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abstract Structural optimization has gained popularity since its first studies in the
late 19th century. Over the years, due to the improvement of technology,
several works have been focused on its computational implementation.
Among the most popular applications, topology optimization deals with the
non-homogeneous material distribution in a structure in order to optimize a
given structural objective. A compliance approach is usually carried out to
evaluate a topology optimization problem. Moreover, it is also considered
the Optimality Criterion and SIMP as the optimization method and the
material interpolation scheme, respectively.

In this work, several topology optimization problems are carried out
and evaluated, from a multi-objective approach, where thermal and mech-
anical analyses are simultaneously considered, to thermoelastic phenomena.
These problems are recognized for incorporating loads that depend on the
solution (in this case, thermal loads). Also known as design-dependent
loads, they depend on the material layout inside the structure and their
magnitude has a direct impact on the optimization process. Therefore, in
the resultant topologies, the instabilities associated with this type of loading
become evident.

The main focus of this work consists in introducing alternative ways
to prevent these issues and deal with the problems’ instability. Therefore,
an alternative procedure is proposed to control the problems that arise
from the mentioned analysis. An adaptation of the Evolutionary Structural
Optimization (ESO) method, also known as Bi-directional ESO, is im-
plemented and the obtained results are compared with the conventional ones.

The development of a computational tool consists in an additional
outcome of this work and, therefore, the mentioned methodologies are
implemented considering a numerical simulation software, based on the
Finite Element Method (FEM), as background. Besides the FEM analysis,
the computational tool becomes capable of solving different types of
topology optimization problems.





palavras-chave Otimização topológica, carregamentos dependentes da densidade, ter-
moelasticidade, desenvolvimento de software, MATLAB.

resumo A otimização estrutural tem vindo a ganhar popularidade ao longo dos
anos e, com o desenvolvimento da tecnologia, tem-se apostado na sua
implementação computacional. Uma das áreas de maior desenvolvimento
é a otimização topológica. Esta lida com a distribuição não homógenea
de material numa estrutura de modo a otimizar um determinado objetivo
estrutural. Tendo por base o método mais convencional, a minimização da
compliance de uma estrutura é definida como objetivo de um problema de
otimização topológica. Para além disso, o Critério do Ótimo, como método
de otimização, e o SIMP, como esquema de interpolação do material, são
implementados de modo a avaliar o algoritmo.

Neste trabalho, várias abordagens são avaliadas de modo a estudar
a aplicação da otimização topológica a problemas muti-física. Uma
abordagem multi-objectivo onde as análises térmica e mecânica são
simultaneamente ponderadas é estudada, assim como a influência de
fenómenos de termoelasticidade. Estes fenómenos são reconhecidos por
incorporarem carregamentos que dependem da solução, neste caso, os
carregamentos térmicos. Estes são dependentes da distribuição do material
na estrutura e a sua magnitude influencia em grande escala o processo de
otimização. Nas topologias resultantes, instabilidades associadas a este
tipo de carregamentos são notórias e dificilmente contornáveis devido às
caraterísticas intrínsecas do processo de otimização escolhido.

No presente trabalho são avaliados os resultados obtidos através dos
algoritmos convencionais de otimização topológica. Para além disso, é
proposta uma abordagem alternativa de modo a controlar as instabilidades
que surgem nas análises referidas e a estabilizar o problema. Uma adapatção
do método de otimização estrutural evolucionária (ESO - Evolutionary
Structural Optimization), conhecida como BESO, é implementada e os
resultados obtidos são comparados com os anteriores.

Por fim, um dos resultados deste trabalho consiste no desenvolvi-
mento de uma ferramenta computacional com capacidade para solucionar
as abordagens mencionadas. Em conjunto com a análise numérica, baseada
no Método dos Elementos Finitos, as metodologias de otimização topológica
são implementadas e adicionadas a um software que foi atualizado ao longo
deste trabalho.
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Chapter 1

Introduction

1.1 Framework

Optimization consists in finding the best solution with the most cost-effective or highest
achievable performance under the given constraints. This concept has been widely applied
to the most different areas of engineering, from the design of automobile components to
the study of water networks. For instance, minimizing the weight of a component or
maximizing the efficiency of water equipment are some examples of the application of
optimization concepts in real problems [Rao 2009]. These solutions allow the growth of
a company’s profit and, due to the increased competitiveness, they are now required and
expected by companies and customers [A. Campos et al. 2015].

Structural Optimization (SO) is the discipline that deals with the optimal design
of load-carrying structures taking into account the association between its cost, weight,
and stiffness. Different approaches can be established regarding the optimization of a
structure, namely the optimization of the overall shape, of a geometrical parameter and
of the material layout. Examples of these problems include finding an optimal shape of
a suspension arm in a car, an optimal material distribution in the wall of a centrifugal
separator, or an optimal cross sectional dimensions of the different beams in a new Eiffel
tower [Svanberg 2009]. Nowadays, as a result of technology upgrade, the optimum solu-
tions to these problems can be achieved with the support of computational tools. Such
software are capable of analyzing a structure performance under predefined conditions
by splitting its domain into discrete parts, also known as “finite elements”. Therefore, the
Finite Element Method (FEM) is commonly used in numerical optimization as a tool to
evaluate the reliability of a structure by computing its displacements and stress fields in
order to guarantee suitable solutions.

One of the approaches that has been explored over the years deals with the non-
homogeneous material’s distribution inside a body. Topology Optimization (TO), the
approach explored in this work, is the process of determining the optimum layout of
material and connectivity inside a design domain [Deaton and Grandhi 2014]. As a focus
of numerous works, its main target consists in strategically distributing the material in-
side a predefined domain to ensure the structure’s maximum stiffness. The conventional
method applied to topology optimization is based on the minimization of the structure
compliance determined by the work of the external loads. The obtained topologies are
achieved by considering the applied loads and the structure’s support conditions as well
as the results of the numerical analysis. Additionally, the optimum topologies are char-
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2 1.Introduction

acterized by the existence of material and void regions. In order to establish the material
layout, the Solid Isotropic Material with Penalization (SIMP) method is applied as a
material interpolation scheme, being one of the most used in topology optimization prob-
lems [Rozvany et al. 1992]. According to this approach, the optimization variables are
the elements’ densities, that can assume any value between 0 and 1, being intermediate
densities penalized in order to be avoided in the final topology.

Several works related to topology optimization have already been developed since the
fundamental work of Bendsoe and Kikuchi [Bendsøe and Kikuchi 1988]. The greatest part
of the existing work focuses on problems where the boundary conditions are independent
from the material layout. In contrast to these, problems where the boundary conditions
depend on the solution are the main focus of this work. This type of problems might
include loads that depend on the existence of material in the structure. For instance, body
or thermoelastic stress loads depend on the material distribution inside the domain. This
work analyzes thermoelastic stress loads and their impact on the optimization process.
The existence of a temperature field on a structure due to heat transfer phenomena is
considered along with the thermal loading derived from it. The dependency of thermal
loads on the material distribution characterizes them as design-dependent and their effect
on the optimum topologies has already been analyzed by numerous authors [Rodrigues
and Fernandes 1995,Li et al. 1999,Gao and Zhang 2010,Pedersen and Pedersen 2010].
For example, their existence can highly affect the material’s behavior and, consequently,
the structure’s performance [Rodrigues and Fernandes 1995]. Besides, several issues
related to their nature appear along the optimization process and studying alternative
approaches to overcome these problems is one of the main challenges of this thesis.

Numerical simulation and optimization fundamentals are essential concepts to this
work and important know-how of an engineering student. In an academic environment,
commercial software is commonly used for learning FEM basis and its optimization tool-
boxes have been upgraded over the years. These software provide an accessible way of
learning important concepts on both subjects. However, to gain detailed knowledge on
Finite Element Analysis (FEA) and TO, the implementation of the formulations on code
is way more challenging. This Dissertation therefore proposes the development of a com-
putational tool capable of solving different types of topology optimization problems. The
background of this work is set on a modular platform, GRIDS Alpha, with a concept
that allows further developments by students who are interested in learning more about
any of these subjects [Lourenço 2018]. Alongside numerical analyses, this software allows
the resolution of topology optimization methodologies.

1.2 Objectives

The main goal of this work is to develop topology optimization strategies capable of
solving multi-objective problems. Initially, it is required to implement a topology opti-
mization algorithm to run an elastic and, then, a thermal conduction analysis. Therefore,
a multi-objective approach is possible to be carried out by running simultaneously both
analyses. The influence of each objective on the optimum solution can be evaluated by
pondering the thermal and the mechanical objective-functions.

In addition, with the intention of combining both analyses, a thermoelastic approach
to topology optimization is developed. The existence of thermoelastic phenomena on a

Mafalda Gonçalves Master Degree Dissertation



1.Introduction 3

structure leads to changes in its behavior due to the impact of thermal loads. There-
fore, in order to better understand their influence on the optimization process, different
approaches to the problem are implemented and carried out. Firstly, the optimization
problem is solved by prescribing a uniform temperature field on the structure. There-
after, instead of the prescribed temperature field, the structure is submitted to thermal
boundary conditions, whether they are heat fluxes or prescribed temperatures. The tem-
perature field is then computed by running a thermal analysis according to the material
layout. Over the different phases, some problems related to the impact of the thermal
loading on the structure’s behavior start to come out. These affect the optimization
process and, consequently, induce instabilities on the optimum solutions. At this stage,
it is necessary to study and implement an alternative method to overcome these issues
related to problems where boundary conditions depend on the solution.

Beyond the scientific part, the methodologies implemented in this work will integrate
a numerical simulation platform, GRIDS Alpha, developed in MATLAB [Lourenço 2018].
Its features will be enhanced and the developed software will be capable of running
several topology optimization methodologies alongside FEM analysis. Developed in a
academic environment, it is intended to be an helpful tool for students learning more
about both subjects. Also, as an user-friendly and open-source software, this platform
presents a modular concept in order to be available to further developments by students
or researchers.

1.3 Reading guidelines

This Dissertation is divided into 5 chapters.

• Chapter 1: A general introduction to the work is given, as well as its main objec-
tives;

• Chapter 2: The definitions of the implemented methodologies are presented along
with their finite element approximation. Fundamental concepts related to topology
optimization are described and, finally, the focus of this work, the treatment of
design-dependent loads, is introduced and explored;

• Chapter 3: The global structure of the computational tool is presented alongside
the needed implementation details regarding the different developed methodologies;

• Chapter 4: The results obtained for several analyses are presented and analyzed,
in order to validate the implemented tool;

• Chapter 5: A global analysis of the work developed is provided as well as some
suggestions for future research works.

Mafalda Gonçalves Master Degree Dissertation
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Chapter 2

Numerical and mathematical
formulation

2.1 Modelling of the thermoelastic behavior

Heat transfer phenomena have to be considered in several problems of different areas
of engineering. In this work, the evaluation of these phenomena and, more precisely,
thermoelastic ones, is carefully analyzed. The impact of thermoelastic phenomena in
the material’s behavior has to be taken into account since the existence of temperature
variations greatly affects its mechanical behavior. This type of problems consists in
the combination of two different ones, such as, the steady-state heat conduction and the
linear elasticity. Taking into account linearity assumptions, the definition of the problems
is presented. Besides, the application of the Finite Element Method (FEM) helps with
a efficient resolution of both problems and, therefore, it is also shown the equilibrium
equations of both problems according to a spacial discretization. The formulation shown
in this section can be found in more detail in [A. Campos et al. 2015].

2.1.1 Linear thermoelasticity

Considering a solid body of volume Ω under small deformations, it is possible to describe
a linear elasticity problem by the following equilibrium equation,

div(σ) + f = 0, (2.1)

where σ stands for the stress field and f for the load vector that the body is submitted to.
The stress field can be computed, taking into account the constitutive law that describes
a linear elastic behavior, as

σ = D : ε in Ω. (2.2)

According to this form of Hooke’s law, the linear relation between stress and strain fields
can be stated by an elasticity tensor, D. For an isotropic linear material, the elasticity
tensor for a two-dimensional plane stress problem turns out to be in the form

D =
E

(1− ν2)

1 ν 0
ν 1 0

0 0 (1−ν)
2

 , (2.3)

5



6 2.Numerical and mathematical formulation

where ν and E are values that define the material’s behavior in the linear range, namely
the Poisson’s coefficient and the elasticity modulus, respectively. However, the material’s
mechanical behavior can be affected by the influence of heat transfer phenomena. The
existence of temperature variations on the material has to be considered in order to be
possible an accurate analysis of its behavior. Therefore, Equation 2.2, that described the
linear elastic behavior of a material, must be rewritten as

σ = D : ε−∆Tβ in Ω, (2.4)

where a linear thermoelastic behavior is considered, with ∆Tβ representing the impact
of the temperature differential on the material. This term allows to consider the thermal
expansion that the body is submitted to. In addition, the stress field is now dependent
on the temperature field, ∆T , and on the thermal properties of the material, β. Both
parameters can be defined as

∆T = T − T0, (2.5)

β = D : α, (2.6)

where α represents the vector with the thermal expansion coefficients associated with
the different directions and, T0, the initial temperature of the material. On the other
hand, the material deformations, defined by the strain field, ε, can be computed taking
into account the displacements field, u, as

ε =
1

2

[
grad(u) + [grad(u)]T

]
in Ω. (2.7)

The resolution of the problem, namely, the computation of the displacements field, is
performed by Equation 2.1. For that purpose, different restrictions have to be estab-
lished in order to solve the thermoelastic problem. Boundary conditions of Dirichlet and
Neumann types are commonly established to restrict and solve these problems. While
Dirichlet boundary conditions specify the value that the solution (displacement) must
take along the surface Γu, Neumann boundary conditions will be responsible to specify
the values of the derivatives of the solution (that is, the stress) along the surface Γσ, by
imposing a pre-defined surface load t̄, considering that n consists in a normal vector to
the mentioned surface. Therefore, the specified restrictions can be stated as

u = ū in Γu, (2.8)

σ · n = t̄ in Γσ, (2.9)

respectively. Figure 2.1 represents schematically a solid body submitted to thermoelastic
boundary conditions, established by Equations 2.8 and 2.9.

