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Abstract: Marine organisms are frequently exposed to pollutants, including trace metals, derived
from natural and anthropogenic activities. In order to prevent environmental pollution, different
approaches have been applied to remove pollutants from waste water and avoid their discharge
into aquatic systems. However, organisms in their natural aquatic environments are also exposed
to physico-chemical changes derived from climate change-related factors, including temperature
increase. According to recent studies, warming has a negative impact on marine wildlife, with known
effects on organisms physiological and biochemical performance. Recently, a material based on
graphene oxide (GO) functionalized with polyethyleneimine (PEI) proved to be effective in the
remediation of mercury (Hg) contaminated water. Nevertheless, no information is available on the
toxic impacts of such remediated water towards aquatic systems, neither under actual nor predicted
temperature conditions. For this, the present study assessed the toxicity of seawater, previously
contaminated with Hg and remediated by GO-PEI, using the clam species Ruditapes philippinarum
exposed to actual and a predicted temperature conditions. The results obtained demonstrated that
seawater contaminated with Hg and/or Hg+GO-PEI induced higher toxicity in clams exposed to
17 and 22 °C compared to organisms exposed to remediated seawater at the same temperatures.
Moreover, similar histological and biochemical results were observed between organisms exposed to
control and remediated seawater, independently of the temperatures (17 and 21 °C), highlighting
the potential use of GO-PEI to remediate Hg from seawater without significant toxicity issues to the
selected marine species.

Keywords: biomarkers; toxicity, Ruditapes philippinarum; GO-PEL, seawater remediation;
mercury; bioaccumulation

1. Introduction

Studies conducted in the last decade have demonstrated that the increase of greenhouse effect
gases, such as carbon dioxide, is intrinsically related with global warming [1-5]. Global warming is not
only responsible for atmospheric temperature rise but also for the increase in mean water temperature
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in aquatic systems. According to the Intergovernmental Panel on Climate Change (IPCC) [3], global
warming is likely to reach 1.5 °C between 2030 and 2052 if it continues to increase at the current
rate. Temperature increase may be of greater magnitude in estuaries and coastal lagoons due to their
physical-chemical characteristics, including low water exchange [6-8]. Associated with temperature
increase in aquatic systems, it is predicted that inhabiting organisms may be subjected to deleterious
effects as already shown by different authors [9-11]. Studies with bivalves already showed that
temperatures exceeding an organism’s thermal tolerance range can cause physiological perturbations
with consequences on growth and reproduction of mussels [12-15], as well as decrease of metabolic rate
and respiratory capacity in clams and mussels [16-18]. Warming conditions can also enhance reactive
oxygen species (ROS) production in the cells, leading to oxidative stress in different marine species,
including bivalves [19-24]. Particularly, biochemical alterations have been observed in different clam’s
species in response to temperature rise, including increased antioxidant capacity [18,25] and cellular
damage [26,27]. Recent studies further demonstrated that change in temperature negatively impacted
bivalve’s embryo-larval development [28,29].

In the aquatic environment organisms may not only be subject to climate changes but are also
exposed to pollutants, such as metals, derived from natural and anthropogenic activities, associated
with world population growth [30-34]. Coastal ecosystems have been particularly affected by metals
(e.g., lead (Pb), mercury (Hg), cadmium (Cd) and others) with well-known toxic effects towards aquatic
organisms [21,35-38]. Studies conducted with top list hazardous elements [39] as Hg, Cd and arsenic
(As) already showed their capacity to interfere on bivalve’s biochemical performance [20,21,40—44].
In particular, studies assessing the effects of Hg in bivalves showed that this metal induced histological,
physiological and biochemical impairments in oysters (Saccostrea cucullata, Crassostrea gigas) [8,45],
clams (Anodonta anatina, Corbicula fluminea, Ruditapes decussatus and R. philippinarum) [8,38,46],
mussels (Perna viridis, Septifer virgatus, Mytilus galloprovincialis, and M. edulis) [12,14,47,48] and
cockles (Cerastoderma edule) [49].

