
Universidade de Aveiro
2021

Bruno Filipe
Maia Henriques

Gestão de Conteúdos Digitais em Múltiplos
Monitores

Management of Digital Contents in Multiple
Displays

Universidade de Aveiro
2021

Bruno Filipe
Maia Henriques

Gestão de Conteúdos Digitais em Múltiplos
Monitores

Management of Digital Contents in Multiple
Displays

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor An-
tónio José Ribeiro Neves, Professor professor auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

Dedico este trabalho à minha família e à minha namorada por
todo o apoio durante o desenvolvimento desta dissertação.

o júri / the jury

presidente / president Prof. Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Auxiliar da Universidade de Aveiro

vogais / examiners
committee

Prof. Doutora Maria Teresa Magalhães da Silva
Pinto de Andrade
Professora Auxiliar da Universidade do Porto

Prof. Doutor António José Ribeiro Neves
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Quero agradecer especialmente ao Professor Doutor António Neves e ao
aluno de Doutoramento Daniel Canedo por todo o incentivo, disponibilidade
e orientação que conduziram à realização deste trabalho. Agradeço também
aos meus amigos João Quintanilha e Bernardo Ferreira que me acompanha-
ram neste percurso, proporcionando memórias inesquéciveis e amizades que
levarei para vida. Um agradecimento à minha família pela oportunidade de
obter este grau académico e confiança depositada nas minhas capacidades
para o atingir. E por fim, agradecer à minha namorada Raquel Albino pelo
apoio incondicional que sem dúvida contribuiu para a conclusão desta disser-
tação.

Palavras Chave Sinalização Digital, Visão de Computador, Extração de Dados, Deteção de
Faces, Reconhecimento Facial, Extração de Emoções.

Resumo Com a utilização generalizada de sistemas de disseminação de conteúdos
digitais, surge a oportunidade de implementar soluções capazes de avaliar a
reacção do público. Esta dissertação reflete a implementação de uma des-
sas soluções. Para isso, o desenvolvimento passou pela adaptação de um
sistema de sinalização digital previamente funcional. Neste sentido, aos ter-
minais de exposição de conteúdos, foram emparelhadas câmaras digitais de
modo a permitir a captação de informação da área à frente destes. Com re-
curso a tecnologias de visão de computador, os terminais fazem, em tempo
real, deteção de pessoas que apareçam no campo de visão das câmaras,
sendo esta informação comunicada a um servidor para extração de dados.
No servidor, são utilizados métodos para realização de reconhecimento de
faces e emoções, e também é feita extração de dados indicadores da posi-
ção da cabeça, o que permite o cálculo de um coeficiente de atenção. Os
dados são guardados numa base de dados relacional e podem ser consul-
tados através de uma plataforma web, onde são apresentados associados
aos contéudos correspondentes ao momento de captação e extração destes.
Esta solução, permite, assim, a avaliação do impacto dos conteúdos digitais
apresentados pelo sistema.

Keywords Digital Signage, Computer Vision, Data Extraction, Face Detection, Face Re-
cognition, Emotion Extraction.

Abstract With the generalized use of systems for digital contents dissemination arises
the opportunity for implementing solutions capable of evaluating audience re-
action. This dissertation reflects the implementation of one of those solutions.
To this end, the development involved adapting a previously functional digital
signage system. In this sense, digital cameras were paired to the content dis-
play terminals in order to capture information from the area in front of them.
Using computer vision technologies, the terminals detect, in real time, people
who appear in the cameras’ field of view, and this information is communicated
to a server for data extraction. On the server, methods are used to perform
face and emotion recognition, and also to extract data indicating the position
of the head, which allows the calculation of an attention coefficient. The data
is stored in a relational database, and can be consulted through a web plat-
form, where they are presented associated with the contents corresponding
to the moment of their capture and extraction. This solution thus allows the
evaluation of the impact of the digital contents presented by the system.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Motivation . 2