Considering the discretization of the domain Ω, the analysis of the thermoelastic
problem can be established using the Finite Element Method. According to the domain
discretization, the problem can be defined by the following equilibrium equation as

Ku = f , (2.10)
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Figure 2.1: Representation of Dirichlet and Neumann boundary conditions applied to a
thermoelastic problem.

whereK, also defined as global stiffness matrix, consists in the assembly of all the element
stiffness matrices taking into account the elements’ connectivity. The assembly can be
computed by

K =

∫
Ω
BTDBdΩ, (2.11)

where B matrix includes the shape functions’ derivatives. In Equation 2.10, f stands for
the external load vector, which incorporates the load related to thermal expansion, fth,
the vector of distributed loads in surface Γσ, fN, and the nT mechanical nodal loads, RN,
and can be given by

f = fth + fN + RN =

∫
Ω

∆TBTβdΩ +

∫
Γσ

NΓ
Tt̄dΓ +

nT∑
k=1

(R̄N)k. (2.12)

2.1.2 Steady-state heat conduction

A steady-state heat conduction problem is defined in a similar way to a linear elasticity
one. Although both problems are defined based on different quantities, the equilibrium
is stated by the following equation as

div(qk)−Q = 0 in Ω, (2.13)

which describes the heat transfer in a solid body of volume Ω. Only heat transfer by
conduction is taken into account, so qk stands for superficial fluxes by conduction through
its boundary andQ represents the heat generation inside the body. According to Fourier’s
law, heat conduction is defined by

qk = −k · grad(T) in Ω, (2.14)

where k represents the thermal conductivity tensor and grad(T) stands for the temper-
ature’s gradient that the body is submitted to. By replacing Equation 2.14 with 2.13, it
is possible to obtain

−div [k · grad(T)]−Q = 0 in Ω. (2.15)
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8 2.Numerical and mathematical formulation

In a similar way to the thermoelastic problem, it is necessary to establish boundary con-
ditions in order to solve Equation 2.15. The Dirichlet and Neumann boundary conditions
are adjusted for a thermal problem, being defined as

T = T̄ in ΓT, (2.16)

−q̄ = [−k · grad(T)] · n in Γq, (2.17)

respectively. Equation 2.16 establishes a prescribed temperature, T̄ , in ΓT and the
Neumann condition (vd. Eq. 2.17) prescribes a superficial flux in surface Γq, represented
by q̄. The mentioned boundary conditions are schematically illustrated in Figure 2.2.
Conditions related to convection and radiation, known as Robin’s conditions, are not
considered in this work.

Figure 2.2: Representation of Dirichlet and Neumann boundary conditions applied to a
thermal problem.

Proceeding to the domain discretization, the thermal problem can be also solved
according to the Finite Element Method. The equilibrium equation that defines the
discretized thermal problem can be stated as

KTT = q, (2.18)

where KT stands for the thermal stiffness, in this case, only related to thermal conduct-
ivity, k. In addition, q represents the nodal fluxes vector, which consists in nq point
fluxes, P̄N. Both quantities can be computed as

KT =

∫
Ω
MTkMdΩ, (2.19)

q =

nq∑
k=1

(P̄N)K , (2.20)

where M represents the tensor related to the derivative of the nodal shape functions.
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2.2 Structural Optimization

Optimization of any structure or component involves the study of the material’s behavior
when submitted to different types of loading. The exposure of the material to temper-
ature variations leads to a change in its behavior and, consequently, in the structure’s
performance. Optimizing the design of a thermoelastic structure consists in an impor-
tant problem in aeronautics and aerospace products such as turbine engine components
and thermal protection systems [Hou et al. 2016]. Taking into account the formulation
presented in section 2.1, it is possible to estimate the influence of the temperature differ-
ential on the structure’s performance which makes this knowledge on the subject helpful
to the process of optimizing a thermoelastic structure.

In a general way, Structural Optimization (SO) has as its main goal finding the op-
timum layout of a structure, considering its stiffness, weight and cost. Several studies
had already been developed on this topic, but the first one was carried out by Maxwell,
who studied different ways of reducing the required material to build a bridge [Maxwell
1870]. According to the obtained results, the optimum structure is composed of dis-
crete elements, whose orientation is similar to the principal directions of the stress field.
Therefore, these elements are only subjected to nominal stress since the shear component
is considered null. Later on, Michell focused on projecting structures with the minimum
material [Michell 1904]. His findings on optimum structures are still used nowadays as
analytical benchmarks. One of the most common examples is shown in Figure 2.3, and
is known as a Michell cantilever.

Figure 2.3: Representation of a Michell structure known as Michell cantilever. Adapted
from [Sokół 2011].

Shape, sizing and topology optimization consist in three different approaches of struc-
tural optimization. The first one consists in finding the overall shape of the structure,
which maximize or minimize the objective-function. The domain where the problem is
established is the design variable, usually defined as the coordinates of relevant points or
as geometrical parameters. Sizing optimization, in a similar way to shape optimization,
includes structure dimensions as project variables. However, these consist in important
parameters that characterize the structure’s behavior, whether they are cross-section di-
mensions or constitutive properties. Finally, Topology Optimization (TO) deals with the
connectivity between each point of the structure, which is defined by the design variables,
the relative density of each element [A. Campos et al. 2015]. In Figure 2.4, it is possible
to analyze the different structural optimization categories, where the initial problem is
shown (left) along with the optimum solution for the respective approach (right).
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10 2.Numerical and mathematical formulation

Figure 2.4: Representation of structural optimization categories: (a) sizing optimization,
(b) shape optimization and (c) topology optimization. Adapted from [Bendsoe and
Sigmund 2003].

As mentioned in the previous chapter, the latter approach (Topology Optimization)
was the one chosen for the present work. Topologically optimizing a structure is associ-
ated to the material’s distribution inside a predefined domain. In the next section, the
formulation of the studied problems is presented, as well as some important procedures re-
lated to the Topology Optimization algorithm. The optimization concepts and definitions
presented in the following sections can be consulted in [A. Campos et al. 2015,Bendsoe
and Sigmund 2003,Arora 2017].

2.3 Topology Optimization

2.3.1 Overview

Topology optimization of continuum structures has been developed and has become a
powerful tool for the design of engineering structures, over the years. Since the funda-
mental work of Bendsøe and Kikuchi, who presented a material distribution model, based
on homogenization methods, several research results have been examined. This study
allowed the evaluation of each region of a porous material considering if it was a material
or a void one [Bendsøe and Kikuchi 1988]. After the publication of diverse works on the
topic, Rodrigues and Fernandes developed a computational model based on the presented
material distribution approach [Rodrigues and Fernandes 1995]. It included the effects
of temperature differential in the topology design of structures. The work conclusions
revealed a strong dependence of the obtained optimum topologies on the temperature
differential, even considering a temperature field independent of the design. Therefore,
the role of thermal loads and stress in structural analysis and design has been investig-
ated. Significant progress has been made through thermoelastic topology optimization.
However, this subject still remains a challenging issue since it belongs to a type of design-
dependent problems wherein the thermal stress load changes with the spatial distribution
of solid materials [Zhu et al. 2019]. This type of loads, also known as design-dependent,
are, for example, self-weight loading due to gravity, transmissible or pressure loading, and
thermal. In a general way, these refer to loads whose location, direction, or magnitude
varies along with changes in the design during the optimization process [Deaton and
Grandhi 2014]. As already pointed out, these loads depend on the existence of material

Mafalda Gonçalves Master Degree Dissertation



2.Numerical and mathematical formulation 11

on the structure and, during the optimization process, their value changes with the up-
date of the material layout. Diverse research works on this matter have been developed,
namely, the different issues that come out when this type of loads are analyzed [Chen
and Kikuchi 2001,Bruyneel and Duysinx 2005,Yang et al. 2005,Du and Olhoff 2004].

An alternative procedure for the analysis of these problems was studied by Xia and
Wang, who applied level-set method to TO of thermoelastic structures [Xia and Wang
2008]. This approach established the free boundary of the structure as a design variable,
with the objective-function becoming a function of the structure’s shape. The obtained
results were compared to the ones from the Solid Isotropic Material with Penalization
(SIMP) method, where a large area of gray densities was found. In conclusion, in con-
trast to SIMP, a black and white design is surely achieved by level-set method. Deng et.
al explored a topological sensitivity based on the same method to solve two-dimensional
stress constrained TO problems subjected to homogeneous temperature change [Deng
et al. 2014]. The work was extended and a similar approach was applied to large-scale
three-dimensional and varying temperature fields [Deng and Suresh 2017]. Using SIMP
as an interpolation scheme, Li and Zhang focused on the topology optimization of con-
tinuum structures considering a thermomechanical coupling. The minimum strain energy
was established as the goal and the adjoint method was used to compute the sensitiv-
ities [Li et al. 2010]. In regard to the problem’s objective-function, Pederson et al.
explored an alternative approach based on the maximization of the structure’s strength,
more exactly, on the minimization of the maximum von Mises stress [Pedersen and Ped-
ersen 2010]. The authors defended that compliance may be a questionable objective for
the thermoelastic topology optimization problem. Also, Zhang et al. addressed the sub-
ject by investigating two different minimization objectives, mean compliance and elastic
strain energy through sensitivity analysis [Zhang et al. 2014]. A concept of load sensi-
tivity was introduced in order to interpret quantitatively the influence of thermal and
mechanical loads on the optimum topologies. Since both types of loads present different
natures, the two formulations lead to different load sensitivities and, consequently, to dif-
ferent optimal configurations. In order to characterize the dependency of thermal stress
loads upon the design variables on multi-phase materials, Gao et al. explored penalty
models of both the elasticity modulus and the thermal coefficient [Gao and Zhang 2010].
The penalization of only the elasticity modulus can not be applied to those, since the
design scheme can only switch between one solid phase and void. Besides, the author
also evaluated the use of the Rational Approximation of Material Properties (RAMP)
method as an interpolation model, in contrast to SIMP. Under design-dependent loads,
SIMP is known to induce the undesirable parasitic effect for low density regions, due to
its zero slope at x = 0. Therefore, RAMP is found to be effective in overcoming this
difficulty, especially for multi-phase material problems. Later on, a stress based formula-
tion was presented by Deaton and Grandhi, with a method for topology optimization of
structures with combined mechanical and thermoelastic loads that are subjected to stress
constraints [Deaton and Grandhi 2016]. The results indicate that by using the stress-
based formulation, structural configurations can be obtained with superior thermal stress
performance when compared to those from the minimum compliance formulation. On
the other hand, another temperature-constrained topology optimization design method
for thermomechanical coupled problems was proposed by Zhu et al.. In their work, the
temperature values at the heat sources were constrained and the elasticity modulus and
the thermal stress were interpolated by the RAMP method [Zhu et al. 2019]. Comparing
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with structures without temperature constraints, this method decreases significantly the
temperature and allows the control of the global temperature on the structure. More
recently, Kambampati et al. presented a level-set topology optimization of structures
under coupled mechanical and thermal loads considering stress and temperature con-
straints [Kambampati et al. 2020]. In this work, the conflict between stress and tem-
perature in optimization is evaluated and it is shown that both structural and thermal
constraints avoid high values of stress and temperature on the structure, respectively.