Although environmental threats caused by Hg are well-known, the concentration of this metal has
increased in the environment due to its use as main component in electronic products, thermometers
(for measuring high temperatures) and fluorescent lamps [33,50,51]. In the aquatic environment Hg
has been identified in coastal and bay waters in concentrations ranging from 0.10 ng/L (Chesapeake
Bay, MD, USA) to 1200 ng/L. (Marano and Grado lagoons, Venice, Italy), reaching 2700 ng/L in
Bohai Sea coast (China); whereas in open seawater Hg concentrations range from 0.08 ng/L (Pacific
Ocean) to 0.20 ng/L (Atlantic Ocean) [52,53]. As an attempt to remove metal (oid)s, in particular Hg,
from water and avoid their discharge into aquatic systems, different approaches have been applied such
as chemical precipitation [54,55], ultrafiltration [56,57], reverse osmosis [58], nanofiltration [56-58],
and sorption on nanomaterials [59-62]. The main concerns regarding these methodologies are the fact
that they are low cost but inefficient, or efficient but expensive [63-65]. In order to overcome these
issues, Henriques et al. [66] synthesized and characterized new nanostructured materials (NSMs),
based on graphene oxide (GO) that proved to be effective to remove Hg from water. The remarkable
breakthroughs in research on graphene-based materials (GBM) have revealed its great potential for
environmental remediation. GO can be produced by oxidation of graphite in laboratory [67], composed
on a substrate or porous material and used as a membrane. Different GBM have been developed
for water desalination, sorption processes, degradation of organic contaminants and the removal of
potential toxic elements from polluted waters [68-70]. Recently our group developed a material based
on GO functionalized with polyethyleneimine (PEI) that proved to be effective in the remediation of
Hg 50 pg/L contaminated seawater, with 81% of removal efficiency after just 6 h [71]. Nevertheless,
up to now, no information exists on the toxicity of the remediated seawater, i.e., no information is
available on possible effects in aquatic organisms exposed to water after the remediation treatment.

Although recent literature has demonstrated the impacts of temperature in bivalves physiological
and biochemical performance, the co-occurrence of temperature increase and pollutants is not yet
well understood. The simultaneous occurrence of temperature rise and the presence of pollutants
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may result in organisms increased sensitivity to each of the stressors but may also alter pollutants’
toxicity, leading to additive or antagonist effects as reported in several studies [23,28,29,47,72-74].
According to Coppola et al. [21], oxidative stress was enhanced in M. galloprovincialis exposed to Hg
under warming conditions.

For the aforementioned, the present study aimed to assess the possible toxicity of seawater,
previously contaminated with Hg and remediated by GO-PEI, using the clam species R. philippinarum
under different temperature scenarios, to assess the effects of temperature rise on the impacts induced by
remediated water. Previous studies already demonstrated that this clam species is a good bioindicator,
being commonly used in field and laboratory studies to evaluate the effects derived from the exposure to
different pollutants, including metals [38,43,75], drugs [76-78], or nanoparticles [79,80]. R. philippinarum
specimens were exposed for 28 days, at different treatments, including clean seawater (control-CTL);
remediate seawater; and seawater containing Hg (50 pug/L), GO-PEI (10 mg/L) or the mixture of both.
Each treatment was conducted under control (17 °C) and increased (22 °C) temperatures. At the end,
Hg concentrations in clam’s soft tissues, histopathological alterations, as well as biochemical responses
related to clams” metabolic, cellular damage and oxidative stress status were measured.

2. Materials and Methods

2.1. Laboratory Conditions and Experimental Setup

The species Ruditapes philippinarum were collected in the Mira channel (Ria de Aveiro lagoon,
Portugal), with a mean total weight of 12.1 + 2.6 g, mean length of 3.53 + 0.29 cm and a mean width of
4.53 + 0.42 cm.

In the laboratory clams were placed under acclimation (one week), with water conditions similar
to the sampling site. After this initial period, clams were divided in two groups: one exposed at
17 + 1 °C and another at 22 + 1 °C (with a gradual temperature increase), for the acclimation to test
conditions during an extra week. Throughout these two weeks all organisms were maintained in
artificial seawater (salinity 30 + 1) at pH 8.0 = 0.1 and constant aeration. Seawater was renewed
every 2-3 days, after which animals were fed with Algamac protein plus. Environmental conditions
measured during clam’s field sampling (temperature 17 °C, pH 8.0, salinity 30) were considered as
control levels that were also in agreement with the mean values observed during the year in the
sampling area [81]. The highest tested temperature (22 °C) was selected considering predicted global
warming conditions [3].

After this period, organisms were maintained during 28 days in two groups under test temperatures,
salinity and pH conditions, with organisms divided in five different treatments as described in Table 1.
Per treatment three aquaria were used with six individuals in each aquarium (5 L glass aquaria).

