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Palavras Chave testemunha ocular, reconhecimento facial, interfaces cérebro-computador,
eletroencefalograma, extração de características, aprendizagem automática
supervisionada, SVM, SVM-RFE, ANOVA.

Resumo A aplicação de técnicas de Interfaces Cérebro-Computador a testemunhas
vitais de um crime pode e provavelmente será uma funcionalidade chave no
sistema de justiça.
Características de sinais provenientes de eletroencefalograma foram extraí-
das com informações sobre o seu domínio (tempo ou frequência), e a sua
localização espacial e temporal. Para ambos os domínios, dois modelos de
classificação diferentes foram aplicados com vista a selecionar as caracterís-
ticas mais relevantes: um para classificar, ordenar e selecionar as caracterís-
ticas mais importantes e outro para eliminar recursivamente a característica
menos relevante. O modelo utilizado para classificação foi o Support Vector
Machine (linear e não linear).
Outras observações sobre as características selecionadas pelas técnicas apli-
cadas foram realizadas e discutidas tendo em conta o conhecimento disponí-
vel sobre reconhecimento facial.
O presente trabalho fornece um estudo experimental sobre os sinais de eletro-
encefalograma adquiridos numa experiência na qual foi pedido a um grupo de
indivíduos para identificar tanto culpado como distrator, sendo que o culpado
estava relacionado a um vídeo de cenário de crime mostrado anteriormente.





Keywords eyewitness, face recognition, BCI, EEG, feature extraction, supervised ma-
chine learning, SVM, SVM-RFE, ANOVA.

Abstract The application of Brain Computer Interfaces techniques to vital crime wit-
nesses could and probably will be a key feature in the justice system.
Features from the electroencephalogram signals were extracted with informa-
tion detailing their domain (time or frequency), and their spacial scalp and
time placement. For both domains, two different classification pipelines were
applied in order to select the most relevant features: one to rank and select
the top features and another to recursively eliminate the least relevant feature.
The Support Vector Machine (linear and non-linear) is the classification model
included in the pipeline.
Further observations on the selected features by the applied techniques were
performed and discussed in relation to the available knowledge about face
recognition.
The present work provides an experimental study on the electroencephalo-
gram signals acquired from an experiment in which an array of subjects were
asked to identify both culprit and distractor being the culprit related to a previ-
ously shown crime scene video.
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CHAPTER 1
Introduction

1.1 Motivation

Before the DNA analysis entered the court houses, around seventy one percent of the innocent
convicted criminals had been condemned by eye witnesses [1]. This is a very troublesome
value when we take into account that it is not always possible to obtain DNA based evidences
and the testimony from a possible eye witness has a huge importance on the final decision. In
some cases, there isn’t even a physical evidence at all and an eye witness might be all there is
to work with.

However, in most cases, the crime itself is something that takes a few seconds and the
witness might not had the time to process what was even happening, or maybe he/she only
took a glimpse of the situation and consciously is unable to provide viable information to
some investigation that is taking place. This may just be the detail missing in order to get a
criminal in jail or stop an innocent from being wrongly accused.

1.2 Context

The human brain is a huge multiprocessing system which receives information from our
peripheral system, processes it and controls our actions accordingly. A Brain Computer
Interface (BCI) is a system which translates thoughts and provides an interface to communicate
with the outside world [2]. The application of such devices to vital witnesses could be a key
feature to the justice system because it would, in theory, allow a detective to know if the
information he/she is being provided with is actually reliable or if it is just outside noise like
fear or anxiety clouding the witness’ judgement.

1.3 Objectives

Everyone of us, even if at a subconscious level, is susceptible to influences based on some kind
of stereotype that ends up clouding our judgement. But what if we could transcend those
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stereotypes and know if the witness being questioned actually recognized a criminal face even
if he/she is not consciously aware of that?

Through collecting data from Electroencephalogram (EEG) signals, this dissertation aims
to provide information about which features are of most importance in the field of face
recognition. In order to do that, two different approaches will be used:

• All features will be ranked by a statistical method and the most relevant will be provided
to a machine learning model for classification.

• All features will be provided to a machine learning model which will select the most
relevant features on its own.

The data collection used for this study was acquired in a previous PhD thesis [3]. Feature
extraction was performed on the raw data in order to acquire both temporal and frequency
information.

1.4 Structure

This master dissertation is organized in 6 chapters, being one of them the Introduction chapter
which was just presented. The remaining 5 chapters are described bellow:

• Chapter 2 presents important concepts related to BCIs. It starts with an overview of
the human brain by an anatomical point of view followed by information regarding the
analysis of EEG brain signals from a psychologists’ point of view and then a detailed
description of all the workflow of a BCI. This chapter ends with a brief description of
the decision making process regarding the technologies used throughout this present
study.

• Chapter 3 starts with the presentation of the dataset that will be used for the study
and then details the process of extracting usable information (features) from the EEG
signals, both in the time domain and in the frequency domain. It ends with a brief
study of the discriminate potential of the features by using an univariate statistical test.

• Chapter 4 starts with some overview of the SVM and SVM-RFE concepts, then details
the classification phase from the decision making process to the data analysis and the
elaboration of the learning models.

• Chapter 5 presents the results obtained in 4 in a more detailed manner by the uses of
tables and graphics.

• Chapter 6 summarizes the solution developed and validates it against other studies in
this field and some knowledge provided in 2. It ends with some suggestions for possible
developments in future works.
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CHAPTER 2
Brain-Computer Interfaces

A BCI is a system that translates the brain activity patterns of a user into messages or
commands for a given application [4]. They provide a way to develop interaction between a
brain and a computer [2]. BCIs have already contributed to a huge variety of field researches
and life applications. In Medicine, brain signals are being used for detection and diagnosis of
some disorders or diseases like sleep narcolepsy, brain tumors or dyslexia. Studies are also
being made regarding rehabilitation of patients that suffered strokes. With the Internet Of
Things being increasingly a now-a-day topic, BCIs also have their place in smart environment
with, for example, auto-adjustment control systems. They can also be used to analyze the
workload mental fatigue of a person. Neurofeedback is also a promising approach for enhancing
brain performance and is currently being explored in the ambit of the educational field of
research. Last but not least, entertainment and gaming applications have a lot of market offer
for BCI from simulators to Virtual Reality (VR) games [5].

2.1 Human Brain

The basic units of our nervous system are the neurons which have a body cell, dendrites
with receiving function and an axon with conductive function. Neurons are seen as cells
specialized in communication either with other neurons or with other kinds of cells [6].
The communications between them are performed through synapses, which are electrical
or electrochemical signal junctions. A given nervous impulse is transmitted to the bottom
terminals of the axon who later releases a neurotransmitter (excitatory or inhibitory) in the
synaptic gap - the space between two linked neurons - which will be received by the next
neuron’s dendrites.

The nervous system can be divided in two main parts [7] [8]:
• Central Nervous System (CNS) consisting of the brain and spinal cord.
• Peripheral Nervous System (PNS) consisting of the spinal and the cranial nerves.
The brain is the nervous’ system main organ. It can be divided in three parts [7] [8]:

• Cerebrum, largest part in the brain, divided in left and right hemispheres.
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• Cerebellum, responsible for coordination, posture and balance.
• Brainsteam, responsible for basic functions such as breathing and heart rate and connects

the cerebrum and cerebellum to the spinal cord.
As for the cerebrum, it can be divided in two hemispheres, left and right, in which one is

usually responsible for the opposite side of the body. The cerebrum can also be divided in
four lobes as represented in figure 2.1, each one with specific tasks but none of them can work
on their own. The four lobes are [7] [8]:

• Frontal lobe (personality, emotional behavior, intelligence, concentration, judgement,
self awareness, speech and body movement).

• Parietal lobe (interprets hearing and language, spatial and visual perception).
• Occipital lobe (interprets vision).
• Temporal lobe (understanding language, memory and organization).