2.3.2 Problem definition

Topologically optimizing a structure consists in achieving an optimum solution for the
material’s layout that maximizes its stiffness or minimizes its compliance (i.e, its flexibil-
ity). Therefore, it is assumed that the structure is defined in a domain Ω, and sufficiently
constrained to ensure its equilibrium. In order to measure the structure’s flexibility, it is
usually computed its strain energy, S, defined as

S =
1

2

∫
Ω
uTDudΩ, (2.21)

where u stands for the displacements field equivalent to equilibrium. However, an alterna-
tive approach to determine the structure’s compliance consists in computing the work of
the external loads expressed by the following equation,

W =

∫
Ω
fTudΩ, (2.22)

where f represents the external load applied to the structure. Moreover, the total poten-
tial energy of the system can also be determined by combining Equations 2.21 and 2.22,
as

P = S −W, (2.23)

which consists in another way to measure the structure’s flexibility. This function is
minimized by the displacements field u that corresponds to the structure’s equilibrium.
According to the minimum total potential energy principle, at the equilibrium, the vari-
ation of the total potential energy of the system, P , is equal to zero. Every approach
can be used to compute the objective-function. However, the work of the external loads
consists in a quantity directly related to the structure’s compliance, so this approach
is commonly used to evaluate the its flexibility. Therefore, a linear elastic topology
optimization problem can be formulated as

minimize

∫
Ω
fTudΩ =

∫
Ω
uTKudΩ, (2.24)

subjected to D ∈ Dadm,

Ku = f ,

where K corresponds to the assembly of all element stiffness matrices. Moreover, as
already mentioned in section 2.1, the influence of a temperature differential on the struc-
ture has to be taken into account to evaluate the optimization problem in a correct way.
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Thermal loads arise from the existence of a temperature field and these need to be con-
sidered to the problem’s resolution. Accordingly, a thermoelastic topology optimization
problem can be formulated in a similar way to the one shown in Equation 2.24. The
main difference involves the addition of the thermal loads, fth, to the loads vector, f , as
follows: f = fm + fth, where fm stands for the mechanical loads vector. Consequently,
the influence of thermal loads is considered in the structure’s equilibrium and, therefore,
the displacements in the objective-function already take into account the ones related to
the thermal effect. Unlike purely mechanical loads, thermal loads are design-dependent,
wherefore the mean compliance (1

2 f
Tu) and the elastic strain energy (S) turn out to

be inequivalent criteria for this type of problems. The latter one, in contrast to the
compliance, does not include the displacements related to thermal expansion. There-
fore, both formulations lead to different load sensitivities and, consequently, to different
optimum configurations [Zhang et al. 2014]. According to Equation 2.12, the thermal
loads, fth, are computed and it is possible to analyze their dependency on the temper-
ature differential applied to the structure, ∆T . The temperature field can be initially
prescribed and maintained constant over the optimization process or determined by run-
ning a thermal analysis, in each iteration, taking into account the material distribution
and the applied thermal boundary conditions.

Alternatively, a thermal problem can also be topologically optimized. Despite the
different nature of the involved quantities, the thermal problem can be defined in a
similar way to the problem stated in Equation 2.24, related to linear elasticity, with
both problems having as their main goal the maximization of a constitutive property.
Maximizing the thermal conductivity is the main goal of this type of problem, whereas for
the linear elastic problem the objective consists in maximizing the structure’s stiffness.
Consequently, the thermal problem can be formulated as

minimize

∫
Ω
TTKTTdΩ, (2.25)

subjected to k ∈ kadm,

KTT = q.

A multi-objective approach can also be established in order to take into account,
simultaneously, both objectives, mechanical and thermal, by means of a global objective-
function that comprises both. According to a weighted sum, to each objective is associ-
ated a weighting coefficient that defines the influence of each analysis. Therefore, it is
possible to evaluate the impact of each problem on the optimum solution. The definition
of the multi-objective problem can be stated as

minimize

(
ωt
ft

f0
t

+ ωm
fm

f0
m

)
, (2.26)

subjected to D ∈ Dadm,

kT ∈ kadm,

Ku = f ,

KTT = q,
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where ft and fm correspond to the thermal and mechanical objective-functions, respec-
tively. The values of the first evaluations of both objective-functions, represented as f0

t

and f0
m, are computed at the first iteration in order to normalize the problem. Both

problems present objective-functions of different natures and, therefore, a normalization
is required, due to the different values of magnitude that both objective-functions can
assume. The impact of each analysis on the obtained results is controlled by the influence
given to each one by the respective weighting coefficient, wt and wm (i.e, thermal and
mechanical influence, respectively), that can be managed through a Pareto analysis.

2.3.3 Solid Isotropic Material with Penalization

A topology optimization problem, regardless of the defined objective-function, is estab-
lished through a set of project variables. An optimum topology is characterized by the
existence of structural and void elements that are described by a design variable, its
relative density, ρ. Considering an empty or a material region, its value can be equal to
0 or 1, respectively. However, this definition of the problem leads to the nonexistence of
solutions since the continuous introduction of holes will generally decrease the objective
function [Sigmund and Petersson 1998]. Relaxing the problem is one of the possible ways
to solve this issue and consists in expanding its admissible domain to guarantee the ex-
istence of a solution. In 1988, an approach able to deal with this problem was presented
by Bendsoe and Kikuchi. Based on homogenization methods, continuum structures were
analyzed through multi-scale processes that contributed to an additional detail [Bendsøe
and Kikuchi 1988]. Later on, an alternative approach was introduced by Bendsøe, which
allowed the relative density of each element, ρ, to vary between the discrete values of 0
and 1, increasing the number of possible solutions [Bendsøe 1989]. Years later, Rozvany
et al. focused on this procedure and stated that the intermediate densities should be
penalized to achieve a discrete solution for the problem. Therefore, the material prop-
erties are defined as the density raised to some power times the properties of a solid
material and are considered constant for each element [Rozvany et al. 1992]. Also known
as “Power-law approach”, the Solid Isotropic Material Penalization (SIMP) method is one
of the most used ones for topology optimization problems. Its concept can be stated as

K = ρpK0, (2.27)

whereK0 corresponds to a base property of the material and p stands for the penalization
factor responsible for penalizing the intermediate densities. In Figure 2.5, it is represented
the influence of the penalization factor on the effective density of each element. For
intermediate values, the density of each element is actually lower, leading to a decrease
of the influence on the respective property. Therefore, the extreme values are more
beneficial to the optimum solution, being the obtained topology closer to the discrete
problem.

Therefore, the problem defined in Equation 2.24 can be rewritten, taking into account
the design variable, ρ, as
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Figure 2.5: Representation of SIMP for different penalties. Adapted from [A. Campos
et al. 2015].

minimize c(ρ) =

∫
Ω
uTKudΩ =

n∑
e=1

ρpeue
Tk0ue, (2.28)

subject to 0 < ρmin ≤ ρi ≤ 1, i = 1, ..., n,
n∑
i=1

ρiνi
VΩ
≤ fV,

Ku = f ,

where K, u, f stand for the stiffness matrix, displacements and external loads vector,
respectively. The element stiffness is defined as ρpk0, where k0 stands for the stiffness
of an element with the base material, fV represents the prescribed volume fraction and
νi defines the volume of each element. Finally, it is assumed a minimum value, ρmin, for
the element relative density in order to avoid singularity issues.

2.3.4 Sensitivity analysis

The sensitivity analysis is crucial for the efficient resolution of a topology optimization
problem. The evaluation of the sensitivity provides knowledge on the objective-function’s
behavior when small changes are applied to the problem’s variables. Therefore, the
accurate resolution of a topology optimization problem is based on a correct computation
of the sensitivity. According to SIMP (vd. Sec. 2.3.3), the derivative of the constitutive
property, K, relatively to the problem’s variable, ρ, can be stated as

∂K(ρ)

∂ρ
= pρp−1K0. (2.29)
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Considering a discretized version of Equation 2.24, the objective-function, c(ρ), related
to a linear elastic problem, can be stated as

c(ρ) = fTu = uTKu. (2.30)

Therefore, the sensitivity of the objective-function is defined as

∂c(ρ)

∂ρ
= fT∂u

∂ρ
+
∂fT

∂ρ
u. (2.31)

Considering that Ku = f and KT = K, it results in uTK = fT. Based on

∂f

∂ρ
= K

∂u

∂ρ
+
∂K

∂ρ
u, (2.32)

it is possible to conclude that

∂c(ρ)

∂ρ
= 2uT ∂f

∂ρ
− uT∂K

T

∂ρ
u. (2.33)

The applied loads in a mechanical problem are independent of the design variable, ρ, so
the first term of Equation 2.33 is not considered. Therefore, according to Equation 2.29,
the sensitivity of the objective-function, c(ρ), relatively to ρ, results in

∂c(ρ)

∂ρ
= −pρp−1

e uT
e k0ue, (2.34)

for element e. It is possible to notice that the sensitivity always presents a negative sign
due to its definition in terms of the external loads’ work. In this case, it is only considered
a type of loading that does not depend on the variables of the problem, for example, a
mechanical load.

2.3.5 Design-dependent loads

Diverse studies have already been developed in topology optimization problems, consid-
ering loads that depend on the problem’s variables. This type of loading influences the
optimization process as well as the obtained results, so its impact has to be studied and
analyzed. Considering the existence of mechanical and thermoelastic loads, fm and fth,
respectively, and considering that f = fm + fth, Equation 2.33 can be rewritten as

∂c(ρ)

∂ρ
= 2uT∂(fm + fth)

∂ρ
− uT∂K

T

∂ρ
u. (2.35)

Thermoelastic loads derive from the existence of a temperature field on the structure due
to heat transfer phenomena. Since they depend on the existence and distribution of the
material on the domain, their value is always changing over the optimization process.
Therefore, their dependency on the design variables has to be considered. The term
related to the thermal loads, fth, in Equation 2.12, can be adapted for the optimization
problem as

fth =

∫
Ωe

∆TBTβ(ρ)dΩ. (2.36)
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Considering a one solid material and void distribution, it is possible to penalize only
the elasticity modulus in the thermal load stress, regardless of the thermal expansion
coefficient, α [Gao and Zhang 2010]. Consequently, β can be defined as

βe = β(ρ) = D(ρ) : α = (ρe
pD0) : α = ρe

pβ0, (2.37)

which allows to rewrite Equation 2.36 as

fth
e = ρe

p

∫
Ωe

∆TBTβ0dΩ = ρe
pfth0

e, (2.38)

where fth0
e, the thermal loads vector related to the material’s homogeneous distribution,

can be defined as

fth0
e =

∫
Ωe

∆TBTβ0dΩ. (2.39)

Therefore, the sensitivity of thermal load stress relatively to the element’s relative density,
ρ, can be computed by

∂fth
e

∂ρ
= pρe

p−1fth0
e, (2.40)

which is assumed valid considering a uniform temperature variation temperature vari-
ation on the structure. Finally, the sensitivity of the objective-function, for thermoelastic
stress loads, can be expressed by

∂c(ρ)

∂ρ
= 2pρe

p−1ue
Tfth0

e − pρep−1ue
Tk0ue. (2.41)

In contrast to Equation 2.34, which represents a negative sensitivity, this one presents
two terms with opposite signs. While the first is only related to design-independent loads,
Equation 2.41 refers to a problem with both types of loads. It is possible to analyze the
opposite sign of both terms and, depending on the magnitude of each one, the sensitivity
can switch between signals along the iterative process. Therefore, the objective-function
monotony is interrupted and the problem’s convergence is affected. Consequently, several
issues start to appear associated with this type of loads.

2.3.6 Optimality Criterion

Optimality criterion is a gradient-based method widely used for problems in which the
number of restrictions is lower than the number of variables [Bendsoe and Sigmund
2003]. Its application in structural analyses was introduced by Prager by establishing
an optimality criterion for structural design [Prager 1968]. Nowadays, its application is
widespread in topology optimization problems and its main objective consists in updat-
ing the variables that define the structure based on an optimum criterion. A generic
optimization problem can be defined as

minimize c (x) , (2.42)
subjected to g (x) = 0,
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where the stationary condition is established, based on the Karush–Kuhn–Tucker (KKT)
conditions, by

∆c (x∗) + λ∗T∆g (x∗) = 0. (2.43)

Considering a problem with only one restriction, g, Equation 2.43 can be rewritten as

− ∂c

∂xi
= λ

∂g

∂xi
, (2.44)

where λ stands for the Lagrange multiplier that is defined as

λ = −
∂c
∂xi
∂g
∂xi

. (2.45)

The Lagrange multiplier evaluates how the variable xi affects the restriction g, and its
value is constant in the whole domain at the optimum point. Based on the presented
equations and considering a fixed point iteration scheme, the variable’s update can be
established by

x
(k+1)
i = x

(k)
i

(
−

∂c
∂xi

λ ∂g
∂xi

) 1
γ

, (2.46)

where γ is responsible for controlling the step of each iteration k. A lower value results
in higher updates in variables, although, it can lead to convergence problems. Based on
an heuristic approach, the optimality criterion can be applied to a topology optimization
problem as

ρnew
e =



max(ρmin, ρe −m)

if ρeβ
η
e ≤ max(ρmin, ρe −m),

ρeβ
η
e

if max(ρmin, ρe −m) < ρeβ
η
e < min(1, ρe +m),

min(1, ρe +m)

if min(1, ρe +m) ≤ ρeβηe ,

(2.47)

where m is a positive move-limit parameter, µ is a numerical dumping coefficient, and
Be is a parameter found by the optimality condition, stated as

Be =

−∂c
∂ρe

λ ∂V∂ρe
. (2.48)

The Lagrange multiplier, λ, also needs to be updated over the optimization process in
order to accomplish the volume restriction. Based on a bi-sectioning method, its value
can be computed by

g(λ) = V (ρ(λ))− fVV̄ . (2.49)

In Figure 2.6, it is illustrated, in a schematic way, the iterative process responsible for
updating the Lagrange multiplier in each iteration.
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Figure 2.6: Representation of the iterative process inside Optimality Criterion. Adapted
from [A. Campos et al. 2015].

The convergence of both the iterative cycle and the optimization problem is established
when, for all the intermediate densities, Be = 1 and, consequently, ρk+1 = ρk.