Table 1. Experimental treatments. GO-PEIL: Graphene oxide functionalized with polythyleneimine;
Hg: mercury.

Treatments Description
CTL Artificial seawater (Hg 0.0 ug/L + GO-PEI 0.0 mg/L)
GO-PEI Artificial seawater with GO-PEI 10 mg/L
Hg+ GO-PEI Artificial seawater with Hg 50 pug/L and GO-PEI 10 mg/L
Hg Artificial seawater with Hg 50 pg/L

Artificial seawater previously contaminated with Hg (50 pg/L),

Remediated seawater and remediated by GO-PEI (10 mg/L) during 24 h.

The concentration of mercury (Hg) used in the present study, 50 ug/L, was selected taking into
consideration that this is the maximum allowable limit in wastewater discharges from industry [82].
A concentration of 10 mg/L of graphene oxide (GO) functionalized with polyethyleneimine (GO-PEI)
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was selected according to the capacity of this nanostructured material (NSMs) to remove Hg from
seawater (preliminary assays). The remediated seawater was prepared by the contamination of clean
seawater with Hg using a defined volume of a stock solution (1000 mg/L of Hg, Sigma Aldrich)
followed by remediation with GO-PEI (10 mg/L) during 24 h, after which the material was separated
from the seawater by filtration.

Throughout the experimental period, water conditions were checked daily as well as clams’
mortality. Animals were fed with Algamac protein three times per week. During this period, seawater
from each aquarium was renewed weekly and treatments reestablished, including temperatures,
salinity and concentrations of Hg and GO-PEI Seawater samples from each aquarium were collected
immediately after weekly water exchange for Hg quantification, to compare real concentrations with
nominal ones.

At the end of the exposure clams were meticulously opened to separate the shell from soft
tissue. One clam (soft tissue) per aquarium (three per treatment) was fixed in Bouin’s fluid for 24 h at
room temperature for the histological evaluation. For biochemical analyses and Hg quantification six
organisms per treatment (two per aquarium) were frozen in liquid nitrogen and manually homogenized
with a mortar and a pestle. Each organism’ soft tissue was divided into aliquots of 0.3 g fresh weight
(FW) and stored at —80 °C.

2.2. Synthesis and Characterization of Graphene Oxide Functionalized with Polyethyleneimine

Graphene oxide water dispersion (0.4 wt % concentration from Graphenea) was directly mixed
with ethyleneimine polymer (PEI) solution at 50% (w/v) in water, with molecular weight (M.W.)
~750,000 and a ratio GO/polymer of 24% v/v. The pH of both solutions, GO and polymer, was adjusted
to 2 before mixing, using 0.1 mol/L NaOH or HCI solutions. After mixing, the solution was rapidly
shaken for 10 s to form a hydrogel. The hydrogel was frozen at —80 °C obtaining three-dimensional (3D)
porous structures. The lyophilized samples were then washed in MilliQ water for 12 h to remove acidic
residues. Finally, samples were freeze-dried again resulting in a foam-like macrostructure (Figure 1).

Figure 1. SEM (scanning electron microscopy) images of GO-PEI macrostructure obtained after

lyophilization evidencing the porous nature of this materials.
2.3. Mercury Quantification

The quantification of Hg in seawater aliquots was performed following Henriques et al. [83]
methods using cold vapor atomic fluorescence spectroscopy (CV-AFS).

The concentration of Hg in the organism’s tissues was quantified by thermal decomposition
atomic absorption spectrometry with gold amalgamation, as described in Costley et al. [84].

2.4. Biochemical Markers

The selected biomarkers included: (i) metabolic capacity (electron transport system, ETS);
(ii) antioxidant enzymes activity (superoxide dismutase, SOD; glutathione peroxidase, GPx; glutathione
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reductase, GRed); (iii) extent of cellular damage levels (lipid peroxidation, LPO; protein carbonylation,
PC); (iv) redox balance (ratio between reduced (GSH) and oxidized (GSSG) glutathione content).
The biochemical parameters were determined as described in Coppola et al. [79]. All biochemical
parameters were performed in duplicate and measurements made on a microplate reader (BioTek
Synergy HT).