Figure 2.1: The lobes of the brain from a subject looking left. Adapted from [9].

Memory itself is a complex process that can be decomposed into three phases: encoding,
storing and recalling. Different brain areas deal with different types of memories (sensations,
visuals, hearing). A new face, for instance, when observed is interpreted in the occipital lobe
and temporarily stored on the prefrontal cortex where it will remain for some minutes. Doing
an analogy with computer systems, a new data is stored in the Random Access Memory (RAM)
where it can be accessed in an efficient way. After some time, the memory of this new face
may be copied in the form of neuronal activity patterns and stored in the hippocampus of
the temporal lobe. Memories associated to strong emotions will form stronger patterns with
stronger synapses and can form indelible memories. Taking back the previous analogy, some
sets of data will be saved in the hard drive where they can be stored indefinitely. There is
also another kind of memory called skill memory, processed by the cerebellum which stores
learned procedures like playing an instrument or riding a bike [10].

2.2 Brain Signal Acquisition

The acquisition of brain signals can be performed in three different ways [2]:
• Invasive: penetrating micro electrodes into the brain’s dura matter.
• Semi-invasive: electrodes are placed on the scalp but not in the gray matter.
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• Non-invasive: electrodes are placed on the scalp, without surgery.
The non-invasive techniques are the most used in research environments due to not

provoking any kind of damage to the brain tissues. Among these techniques, the following
three stand out [2]:

• Electroencephalogram: EEG signals correspond to the electric potential difference or
voltage generated by the neuron activity inside the brain. This potential difference occur
mostly due to the sodium and potassium ions going in and out of the cells [11].

• Magnetoencephalogram: records magnetic fields produced by the neural activity. Because
the cranium does not cause any attenuation of the magnetic signals, this technique
produces very accurate results nevertheless the equipment require a lot of maintenance
costs and cares.

• Functional Magnetic Resonance imaging: records changes in the blood flow through the
magnetic properties of oxygenated blood. This is the technique with the most spacial
resolution but lacks in time resolution.

The EEG is the most used brain signal acquisition technique in BCI environments. It may
not be the most accurate technique since the cranium blocks a lot of electric energy but it is
the most cheap and practical one since it’s non-invasive, lightweight and portable. Forgetting
the usage of brain signal acquisition for health reasons, it makes little sense to submit a
scientific study’s participant to a surgery or spending a high budget in magnetoencephalogram
equipment and maintenance.

2.2.1 Electroencephalogram

An EEG is basically a way to write down the brain’s electric activity, in other words, the
electrical impulses of the neurons while communicating with each other. It’s also a technique
with a very high time resolution which proves useful when there is a need to study short time
windows like, for example, in this study where the main information is within the first second
post stimulus [11].

The brain signals are recorded through metal electrodes placed on the scalp. Those
electrodes usually positioned according to the standard 10-20 electrode placement system
described in [12]. Figure 2.2 shows the disposition of the electrodes in this type of system.
From this model, others appeared in which the number of electrodes increased as the distance
between them decreased or vice-versa. Figure 2.3 shows the headset that was used to record
the data for the present experience. This one has a total of 34 electrodes.

When analyzing EEG signals, one usually tries to study the signals’ frequency bands or
the behavior of the signal around the occurrence of a given stimulus. According to [14], a
stimulus is the prime independent variable of a psychological experiment. It can be considered
a change in the present environment. When performing a psychological experiment, there is
usually one stimulus per each trial. Figure 2.4 shows a diagram of what a trial with duration
ttrial can look like. In the present study, the stimulus will be the appearance of a face in a
screen in front of a participant.
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Figure 2.2: Scheme of the electrode disposition in a 10-20 system. The face is turned upwards.
Adapted from [13].

Figure 2.3: The headset (red and black) used to record the data for the present study. Photo taken
in the Department of Education and Psychology at University of Aveiro.

Figure 2.4: Diagram of a psychological experiment’s trial. The time instant of the occurrence of the
stimulus is marked as t0.
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2.2.1.1 Frequency-domain characteristics

One way to look at EEG data is to study its rhythmic activities. These activities can then
be divided into frequency bands and studied separately. The brain frequency data can be
divided in the following frequencies [11]:

• Delta band [1, 4) Hz: with slow rhythm and high amplitude, delta waves are usually
present during sleep. Stronger in the right hemisphere, their source is located in the
thalamus.

• Theta band [4, 8) Hz: can be recorded all over the cortex and correlates with mental
operations such as focused attention, learning or memory recalls.

• Alpha band [8, 13) Hz: usually associated with relaxation and closed eyes, their band
power is almost suppressed during activity with eyes opened. Alpha suppression can be
a signature of states of mental activity of engagement.

• Beta band [13, 30) Hz: generated in posterior and frontal regions. An higher beta power
can correlate to active, busy or anxious thinking.

• Gamma band [30, 50) Hz: these waves have only recently been discovered and studies
about them are still very fresh.

Comparing with the time domain, components in frequency domain are easier to identify
but require more computational resources [15]. Figure 2.5 shows the average shape of these
brain waves in a normal adult.

Figure 2.5: Brain waves in a normal adult with a time interval of one second. From top to bottom:
gamma, beta, alpha, theta and delta. Adapted from [16].
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2.2.1.2 Time-domain characteristics

Another way to look at EEG data is through a time perspective point of view. This analysis
is computationally simple but the conclusions may be limited. It requires the data being
recorded in an epoch-based paradigm which involves the occurrence of stimulus all separated
by an equal period of time [17]. A signal from an epoch can be divided into three different
components: a short time window before the stimulus, a time point identifying the occurrence
of the stimulus and a long time window after the occurrence of the stimulus. Each epoch can
be studied as a single occurrence, making a single-trial study, or averaging similar epochs
related to a particular stimulus to provide a signal wave which is less affected by noise.

The data is read in sequence of the cognitive operations that are happening and mapped
on peaks. These peaks are the dominant way of data gathering and when they are extracted
from an epoch-averaged signal they are traditionally called Event-Related Potential (ERP)
[18]. They are basically brain neuron activities stimulated by a given response. An ERP
waveform is a series of positive and negative voltage deflections related to a set of underlying
components [19]. In an ERP waveform, the positive and negative components are identified by
their temporal occurrence and are represented, respectively, with the initial P or N followed
by either their latency in milliseconds or their count number [2] [15]. For example, a P200 is
the positive-going peak that occurs around 200 milliseconds after a given stimulus and a P2 is
the second positive-going peak in a wave after a given stimulus. They may or be not refer to
the same ERP component. Note that a P-ERP component doesn’t actually need to have a
positive value of amplitude as long as it is a local maximum. The same logic goes for N-ERP
components. Figure 2.6 shows a N170 that happens to have a positive value but it is still a
negative-going peak.
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Figure 2.6: An EEG signal from an occipital channel with a P100 marked in yellow and a N170
marked in red. The x-axis represents the time in seconds and the instant of time zero
marks the occurrence of a stimulus.

2.3 BCI workflow

A BCI can be summarized in two essential work phases: signal processing with feature
extraction and machine learning. Either implicit or explicit, a preprocessing phase also occurs
right after the EEG data extraction. Figure 2.7 represents the basic workflow of a BCI and
the next subsections detail some concepts about each phase. Note that the trigger is what
was called before as the stimulus.

9



Figure 2.7: Typical workflow of a BCI. Adapted from [20].

2.3.1 Preprocessing

In most cases, this phase is transparent to the person dealing with EEG data extraction since
most systems already perform some of the tasks related to it by default.

Preprocessing an EEG signal means eliminating noise data or artifacts, data that has no
usefulness for the problem at hands, and in most cases that data is known to be: eye-blinking,
electrocardiograms or other internal or external disturbing effects [18]. That is the reason
why during an EEG record session, the Electrooculogram (EOG) is also recorded so later it
can be used to remove ocular artifacts from the signal. The mastoid channels also recorded
are usually used as reference channels.