2.3.7 Bi-directional Evolutionary Structural Optimization

A topology optimization problem is usually solved in a conventional way by applying
gradient-based search methods, such as, for example, the Optimality Criterion. This
consists in an iterative approach where the same calculations are repeated in each and
every iteration. An initial design is estimated and improved in each iteration, until
optimality conditions are satisfied. Alternatively, there are also algorithms inspired by
natural phenomena, also known as Nature-inspired methods, for example, the Genetic
Algorithms (GA). These, by contrast, do not require the continuity or differentiability of
the problems’ functions, wherefore stochastic ideas and random numbers generation are
used to search for the optimum point. The application of these algorithms to structural
optimization, more precisely, to topology optimization has already been the focus of
several works. However, these methods require a large amount of function’s evaluations
to analyze a topology optimization problem leading to a prohibitive computational effort
[Arora 2017]. In this work, an evolutionary algorithm, known as Evolutionary Structural
Optimization (ESO) method, is applied to the optimum design of a structure. This
method began as a non-gradient based algorithm and has gained widespread popularity
among researches in structural optimization. Firstly used by Xie and Steven in structural
optimization, its main idea relies on having a continuously evolving design, that slowly
improves until it reaches the optimum [Xie and Steven 1993]. Several developments have
already been made on the original method, so evolutionary algorithms began to adopt
gradient-based techniques, such as the sensitivity number to determine which elements
to remove [Munk et al. 2015]. Therefore, its original idea relies on an empirical concept
that the structure evolves towards an optimum by slowly removing elements with lowest
sensitivity numbers [Huang and Xie 2010].

This method has already been applied to diverse works on topology optimization
and its effectiveness has been proved. Furthermore, its application on problems with
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design-dependent loads has also been performed. Regarding this type of problems, Li
et al. focused on the study of topology optimization of thermoelastic structures with
displacement minimization [Li et al. 1999]. Years later, the same algorithm was applied
to topology designs involving varying temperature fields due to heat transfer phenom-
ena [Li et al. 2001a]. A latter work developed by the same authors extends the ESO
algorithm to optimum topology designs of thermoelastic structures subjected to various
complex thermal environments [Li et al. 2001b]. An extension of the presented method
was developed by Querin et al.. Known as Bi-directional ESO (BESO), its main idea relies
on adding new elements to the structure in the locations next to those with highest sensi-
tivity numbers apart from the idea of removing the less efficient ones [Querin et al. 1998].
In a similar way to ESO, this method was also evaluated in topology optimization prob-
lems and its results were proved to be similar to the ones from the conventional method.
However, the study of design-dependent loads was also performed by BESO method
in the subsequent years. Focused on the study of design-dependent self-weight loads,
Huang and Xie proposes a new BESO method using an alternative material interpo-
lation to SIMP [Huang and Xie 2011]. Regarding the same type of loading, a efficient
sensitivity computation was proposed by Rubén Ansola et al.. To enhance the conver-
gence of the algorithm in order to achieve the optimum design, a correction factor was
suggested to compute the sensitivities [Ansola et al. 2006]. Besides, Yang et al. proposes
a modification of the sensitivity number in order to accommodate transmissible loads,
surface loading with fixed load direction, and self-weight body loads in the conventional
BESO procedure [Yang et al. 2005]. According to the formulation applied to the previous
problems, and according to the BESO algorithm, a topology optimization problem can
be stated as

minimize c =

∫
Ω

1

2
fTudΩ, (2.50)

subjected to ρi ∈ {ρmin, 1}, i = 1, ..., n,
n∑
i=1

ρiνi
VΩ
≤ fV,

Ku = f ,

where f and u correspond to the loads and displacements vector, respectively. The loads
vector takes into account the applied mechanical load, fm, and the thermal loads, fth,
that the structure is subjected to. In addition, the objective-function, c, consists in the
mean compliance instead of the compliance used in the conventional method (vd. Eq.
2.50).

According to the main idea of this method, it is necessary to establish a ranking of
sensitivity numbers in order to understand which elements should be added or removed.
Concerning the sensitivity numbers for solid elements, these can easily be estimated by
the approximate variation of the objective-function due to the removal of these individuals
elements. By contrast, for void elements, these are harder to determine. Consequently,
the addition of new elements is performed in the neighborhood of the elements with higher
sensitivity numbers. Besides, Huang and Xie proposed a new BESO approach based on
SIMP. In a similar way to the conventional method, based on the sensitivity analysis,

Mafalda Gonçalves Master Degree Dissertation



2.Numerical and mathematical formulation 21

a definition of the sensitivity number is presented using a penalty parameter [Huang
and Xie 2009]. Taking into account the existence of design-dependent loads, Yang et
al. proposed a modified sensitivity number in order to include the influence of design-
dependent loads on the optimization process [Yang et al. 2005]. Therefore, the sensitivity
of the objective-function can be computed in a similar way to section 2.3.5. Considering
the mean compliance (1

2 f
Tu) as the objective-function, the sensitivity can be given by

∂c(ρ)

∂ρ
= pρe

p−1ue
Tfth0

e − 1

2
pρe

p−1ue
Tk0ue, (2.51)

where fth0
e stands for the thermal loads computed initially for the material’s homoge-

neous distribution. However, if a thermal analysis is carried out to update the temper-
ature field, this quantity is given by fth and has to be computed in each iteration. As
mentioned, the BESO method establishes a “black and white” topology for which reason
the design variables can only assume discrete values. Therefore, according to the SIMP
method, the sensitivity number can be stated as

αi =
−1

p

∂c

∂ρi
=


1

2
uTKu− uTfth

0 when ρi = 1

ρi
p−1

2
uTKu− ρip−1uTfth

0 when ρi = ρmin

. (2.52)

In contrast to the sensitivity number for material elements, the one that corresponds to
void elements is dependent on the penalization factor. Alternatively, assuming that the
penalty is equal to infinity, the sensitivity number can be rewritten as

αi =
−1

p

∂c

∂ρi
=


1

2
uTKu− uTfth

0 when ρi = 1

0 when ρi = ρmin

. (2.53)

The approach mentioned in Equation 2.53 is similar to the original BESO method, also
known as “hard-kill” approach. It is noticeable that considering the penalty factor equal to
infinity, the original “hard-kill” method turns out to be a special case of the new approach,
known as “soft-kill” BESO. Moreover, in both approaches, the sensitivity numbers are
computed based on different status of elements (ρmin and 1), so there could be difficulties
in the convergence of the objective-function and also in the corresponding topology. An
effective way to avoid this problem consists in averaging the sensitivity number with its
historical information [Huang and Xie 2007]. Consequently, the new sensitivity number
can be expressed by

αi =
1

2
(αi,k + αi,k−1) , (2.54)

where k represents the number of the current iteration.
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2.3.8 Control of stability

In topology optimization problems, different numerical issues appear commonly in the
obtained results. These can be divided into three categories, such as, checkerboards,
mesh-dependence and local minima. The first ones consist in the appearance of regions
of alternating solid and void elements. On the other hand, mesh-dependency phenomena
refer to obtaining different qualitative solutions for different discretizations and mesh
sizes. Finally, the last one is characterized by obtaining different solutions to the same
discretized problem when choosing different starting solutions [Sigmund and Petersson
1998].

Several techniques are used to ensure the existence of solutions in a topology optimiza-
tion problem and also to avoid the existence of the mentioned numerical issues. One of
them consists in a filtering technique that is also used to restrict the problem. Known
as checkerboard filter, this technique, introduced by Sigmund, is based on filtering tech-
niques from image processing. This filter modifies the sensitivities, computed by Equa-
tion 2.34, taking into account a weighted average of the element sensitivities in a fixed
neighborhood. Despite the purely heuristic principle of this filter, it produces similar
results to local gradient constrained ones with a simpler implementation [Sigmund and
Petersson 1998]. Therefore, according to Equation 2.55, the new sensitivity of element
e is dependent on the sensitivities of elements in a predefined neighborhood and can be
determined by

∂c

∂ρe
=

1
ρe
ve

∑
i∈Ne Hi

∑
i∈Ne

Hiρi
∂c

∂ρi
, (2.55)

where Hi, the convolution operator, defined as

H = rmin − dist (e, f) , (2.56)
f ∈ N | dist (e, f) ≤ rmin, e = 1, .., N,

which allows the evaluation of the weight of each element in the new sensitivity of element
e. The convolution operator is computed considering the distance between the centers
of each element, e and f , and the predefined radius of the filter area, rmin. Only the
elements inside the filter area are taken into account and their influence on the sens-
itivity of element e linearly decreases with the distance between them and element e.
Therefore, the sensitivity converges to the original one when the radius approaches zero
and all sensitivities will be equal when rmin approaches infinity [Sigmund and Petersson
1998]. Outside the filter area, the operator H is considered null. Finally, the modified
sensitivities are used by the optimization algorithm to update the design variables.

In contrast to the conventional method, the evolutionary structural optimization
method presents a different operating mode. Instead of searching for an optimum solution
since the beginning of the process, the structure evolves to one with the required volume
and, then, to an optimum solution. Apart from that, a checkerboard filter is also applied
to the BESO method in order to avoid the same numerical instabilities [Huang and Xie
2010]. In this method, the sensitivity numbers computed by Equations 2.52 and 2.53
reflect the efficiency of each element on the structure’s compliance without carrying any
physical meaning. The applied filter is rather similar to the one used in SIMP method.
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In a similar way, the sensitivity numbers are defined by averaging those of the connected
elements in a established neighbourhood. Initially, the neighbourhood is defined by the
parameter rmin that consists in the radius of a circle centered on the centroid of element
e. Only the nodes located inside the defined circle contribute to the new sensitivity
number of element e. Therefore, through the computation of a weight factor as

ω (re,f ) =

{
rmin − re,f for re,f < rmin

0 for re,f ≥ rmin
, (2.57)

it is possible to determine the influence of the neighboring elements on the sensitivity
number of element e. Taking this into account, the modified sensitivity number is stated
as

α̂e =

∑Ne
f=1 ω (re,f )αf

n∑Ne
f=1 ω (re,f )

, (2.58)

where Ne is the total number of nodes in the neighbourhood and re,f denotes the distance
between the center of the elements e and f . It is possible to verify that the sensitivity
numbers for void elements are provided by filtering the sensitivity numbers of their
neighboring solid elements.
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Chapter 3

Software Architecture and
Implementation

3.1 Overview

One of the objectives of this dissertation consists in the development of a computational
tool capable of solving different topology optimization problems. Several procedures
based on linear elasticity and thermal conduction are developed, such as, a multi-objective
approach and a thermoelastic analysis. A numerical simulation software, already imple-
mented in MATLAB, is the basis for the integration of the developed methodologies.

GRIDS Alpha was developed by Rúben Lourenço as an outcome of his Master’s
Thesis [Lourenço 2018]. Developed in an academic environment, its main objective was
to be a helpful tool for students and researchers. Additionally, it also allows further
developments by the integration of new modules. The upgrade of its functionalities by
the addition of new features developed by other students is consistent with its open-
source and modular concepts. Thereby, students can develop a deeper understanding on
numerical simulation concepts when dealing with the code’s implementation themselves.

The features of the original software consist in numerical analysis of two-dimensional
problems according to different finite element formulations. As a Finite Element Anal-
ysis (FEA) platform and taking advantage from its modular concept, this work proposes
an upgrade of its functionalities by implementing Topology Optimization (TO) proce-
dures. Therefore, the developed program is capable of solving different types of topology
optimization problems, such as, linear elasticity, thermal conduction analysis and a multi-
objective approach. Additionally, it is also possible to perform a linear thermoelasticity
analysis, considering a constant temperature field or an updated one coming from a
thermal analysis (semi-coupled approach to thermoelasticity). The different approaches
can be carried out by the developed software by selecting/deselecting the respective
options at the beginning of the process. Therefore, diverse routines associated with each
methodology were implemented in order to establish a clean and organized code. In
Figure 3.1, it is represented the overall structure of the software GRIDS Alpha with the
available procedures specified.

In this section, the structure of the computational tool is presented and some details
related to its implementation are specified. Additionally, a summary analysis on each
methodology is carried out in order to understand the different options that are available
for each procedure.
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Figure 3.1: Schematic representation of the overall structure of GRIDS Alpha.

3.2 The Finite Element Method

GRIDS Alpha consists in a software that performs numerical analyses of two-dimensional
problems. Based on the Finite Element Method (FEM), an elastic analysis can be carried
out for different formulations of finite elements. According to the input file introduced by
the user, as well as the chosen options, the shape functions and the integration strategy
are established for the respective element formulation. The boundary conditions are also
initially entered and, on this basis, the stiffness is computed and the equilibrium of the
structure established. Consequently, the displacements and the strain and stress levels
are determined for the post-processing phase. To perform each phase of the analysis,
sub-routines are developed in order to establish an organized code. The implemented
sub-routines related to the FEM analysis are used for the thermal and thermoelastic
analyses that are developed in this work (vd. Sec. 2.1). For the thermoelastic analysis,
only a few changes were made with regards to the thermal loads. These have to be
computed taking into account the temperature field initially established by the user and,
then, assembled to the loads vector. In Figure 3.2, it is illustrated the pseudo-code that
shows the incorporation of the thermoelastic analysis in the original software structure.

Define E, v, t, ∆T , α
[fm]=setNodalForces
if thermoelastic = 1 then

Compute thermal loads as Eq. 2.12 — fth
f = fm + fth

else if thermoelastic = 0 then
f = fm

end
U = K−1f
Compute stress - σ

Figure 3.2: Pseudo-code for the linear elastic and thermoelastic analyses.
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On the other hand, for the thermal analysis, the nature of the problem’s variables
differ from one another, however, the structure of the problem remains very similar.
The applied boundary conditions consist in heat fluxes or prescribed temperatures and
the equilibrium equation corresponds to Equation 2.18. Considering that the necessary
functions for FEM analysis were already developed, and only specific changes were made,
it is not important to detail here all the applied formulation that can be found in [Teixeira-
Dias et al. 2010].