2.5. Histopathological Measurements

After the experimental period, the clams fixed in Bouin’s fluid for histopathological analyses
were placed in ethanol 70% which was changed daily to wash out the fixative left over. Afterwards,
organisms were gradually dehydrated from ethanol 70% to absolute alcohol in graded alcohols, cleared
in xylene, embedded in paraffin (56-58 °C), and serial sections (7 pm thick) were obtained using a
microtome as described in Pinto et al. [85]. Histopathological alterations in gills and digestive tubules
were identified as described previously [86,87].

2.6. Integrated Biomarker Response

The integrated biomarker response (IBR) index was calculated according to Beliaeff and Burgeot [88]
and detailed in Coppola et al. [79]. Biomarkers were arranged in the following order: ETS, SOD, GPXx,
GRed, LPO, PC, and GSH/GSSG. Values were discussed in terms of a general response given by the
final IBR value, where higher values correspond to higher clams’ response.

2.7. Statistical Analyses

Mercury concentration in seawater and the clam’s soft tissues, biochemical markers and
histopathological indices, obtained for each tested treatment, were submitted to a statistical hypothesis
testing using permutational analysis of variance [89]. The null hypotheses tested were: (i) for each
response (Hg concentration in seawater and clams, biomarkers and histopathological indices), no
significant differences were observed among treatments (CTL, GO-PEI, Hg+GO-PEI, Hg and remediated
seawater) at 17 °C (uppercase letters in Table 2) and 22 °C (lowercase letters in Table 2); (ii) for each
response and for each treatment no significant differences existed between temperatures (17 and 22 °C),
represented in Table 2 by an asterisk.

The matrix expressing histopathological and biochemical markers as well as Hg concentrations
per treatment under both temperatures were normalized and the Euclidean distance calculated among
centroids was visualized in principal coordinates ordination (PCO) analysis. In the PCO graph,
the variables presenting a correlation higher than 75% with treatments spatial distribution were
represented as superimposed vectors.

3. Results

3.1. Mortality

At the end of the experimental period the highest mortality (44%) was recorded in clams submitted
to Hg at both temperatures (17 and 22 °C) and in organisms exposed to GO-PEI at 17 °C and Hg+GO-PEI
at 22 °C (44%). Lower mortality was observed in GO-PEI at 22 °C and Hg+GO-PEI treatments at 17 °C
(11% and 33%, respectively). The organisms exposed to remediated seawater at both temperatures
presented the same mortality (33%). A mortality rate of 22% was recorded in CTL treatment at 17
and 22 °C. Due to high mortality rates observed in all tested conditions, including control, the results
achieved must be considered with precaution.

3.2. Mercury Concentration in Seawater and Clams

Mercury concentration in seawater samples collected weekly in aquaria (immediately after
water renewal and spiking) from Hg+GO-PEI and Hg treatments at 17 and 22 °C were very close
to the nominal concentration (50 ug/L), while Hg levels in CTL and GO-PEI treatments at both
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temperatures were below the limit of quantification (<LOQ) (Table 2). Under 17 °C, significantly lower
Hg concentrations were observed in seawater samples collected from remediated seawater comparing
with those contaminated by Hg+GO-PEI and Hg treatments. Similar results were observed under
22 °C. Between temperatures no significant differences were found regardless the treatment (Table 2).
At 17 °C, significantly lower Hg concentration was found in clams exposed to remediated seawater
compared with Hg values measured in clams subjected to Hg+GO-PEI and Hg treatments. Under 22 °C,
clams showed significantly lower Hg concentrations when exposed to remediated seawater and to
Hg+GO-PEI in comparison to organisms under Hg treatment. Between temperatures, significant
differences were found in all treatments except for GO-PEI, with clams exposed to 17 °C presenting
significantly lower Hg concentrations in specimens under CTL and Hg treatments while significantly
higher values were observed at 17 °C in clams exposed to Hg+GO-PEI and remediated seawater.

3.3. Biochemical Markers

All results obtained from biochemical markers were expressed as mean + standard deviation and
values are shown in Table 2.

3.3.1. Metabolic Capacity

At 17 °C significantly lower ETS activity was detected in organisms exposed to Hg+GO-PEI and
remediated seawater compared to the remaining treatments. At 22 °C, significant differences were
observed among treatments with exception to clams exposed to Hg+GO-PEI and CTL. Organisms
exposed to Hg (22 °C) and remediated seawater (17 °C) showed the highest and the lowest ETS
activity, respectively. Between temperatures, significant differences were observed at CTL and GO-PEI
treatments, with higher metabolic capacity under 17 °C compared to 22 °C.