1.1.1 Similar Systems . 2

1.2 Objectives . 4

1.3 Dissertation Structure . 5

2 Architecture 7

2.1 Web Server . 8

2.1.1 Content Transformation . 8

2.1.2 Data Extraction . 9

2.1.3 Database . 10

2.1.4 Data Mining . 10

2.2 Content Management Dashboard . 11

2.3 Content Display Agents . 11

2.3.1 Hardware . 12

2.3.2 Software . 13

3 Content Management 15

3.1 Resources Division . 15

i

3.2 Permissions Strategy . 16

3.2.1 Role Based Permissions . 16

3.2.2 User Permissions . 17

3.3 Content Transformation . 18

3.3.1 Content Upload . 18

3.3.2 Timeline Creation/Edition . 18

3.3.3 View Creation/Edition . 19

3.4 Content Management Dashboard . 20

3.5 Database . 21

3.6 Improvements and Developments . 22

3.6.1 Design . 22

3.6.2 Resource Preview . 23

3.6.3 Content Transformation . 24

3.6.4 Knowledge Discovery . 24

4 Content Display Agent 27

4.1 Content Display . 27

4.1.1 Web Server Communication . 28

4.1.2 Registration . 28

4.1.3 Content Download . 28

4.1.4 Video Playback . 29

4.1.5 View Update . 29

4.2 Data Collection . 29

4.2.1 Multi-Threading . 29

4.2.2 Content Display Thread . 30

4.2.3 Data Collection Thread . 30

4.2.4 Image Capture . 31

4.2.5 Face Detection . 31

4.2.6 Detection Report . 31

5 Data Extraction and Mining 33

5.1 System Generated Data . 33

5.2 Data Flow . 34

5.3 Computer Vision Module . 35

ii

5.3.1 Face Detection . 35

5.3.2 Face Recognition . 35

5.3.3 Head Pose Estimation . 36

5.3.4 Attention Calculation . 36

5.3.5 Emotions Recognition . 36

5.4 Database Models . 36

6 Results 39

6.1 Deployment Scenario . 39

6.2 Contents . 40

6.3 Experiment Guidelines . 41

6.4 Results Discussion . 41

7 Conclusions 45

References 47

iii

List of Figures

1.1 Digital Signage applications . 2

1.2 signEye module . 3

1.3 Seemetrix application . 4

2.1 System Architecture . 7

2.2 Content Display Agent . 12

2.3 Raspberry Pi . 13

2.4 Pi Camera image . 13

2.5 Face Detection . 14

3.1 Resources Composition . 16

3.2 System Permissions . 16

3.3 User creation page . 17

3.4 Resource permissions page . 18

3.5 Content upload page . 18

3.6 Timeline edition page . 19

3.7 Dashboard main page . 20

3.8 Listings pages 1 . 20

3.9 Listings pages 2 . 21

3.10 Database Diagram . 21

3.11 Mobile device page . 23

3.12 View Preview. 23

3.13 View information page 1 . 25

3.14 View information page 2 . 25

4.1 Content Display process life cycle . 28

v

4.2 Improved main thread . 30

4.3 Data collection thread . 31

5.1 Data extraction and mining flow . 34

5.2 Extracted data in image . 35

5.3 New database structure . 37

6.1 IEETA monitors . 39

6.2 Content Display Agent at IEETA . 40

6.3 Experiment timelines . 41

6.4 Recorded attention values . 42

6.5 Recorded emotions . 43

vi

List of Tables

2.1 Server Python libraries . 9

2.2 Content Display Agent libraries . 14

5.1 New database fields . 38

6.1 Generated data . 41

vii

Glossary

ACL Access Control List

AVA Anonymous Viewer Analytics

AVI Audio Video Interleave

CSRF Cross-site request forgery

CSS Cascading Style Sheets

DOOH Digital-Out-of-Home

HDMI High-Definition Multimedia
Interface

HOG Histogram of Oriented Gradients

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IAF Intelligent Advertising Framework