3.3 Topology Optimization

Since the developed methodologies are based on topologically optimizing a structure
submitted to different types of loading, it is crucial to explain, in a general basis, the
procedures behind a topology optimization algorithm. A schematic representation of the
implemented algorithm is illustrated in Figure 3.3.

Figure 3.3: Flowchart of the topology optimization algorithm in structural optimization.
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For every feature of the software, the process starts by introducing a .inp file with the
mesh’s data. These are analyzed and used to define some important program variables.
Initially, the user is prompted to choose the required type of analysis, whether it is a
pure-based FEM or a topology optimization. According to the answer, different options
are available for each one. The material’s properties and the finite element’s formulation
are established in the developed interface, as well as the prescription of the boundary
conditions. Based on the data introduced, the definition of the variables for the opti-
mization process takes place. The initial solution is also established by assigning to each
element the volume fraction introduced by the user. All these procedures takes place in
the Initial configuration phase.

The next phase consists in the FEM analysis, where the stiffness is computed and
assembled as well as the applied loads. Considering a TO problem, it is necessary to
take into account the density of the elements for the stiffness’ assembly. Thus, in a
more efficient way, element stiffness can be computed only at the beginning and, in each
iteration, it is only necessary to multiply it by the penalized density of each element. Since
the stiffness computation is performed using symbolic variables, it consists in a heavy
procedure that can be avoided to be executed in every iteration. Then, the applied loads
are correctly assembled and the equilibrium equation is solved in order to establish the
structure’s equilibrium. As a result from this phase, the displacements of each node are
determined taking into account the applied boundary conditions and the material layout.
These are necessary to evaluate the objective-function and the sensitivities. This latter
evaluation is the most important procedure since it controls the problem’s behavior and
evolution. Based on their values, each one of the optimization variables is updated by
the Optimality Criterion (OC). Alongside the OC method, a bi-sectioning algorithm is
carried out to guarantee that the solution respects the volume’s restriction. Afterwards,
it is applied a convergence criterion to the iterative cycle in order to control the evolution
of the problem. In each iteration, a variable (change) is determined taking into account
the maximum variation of the variables in the respective iteration (vd. Fig. 3.4). Based
on a limit value defined for the variable change, a convergence criterion is established. As
long as it is not fulfilled, the optimization process continues until it reaches the optimum
solution. However, the topology optimization algorithm is also implemented using a
stopping criteria based on the number of iterations (vd. Fig. 3.4). The output phase
consists in releasing the optimum topology as well as some important variables that are
saved for further analysis. Anyway, in each iteration, the obtained topology is presented
throughout the process so that the user can follow the evolution.

3.4 Multi-objective approach

A multi-objective approach is also developed in this work by combining the elastic and
thermal analyses, developed previously. Therefore, it is possible to evaluate the me-
chanical and thermal objectives, simultaneously, through a Pareto analysis. In order to
control the influence of each one of the objectives in the final solution, it is established a
global objective-function as a weighted sum of both functions (vd. Eq. 2.26). Since both
objectives correspond to quantities of different natures, they can present different values
of magnitude. To ensure that the problem is solved based on the weighting defined by the
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user and not by the magnitude of one of the problems, the normalization of the functions
is required. Additionally, it is also necessary to ensure that the optimization algorithms
can handle the magnitude of the quantities related to the proposed problems. Therefore,
considering the normalized objectives, the implemented methods become independent of
the magnitude of the prescribed solicitations, for example. In Figure 3.4, it is represented
the pseudo-code related to the evaluation of the global objective-function.

change = 1; loop = 0
Initial design - xnew

while change > 0.001 do
loop = loop+ 1
x = xnew

...
if loop = 1 then

for i = 1, 2, ..., n do
cm

0 = cm
0 + ρi

puT
i Kiui

ct
0 = ct

0 + ρi
pTT

i KiTi

end
end
for i = 1, 2, ..., n do

cm = cm + ρi
puT

i Kiui
ct = ct + ρi

pTT
i KiTi

end
c = (1− ωt)

cm
cm0 + ωt

ct
ct0

...
Construct a new design - xnew

change = max(abs(xnew − x))
if loop = 100 then

change = 0
end

end

Figure 3.4: Pseudo-code for the evaluation of the global objective-function in the multi-
objective approach.

3.5 Thermoelasticity

Thermoelasticity is the most explored subject in this work because of the challenges it
poses regarding topology optimization problems. The study of thermoelastic phenomena
involves the evaluation of the derived thermal loads. Therefore, their influence on the
optimization process and, consequently, on the optimum topologies is analyzed in detail.
That way, three alternative procedures increasingly complex are developed in this work.

In this type of analyses, the computation of the thermal loads represents an important
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procedure since their value depends on the optimization variables, the elements’ relative
density. Therefore, their calculation needs to be performed in each iteration taking into
account the updated material distribution.

In the first approach (Phase 1), the thermal loads are computed initially for the
homogeneous material distribution, considering a structure submitted to a constant tem-
perature field. Over the optimization process, these are kept constant, being only directly
considered to the structure’s equilibrium. In the following procedure, the thermal loads
are already updated in each iteration, taking into account the material distribution. At
this point, the sensitivity includes the term related to the design-dependent loads (vd.
Eq. 2.41), so it is already possible to analyze their real effect on the obtained solu-
tions. Finally, at the last approach (Phase 3), the temperature field is determined by
running a thermal analysis in each iteration, considering the applied boundary condi-
tions (whether they are heat fluxes or prescribed temperatures). Therefore, the thermal
analysis is solved and a temperature field is determined. On this basis, the thermal loads
are computed in the same way as the previous procedure (Phase 2). Figure 3.5 illustrates
schematically the structure of the explained thermoelasticity approaches. The area inside
the dashed line represents the loop associated with the topology optimization algorithm.
In a similar way to stiffness, the thermal loads are also computed with symbolic values,
which consists in a computationally heavy procedure. Since they need to be updated in
every iteration due to its dependence on the optimization’s variables, their computation
is performed initially for the homogeneous material layout and, then, multiplied by the
penalized element’s density.

Figure 3.5: Schematic representation of the structure of the thermoelastic procedures.
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3.6 Bi-directional Evolutionary Structural Optimization

Several issues appear in thermoelastic problems related to the dependency of thermal
loads on the design domain. These issues arise from the existence of terms with opposite
signs on the sensitivity, leading to a non-monotonous objective-function. Therefore, in
order to overcome these instabilities, an alternative approach to the methodologies ex-
plained in section 3.5 is proposed. An extension of the Evolutionary Structural Optimiza-
tion (ESO) method, known as BESO, is applied to thermoelastic problems considering
a constant temperature field. Thus, a sensitivity analysis is also performed in BESO
method in order to evaluate the objective-function behavior. The efficiency of each ele-
ment is analyzed by computing a sensitivity number based on the mentioned sensitivity
analysis.

In Figure 3.6, it is represented the pseudo-code for the implemented BESO algorithm.
As explained in section 2.3.7, this method presents a different way of solving topology op-
timization problems when compared to the OC method. In contrast to this, the structure
evolves to the optimum topology by decreasing its volume in each iteration. Therefore,
the volume of the structure (vol) is initialized as 1 as well as each element’s density. The
user chooses initially the required volume fraction (volfrac) and some parameters such as
the penalization factor (p) and the evolutionary ratio (ER). The latter one controls the
evolution of the optimization problem by establishing, at the beginning of each iteration,
the target volume of the iteration (vol). After the evaluation of the objective-function,
the sensitivity number is computed for each element, based on a sensitivity analysis. As
explained in section 2.3.8, a filtering scheme is then applied to the sensitivity numbers
in order to avoid the appearance of numerical issues on the optimum topologies. The
filtered sensitivity numbers are also averaged with those from the previous iteration to
ensure the convergence of the problem (vd. Eq. 2.54). Afterwards, the update of the
variables takes place in a similar way to the OC method. The whole optimization pro-
cess is controlled by a convergence criterion that is initially established. The convergence
parameter (change) is computed in each iteration taking into account the evolution of
the objective-function in the last iterations. As long as its limit value is not achieved,
the process continues until the criterion is fulfilled.
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Define BESO parameters: volfrac, ER, p, N
vol = 1; change = 1
Initial solution — ρi = 1
while change>0.001 do

k = k + 1
vol=max(vol(1-ER),volfrac)
FEM analysis — K and u
Compute the objective-function — c(ρ)
for i = 1, 2, ..., n do

if ρi = 1 then
αi = 1

2u
T
i Ki

0ui − ui
Tfth,i

0

else if ρi = ρmin then
αi = 0

end
end
Filter the sensitivity numbers as Eq. 2.58 — α̂i,k
α̃i = 1

2 (α̂i,k + α̂i,k−1)
Construct a new design — xnew

if k>10 then

change =
|∑N

i=1(ck−i+1−ck−N−i+1)|∑N
i=1 ck−i+1

end
end

Figure 3.6: Pseudo-code for the bi-directional evolutionary structural optimization al-
gorithm. Adapted from [Huang and Xie 2010].
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Chapter 4

Results and analyses

In this chapter, several examples are presented and evaluated in order to validate the
methodologies implemented in the developed software. This computational tool is capa-
ble of solving different problems related to the Finite Element Method (FEM) analysis
and Topology Optimization (TO). The examples shown in this section consist in com-
monly used benchmarks in structural analysis. In order to validate the obtained results,
these are analyzed and compared to the ones presented in bibliography.

In a first phase, a linear elastic, a thermoelastic and a steady-state heat conduction
analyses are carried out based on FEM. The linear elastic analysis was already imple-
mented in GRIDS Alpha while the other analyses have been developed during this work.
Then, the topology optimization methodologies are evaluated, starting by carrying out a
linear elastic and thermal conduction analysis. Through the evaluation of the obtained
results, the influence of a filtering technique on the optimum topologies is evaluated.
Besides, the analyses are performed for different sizes of meshes in order to study the
problem of mesh-dependency. Furthermore, by combining both objectives, mechanical
and thermal, a multi-objective approach is also performed. Finally, the influence of
thermoelastic phenomena is evaluated according to different approaches, including an
alternative procedure, an evolutionary algorithm.

The examples shown in this section are carried out assuming a plane stress state and
considering a linear elastic isotropic material, which properties are illustrated in Table
4.1. Also, a four-node bi-linear quadrilateral finite element is used in each analysis, which
in GRIDS Alpha is defined as Q4.

Table 4.1: Material properties used in the validation of the implemented methodologies.

Material properties

Elasticity modulus [GPa] E 210
Poisson coefficient ν 0.3
Thermal conductivity [Wm−1K−1] k 50.2
Thermal expansion coefficient [K−1] α 11× 10−6
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4.1 FEM validation

A rectangular thin plate of dimensions 0.25 × 0.5 m2 with 0.025 m of thickness is rep-
resented in Figure 4.1. As illustrated, the plate is submitted to a superficial load (w)
equal to 3× 106 N/m2 in its right side and kinematically fixed on the opposite side. The
analysis was originally performed by [Kattan 2008] and then used by Rúben Lourenço in
order to validate the implemented methodology [Lourenço 2018].

Figure 4.1: Representation of a thin rectangular plane subjected to a superficial load.
Adapted from [Kattan 2008].

Figure 4.2 represents the horizontal displacements field resulting from a numerical analy-
sis using a mesh of 21× 2 elements. Considering the horizontal displacements, these are
null on the left hand side, due to the established support conditions. On the opposite
side, the displacement is equal to 7.1429× 10−6 m.

Figure 4.2: Representation of the displacements field for the structure under a superficial
loading.

Considering Hooke’s Law, the analytical solution to the horizontal displacements in the
extremity of the body can be determined by

∆L =
FL

EA
, (4.1)
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where F stands for the total load applied to the center of the extremity, A for the
cross-section area, and L for the length of the structure. According to Equation 4.1 and
considering F equal to 18750 N, the analytical solution, for L = 0.5 m, is 7.1429×10−6 m.

The example illustrated in Figure 4.1 is also used to validate the implemented pro-
cedure related to the thermoelastic analysis. This analysis and the following ones have
been developed in this work taking into account the existing functions for the linear
elastic analysis and preserving the modular concept of the software. The structure is
under the same predefined loads, but also under a uniform temperature variation, ∆T ,
equal to 30 K. The displacements due to thermal expansion are no longer negligible and
the obtained displacement field is represented in Figure 4.3.

Figure 4.3: Representation of the displacements field for the structure under a superficial
loading and a uniform temperature variation.

The illustrated results include the displacements due to mechanical loading and thermal
expansion. Considering the displacements related to mechanical loading (vd. Eq. 4.1)
and subtracting these values to the total ones, the horizontal displacement derived from
thermal expansion corresponds to 1.65 × 10−4 m in the free extremity of the structure.
This value can be analytically computed by

∆L = α∆TL, (4.2)

where L represents the length of structure. ∆T and α stand for the uniform temperature
field and the thermal expansion coefficient of an isotropic material, respectively. For
L = 0.5 m, the extremity of the structure, and α = 11× 10−6, the analytical solution for
the horizontal displacement is equal to 1.65× 10−4.