3.3.2. Antioxidant Enzymes Activity

At 17 and 22 °C, significantly higher SOD activity was observed in clams exposed to Hg
in comparison to organisms under the remaining treatments. Between temperatures, significant
differences were observed at CTL and Hg treatments, with higher SOD activity at 17 °C compared
to22 °C.

At 17 °C, significant differences in GPx activity were observed between CTL, GO-PEI and
Hg+GO-PEI, with the highest values in R. philippinarum under Hg+GO-PEI treatment. No significant
differences were observed between clams exposed to CTL and remediated seawater, as well as among
GO-PEI, Hg and remediated seawater. At 22 °C, significantly lower antioxidant defence was observed
at CTL compared to GO-PEI and Hg treatments. Between temperatures, significantly higher GPx
activity was only recorded in clams exposed to Hg+GO-PEI at 17 °C compared to treatment at 22 °C.

At 17 °C, significant differences in terms of GRed activity were observed between GO-PEI, Hg and
remediated seawater showing the highest values in organisms under GO-PEI treatment. Specimens
exposed to remediated seawater did not present significant differences between CTL and Hg+GO-PEIL
In addition, Hg+GO-PEI condition did not evidence difference with Hg exposed clams. At 22 °C,
significant differences were observed among all treatments except between clams exposed to Hg and
remediated seawater. Under this temperature (22 °C), organisms exposed to GO-PEI and Hg treatments
showed the highest and the lowest GRed activity, respectively. Between temperatures, significantly
lower enzymatic activity was measured in clams under CTL at 17 °C compared to 22 °C, while bivalves
exposed to Hg treatments presented significantly higher enzymatic activity at 17 °C.
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Table 2. (i) Hg quantification: water samples ([Hg] W) ug/L collected immediately after the weekly water renewal for each treatment; clams ([Hg] C) mg/Kg collected

at the end of the experiment. Levels not detectable (below the limit of quantification, <LOQ). (ii) Biochemical markers in Ruditapes philippinarum collected 28 days after

the beginning of the experiment: electron transport system (ETS) activity nmol/min/g fresh weight (FW); superoxide dismutase activity (SOD) U/g FW; glutathione
peroxidase (GPx) activity U/g FW; glutathione reductase (GRed) activity U/g FW; lipid peroxidation levels (LPO) nmol MDA/g FW; protein carbonyl levels (PC)
nmol/g FW; ratio between reduced and oxidized glutathione (GSH/GSSG). (iii) Histopathological markers collected 28 days after the beginning of the experiment: Gills

(Ih G) ih; digestive tubules (Ih DT) ih. Results are mean + standard deviation. Statistical differences among the treatments at 17 and 22 °C (The meaning of the letters is

in the legend. Uppercase letter are used to identify statistical differences among treatments at 17 °C. While lowercase letter are used to identify statistical differences

among treatments at 22 °C were presented with different uppercase letters and lowercase letters, respectively. Significant differences between treatments 17 °C vs.

22 °C (*) are presented with asterisks. The highest values for each biomarker were highlighted in bold, while the lowest values were underlined.

CTL GO-PEI Hg+GO-PEI Hg Remediated Seawater
17°C 22°C 17°C 22°C 17°C 22°C 17°C 22°C 17°C 22°C

Hg [HgIW <LOQ <LOQ <LOQ <LOQ 50.0 +3.90 A 49.6 +3.262 50.4 2,954 49.4 5,092 115+3718 115+371°P

Quantification ~ [HgJC 0.18+£0.024  * 029+0.012 0.14+0.03 8 0.16 + 0.0056 © 73+0.63€ 3.6+0.29°¢ 91+19€ * 12+2549 47+034P *29+098°¢

ETS 317 +4.864 *  255+5442 35.5+599 4 155 +3.42P 132 +0.76 B 202 +7.09 2P 30.1 +4.654 39.0 £2.82°¢ 11.1 £ 0.60 € 11.1+1.344

