000 1.360 0.000 0.050 0.000 3.017 × 10&5 
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function evaluations required for convergence by the DE algorithm is higher than the others. A strategy using multiple initial sets 
could be used to circumvent the sensitivity of LM and NM algorithms to initial sets. In the scope of the present work, a calibration 
software was developed in Python programming language, which will allow the easy implementation and combination of 
optimisation algorithms. 
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