2.3.2 Feature extraction

Once the EEG signals are acquired, they need to be prepared so that later features can be
extracted. The two most common types of features in EEG are time point and frequency band
power features related respectively to the time domain and the frequency domain mentioned
above.

Time point features are usually extracted after some signal processing, notably a band-pass
filter and down sampling and the result are the ERP waveforms mentioned before [4]. Although
the concept of an ERP usually refers to a data point extracted from the mean EEG signal,
a BCI tries to extract it from a single trial so that it can try to quickly adapt itself to the
user. For this reason and throughout this document, the concept of ERP component will be
used for either a peak in a single trial or a peak in a mean EEG signal acquired from all the
related trials.

The band power features however can be computed in lots of different ways [21] and,
being more complex than simple time points, they may also provide an amount of information
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greater that simple time points [4].

2.3.3 Univariate analysis

This is a topic that some may include at the feature extraction step or in the beginning of the
classification step. Before heading to the classification step, a study of the acquired features
may come in handy, specially when we are talking about a very large number of features. It
is not viable to feed a machine learning algorithm with an extremely large number of features
not only because it will get very slow but also because many of these features may have
irrelevant degrees of importance.

There are a lot of different techniques to understand each feature independently. Most
general cases include histograms, box plots, density plots, correlation matrices and scatterplot
matrices [22]. In the specific subject of brain waves, concepts like ANOVA and F-test arise
[23] [24]. According to [25], ANalysis Of VAriance (ANOVA) can determine whether the
means of three or more groups of features are different and uses F-tests to statistically test
that equality. F-tests are named after its test statistic, F-statistic, which is simply a ratio
of two variances. Variance represents how far the data are scattered from the mean. This
process is quite helpful in determining which are the most relevant features.

2.3.4 Classification

After gathering the data and selecting the features, the final phase begins. Although not
always the case, most BCI work with supervised machine learning for classification problems.
Supervised machine learning is where you have input, or independent, variables and an output,
or dependent, variable and you use an algorithm to learn the mapping function from the
input to the output. It is called supervised because the process of an algorithm learning
from the training dataset can be thought of as a teacher supervising the learning process [26].
Classification is the process of predicting the class of given data points [27]. Basically, an
user’s action or decision is recorded and the system tries to label or cluster it. In classification
problems, this label is usually represented as a class, a non continuous variable. For example,
the face presented is either a culprit or a distractor.

The number of classification algorithms is huge. The Support Vector Machine (SVM),
while not recent, is still very reliable. It projects the input space to high-dimensional space
such that data can be separable. The main goal is to choose the optimal separating hyperplane
so that the distance between two data points from different classes can be maximized. An
algorithm that has become quite popular in the last few years is the Convolution Neural
Network, associated to Deep Learning. It is a type of Neural Networks (inspired from biological
neural systems, the inputs are called neurons which are connected with weights) that arranges
neurons in three dimensions: width, height and depth. [2] A Convolution Neural Network may
also do a processing of the data on its own before performing classification and some may say
that it joins both the feature extraction and the classification phases together. Having proven
to be quite useful in a lot of subjects, deep learning techniques have not yet convinced in the
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BCI field [4]. Another option that is becoming popular is the Random Forest. The Random
Forest algorithm is composed of different decision trees, each with the same nodes, but using
different data that leads to different leaves. It merges the decisions of multiple decision trees
in order to find an answer, which represents the average of all these decision trees [28].

2.3.4.1 Model training and testing

After choosing and setting up a machine learning model, it needs to go through its training
phase. As it was referred before, a training phase for a supervised machine learning model
requires a dataset with both independent and dependent variables which are provided to the
model so it can learn. It is similar to a teacher providing examples to his/her students so
they can can train themselves and learn how to solve similar problems.

When the training phase is complete, there is need to evaluate the classification model
generated. It is obviously not recommended to use the data we used to build the model to
evaluate it. Grabbing the previous analogy, a teacher cannot really evaluate if the students
understand the subject taught if he/she evaluates them with the exact examples that they
trained in class or in homework. Instead, some similar exercises are provided with small
changes but the core subject remains the same.

The most common way to test a model is the holdout method. The purpose of holdout
evaluation is to test a model on different data than it was trained on. The dataset is randomly
divided into at least two subsets:

• Training set, used to build the model.
• Test set, or unseen data, used to evaluate the performance of a model.

The holdout approach is useful for its speed and simplicity but the results may not always be
accurate, specially when the amount of data is limited [29].

Another option is the cross-validation which usually provides more trustworthy results
than the holdout model, specially for few data. This procedure has a single parameter called
k that refers to the number of groups that a given data sample has to be split into. The
general steps for this method are listed below [30]:

1. Shuffle the dataset.
2. Split the dataset into k groups.
3. For each group:

a) Take the group as a test data set.
b) Take the remaining as training data set.
c) Fit a model on the training set and evaluate it on the test set.
d) Retain the evaluation score.

4. Summarize the skill of the model using all the scores.
The Random Forest method also provides a useful score for validating the model which is

the Out-Of-Bag (OOB) score. Usually, each tree in the forest makes use of around two-thirds
of the provided training dataset and the rest are called OOB samples which are used for
validation. Each tree has its own OOB score and the final result is an average from all the
trees’ outcome [31].
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2.4 Choosing the technology

Before proceeding to the practical part of this dissertation, there was a need to decide what
would be the best environment to work. Three programming languages were analyzed as
potential candidates: MATLAB, Python and R, for two main phases of work: Signal processing
and machine learning. R was excluded firstly due to the learning curve it would need and,
despite being somewhat better than MATLAB in the analytical field, it lacks the years of
experience of the Mathworks product.

2.4.1 Signal Processing

Python has very diversified applications and has lots of advantages: user friendly, open source
and a vast community support (even though it is a relatively recent language). Mainly because
of its open source nature, Python is becoming more popular each day in the professional world
[32]. It would be a good choice was it not for the years of experience MATLAB has with
signal processing. Not only that but MATLAB is still the best option to deal with anything
that can be represented as a numeric feature matrix [32]. And if all this wasn’t enough, there
is the EEGLAB. EEGLAB is an interactive MATLAB toolbox for processing continuous and
event-related EEG and other electrophysiological data. EEGLAB also provides an interactive
graphic user interface allowing users to flexibly and interactively process their high-density
EEG and other dynamic brain data [33]. The only downside of MATLAB is the cost of license
but with the University of Aveiro providing a license to all its students, this downside just got
deleted. So, for the feature extraction process that deals directly with signal processing, the
choice did fall on MATLAB.

2.4.2 Machine Learning

Despite MATLAB being chosen for the first phase, when the problem comes to machine
learning, Python is still the most popular language and the reasons are countless. Python
comes with a huge amount of useful libraries such as scikit-learn, which is also great for data
mining and analysis. As it was said before, Python is a very friendly user language and being
so every programmer can easily get start handling Python. When compared to MATLAB,
Python code is often more compact and easier to read, all of it is open source and it offers a
wider set of choices in graphics packages and toolsets. It may loose a little when it comes to
documentation since the available at Mathworks is really good but because Python is open
source, a huge amount of people work on it and the information available online makes up for
it [32]. So the choice for this last phase fell on Python.
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CHAPTER 3
Feature Extraction

The first step in dealing with BCI is the feature extraction. According to [34], feature
extraction is a process of dimensionality reduction by which an initial set of raw data is
reduced to more manageable groups for processing.

This chapter starts with a general overview on the dataset to be used further on. Before
proceeding with the extraction step, a downsampling will take place since the original sampling
rate was very high and frequencies above the beta band are of no interest to this work. Finally,
time domain and frequency domain features are extracted from every recorded EEG signals.