SOD 043+0.030A * 024+0.040%  0.46+0.050 * 0.34 £0.032 0.41 +0.05 4 0.33+0.022 0.77 + 0.07 B * 054+013b 0.28 +0.03 A 0.29 £0.012
Biochemical GPx 0.03 +0.005 4 0.03+0.0042  0.04 +0.004 B 0.05 + 0.01 P 0.06 + 0.008 € 0.04 +0.004%"  0.04 +0.009 BC 0.04 + 0.006 P< 0.04 +0.01 4B 0.04 + 0.006 &P
Markers GRed  0.030 = 0.0040 AP * 0.060 +0.0102  0.14 + 0.020 B 0.12+0.010®  0.060 = 0.010 ©P 0.070 £ 0.0070¢  0.060 +£0.010€  * 0.030+0.0070¢  0.035 + 0.014 P 0.041 + 0.013
LPO 154 +0.75 4 149 +1.0924 162+ 0.64 4 13.5+ 0482 20.6 + 0.58 BC 226 +3.67° 22.0+0258 * 282+0.384°¢ 173 £3.0494C  * 149 +0.6459

PC 0.90 +0.134 0.89 +0.06 2 0.99 +0.19 4 0.97 +0.112 0.95 +0.08 A 0.88 +0.04 2 1.03 +0.13 4 0.87 £0.06 0.89 + 0.007 A 0.95+0.122

GSH/GSSG ~ 0.49+0.05 A * 0.75£0.042 0.13+0.02 B 0.23 +0.04° 0.13 +0.01 B 0.21 +0.03° 0.12+0.0088 * 022+004" 0.11 +0.02 B *023£0.04P
Histopathological Ih G 005+0024 * 008+0.03%  015+002° 0.13+0.05° 0.17 +0.08 B 0.18 +0.07 027+005¢ *  033£005¢ 0.12+0.06 B 0.16 + 0.06 *°

Index Ih DT 0.23 +0.09 4 0.16 £ 0.072>  0.38 +0.001 B 0.21+0.192 0.23 +0.07 4 0.09 + 0.001 ° 031+0.001¢ * 037+0.05¢ 0.21+0.114 0.19+0.132

IBR 2.81 2.01 416 3.44 2.39 3.38 4.27 2.20 2.09
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3.3.3. Cellular Damage

Under 17 °C, significantly higher LPO levels were observed only in organisms exposed to Hg
compared to the remaining treatments with exception to Hg+GO-PEIL Clams under CTL conditions
showed significantly lower cellular damage when compared with those at Hg+GO-PEI and Hg
treatments. At 22 °C, significant differences were observed among all treatments with exception to CTL,
GO-PEI and remediated seawater. Between temperatures, significantly higher cellular damage was
shown at GO-PEI and remediated seawater treatments at 17 °C compared to 22 °C, while significantly
lower LPO levels were found in organisms exposed to Hg at 17 °C.

No significant PC levels at 17 °C and/or 22 °C differences were observed among treatments.
No significant differences were observed between temperatures regardless of the treatment tested.

3.3.4. Redox Balance

At 17 °C, significantly higher GSH/GSSG ratio were observed in R. philippinarum exposed to
CTL when compared to all the other treatments. Similar results were obtained in organisms under
22 °C. Between temperatures, significant differences were observed among all treatments, with higher
GSH/GSSG ratio under 22 °C compared to 17 °C.

3.4. Histopathological Measurements

All results obtained from histopathological measurements were expressed as mean + standard
deviation for seawater and clams (Table 2).

3.4.1. Gills

Figure 2 shows the haemocytes infiltration (arrows), evident enlargement of the central vessel
(long arrows), abundance of lipofuscin aggregates (*) in gills for each treatment at 17 °C and 22 °C.
At 17 °C significant gills histopathological (i) differences were presented between all treatments with
the exception among GO-PEI, Hg+GO-PEI and remediated seawater. Moreover, organisms exposed to
CTL and Hg showed the lowest and the highest histopathological alterations, respectively. At 22 °C
significant Ih differences were identified among all treatments in comparison to CTL. No significant
differences were observed among clams exposed to remediated seawater compared to GO-PEI and
Hg+GO-PEL Organisms exposed to CTL and Hg showed the lowest and the highest gill alterations,
respectively. Between the temperatures, significant differences were identified at CTL and Hg,
with higher histopathological alterations under 22 °C compared to 17 °C.