Another example is carried out in order to validate the program considering a struc-
ture under bending. Figure 4.4 represents the support conditions and the applied load
to a rectangular plate. The plate thickness is equal to 0.001 m and it is considered that
the magnitude of the applied load is 100 N. The structure’s dimensions are 1 × 2 m2.
The analysis was carried out for different mesh sizes starting from a mesh of 2 × 2 ele-
ments to 32 × 32 elements. In order to perform a mesh convergence study, the vertical
displacement of the top-right corner node (U2) is analyzed for the mentioned meshes.
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Figure 4.4: Representation of a thin rectangular plate under bending.

Therefore, Figure 4.5 represents the convergence of the node’s vertical displacement with
the increase of the number of elements. In view of the performed analyses, Figure 4.6
illustrates the displacements field using a mesh of 32 × 32 elements, where the vertical
displacement in the right upper corner is equal to 2.2533×10−5 m. The obtained results
can be compared to the ones presented in the bibliography [Lourenço 2018].
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Figure 4.5: Evolution of the vertical displacement of the top-right corner node of the
beam.

A thermal analysis is also developed and the illustrated example in Figure 4.7 is used
to carry out the mentioned analysis. A two-dimensional square plate of thickness equal
to 0.025 m is submitted to a prescribed temperature of 30 °C on its sides and to a uniform
heat flux of 5 W/m2 into the top surface of the plate.
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Figure 4.6: Representation of the displacements field for the structure under bending.

Figure 4.7: Representation of a thin rectangular plate subjected to a heat flux and
prescribed temperatures. Adapted from [Incropera et al. 2007].

Figure 4.8 represents the temperature field returned by GRIDS alpha using a mesh of
20 × 20 elements. As expected, the temperature in each lateral node is 30 °C and the
maximum temperature is located in the middle node of the top surface and is equal to
103.65 °C.
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Figure 4.8: Representation of the temperature field of a structure under thermal bound-
ary conditions.

The temperature of each node can be computed by the following equation,

q =
kA∆T

L
, (4.3)

which represents the Fourier’s Law, where k stands for the thermal conductivity coeffi-
cient. A and L represent the cross-section area and the length of the plate, respectively.
Considering k equal to 110× 106 W/K−1, the analytical solution for the temperature in
the middle of the top surface can be computed. For L equal to 1 m, the dimension of
the plate’s side, the obtained solution is 103.6526 °C.

4.2 Topology Optimization

Throughout this section, several topology optimization problems are presented and the
obtained results are analyzed. Based on 2D examples, the methodologies implemented
in this work are validated comparing the obtained results to the ones presented in the
bibliography. Initially, a mechanical problem is carried out and the influence of a filtering
scheme, as well as of different mesh sizes, is evaluated. Thereafter, a thermal problem
is also evaluated and, consequently, a multi-objective approach is considered. Table 4.2
represents the chosen parameters related to the optimization algorithm.

Table 4.2: Optimization parameters used in the resolution of the topology optimization
problems.

Optimization parameters

Penalization factor p 3
Minimum density ρmin 0.001
Volume fraction fv 0.5
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A well-known topology optimization problem is illustrated in Figure 4.9. Also rec-
ognized as “MBB” beam, the rectangular plate of dimensions 1× 3 is represented with a
symmetry boundary condition in order to simplify the problem’s resolution. Commonly
used as a benchmark, this example has already been the focus of several works on topology
optimization [Rozvany 1998,Bendsoe and Sigmund 2003,Rozvany 2009].

Figure 4.9: Representation of the “MBB” beam with a symmetry boundary condition.
Adapted from [Sigmund 2001].

The proposed problem is solved by using different mesh sizes with 5 × 15, 10 × 30,
20× 60 and 40× 120 four-node bi-linear quadrilateral finite elements. The magnitude of
the applied loads is not relevant to the problem’s evaluation. Although the sensitivities
are dependent on the magnitude of the applied loads and responsible for the optimization
process, as long as their variations are consistent, the magnitude of the boundary condi-
tions does not influence the process neither the optimum topologies. Therefore, Figure
4.10 illustrates the obtained results for different sizes of mesh without using any filtering
technique. With the intention of validating the optimum topologies, these are compared
to the ones from the bibliography [Rozvany 1998,Bendsoe and Sigmund 2003,Rozvany
2009].

(a) (b) (c) (d)

Figure 4.10: Topologies obtained for different meshes without any filtering scheme.

It is possible to notice the existence of some problems due to numerical instabilities
in the results illustrated in Figure 4.10. These issues are described in section 2.3.8
alongside some approaches used to overcome the numerical instabilities. One of the
most evident issue is related to checkerboard problems that are caused by the chosen
finite element formulation. The existence of checkerboard problems when linear finite
elements are used leads to an excessive stiffness of the structure. This suffers from
an artificial increase of the stiffness and, consequently, a decrease in the compliance
value. Anyway, it is considered a FEM problem and not an optimization one [Rozvany
2009]. On the other hand, this problem can be solved using filtering techniques as also
described in section 2.3.8. Although these techniques require an additional computational
effort, they allow a more rigorous mesh control and produce topologies without numerical
instabilities. A relative radius equal to 1.5 is applied in the filtering scheme keeping the
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solution’s accuracy. As already mentioned, the predefined radius defines the weight of
the neighboring elements’ density. Based on filtering techniques, the analyses carried out
above are repeated using the mentioned filter. The obtained results for these analyses
are represented in Figure 4.11.

(a) (b) (c) (d)

Figure 4.11: Topologies obtained for different meshes using a filtering scheme.

Checkerboard problems no longer appear in the optimum topologies, leading to the
conclusion that the filter produced efficient results. However, intermediate densities
start to appear in the optimum topologies between material and void regions. This effect
is due to the applied filter that takes into account the density of the elements in the
neighbourhood to the new element’s density. Besides, the results obtained without using
a filtering scheme suffer from mesh-dependency as well as the ones using the filter. As
explained in section 2.3.8, the mesh-dependency problem is related to the existence of
different optimum solutions for the same problem when using different mesh sizes. This
problem could be solved by using a similar filter in order to deal with this issue. Specially,
when observing the first topology in Figure 4.11, it is possible to conclude that the mesh
in question is too coarse to be possible to apply this filter scheme.

A thermal analysis of a topology optimization problem is carried out in order to
validate the developed methodology. Figure 4.12 represents the boundary conditions
that are applied to the thermal problem. A heat sink is established in the right bottom
node to set the temperature differential to zero in the applied node. In addition, all
nodes in the upper and left edges are under a constant heat flux. The same geometry
of the “MBB” beam benchmark is used to carry out the thermal analysis for the same
mesh sizes used in the mechanical problem. Figure 4.13 represents the obtained results
for the thermal analysis using a filtering scheme.

Figure 4.12: Representation of a thermal conduction topology optimization problem.
Adapted from [Oliveira 2013].

(a) (b) (c) (d)

Figure 4.13: Topologies obtained for different meshes considering a thermal analysis.

Mafalda Gonçalves Master Degree Dissertation



4.Results and analyses 41

The illustrated results were obtained using the filtering scheme shown in section 2.3.8.
In a similar way to the results represented in Figure 4.11, it is possible to notice the
effect of mesh-dependency in the obtained results. However, the material is allocated
considering the pure conduction criteria in order to maximize the thermal conductivity
of the structure. The material distribution is established mostly near the heat sink,
the right bottom node, and it spreads along the structure toward the edges that are
submitted to heat fluxes.

4.2.1 Multi-objective approach

A multi-objective approach is defined by Equation 2.26 which, in this work, considers
a structure under mechanical and thermal loading, simultaneously. With the intention
of validating the developed program, the problem represented in Figure 4.14 is solved
according to the multi-objective approach and its results are analyzed and compared to
the bibliography [Oliveira 2013, de Kruijf et al. 2007]. A square plate is evenly heated
with a constant heat source in all the nodes and in the middle of its left hand side a heat
sink is established to set the variation of the temperature’s node to zero. On the same
side, all the nodes are kinematically fixed and a mechanical load is applied at the middle
node of the opposite side.

Figure 4.14: Representation of a rectangular plate subjected to a concentrate load and
a superficial heat flux. Adapted from [Oliveira 2013].

As explained in Equation 2.26, the global objective-function related to the multi-
objective approach is established by normalizing both objective-functions, mechanical
and thermal. Moreover, to each objective is assigned a weighting coefficient in order to
set its influence on the final solution. Therefore, in Figure 4.15, the optimum topolo-
gies for the multi-objective approach are illustrated. The obtained results correspond
to values of wt = {0; 0.25; 0.5; 0.75; 1}, the weight of thermal analysis. Considering a
discretized domain of 80 × 80 elements and a volume restriction, fv, equal to 0.4, the
obtained solutions are similar to the represented in bibliography [Oliveira 2013,de Kruijf
et al. 2007].

The analysis of the optimum topologies allows the study of the impact of each objec-
tive in the optimum solution, according to the predefined weighting coefficient associated
with each one. It is possible to notice the evident difference between the optimum
solutions of each analysis, namely, the way material is allocated inside the structure for
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(a) (b) (c)

(d) (e)

Figure 4.15: Topologies obtained for different values of wt considering a multi-objective
approach: (a) wt = 0, (b) wt = 0.25, (c) wt = 0.5, (d) wt = 0.75 and (e) wt = 1.

each objective independently. On the one hand, the pure conduction criteria establishes
the allocation of the majority of material near the heat sink and allows the spread of
it along two branches. On the other hand, the majority of the material is allocated
over a path between the left and the right upper corners and the application point of
the mechanical load, considering the pure elasticity criteria [de Kruijf et al. 2007]. The
objective-functions of both thermal and mechanical analyses are presented in Figure
4.16a as well as the global objective-function. In Figure 4.16b, the Pareto analysis for
this problem is illustrated along with the thermal weighting coefficient, ωt, of each point.

It is possible to analyze the evolution of the objective-functions over different values
of the weight coefficient, ωt, and also to notice that the optimum points of each objective
are not compatible with the other objective in analysis. The evolution of the objective-
function to values higher than the initial solution implies an unfeasible solution of the
other objective.

4.3 Thermoelasticity

Thermoelasticity comprehends the study of a structure’s behavior when subjected to
temperature variations due to heat transfer phenomena. Topology optimization of these
type of problems brings new issues related to the dependency of the thermal loads on the
existence of material. With the purpose of evaluating the influence of thermal loads on
topology optimization problems, an example commonly used in the bibliography is carried
out and analyzed. Figure 4.17 illustrates a rectangular plate clamped on both sides and
subjected to a mechanical load [Rodrigues and Fernandes 1995,Li et al. 1999,Gao and
Zhang 2010]. In order to evaluate the impact of the temperature on the structure,
a thermal expansion coefficient equal to 11 × 10−6 K−1 is considered. Moreover, an
elasticity modulus equal to 210 GPa is used and a mechanical load of magnitude equal
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Figure 4.16: Evolution of a multi-objective topology optimization problem: (a) Mechan-
ical, thermal and global objective-function. (b) Pareto analysis.
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to 1× 105 N is applied to the structure. The same optimization parameters represented
in Table 4.2 are used in these analyses.

Figure 4.17: Representation of a rectangular plate subjected to a concentrate load and
a uniform temperature variation.

The following analyses consist in different approaches that were implemented in order
to study and control the influence of thermal loading on the optimum topologies. Firstly,
it is considered a uniform temperature variation on the entire structure. The derived
thermal loading is initially computed for the homogeneous material distribution and
kept constant over the optimization process. Therefore, the impact of thermal loads is
not considered in the evaluation of the sensitivities. Several studies are carried out for
different values of the temperature differential in order to evaluate its influence on the
obtained results, as represented in Figure 4.18.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.18: Topologies obtained for different values of ∆T considering constant
thermal loads over the optimization process: (a) ∆T = −10 K, (b) ∆T = −1 K,
(c) ∆T = −0.5 K, (d) ∆T = −0.1 K, (e) ∆T = 0 K, (f) ∆T = 0.1 K, (g) ∆T = 0.5 K,
(h) ∆T = 1 K and (i) ∆T = 10 K.
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Considering that this phase does not take into account the update of the thermal
loading with the material distribution, the obtained results do not reflect the real behavior
of a thermoelastic structure. However, even without physical meaning, based on the
illustrated topologies, it is possible to notice the material distribution according to the
stiffness maximization. Starting with the null temperature differential, the material
allocation is mainly established between the middle of the bottom side, the load’s point of
application, and the upper corners. As the temperature variation increases, the impact of
the thermoelastic stress loads starts to be noticed. Although the topology basis remains
similar, the material is being allocated differently due to the impact of the thermal
loading on the optimization process. In this case, the objective-function sensitivities are
still computed taking into account the Equation 2.34. The sensitivity related to the
thermal loads is not considered yet, which justifies the reduced instabilities that appear
in the optimum results.

The next step consists in the update of the thermal loading in each iteration. Since
it depends on the existence of material, its value is updated taking into account the
material layout. Besides, the magnitude of the thermal loading is determined based on
the quantity of material in each element. The problem illustrated in Figure 4.17 is solved
under the same boundary conditions. A mechanical load is applied to the structure with
its both sides kinematically fixed and submitted to a uniform temperature variation.
Therefore, the obtained topologies are represented in Figure 4.19 for different values
of the temperature differential. These results provide important information about the
problem’s behavior. Along with the objective-function evolution and the local sensitivity
on specific elements, it is possible to study the problem’s convergence and also to ana-
lyze the way thermoelastic phenomena affect the structural behavior. Thus, in Figure
4.20a, it is possible to evaluate the objective-function evolution for different values of
the temperature field. Also, the local sensitivities related to elements 31 and 1171, the
load’s point of application and the superior central element, respectively, are represented
in Figure 4.20b.