3.1 The Dataset

The existing database was the result of an experiment performed in [3] at University of Aveiro.
A total of eight theft videos of twenty seconds were displayed to the participants in which
the culprit was presented in frontal view during four seconds and not in frontal view the rest
of the time. After each video, the EEG recording starts and a lineup with ten cycles of six
faces including five distractors and a culprit in random order was presented to the participant.
All images were in gray-scale, emotionally neutral and the distractors’ face were rated as
similar to the culprit’s face. Each face would be displayed for one and a half seconds and its
appearance is the stimulus considered for the experiment.

The EEG data was recorded from 34 electrodes mounted on a waveguard cap according to
the 10-20 system at a sampling rate of 2048 Hz. The channel locations are displayed in figure
3.1. The EOG was also recorded to serve as reference for ocular correction algorithms. The
ocular artifacts in the EEG signals were then eliminated using an eye-movement correction
algorithm and the resulting data were re-referenced to the average of the left and right mastoid
electrodes [3].

There are a total of 29 participants in the present dataset but data from participant
number 16 was not considered for the present study.
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Figure 3.1: Channel locations in the used system. The face is upwards. All but the eye channels are
represented.

3.2 Downsampling signals

First thing to do was to downsample the data from a 2048 sampling rate to 512 sampling
rate first because the original sampling rate was very excessive and took a lot of computer
resources and second, frequencies way higher than the beta band are considered noise in the
present case of study. It is very important not to loose the exact time when the face appeared
for the subject so a lowpass filter with a zero-phase strategy was applied. Therefore, the data
is filtered twice, one in each direction in the time axis, and the time delay that results from
the filtering process is canceled out so no time information is lost in the process [35]. Figure
3.2 shows details a strategy used by this type of filter.

Figure 3.2: A strategy used by a zero-phase filter. Adapted from [35].

Next, each participant’s file was processed as follows: the epochs when the participant did
not answer or when he/she gave two answers were discarded and the signals were splitted
according to four different classes: target and right answer, target and wrong answer, distractor
and right answer, and distractor and wrong answer.
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3.3 Frequency domain analysis

As explained in section 2, the delta waves usually presented in during sleep time and therefore
are not relevant to the present goal. Theta and beta waves being related to focused attention,
memory recall and anxious thinking are objects of interest [11]. As for the alpha waves, studies
have been made concerning the asymmetry of this particular wave in questions of emotion
and motivation [36].

Frequency analysis of the signal was performed using MATLAB tools. The spectrogram
was applied for the signal divided into segments, multiplied by an Hamming window of 0.25s
seconds with an overlap 0.125s. The analysis is calculated for the range [4, 30]Hz with a
resolution of 0.1Hz. Such Short Time Fourier Transform was achieved and the power values
for the signal are available in a 2D array, the number of columns being related with the length
of the input signal and the number of rows with the length of the vector of frequencies. The
figure 3.3 illustrates the outcome of the analysis of one segment starting one second before
the stimulus’s presentation.

Figure 3.3: Power spectrum in the range [4 30]Hz of a segment of signal (channel FC1) starting 1s
before the stimulus. The x-axis represents the time in seconds.

Further processing of this data comprises calculation of the frequency contents in the three
bands of the EEG signal: theta, alpha and beta. The energy in theta, alpha and beta band
were calculated adding the energy values belonging to the [4, 8)Hz, [8, 13)Hz and [13, 30)Hz
respectively. The figure 3.4 represents the information of the analysis of the signals of all
channels for a single participant.
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Figure 3.4: Energy in the characteristic bands theta,alpha and beta (left to right). The vertical
coordinates of the image represent the index of the 32 EEG signals (all except for the
eye channels.

3.4 Time domain analysis

Time domain analysis comprises the detection of peaks (positive or negative) in pre-defined
time intervals after the presentation of the stimulus. The peaks are the ERPs components
or events. According to the literature [37] [38] [3], the most relevant ERPs components in
subconscious face recognition are the P100 (80ms to 120ms) which is mostly related to any
visual evoked potential, the N170 (150ms to 190ms) associated with face processing and the
P300 (300ms to 600ms) which relates to the occurrence of rare events. An example used
frequently when speaking about P300 is the oddball paradigm and it is detailed in [39]. Study
[38] also takes into account the P200 (180ms to 220ms).

Two different approaches were taken:
• the ERPs were extracted from the mean signals estimated for the four different conditions;
• the ERPs were extracted on each single trial.
It’s usual to use the ERPs extracted from the mean signals to perform population studies

over some subject [40]. Figure 3.5 shows the P100 and N170 extracted from the mean signal
of one subject in a specific condition. The plots are colour coded accordingly to the colorbar,
where red represents the largest positive value and blue represents the largest negative value.
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Figure 3.5: Example of a P100 of condition distractor+right (left) and N170 of condition target+right
(right) of a single subject acquired from mean signals on the respective ERP interval.

However, in order to match the frequency data for future fusion of both time and frequency
and in order to increase the number of samples for the machine learning models, the present
project will work with the ERPs extracted from the single trial signals.

For single trial analysis, the signal should be smoothed, therefore the signal is filtered
before peak detection. It is important to keep following the zero-phase strategy to preserve
the time reference of the stimulus in the output of the filter. In the end, no phase-shift was
applied and the filter did not impose any temporal offsets or distortion in the signal. The
Infinite Impulse Response (IIR) filter of the block diagram is a 4th passband filter between
2 and 12 Hz designed using the Butterworth approach. The magnitude frequency response
of the filter is shown by the black line in the figure 3.6. The global attenuation (in dB) of
the zero-phase filtering strategy is the double of the attenuation of the filter as shown by the
red dashed line in the figure. Figure 3.7 illustrates the input and the output of the filtering
system.

Logically, a visual ERP like a P100 is most likely to occur in the occipital region, or near
it (see 2.1). However, in this present work, all the channels were taken into consideration and
information related to all four ERP components referred before was extracted. For a single
channel and a single ERP, the process to extract information is as follow:

1. Identify if it is a positive or negative ERP component (e.g. positive for P100).
2. If positive/negative, search for the highest/lowest peak in the respective time interval

(e.g. for P100, search for the highest peak from 80ms to 120ms).
3. Save both amplitude and latency values.
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Figure 3.6: IIR filter using the Butterworth approach. The black line represents the magnitude
frequency response of the filter and the red dashed line is the magnitude frequency
response of the zero phase filtering scheme.

Figure 3.7: Input (black) and output (red) of the zero-phase filtering system when applied to a signal.
This signal is from channel FC1. The time is represented on the x-axis in seconds.
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3.5 Feature Vectors

From the classifiers point of view, their entries will be a feature vector. According to [41], a
feature vector is used to represent numeric or symbolic characteristics, called features, of an
object in a mathematical, easily analyzable way. The present work will deal with two kinds of
feature vectors: the ones related to the frequency features and the ones related to the time
features.

3.5.1 Frequency domain features

The features extracted in 3.3 were summarized in one table per participant with each row
representing a feature vector, a single trial with all features represented in the columns. For
each trial, the information available was as follows:

• 3 frequency bands of interest: theta, alpha and beta
• for each frequency band, 27 instants of time being the first 3 pre-stimulus and the last

23 post-stimulus.
• for each instant of time, 30 channels were taken into account (all but the eye and the

mastoid).
This makes a total of 2430 features per trial which can be concatenated into a vector x

with dimension D = 3× 27× 30.

3.5.2 Time domain features

The features extracted in 3.4 were summarized in the same way as the frequency data except
that now there are just a total of 240 time features related with the four single trial ERP
components also mentioned in 3.4: P100, N170, P200 and P300. This number represents the
multiplication of the following values:

• 4 amplitude values related to the four accounted single trial ERPs.
• 4 latency values related to the four accounted single trial ERPs.
• 30 EEG channels (all but the eye and the mastoid channels).
Like the frequency ones, these features can also be concatenated into a vector x with

dimension D = 4× 4× 30.