3.4.2. Digestive Tubules

The haemocytes infiltration (arrows), abundance of lipofuscin aggregates (*) and atrophied (at) in
digestive tubules of each treatment at both temperatures are shown in Figure 2. At 17 °C significant
differences were shown among the treatments with the exception between CTL, Hg+GO-PEI and
remediated seawater. At this temperature (17 °C), organisms exposed to remediated seawater showed
the lowest Ih values, while the highest values were found at GO-PEI treatment. Organisms under
22 °C showed no significant [h differences among CTL, GO-PEI, Hg+GO-PEI and remediated seawater.
Organisms exposed to Hg showed the highest Il values. Between the temperatures, significantly
higher Ih values were found at 17 °C for GO-PEI and Hg+GO-PEI treatments, while in clams exposed
to Hg higher values were obtained at 22 °C.
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17°C - Gills
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21°C - Gills

17°C - Digestive t.

22°C - Digestive t.

Figure 2. Micrographs of different tissues in Ruditapes philippinarum exposed to different treatments
stained with haematoxylin. (i) Gills: haemocytes infiltration (light blue arrows), evident enlargement of
the central vessel (pink long arrows), abundance of lipofuscin aggregates (red asterisks); (ii) digestive
tubules: haemocytes infiltration (light blue arrows), abundance of lipofuscin aggregates (red asterisks)
atrophied digestive tubules (blue at). Scale bar = 50 um.

3.5. Integrated Biomarker Response (IBR)

The highest IBR value (4.27) was found for the clams exposed to Hg at 22 °C, which indicates
higher impacts in Hg contaminated organisms under warming conditions. By contrast, lower IBR
values were observed in organisms exposed to GO-PEI at 17 °C (2.01) and remediated seawater
(2.20 and 2.09 at 17 and 22 °C, respectively). The results obtained for organisms exposed to the
remaining treatments were showed in Table 2.

3.6. Multivariate Analysis

The principal coordinates ordination analysis (PCO) obtained for Hg in clams and water,
biochemical and histopathological alterations is shown in Figure 3, with the PCO axis 1 explaining
45.3% of the total variation and PCO axis 2 21.6%. PCOL1 separated organisms exposed to CTL (17 and
22 °C), remediated seawater (17 and 22 °C) and GO-PEI (22 °C) in the positive side from the remaining
treatments in the negative side. PCO2 separated organisms exposed to GO-PEI (17 °C) and Hg (17 °C)
in the negative side from the remaining treatments in the positive side. Remediated seawater (17 and
22 °C) as well as CTL (17 and 22 °C) clams were associated with GSH/GSSG values; clams exposed
to GO-PEI (17 °C) were close related with the highest GRed and PC values; Hg contaminated clams
at 17 °C were associated to the highest values of SOD; while Hg-contaminated clams at 22 °C were
associated with the highest values of LPO and Hg concentrations in water and tissues.
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Figure 3. Principal coordinated ordination (PCO) analyses based on biochemical parameters, measured
in Ruditapes philippinarum exposed to different conditions (CTL, GO-PEI, Hg+GO-PEI, Hg and
Remediated seawater). Pearson correlation vectors are superimposed as supplementary variables,
namely biochemical data (r > 0.75): ETS, PC, SOD, LPO, GPx, GRed, GSH/GSSG, [Hg] C and [Hg] W,
IhDT and Ih G.

4. Discussion

In the present study the increase of seawater temperature influenced the accumulation of Hg,
with higher concentration measured in Ruditapes philippinarum exposed to warming conditions (22 °C)
compared to organisms at 17 °C. Higher Hg concentration in clams exposed to 22 °C may be related
to increased metabolic capacity (measured by the electron transport system activity) observed at
22 °C. The present findings further revealed that clams under Hg+GO-PEI and remediated seawater
treatments presented higher Hg concentration at control temperature (17 °C) than in warming conditions
(22 °C), and in this case no differences were observed in terms of clam’s metabolic capacity at both
temperature regimes. These results can indicate that in the presence of GO-PEI (Hg+GO-PEI and
remediated seawater treatments) Hg is not as easily accumulated at 22 °C as it is at 17 °C, a result that
will need further investigation. Similarly, Leite et al. [86] demonstrated that Mytilus galloprovincialis
presented the highest accumulation of rutile at 18 °C compared to 22 °C. The authors explained that
at higher temperature the lowest accumulation could be explained by higher precipitation of larger
aggregates limiting the availability and accumulation of the contaminated particles. Nevertheless,
higher accumulation of metals in bivalves under temperature rise in comparison to control temperature
was previously observed in mussels (M. galloprovincialis) exposed to As [20], which was also associated
with increased metabolic activity in these species. Nevertheless, Sanni et al. [90] demonstrated that
temperature (12, 20 and 28 °C) did not influence the accumulation of Cd in the oyster Crassostrea virginica;
and Izagirre et al. [74] showed similar results for the species M. galloprovincialis exposed to Cd at 18
and 26 °C. Therefore, the present and previous studies indicate that bioconcentration may not only
depend on the exposure concentration levels, exposure time and temperature conditions but also the
element and its behaviour.
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The present findings clearly demonstrated that biochemical responses and histopathological
alterations were close related to stress induced by Hg bioaccumulation, with a lower influence of the
temperature on a clam’s performance. These findings are evidenced by the PCO analysis, where clams
exposed to control (CTL) and remediated seawater at both temperatures were grouped together in
terms of biochemical and histopathological responses; clams exposed to GO-PEI at 17 and 22 °C were
graphically close indicating similar biochemical performance of organisms under these conditions;
while clams exposed to Hg and Hg+GO-PEI were apart from all the other treatments, indicating
similar effects induced by the presence of Hg. These findings suggest that: (i) regardless of the
temperature, clams exposed to remediated seawater were exposed to low stress conditions due to
lower Hg exposure concentration and accumulation, with biochemical and histopathological responses
similar to CTL organisms; (ii) clams exposed to Hg at both temperatures and Hg+GO-PEI at 17 °C
presented the highest Hg concentrations in their tissues and showed similar biochemical performance
and histopathological alterations.