The obtained topologies correspond to values of temperature variation between−10 K
and 10 K. As mentioned, the material converges to the load’s application point to maxi-
mize the solution’s stiffness. However, as the temperature variation increases, it is pos-
sible to notice some changes in the material distribution associated with the influence of
temperature. Particularly, the impact of the derived thermal loading leads to instabilit-
ies on the optimization process. The local sensitivities, in this and the following phases,
are computed according to Equation 2.41. It is possible to notice the opposite signals of
both terms, which leads to positive and negative values of the sensitivity. This effect is
responsible for the non-defined topologies and unstable solutions. The instabilities that
appear on the obtained topologies depend on the magnitude of the thermal loads since
the impact of a higher temperature differential results in the switch between signs of the
sensitivity. This issue affects the objective-function monotony and, consequently, the en-
tire topology optimization process. Until ∆T equal to 0.1 K, the optimum topologies are
well defined and reflect the stability of the problem. Besides, it is possible to notice the
easy convergence of the objective-function for the same values of ∆T . However, as the
temperature differential increases, the objective-function starts to behave in an unstable
way, which is more evident when the temperature field reaches 10 K. In this case, for
the presented iterations, the problem does not converge to a solution.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.19: Topologies obtained for different values of ∆T considering a uniform
temperature variation: (a) ∆T = −10 K, (b) ∆T = −1 K, (c) ∆T = −0.1 K,
(d) ∆T = −0.05 K, (e) ∆T = 0 K, (f) ∆T = 0.05 K, (g) ∆T = 0.1 K, (h) ∆T = 1 K
and (i) ∆T = 10 K.
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Figure 4.20: Evolution of a thermoelastic topology optimization problem considering a
uniform temperature variation: (a) Evolution of the objective-function. (b) Evolution of
the sensitivity on elements 31 and 1171.
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Alongside the objective-function, the study of the sensitivity provides information
about the evolution of the problem in certain elements. Based on its study, it is possible
to compute the impact of thermal loading on each iteration. For instance, in the load’s
point of application, for ∆T = 0.1 K, the sensitivity is permanently negative since the
mechanical problem is still dominant. For the same ∆T , similar behavior is observed on
element 1171. Even without the applied mechanical load, the sensitivity remains negative
due to the lower impact of the thermal loading. At this range of temperature variation,
it is possible to observe a balanced optimization process due to the similar order of
magnitude of both loads, thermal and mechanical (1× 105 N). Otherwise, considering a
higher temperature differential, ∆T = 1 K, it is evident the oscillation of the sensitivity
value between signs. In this case, the thermal influence overlaps with the mechanical
problem, even for the mechanical load’s point of application. At this point, it would be
expected to have a negative sensitivity since it is where the mechanical problem has its
maximum influence. Nevertheless, the influence of the thermal loading is distributed for
all the structure and, therefore, it overlaps with the mechanical problem, which is only
applied at a single point. Besides, the relation between the magnitude of both loads
has changed due to the increase of the temperature differential. The influence of the
thermal loading becomes ten times higher than the impact of the mechanical one and,
therefore, the problem tends to be more unstable and exposed to the instabilities derived
from the impact of the temperature. These instabilities affect the objective-function
monotony since the result is always switching between two possible solutions: one of
them privileging the stiffness maximization and the other reducing the material quantity
to minimize the thermal expansion. Therefore, the problem stabilizes in a divergent one
composed mainly by intermediate densities. A valid and stable solution is obtained when
the mechanical objective overlaps the thermal one and, therefore, the material would be
fully used. Otherwise, when the thermal loading has the major influence in the problem,
the only way to minimize the compliance is by eliminating material [Xia and Wang
2008]. This is why Pedersen et al. defend that the minimization of the compliance as
the objective-function may be a questionable objective when it comes to thermoelastic
problems [Pedersen and Pedersen 2010].

In the last phase, it is proposed to solve the problem illustrated in Figure 4.21. The
mechanical boundary conditions are similar to the ones illustrated in Figure 4.17. By
contrast, a thermal analysis is carried out to update the temperature field, considering
thermal boundary conditions. A heat sink in the middle of the bottom side is set up
where the temperature differential is maintained equal to zero along with a heat source
applied to the upper side of the plate. Firstly, at the heat source, it is considered the
prescription of a temperature differential. In a similar way to the previous phase, the
thermal loading is updated in each iteration. However, a varying temperature field is
considered taking into account the material distribution and the established boundary
conditions.

Initially, the structure is submitted to a varying temperature field due to the pre-
scribed temperature variation on the nodes located in the heat source. The optimum
topologies for these analyses are represented in Figure 4.22, for different values of the
prescribed temperature differential, ∆T . In Figure 4.23a, the evolution of the objective-
function is illustrated alongside the evolution of the local sensitivity on elements 31 and
1171, in Figure 4.23b.

Similarly to the last phase, it is possible to notice the higher stability of the problem
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Figure 4.21: Representation of a rectangular plate subjected to a concentrate load and
a varying temperature field.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.22: Topologies obtained for different values of ∆T considering a varying tem-
perature field: (a) ∆T = −10 K, (b) ∆T = −1 K, (c) ∆T = −0.5 K, (d) ∆T = −0.1 K,
(e) ∆T = 0 K, (f) ∆T = 0.1 K, (g) ∆T = 0.5 K, (h) ∆T = 1 K and (i) ∆T = 10 K.

for lower values of the temperature field. Also, for these values, the problem converges
to the optimum solution. On the other hand, for higher values of ∆T , the problem
is highly unstable and tends to diverge. Considering ∆T = 0.1 K, the sensitivity on
both elements is permanently negative since the influence of thermal loading is being
overlapped by the mechanical loading. By contrast, for ∆T = 1 K, the sensitivity on
both elements is alternately varying between two values, one positive and one negative.
The problem can not converge to a solution so it keeps switching between two possible
solutions, one prioritizing the stiffness and the other the material expansion. Since in
element 31, the influence of the mechanical problem is higher, the sensitivity reaches
lower values. On the other hand, in element 1171, the sensitivity varies between a less

Mafalda Gonçalves Master Degree Dissertation



50 4.Results and analyses

10 20 30 40 50 60 70 80 90 100

Iterations

0

1

2

3

4

5

6
O

b
je

c
ti
v
e
-f

u
n
c
ti
o
n

0.1 1 10

(a)

10 20 30 40 50 60 70 80 90 100

Iterations

-600

-400

-200

0

200

400

600

S
e
n
s
it
iv
it
y

31(0.1) 1171(0.1) 31(1) 1171(1)

(b)

Figure 4.23: Evolution of a thermoelastic topology optimization problem considering
a prescribed temperature variation in the heat source: (a) Evolution of the objective-
function. (b) Evolution of the sensitivity on elements 31 and 1171.
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negative value and a positive one due to the higher magnitude of the thermal loading.
Furthermore, considering higher values of ∆T , it is noticeable the increase in the num-
ber of elements with intermediate densities in the optimum topologies and, also, the
appearance of checkerboard problems related to the influence of the thermal loading.

Finally, a prescribed heat flux is established on each node of the heat source instead
of the prescribed temperature differential. Different values of the nodal heat flux, q, are
evaluated and the obtained results are illustrated in Figure 4.24. It is possible to evaluate
the high instability associated with the objective-function in Figure 4.25.

(a) (b) (c)

(d) (e) (f)

Figure 4.24: Topologies obtained for different values of q considering a varying temperat-
ure field: (a) q = 0, (b) q = 1×10−10, (c) q = 1×10−9, (d) q = 5×10−9, (e) q = 1×10−8

and (f) q = 1× 10−7.

Both problems rely on a thermal analysis to obtain the respective updated temper-
ature field. The applied boundary conditions, as well as the problems’ nature, are very
similar. However, the obtained results differ in some aspects. The prescription of a tem-
perature differential leads to a gradual reduction of the temperature variation between
the heat source and the heat sink. Therefore, the impact of the thermal loading, i.e
the material expansion, is consequently reduced. Thus, the optimum solutions are more
defined topologically. On the other hand, the prescription of heat fluxes, even for low
values, leads to the divergence of the problem. These analyses consider the heat fluxes
as predefined energy fluxes, which are responsible for the high instability of the results.
In the absence of the necessary quantity of material to conduct the heat, the thermal
gradients get bigger. Consequently, the thermal loading increases along with the derived
thermal expansion. To reverse this effect, the density is reduced once again leading to
a cycle of instabilities and, consequently, to the instantaneous divergence of the prob-
lem [Oliveira 2013]. This effect can be seen in Figure 4.24f, where the impact of the
thermal loading becomes evident. In this case, the obtained solution does not consist in
a feasible and possible one, since the volume restriction has not been fulfilled. Due to
the high impact of the derived thermal loading, the structure can not dissipate all the
heat only with the volume fraction that has been prescribed. So, a larger quantity of
material is used in order to provide the necessary heat dissipation and the structure’s
equilibrium. Additionally, the same numerical effects can be shown in both cases, being
the topologies characterized by the existence of checkerboard problems for higher values
of the temperature differential on the structure.
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Figure 4.25: Evolution of the objective-function for a thermoelastic topology optimization
problem considering prescribed heat fluxes in the heat source.

4.4 Bi-directional Evolutionary Structural Optimization

Several issues have been pointed out concerning problems where boundary conditions
depend on the solution. This work analyzes thermoelastic phenomena in the context of
a topology optimization problem, namely, the existence of loads that depend on the vari-
ables of optimization, e.g. thermoelastic stress loads. These loads raise several questions
that are presented and discussed in the analyses carried out in section 4.3. As explained
in section 2.3.5, these issues result from the existence of two terms with opposite signs
in the sensitivity of the objective-function (vd. Eq. 2.41). Depending on the magnitude
of the thermal loads, the sensitivity can assume positive and negative values. There-
fore, the constant switch between positive and negative values leads to instabilities on
the optimization process and on the optimum topologies. With the intention of solving
the mentioned issues and stabilizing the optimization process, this work proposes the
implementation of an alternative approach. An adaptation of the Evolutionary Struc-
tural Optimization (ESO) algorithm is evaluated to try out its effectiveness to solve the
issues mentioned before. Known as Bi-directional ESO (BESO), this method introduces
a different way of topologically optimizing a structure. The OC method assumes from
the beginning that the structure’s volume is equal to the prescribed volume fraction, and
from then on, several possible solutions show up until the optimum solution is reached.
By contrast, the BESO method assigns to the initial solution the total possible volume,
i.e, the volume fraction equal to 1. Therefore, the structure evolves toward an optimum
material distribution with its volume decreasing over the optimization process until it
reaches the required volume fraction. Thus, the same example carried out in section 4.3
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considering a structure submitted to a uniform temperature variation is evaluated by the
BESO method (vd. Fig. 4.17).
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Figure 4.26: Evolution of the volume of the structure using BESO method.

In Figure 4.26, it is represented the evolution of a structure’s volume over the op-
timization process considering the temperature differential equal to 0, according to a
“hard-kill” approach. In a similar way to the ESO method, it is assigned initially the
total volume to the structure (fv = 1) and, then, at each iteration, the less efficient ele-
ments are removed based on their sensitivity numbers. However, the BESO method also
allows elements to be added in the locations next to those elements with highest sensitiv-
ity numbers apart from removing those in regions with lowest sensitivity numbers [Huang
and Xie 2010]. Over the optimization process, the structure’s volume decreases since the
number of elements that are removed is higher than the number that are added. Once
the target volume is reached (iteration 35), the number of elements that are added is
equal to those which are removed. However, the obtained topologies resulted from the
following iterations also consist in possible solutions to the problem, leading to a failed
achievement of a convergence optimal solution. As a result, the best solution has to
be chosen by comparing a large number of solutions generated during the optimization
process [Rozvany 2009]. Anyway, the same evolution can be noticed when considering a
structure submitted to a uniform temperature variation. Therefore, the example illus-
trated in Figure 4.17 is evaluated considering the same boundary conditions. Figure 4.27
illustrates the obtained results for different values of the temperature differential.