3.6 Conclusion

During this chapter, the dataset on which the upcoming classification will take place was
presented and the process of signal acquisition was briefly described. The work started with a
downsampling of the EEG signals due to their high value of sampling rate. Soon after, the
epochs with useless information were discarded and the remaining epochs were splitted into
four conditions. The signals were then analysed and features were extracted in two different
perspectives: time domain and frequency domain. Both feature vectors are detailed at the
end of the chapter.
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CHAPTER 4
Classification

In the previous chapter, several data files were generated from the EEG signals with either
time and frequency domain characteristics. As mentioned in 3.2, the single trial signals were
splitted according to four conditions. These conditions will be analysed in pairs so the problem
at hands will always fall to a binary classification problem.

This chapter starts with some overview of the SVM concept, the machine learning model
chosen for this work as well as the SVM-RFE concept, its feature selection algorithm. Then the
classification phase from the decision making process to the data analysis and the elaboration
of the learning models are detailed. The results will be summarizes in the next chapter.

4.1 SVM and Feature Selection

4.1.1 SVM

Support Vector Machines (or just SVMs) were developed in the 90s and are still very popular
nowadays in solving supervised learning problems. They are motivated through Statistical
Learning Theory (SLT). Solving a supervised learning problem in SLT can be briefly described
as follows: given a set of training labeled data and a loss function that measures the error
when comparing with the real value of the label, the goal is to find the model parameters that
minimize the expectation of the error on new data [42].

SVMs tackle this problem by trying to find a hyperplane that can distinctly classifies each
sample. In an N-dimensional space, hyperplane is a flat subspace of dimension N-1 and the
N depends on the number of features. In other others, it is a decision boundary. Figure 4.1
shows two different classes of data points (yellow and red) being separated by a hyperplane
(blue line). Each data point is treated as a vector and its components are the the features or
independent variables. Obviously, a lot of hyperplanes may provide a valid solution to the
training dataset. The used criteria is to choose the one with the highest margin. The margin
is measured by the distance from the hyperplane to the closest data point in each class. These
data points are called support vectors and they influence both the position and orientation of
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the hyperplane. These concepts are illustrated in figure 4.2 [43]. The present examples show
only two independent variable in the x-axis.

Figure 4.1: a hyperplane (blue line) separates two classes (red squares and green circles). Adapted
from [43]

Figure 4.2: The choice of the optimal hyperplane. The colorful points are the support vectors.
Adapted from [43]

The problem becomes more complex when it is not possible to draw a plane that is able to
separate all classes in the dataset or, in other words, when the data is non-linearly separable.
There are two different ways to deal with this situation [43]: the first is to allow the SVM
to tolerate a few miss classifications and try to maximize the global accuracy. For that, a
degree of tolerance can be defined, usually represented by C. The bigger the value of C, the
lesser the tolerance for mistakes; the second is to use a kernel trick by mapping the data into
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a higher dimensional space and try to find a hyperplane in that dimension. Different kernels
map data in different ways. Figure 4.3 represents a dataset in a 2-dimensional space being
mapped into a 3-dimensional space in order to find a valid hyperplane.

Figure 4.3: The original dataset (left) is mapped into a higher dimension space (right) in order find
an optimal hyperplane (black square). Adapted from [43]

Looking the the SVM from a more mathematical perspective, when defined one needs to
specify the kernel it will use.

Being x and z two feature vectors, the linear kernel is basically a simple dot product [44]:

K(x, z) = xT z (4.1)

The Radial Basis Function (RBF) kernel determines a non linear decision surface defined
by the following equation where γ is the parameter gamma which must be greater than zero
[44]. In this case, a mapping operation is performed simultaneously with the dot product of
the mapped data.

K(x, z) = φT (x)φ(z) = exp(−γ ‖x− z‖2) (4.2)

To adapt the SVM model, the following dual problem should be solved.

min
αi

1∑
i=1

αi −
1
2

1∑
i=1

1∑
j=1

αiαjyiyjK(xi,xj), (4.3)

subject to: 0 ≤ αi ≤ C, for all i
1∑
i=1

αiyi = 0

The outcome of the optimization are the Lagrangian values α.
The parameter C is defined by the user. When working with normalized data, C is usually

set as equal to 1. The result of the learning process are the α values and there is one α for
each pair (xi, yi) of the training set. The xi with αi 6= 0 are the so called support vectors.
Note that when the problem is linearly separable and the kernel is linear, those values lie on
two hyperplanes that define the margin of the classifier (see figure 4.2).
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In order to classify a new vector z, the decision rule would be:

g(z) =
∑
i

αiyiK(xi, z) + b⇒
g(z) > 0 y = 1
g(z) < 0 y = −1

(4.4)

Note that when the problem is linearly separable and the kernel is linear, the substitution
of K() as defined by eq. 4.1 leads to the calculation of the weight values. They are calculated
with the Lagrangians α in the following way:

w =
K∑
i=1

αiyixi (4.5)

In that case, the decision rule can be:

g(z) = wT z + b (4.6)

Therefor, the entries of the vector w can be used to eliminate features in vector z. Note
that if an entry in w is zero, the corresponding entry of z does not contribute to g(z). With
all this, linear SVM has its own way to eliminate the less important features. However, as its
needs the w values in order to do it [45], the ranking cannot be done when using a radial
basis kernel function or any other kernel function that does not allow to calculate the w like
the linear kernel does [46].

4.1.2 SVM-RFE

Support Vector Machine-Recursive Feature Elimination (SVM-RFE) consists of a wrapped
method of feature selection based on the SVM classification algorithm. As explained in svm,
the SVM classifies the data by dividing it using a hyperplane. The models performance is
evaluated by cross-validation and the chosen measure for its evaluation is then calculated.
With the SVM-RFE in place, the next step will be to eliminate recursively the less important
features. The number of features to be eliminated is passed as an entry value. The process
then repeats itself.

The recursive feature elimination method implemented [47] stops when it reaches the
number defined as the minimum features to select. The model’s performance is measured
at each step by cross-validation and after it’s finished, it returns information on how many
and which features were used when the highest measure value was achieved. Despite being a
robust method, the SVM-RFE doesn’t take into account the correlation between the features
as it is not a statistical method and its worst drawback is the huge amount of time that this
process consumes [48]. SVM-RFE has been successfully used in, for example, a brain cognitive
study to identify relevant scalp areas [49].

4.2 Model evaluation

As referred before in 2.3.4.1, the classification model must be evaluated with labelled data not
included in the training phase. With the outcomes of the model it is possible to create the so
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called confusion matrix. A confusion matrix is a table constituted by four basics counts that
will later be used to compute the measures by which the model can be evaluated. These four
counters are [50]:

• True Positives (TP), the number of correctly recognized target class examples
• True Negatives (TN), the number of correctly recognized examples that do not belong

to the target class.
• False Positives (FP), the number of incorrectly examples assigned to the target class.
• False Negatives (FN), the number of examples that were not recognizes as the target

class.
The table 4.1 is represented the confusion matrix of this work’s present situation.

Class \Predicted as Target Distractor
Target TP FN

Distractor FP TN

Table 4.1: Scheme of a confusion matrix.