Similar biochemical and histopathological alterations induced in clams exposed to remediated
seawater and CTL conditions at both temperatures revealed a low effect of temperature and indicate
the low toxicity of remediated seawater as a consequence of low Hg concentration in this water.
Higher GSH/GSSG values observed in clams under control conditions (17 and 22 °C) evidence the
maintenance of the redox balance under these conditions, regardless of the temperature of exposure.
It is well known that under non-stressful conditions organisms tend to have higher reduced glutathione
(GSH) in comparison to oxidized glutathione (GSSG) content, with higher GSH/GSSG values at
non-stressful conditions [20,21,75,80]. The results obtained indicate that the concentrations of Hg
in remediated water were not high enough to induce significant alterations in clams compared to
organisms in control conditions. Previous studies exposing bivalves to similar Hg concentrations
also demonstrated limited biochemical impacts [38,44]. Furthermore, similar findings were already
revealed by Coppola et al. [79] when exposing bivalves to seawater previously contaminated by As
and remediated by manganese-ferrite (MnFe,;O,) nanoparticles.

Clams exposed to GO-PEI both under control and increased temperatures, evidenced limited
biochemical and histopathological alterations, although higher than alterations observed in organisms
under remediated seawater and CTL treatments but lower than clams exposed to Hg and Hg+GO-PEI
treatments. The present results also demonstrated no interactive effects between the presence of
GO-PEI and temperature rise, with no clear separation on a clam’s responses exposed to GO-PEI at
control and increased temperature. Previous studies investigating the impacts of similar nanoparticles
evidenced limited biochemical alterations in bivalves [40,79,80].

In the presence of Hg, both with or without GO-PEI, clams evidenced higher Hg concentrations
resulting in greater biochemical and histopathological alterations. This is due to the activation
of antioxidant mechanisms in clams exposed to these conditions, which were inefficient to avoid
cellular damage, especially under warming conditions. Considering that clams exposed to Hg and
Hg+GO-PEI under warming conditions presented higher cellular damage than at 17 °C, and since
Hg concentrations were lower in clams exposed to Hg+GO-PEI at 22 °C than at 17 °C, these results
indicate that temperature rise will enhance the impacts caused by Hg and/or the sensitivity of clams
towards this metal. Data on the IBR index also corroborate these results, with the highest values in
clams exposed to Hg at 22 °C. Studies conducted by Coppola et al. [28] also showed the increase of
oxidative stress in M. galloprovincialis when exposed to a combination of Hg and warming scenario.
In the same species, Coppola et al. [87] further demonstrated that the combination between GO-PEI
and Hg caused lower oxidative stress and cellular damage than organisms only exposed to treatments
with Hg.
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5. Conclusions

Overall, the present study clearly showed that remedied seawater induces less biochemical and
histopathological alterations than Hg and GO-PEI treatments. Furthermore, the temperature rise
seemed to enhance the impacts cause by Hg (both acting alone or combined with GO-PEI), which can
negatively impact the clam’s population growth and reproduction in future warming conditions and
in the presence of Hg.
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