The presented topologies allow, in a first analysis, to determine the similarity between
the obtained results and the conventional method (vd. Fig. 4.19). The global topology
is similar, mostly, for lower values of the temperature differential. Furthermore, it is
possible to notice the non-existence of intermediate densities, which represent a disad-
vantage of the conventional material interpolation scheme SIMP. In contrast, the evolu-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.27: Topologies produced considering a “hard-kill” approach and ER = 0.02
for different values of ∆T : (a) ∆T = −10 K, (b) ∆T = −1 K, (c) ∆T = −0.5 K,
(d) ∆T = −0.1 K, (e) ∆T = 0 K, (f) ∆T = 0.1 K, (g) ∆T = 0.5 K, (h) ∆T = 1 K and
(i) ∆T = 10 K.

tionary structural optimization method establishes the use of discrete variables, so the
optimum topologies are more defined when compared to those resulting from SIMP, be-
ing considered an advantage of the ESO method. With regard to the objective-functions’
evolution, in contrast to section 4.3, the analyses carried out related to BESO do not
present normalized objective-functions due to the unstable behavior associated with their
optimization processes. Therefore, the evolution of the objective-functions correspond-
ent to the null temperature differential and equal to 0.1 is illustrated in Figure 4.28.
It is possible to observe the instability associated with the ∆T = 0.1, which remains
similar for higher values of ∆T even when the obtained topologies are well defined. The
high values of the objective-function are related to a considerable deformation of some
elements of the structure and not necessarily to the problem’s instability. Moreover, as
it can be noticed, considering the temperature differential null, the objective-function is
not decreasing, by contrast, it is increasing. As you go through the optimization pro-
cess, the volume becomes increasingly small which leads to a structure more and more
fragile. That way, in each iteration, the structure’s compliance becomes higher. Once
the volume reaches the target value (iteration 35), the objective-function stabilizes in
a constant value, which means that the convergence has been achieved. However, for
∆T = 0.1, the convergence is not achieved due to the problem’s instability. Therefore,
from iteration 35, several possible solutions are presented until the problems diverges in
iteration 56. Figure 4.29 illustrates the evolution of the sensitivity number on element
31, the load’s point of application, for ∆T = 0, ∆T = 0.1 and ∆T = 1. Considering
the structure under only mechanical loading, it is possible to notice the stability of the
sensitivity number. Its value is almost always constant and the magnitude is related to
the influence of the mechanical loading, the positive term of the sensitivity number. With
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the increase of the temperature differential, the sensitivity number tends to behave in a
more unstable way. The impact of the thermal loads increases and the sensitivity number
decreases as a consequence of the negative sign of the term related to the thermal loads of
the sensitivity. Considering ∆T = 1, it is possible to observe the switch of the sensitivity
number between two solutions. The same behavior was noticed in the results from the
conventional method (vd. Fig. 4.20). Although the sensitivity is used in a different way
in both methods, both are known as gradient-based methods. So, the same behavior is
observed and it is caused by the opposite signals of both terms in the sensitivity number.
Thereby, in a similar way to the sensitivity number, the density of the element is always
switching between 1 and ρmin with the change of the sensitivity number in the respective
element.
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Figure 4.28: Evolution of the objective-function considering a “hard-kill” approach and
ER = 0.02.

The BESO method defines some parameters that are very important to the optimiza-
tion process as well as to its convergence. The evolutionary ratio (ER) is one of them.
This parameter is initially established by the user and its value defines the progress of
the optimization process. At the beginning of each iteration, the target volume for that
iteration is determined based on the volume fraction and, mainly, on the evolutionary
ratio. Therefore, according to its value, the amount of elements that are going to be
added or removed is defined. Consequently, a higher value establishes a faster process
until the target volume, namely, the prescribed volume, is achieved. However, the prob-
lem tends to diverge more easily since the structure is submitted to large changes in
each iteration. On the other hand, a lower value establishes a slower process, but more
restrained. Therefore, in contrast to Figure 4.27, where the topologies were obtained
using ER = 0.02, Figure 4.30 illustrates the obtained topologies for different values of

Mafalda Gonçalves Master Degree Dissertation



56 4.Results and analyses

5 10 15 20 25 30 35 40 45 50

Iterations

-20

-15

-10

-5

0

5

10

15

20
S

e
n
s
it
iv

it
y

T=0 T=0.1 T=0.1

Figure 4.29: Evolution of the sensitivity on element 31 considering a “hard-kill” approach
and ER = 0.02.

∆T , considering an evolutionary ratio equal to 0.01.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.30: Topologies produced considering a “hard-kill” approach and ER = 0.01
for different values of ∆T : (a) ∆T = −10 K, (b) ∆T = −1 K, (c) ∆T = −0.5 K,
(d) ∆T = −0.1 K, (e) ∆T = 0 K, (f) ∆T = 0.1 K, (g) ∆T = 0.5 K, (h) ∆T = 1 K and
(i) ∆T = 10 K.
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The obtained topologies are quite similar to those illustrated in Figure 4.27, specially
for lower values of the temperature differential. For example, considering ∆T = −10,
the optimization process diverges before reaching the target volume, even considering a
lower value of the evolutionary ratio. In contrast, the optimum topology, when a higher
value of ER is taken into account (ER = 0.02), consists in a possible solution to the
problem and a well defined material layout (vd. Fig. 4.27a).

10 20 30 40 50 60 70 80

Iterations

0

50

100

150

200

250

300

O
b
je

c
ti
v
e
-f

u
n
c
ti
o
n

T=0 T=0.1

Figure 4.31: Evolution of the objective-function considering a “hard-kill” approach and
ER = 0.01.

Figure 4.31 represents the evolution of the objective-functions for values of the tem-
perature differential equal to 0 K and 0.1 K, considering ER = 0.01. Compared to Figure
4.28, the evolution of both objective-functions are quite similar. However, considering
∆T = 0.1, an evolutionary ratio equal to 0.02 leads to a more stable objective-function.
On the other hand, the final values of the objective-functions for both cases are rather
similar. In addition, as mentioned before, the convergence of the optimization process
is faster when a higher value of ER is considered. The opposite happens when a lower
value (ER = 0.01) is established leading to a slower process. Therefore, the convergence
is achieved later. In addition, it is possible to evaluate the evolution of the sensitivity
number on element 31 for both values of ER, 0.01 and 0.02, in Figure 4.32. Moreover,
it is noticeable that the parameter ER = 0.02 leads to a faster optimization process,
being the target volume achieved at iteration 35. However, near the iteration 30, the
process starts to diverge due to the large changes that the structure is submitted to.
By contrast, considering ER = 0.01, the problem only reaches the volume fraction at
iteration 69, since the volume of the structure is slowly decreasing when compared to
the opposite approach. At this point, the problem tends to behave in a more unstable
manner, however, during the optimization process, the sensitivity had remained almost
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Figure 4.32: Evolution of the sensitivity on element 31 for both values of ER considering
a “hard-kill” approach and a uniform temperature variation equal to 0.1.

constant.
The results presented and evaluated previously correspond to the “hard-kill” ap-

proach. As mentioned in section 2.3.7, this approach consists in a specific case of the
“soft-kill” one when the penalization factor tends to infinity. Both procedures are sim-
ilar with the exception of the computation of the sensitivity number for void elements.
According to the “hard-kill” method, the sensitivity number is equal to zero for void
elements. By contrast, the “soft-kill”, based on the SIMP method, defines a sensitivity
number that depends on the penalization factor and on the minimum density established
for void elements. Therefore, the optimization process behaves in a different manner
leading to different optimum solutions. Figure 4.33 illustrates the obtained topologies
for the “soft-kill” approach considering values of ∆T between −1 and 1.

Firstly, the topologies related to higher values of the temperature field (−10 K and
10 K) are not considered possible solutions since the optimization process diverges before
the target volume is reached. Otherwise, the similarity between the results from both
approaches, “hard-kill” and “soft-kill”, becomes visible, mainly, for lower values of ∆T ,
where several similarities related to the material distribution can be observed. However,
it is also noticeable that the “hard-kill” procedure produces more stable and feasible to-
pologies, especially, when the temperature differential increases. Considering ∆T = 0.1,
Figure 4.34 represents the evolution of the objective-functions of both approaches and
Figure 4.35 illustrates the evolution of the sensitivity number on element 31.

It is possible to notice less instabilities related to the “soft-kill” approach over the
iterations. However, the required volume is reached at iteration 35 and, then, the prob-
lems tends to diverge immediately since there are no more possible solutions. Moreover,
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(a) (b) (c)

(d) (e)

Figure 4.33: Topologies produced considering a “soft-kill” approach for different val-
ues of ∆T : (a) ∆T = −1 K, (b) ∆T = −0.5 K, (c) ∆T = −0.1 K, (d) ∆T = 0 K,
(e) ∆T = 0.1 K, (f) ∆T = 0.5 K and (g) ∆T = 1 K.
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Figure 4.34: Evolution of the objective-function for the “hard-kill” and “soft-kill” ap-
proaches considering a structure under a uniform temperature variation equal to 0.1.

the objective-function assumes higher values over the optimization process and also, at
the final solution, when compared to the “hard-kill” approach. Both approaches reach
the target volume at iteration 35, being their behavior quite similar along the optimiza-
tion process. Although the “soft-kill” approach establishes an almost constant sensitivity
number over the iterations, at iteration 40, the problem diverges due to the non-existence
of possible solutions. Nevertheless, it is possible to observe that the “soft-kill” approach
presents a more stable objective-function until the target volume is achieved. How-
ever, the “hard-kill” approach produces better solutions, i.e lower values of the objective-
function, and more defined and feasible topologies.
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Figure 4.35: Evolution of the sensitivity on element 31 for the “hard-kill” and “soft-kill”
approaches considering a structure under a uniform temperature variation equal to 0.1.
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Chapter 5

Final remarks

5.1 Conclusions

The main challenge of this work was to study the instabilities associated with ther-
moelastic problems and introduce alternative strategies to control them. Thermoelastic
problems are known for including boundary conditions that depend on the solution,
namely, thermal loads. These are defined as design-dependent since their value depends
on the material distribution on the structure. Therefore, they greatly affect the optimi-
zation process and, consequently, the obtained topologies.

In a preliminary phase, the structure of a Topology Optimization (TO) algorithm was
studied and implemented considering different types of analyses. Initially, an elastic ana-
lysis was carried out to evaluate the structure’s behavior when submitted to mechanical
loading. Later, a thermal evaluation was performed taking into account the maximization
of the structure’s conductivity. By combining both objectives, a multi-objective approach
was implemented. A global objective-function was established by weighting both objec-
tives through a Pareto analysis. Different weights were assigned to each objective and,
thereby, it was possible to study the influence of each analysis on the obtained topolo-
gies. Thereafter, the main challenge of this dissertation started by analyzing a structure’s
behavior when submitted to thermal loads. By prescribing a uniform temperature vari-
ation or by carrying out a thermal analysis, the structure was subjected to a temperature
field. As introduced in section 2.3.5 and demonstrated in the results related to the ther-
moelastic analysis (vd. Sec. 4.3), the influence of thermal loads modifies the optimization
process. Furthermore, their impact leads to the appearance of instabilities on the optim-
ization process and, consequently, on the topologies. These instabilities translate into the
existence of intermediate densities that are undesirable and in checkerboard problems, for
example. Diverse works in the literature report similar problems related to these types
of loads, however, only a few present alternative possibilities capable of solving them.

Thus, the main challenge consisted in trying to establish a strategy to control the sta-
bility of these problems. Therefore, it was implemented an alternative approach based on
the Evolutionary Structural Optimization (ESO) method, known as Bi-directional ESO.
The new procedure was carried out on a structure submitted to a uniform temperature
variation. The obtained results allow to state that this procedure has the advantage
of not having to deal with undesirable intermediate densities. Checkerboard problems
were also avoided with the implementation of this method. Moreover, it was possible
to conclude that a “hard-kill” approach was a more efficient procedure for this analysis
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when compared to a “soft-kill”, being the obtained solutions more stable and topologically
defined, resulting in better values of the objective-function. Furthermore, with regard
to the Evolutionary Ratio (ER), a lower value establishes a more stable optimization
process preventing the divergence of the problem due to the large changes applied to the
topologies. However, a higher value of ER enables a faster convergence of the problem
and, consequently, a faster optimization process.

Overall, the obtained results allow to state that a good decision was made regarding
the alternative approach implemented to solve the mentioned issues. From a Finite Ele-
ment Analysis (FEA) to topology optimization methodologies, the different procedures
were carried out on benchmarks so the obtained results could be validated by comparing
to the ones presented in the bibliography. Therefore, in order to obtain the presented
results, all the methodologies described throughout this Dissertation were implemented
on code. Thereby, as an outcome of this work, a computational tool capable of running
the mentioned procedures was developed and validated. As mentioned, the background
was set on GRIDS Alpha, a numerical simulation platform, based on the Finite Element
Method (FEM), that was developed in academic environment. Its features were enhanced
by the integration of the diverse functionalities that were developed in this work. The
procedures related to FEM analysis and TO methodologies were implemented according
to the modular concept of the original software and taking advantage of its FEM routines.
The implementation of these methodologies on code allowed to gain a deeper knowledge
on important details of optimization and FEM concepts. Also, the programming skills,
very important in engineering, were improved. Lastly, it was possible to develop an user-
friendly and open-source software in order to be a helpful tool for other students and,
also, a platform to be further developed by them.

5.2 Future works

Considering the results presented throughout this Dissertation and since there are only
a few works focused on efficient strategies to control the mentioned instabilities, it is
important to improve the knowledge on this subject. Therefore, some guidelines for
future developments are suggested:

• Extend the work developed to 3D, allowing to better model and simulate complex
structures in a more realistic way;

• The implemented algorithms belong to gradient-based methods, even presenting
different ways of computing the sensitivities. The application of stochastic al-
gorithms, namely, metaheuristics methods, to thermoelastic problems is a possible
work to develop in a near future. Although they are associated with a high compu-
tational cost, these do not require the evaluation of the objective-function’s gradient
so the issues related to the switch between signs of the sensitivity could be avoided;

• This work focuses on the existence of thermoelastic stress loads in topology op-
timization problems. However, there are another types of design-dependent loads,
such as self-weight loading and centrifugal forces. These produce similar issues to
thermal loads so a deeper knowledge on the subject is needed to solve the mentioned
problems in a more efficient way;
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• From the pedagogical standpoint, develop a user-interface that would allow students
to try and test different optimization decisions on a given benchmark.
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