With the entries of this matrix is possible to calculate all the measures needed to evaluate
a machine learning model. The most common when dealing with a balanced dataset is the
accuracy which measures the overall effectiveness of a classifier. The formula to calculate the
accuracy is as follows:

Accuracy = TP + TN

TP + FN + FP + TN
(4.7)

However, when dealing with unbalanced dataset, this measure won’t provide a viable result
because it measures both classes with the same weight. Imagine the case where one given
dataset has 10% of the target class and the rest are distractors. If a model classifies every
class as distractor, it will result in an accuracy value of 0.9 which may seem really good but it
is misleading because in reality the model fails to identify every single target class. So, in this
case, other types of measures are required. The one used in this work is the balanced accuracy.
The balanced accuracy [50] [51] avoids inflated performance estimates on unbalanced datasets
and can be calculated by averaging both the sensitivity and the specificity values. Sensitivity,
or recall, measures the effectiveness of the classifier in identifying target labels and specificity
does the same but for distractor labels. The formula for these measures are shown bellow:

Sensitivity = TP

TP + FN
(4.8)

Specificity = TN

FP + TN
(4.9)

Balanced Accuracy = Sensitivity + Specificity

2 (4.10)

Looking again to the case example mentioned before, now the model would be evaluated
with a sensitivity of 0 because it did not label correctly any target and a specificity of 1
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because it labeled correctly every distractor. These values will lead to a balanced accuracy of
0.5. More details about these or other types of measures not used in this work can be found
in [50].

4.3 Classification Pipelines

The study followed a single subject based analysis as most BCI usually have a training phase
for each individual participant [4]. This analysis increased the number of universes but left a
reduced the number of samples for each individual classifier to work with.

Having few trials, specially if the dataset had been balanced before, it was decided to use
the SVM for the classification since it presents good performance in smaller datasets [52]. Due
to the high number of features, it became necessary to select the most important ones. Two
approaches were performed in order to achieve this goal:

• The features were ranked using the ANOVA technique.
• The SVM itself, through recursive feature elimination, keeps removing the less important

feature(s) and evaluation its performance with the remaining ones.
Both models were evaluated by a cross-validation with k = 5 [53]. The preferential

measures chosen in order to evaluate the models’ performance were the accuracy score [54] for
the balanced data and the balanced accuracy score [51] for the unbalanced data.

4.3.1 Feature Ranking

In order to obtain a rank of the total number of features, an univariate analysis was performed
using the ANOVA method. The ANOVA is a statistical test that can be used to analyze
differences between two or more groups of data. It usually uses the f-test score and makes a
single, overall decision as to whether a significant difference is present among sample means.
On the particular case of having only two different groups, like the present case which has
target and distractor, it instead uses what is called the t-test [55].

To implement the feature ranking, the class SelectKBest [56] was used. The discriminating
power of each feature is evaluated individually and assigned a value which will be used for
ranking purposes. The features are assumed to be approximately normally distributed [57] so
this method is likely to present poor results when dealing with unbalanced datasets. After
each feature being tested, they are assigned a rank value and it is that value that will be used
to rank the features by their importance. The more they differ between the two classes, the
more important they are considered.

After being ranked, the top features were selected and normalized before being provided
to an SVM model. Figure 4.4 shows the largest f-values of the ANOVA test calculated for
frequency domain features of the signals of one participant.

Data normalization was performed by a Standard Scaler [58] which standardizes the
features by removing the mean and scaling it to the unit variance. Being xi the feature ith,
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Figure 4.4: F-values for the top 100 features from the frequency domain in one participant.

its normalization is calculated as follows:

zi = xi − u
s

(4.11)

where u and s are respectively the mean and the standard deviation of xi. Both linear
and RBF kernels were used.

A complete diagram describing all the implementation steps for the classification with
feature ranking is displayed in figure 4.5.

Figure 4.5: Classification using feature ranking.

4.3.2 Feature Elimination

On a second approach to the feature selection step, the SVM was free to choose which feature
it wanted to use with the SVM-RFE and then it would evaluate its choice using a linear kernel
since it does not support a RBF kernel (see the end of 4.1.1). Figure 4.6 shows a diagram
describing the implementation steps for the classification based on feature elimination.

The usage of the SVM-RFE can return a graphic like the one presented on figure 4.7 which
shows the result of the measure the user chose for evaluating the model on the yy axis and
the number of features selected on the xx axis. It also returns that measure’s best score and
the number of features required for that score. It is also possible to know which features were
used for the classification.

29



Figure 4.6: Classification using feature elimination.

Figure 4.7: Graphic provided by SVM-RFE detailing its process.

From the observation of the first times the SVM-RFE was ran, two optional entry
parameters were changed from the default values: the minimum value of features was capped
at 30 and the step (number of features eliminated in each iteration) was set to 5 due to
computational resources.

4.4 Conclusion

The present chapter described the main phase of this work. It begins with a more theoretical
approach about the mathematical and statistical concepts that sustain the binary classification
to be performed. Two different types of classification pipelines will take place: a ranking and
selection of the top relevant features, and a recursive elimination of the less important feature.
At last, the performance metrics are to be evaluated.
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CHAPTER 5
Results

This chapter shows the application of the previous presented classification pipelines to cohort
of data from 28 participants. The performance of the classification models will be displayed
and compared against each other using both tables and graphics.

The selected features will also be studied in order to find out which ones appear more often
and, therefore, may be the most important for the present case study. They will be analyzed
by their time placement, scalp localization and their type, whether they are frequency or time
features.

5.1 Experimental Set Up Strategy

5.1.1 Classifiers

As described in 3.1, in each trial, a participant was shown the face of either a target or a
distractor and should provide an answer by trying to identify which of the two labels the
picture matches. From all the duration of the trial, EEG signals were acquired and, after the
feature extraction phase, a feature vector for each trial was created.

Each frequency vector belongs to one of four different classes: target and right answer,
target and wrong answer, distractor and right answer, and distractor and wrong answer, which
will be the labels for the supervised machine learning model. However, the number of wrong
answers provided by the participants were in very small number when comparing with the
right answers. In order to take the best advantage out of the available dataset, the main
problem to attack will be the classification of target or distractor from the universe of right
answers which is a binary classification problem. As in every binary problem there are only
two answers, a 50% result or less is considered bad. In this work, it will be considered a
metric value around 70% acceptable and a 90% result a very good result. Later on, it will
also be tested if a machine learning model trained by with the right answers can correctly
predict the wrong answers which is, in other words, identifying target and distractor where
the participant has failed to do so.
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Furthermore there should be approximately five distractor trials for each target trial. This
means that the dataset at hands (see 3.1) is very unbalanced which usually affects the behavior
of the machine learning model. Studies like [59] [60] have as their aim to solve the problem on
how to approach unbalanced dataset for machine learning problems. Two different approaches
were taken because of this factor:

• The dataset was distributed 50-50 and therefore balanced. In order to do that, for each
participant, the number of distractors was reduced in order to match the number of
targets. The priority here was given to the first trials based on the fact that, when a
subject performs a task, over time the detection rate of targets tends to decrease [61].

• The model was fed with all the dataset. The SVM can be set to automatically adjust
weights inversely proportional to the classes frequencies in the input data and with this
deal with unbalanced datasets [62].

The classifiers will receive as entry a feature vector from one of two types: a frequency
feature vector or a time feature vector. The first provides information about the trial’s
frequency band. The last one provides information related to the trial ERP components.
The main focus will be to train and test the models with intra-participant data. Later on,
inter-participants models will be tested as well.

5.2 Classification Pipeline Results

This section presents a series of results tables which aim to summarize the obtained results for
intra-participant experiments. On each table, either an average accuracy/balanced accuracy
is present. This value was obtain by performing the next steps:

• A cross-validation was performed in each participant which resulted in an average
accuracy/balanced accuracy value each.

• An average across all the participants’ accuracy/balanced accuracy values was performed
and registered on the table.

Then was registered a standard deviation from the group of accuracy/balanced accuracy
values as well. Finally, the highest and lowest values recorded were also registered as they
mark the maximum and minimum performance obtained.

At the end of 5.2.1, further evaluations are performed. Note that in both of them, no
cross-validation was performed because the nature of the evaluations inherently divides the
data into trainning and testing groups.

5.2.1 Frequency-domain

The table below shows a brief summary of all the methods used for dealing with the frequency-
domain balanced datasets, the respective average accuracy, which was the selected metric for
comparison, and some additional measures. After some initial testing and observations, the
ideal number of features to acquire from the ANOVA ranking ended up being around 100. As
for the SVM-RFE, the number of selected features differed greatly with the average being 173.
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It should be reminded that the classes used for this classification process were target+right
and distractor+right.

Average
Accuracy

Accuracies’
Standard Deviation

Maximum
Accuracy

Minimum
Accuracy

ANOVA w/ RBF kernel 0.853 0.073 0.983 0.717
ANOVA w/ linear kernel 0.819 0.097 1.000 0.633

SVM-RFE 0.735 0.115 0.943 0.515

Table 5.1: Classification of the frequency data on balanced datasets. Result values are displayed
from 0 to 1.

The results when dealing with the unbalanced datasets weren’t as promising as the ones
acquired when working with the balanced datasets. The table 5.2 shows a brief summary
of the results from the two techniques used for feature selection applied to the unbalanced
dataset.

Average
Balanced
Accuracy

Balanced Accuracies’
Standard Deviation

Maximum
Balanced
Accuracy

Minimum
Balanced
Accuracy

ANOVA w/ RBF kernel 0.349 0.162 0.841 0.029
SVM-RFE 0.610 0.083 0.918 0.492

Table 5.2: Classification of the frequency data on unbalanced datasets. Result values are displayed
from 0 to 1.

In contrast to what happened with the balanced datasets, the ANOVA technique with
the 100 top features provided very bad results. This is no big surprise considering that the
ANOVA method has proven to be more robust when dealing with small variations in data. As
mentioned in 4.3.1, the ANOVA assumes that the data follows a normal distribution which is
not the case for unbalanced data.

The SVM-RFE has proven to be more reliable in this situation. It can’t be said that the
results were good but it could indicate a proper starting point for future studies. The average
number of features selected per model was 190.

5.2.1.1 Further evaluations: stimulus incorrectly identified

Taking into account the very promising results acquired in the frequency domain when
working with balanced datasets, other tests were performed based on the most successful
feature selection technique, the ANOVA.

Firstly, using as training data the trials where the participant answered correctly, the
model developed was tested with the wrong decisions made by that same participant. In other
words, to try and see if it is possible for the presented machine learning models to actually
detect the presence of a target or a distractor even if the participants themselves did not.
Unfortunately, the results weren’t as good as the previous ones.
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For testing, it was selected only participants with at least 20 trials on the less predominant
class. The detailed results are shown in table 5.3. The average accuracy was set on 51% which
is a poor result.

Number of
participants

Average
Accuracy

Accuracies’
Standard Deviation

Maximum
Accuracy

Minimum
Accuracy

17 0.513 0.074 0.658 0.417

Table 5.3: Classification of the participants mistakes using the hits to train the model. Result values
are displayed from 0 to 1.

5.2.1.2 Further evaluations: inter-participant

Secondly, twenty-eight SVM models with the same parameters as the specified in 4.3.1 were
trained each one with the data from one of the twenty-eight eligible participants and then
tested with the datasets from all other twenty-seven participants. The poor results displayed in
the figure 5.1 proved right the conclusion supported by [4] that no conclusion could be drawn
from all the participants all together and that an BCI is design and adapted for a specific
participant. The graphic shows the mean accuracy and its respective standard deviation taken
from each model’s evaluation procedure.

Figure 5.1: An errorbar [63] plot of 28 SVMmodels. On the xx axis are the number of the participant’s
data by which the model was trained. It then was tested on the other 27 datasets. The
mean accuracy is represented on the yy axis.
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5.2.2 Time-domain

The table 5.4 below compares the two methods used for selecting the more relevant time
features for the balanced dataset. In this case, the ideal number of features to acquire from
the ANOVA ranking ended up being around 50. Again, the number of features selected by
the SVM-RFE differed greatly and this time the average was of 78 features. The average
accuracy is lower with the time features when comparing it with the frequency features’
average accuracy but in both cases the ANOVA method has proven to be more efficient than
the SVM-RFE.

Average
Accuracy

Accuracies’
Standard Deviation

Maximum
Accuracy

Minimum
Accuracy

ANOVA w/ RBF kernel 0.713 0.051 0.801 0.591
ANOVA w/ linear kernel 0.657 0.066 0.783 0.495

SVE-RFE 0.618 0.076 0.750 0.453

Table 5.4: Classification of the time data on balanced datasets. Result values are displayed from 0 to
1.

Table 5.5 details the performance of the same two methods of feature selections used
earlier on and, just like with the frequency features, the ANOVA, with 50 features this time,
had a very bad performance. However, with the time features, the SVM-RFE not only proved
to be a lot more efficient than the pure statistical method but also achieved the best overall
result so far, even better than it had achieved with the balanced dataset and with an average
number of 31 selected features.

Average
Balanced
Accuracy

Balanced Accuracies’
Standard Deviation

Maximum
Balanced
Accuracy

Minimum
Balanced
Accuracy

ANOVA w/ RBF kernel 0.250 0.097 0.478 0.033
SVM-RFE 0.880 0.025 0.930 0.833

Table 5.5: Classification of the time data on unbalanced datasets. Result values are displayed from 0
to 1.

5.2.3 Frequency-Time Fusion

Following the knowledge acquired so far, the following points can be inferred:
• Overall, the best combined results between frequency and time features were achieved

by working with a balanced dataset.
• On a balanced dataset, for the frequency features, the best result was achieved by

selecting the 100 most important ones using the ANOVA method.
• On a balanced dataset, for the time features, the best result was achieved by selecting

the 50 most important ones using the ANOVA method.
Now, a question can be asked: What would be the performance of a model if it was built

by using both the 100 frequency features and the 50 time features?
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The final phase of the present work teams up the frequency and time features for the most
successful case so far, the ANOVA method on balanced datasets and it aims to discover if the
results would be better than each one of them separately. The implementation steps of this
model were similar to the ones represented in the diagram of figure 4.5 and a RBF kernel was
used in the SVM model. Table 5.6 displays the results achieved from this fusion of data.

Average
Accuracy

Accuracies’
Standard Deviation

Maximum
Accuracy

Minimum
Accuracy

ANOVA (freq+time) 0.864 0.073 1.000 0.700

Table 5.6: Classification of the frequency and time data combined on balanced datasets. Result
values are displayed from 0 to 1.

It can be noted a slight improvement in the average accuracy when comparing with the
frequency features alone. One of the participants actually achieved the top result of one
hundred percent accuracy.

5.3 Feature Relevance

For this section, only the features selected by the ANOVA method across balanced datasets
will be studied. The ANOVA method is preferred over the SVM-RFE because the number
of features selected is always the same. In the case of SVM-RFE, the best scenario can be
achieved by using a total number of features which can vary a lot across all participants,
making it difficult to compare them and finding the most common features. As explained
before, the ANOVA doesn’t work well with unbalanced datasets which leave the balanced
datasets to work with.

5.3.0.1 Electrode Pooling

When analysing the information of the four scalp lobes, channels were aggregated as follows,
with the channel names being the used criteria:

• Frontal lobe: Fp1, Fp2, Fpz, F1, F3, F4, F8, Fz, FC5, FC1, FC2 and FC6.
• Parietal lobe: Cz, C3, C4, CP1, CP2, CP5, CP6, Pz, P3, P4, P7 and P8.
• Temporal lobe: T7 and T8.
• Occipital lobe: POz, O1, O2 and Oz.

5.3.1 Frequency-domain

The pie chart displayed in figure 5.2 shows the average predominance of the three frequency
bands (theta, alpha and beta) selected by the ANOVA method. Each slice is the average of
that wave throughout all participants.

The alpha band was the less predominant one of all three, which goes accordingly to the
information provided in [11] that was described in 2.2.1.1. The theta band was expected to
dominate the graph due to its relation to memory, specially with episodic memory as shown in
studies [64] and [65], but that place was claimed by the beta band, specially in the temporal
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Figure 5.2: Average predominance of theta, alpha and beta bands in the one hundred features selected
by the ANOVA method for all participants.

channels (T7 and T8) which can be seen in figure 5.3. This figure represents the 148 most
selected features with each one appearing in at least 4 participants.

Although not having a clean sheet like in the temporal lobe, the beta frequency is also
very commonly found in the frontal lobe.

The predominance of channels in the temporal zone wasn’t surprising as [64] and [65] link
them to episodic memory.

One can also point out that most of the selected features were within the first second
post-stimulus. Despite the veracity of this claim, it is not very salient. What is also claimable is
that less features are chosen as time goes by. Table 5.7 shows the average from all participants
of the percentage of features chosen in each time period. Note that the time windows before
stimulus is only half a second.

before stimulus 1st second 2nd second 3rd second
0.096 0.378 0.291 0.235

Table 5.7: Average percentages from all participants of the selected features in each time windows.
Percentages values are displayed from 0 to 1.
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Figure 5.3: Most common frequency features selected by the ANOVA method throughout all the
models. The horizontal axis represents the epoch time in milliseconds being 0 the instant
of the stimulus.

5.3.1.1 Spatial and Temporal Feature Localization

For each participant, three binary matrices were extracted, for theta, alpha and beta, with
the columns being the time instants and the lines being the channels selected by the feature
selection algorithm. This allowed to go back on MATLAB and, with the help of EEGLAB,
make a continuous stream of images that better show which channel is being selected as an
important feature in each different time interval. An example of this stream can be seen in
figure 5.4 where it’s represented all the frequency features selected in the beta band throughout
all the 27 time intervals.
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Figure 5.4: All frequency features in the beta band from a participant in every time interval, ordered
from left to right and from top to bottom and the blue one represents the occurrence of
the stimulus. The fourth(blue) and fifth topoplots occurred at the same time instant.

5.3.1.2 Further evaluations: scalp temporal beta

After analysing the feature relevance, the scalp temporal features in the beta frequency band
were noticed to be present in great number across all the participants. So curiosity related to
how would a model with just the two temporal channels in the beta band led to this final
experiment in the frequency-domain with balanced data. The results aren’t nearly as good
as the one performed with the best one hundred features selected by the ANOVA technique.
However, if taken into account the extreme simplicity of the procedure, just two electrodes
and their energy points between [13, 30)Hz which produce a total of only 58 features, there
are some impressive accuracy values in display in table 5.8. Despite the average accuracy
value, the range and even the maximum accuracy value show promising results for possible
future works. The SVM model was built with a RBF kernel.

Average
Accuracy

Accuracies’
Standard Deviation

Maximum
Accuracy

Minimum
Accuracy

Beta T7 and T8 0.689 0.120 0.960 0.509

Table 5.8: Classification of the frequency data on balanced datasets using only the beta frequency
band on the temporal channels. Result values are displayed from 0 to 1.

5.3.2 Time-domain

Figure 5.5 shows the 36 most predominant features that appear in at least 12 participants
when using ANOVA for feature selection. Unlike what happened before with the beta band
in the temporal zone, no particular feature stands out from the rest. The amplitude appears
to be generally more important than the latency and the P300 is present in every region. The
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temporal lobe has a notable lack of time features. This fact actually makes sense if taken into
account that beta frequencies were the predominant ones in this lobe. Let’s remember that,
in 3.4, during the smoothing process of the time data, the beta band is actually eliminated.

Figure 5.5: Most common time features selected by the ANOVA method throughout all the models.
On the horizontal axis are represented the ERP components of interest.

5.4 Conclusion

This chapter presented the application of the classification pipelines described in 4.3 to the
feature vectors described in 3.5. The nature of the predominant features, both the spatial and
temporal characteristics, were studied but only the ones provided by the ANOVA method
since the number of selected features by the SVM-RFE was highly different among all the
participants.
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CHAPTER 6
Conclusion

In this work, a solution for a BCI that deals with a criminal scenario was proposed. The
work was performed with data extracted from 28 participants which witness criminal videos
showing a crime being committed and then had to identify the culprit in several sequences of
pictures.

Firstly, the EEG signals were grouped and given a respective class from the following:
• target and right answer;
• target and wrong answer;
• distractor and right answer;
• distractor and wrong answer.
Next, information from both frequency and time domain was extracted from the EEG

signals. Frequency domain data consisted in information from theta, alpha and beta band
during the entire epoch and time domain information consisted in the power and latency
values of the following ERP components: P100, N170, P200 and P300.

The gathered data was injected into standard SVM models using two types of feature
selection techniques: a feature ranking with the ANOVA method and a feature recursive
elimination with the SVM-RFE. Tests were performed using both balanced and unbalanced
datasets, with features from the frequency domain only, with features from the time domain
only and, finally, with features from both time and frequency domain.

From the observation of the results, the following conclusions are drawn:
• The frequency features have shown very impressive results, with some dominance from

the beta band. This may came with a bit of surprise since studies like [64] and [65] take
the theta band as the most important frequency band in the subject of episodic memory.

• The results acquired from only the two temporal channels in just the beta frequency
band were at least interesting. Of course, the overall accuracy cannot be compared with
the values obtained using all frequency data, however, for such a simple model, the
results should be taken into account for future studies.

• Despite the good results provided by the frequency features in classifying as target or
distractor samples which the participant had given a correct answer, when trying to use

41



this same data to train a model and use it to classify the participant’s wrong answers,
the results weren’t as promising. In the end, the model ended up picking conscious
thinking of a person. Perhaps by looking at this problem from a different perspective or
with different kinds of features it could be possible to draw some conclusion but not
with the methods used in this work.

• Trying to perform inter-participant studies doesn’t provide results at all. This is not a
surprise since it’s common for a BCI to have a period of testing and adapting to a given
person [4].

• It is also with no surprise that the results provided by balanced datasets are better than
the ones from unbalanced datasets despite the SVM allowing to change the weight from
the different classes. There are in fact studies [59] [60] which only aim is to determine
what is the best way to handle unbalance dataset and, in most scenarios, the solution
ends up being turning the unbalance dataset into a balanced one, either by sample
reduction or by forging new samples based on the existing ones. This was verified
when dealing with the frequency features but was definitely not the case for the time
features. The balanced accuracy obtained by the SVM-RFE for unbalanced datasets
even surpassed the accuracy obtained by the SVM-RFE itself when using balanced
datasets.

6.1 Future Work

In chapter 1, it was referred that around seventy one percent of the innocent convicted
criminals had been condemned by eye witnesses. However, the participants’ misclassifications
represents about ten percent of the entire database. More experiments should be conducted
in order to find out if this number is actually the general case. Also, since the dataset is so
unbalance, one can focus its works on dealing with just the unbalanced data.

The present work focused frequency features with the theta, alpha and beta frequency
bands as well as four different types of ERP components. Every study was based on single
trials but other approaches may be taken instead like, for example, studying the average of
two or three signals and treat them like single trials. This is proved [66] this to be useful for
study purposes, however it cannot be used for correcting classification in real time since it
can’t look at just a single unique sample.

Perhaps the most notorious conclusion of the work is the constant appearance of the beta
band in the temporal channels which is impossible to miss. It could be the starting point of a
future work, focused on studying the importance of these frequency features for the present
topic.

As mentioned before, a different approach is going to have to be taken if one is trying to
classify correctly the misclassifications from a participant. With the analysis performed, it
was only possible to clear detect the intention of the participant. The topic of unconscious
recognition of a face of a culprit would came as a huge advantage in any justice system and it
surely deserves more investigation.
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