IEETA Instituto de Engenharia Electrónica
e Telemática de Aveiro

I/O Input/Output

IoT Internet of Things

JPEG Joint Photographic Experts Group

MAC Media Access Control

MP4 MPEG-4

MTV Model-Template-View

MVC Model-View-Controller

ONNX Open Neural Network Exchange

OpenCV Open Source Computer Vision

ORM Object-Relational mapper

PDF Portable Document Format

PIL Python Imaging Library

PNG Portable Network Graphics

PPT PowerPoint

ResNet Residual Neural Network

SQL Structured Query Language

sTIC Serviços de Tecnologias de
Informação e Comunicação

VPN Virtual Private Network

URL Uniform Resource Locator

ix

CHAPTER 1
Introduction

Business and technology have always been tied together. Technology empowers
business and business drives technological evolution. Digital Signage has improved
businesses advertising strategies, since manufacturers and retailers have found that
in-store marketing can affect shopper behavior powerfully [1]. Coming from paper
posters and billboards, Digital Signage revolutionized the way businesses market their
products.

Digital Signage is the concept of remotely managed digital displays, typically tied
with sales, marketing and advertising in the form of Digital-Out-of-Home (DOOH). Any
number of these displays can then be centrally managed and addressed individually for
content dissemination [2]. These systems are also popular in other environments such as
corporate, educational and hospitality, with a bigger focus in creating a more involving
working environment, spreading information and setting the mood. Applications of
this technology can now be found in most public places like shopping malls, airports,
stations, retail stores, universities and hotels as illustrated in Figure 1.1.

Assembling a Digital Signage system has become more affordable, since the cost of
the necessary equipment has fallen, such as LCD screens, servers and computers used
to administer the content [4]. This leaves room to invest in methods for improving
the reachability and effectiveness of these systems, which can be achieved with the
introduction of Computer Vision technology [5].

Computer Vision is the field of computer science that focuses on replicating parts
of the complexity of the human vision system and enabling computers to identify and
process objects in images and videos in the same way that humans do [6]. With methods
for face detection, face and emotions recognition and head pose tracking, it is possible
to gather relevant information about the audience and even enable non-contact human
computer interaction.

1

(a) Airport (b) Educational

(c) Hospitality (d) Corporate

Figure 1.1: Applications of Digital Signage solutions [3].

1.1 Motivation

Having information delivered in a digital way offers the possibility of tracking
costumers exposed to specific contents [7]. Reporting the number of viewers in front of a
display, when a content item is shown, is interesting in terms of adverstising penetration
and impression counting [8]. Understading what incentivizes people to engage more
with Digital Signage terminals, not only in real time, but also in later date, offers the
means to reach target audiences in more effective ways, as well as to establish casual
effects, as for example, whether that increased interaction results in an increase of sales.
With the introduction of Machine Learning techniques on multi-view streaming systems
it is possible to deliver dynamic content capabilities from accurate head-tracking data
[9]. That being said, the motivation behind this dissertation was to develop a solution
of Digital Signage that combines the display panels with digital cameras, making the
solution a “two-way” system that has output aswell as input, enabling the delivery of
digital contents using this human computer interaction approach.

1.1.1 Similar Systems

Some scientific work has been developed regarding this topic. In [10], the authors
proposed an Intelligent Advertising Framework (IAF), which involves integration of
Anonymous Viewer Analytics (AVA) and data mining technologies into a Digital Signage
system in order to achieve targeted and interactive adverstising. Also, in [11], it was
proposed a system that attempts to understand viewer’s involuntary behaviors in order

2

to adapt the displayed contents by the Digital Signage system.
Some systems also served as inspiration to the implementation of this thesis’s

solution, and are presented in this section.

Signbox

Signbox [12] is a leading Digital Signage software company whose technology powers
distributed media applications around the globe. It’s product suite contains an audience
measurement and analysis tool, which can be used with the Signbox Digital Signage
system, called signEye [13].

The signEye system uses a digital camera in conjunction with the latest in facial
recognition technology, to identify audience metrics that occur in the field of vision.
The digital camera is embedded in the screen frame and will normally be located above
or below a Digital Signage screen, so the recorded metrics are directly related to the
content being shown on the digital signage screen in real time.

The system is capable of recording metrics such as age, gender, emotion, number of
people that looked at the screen and the length of time they spent doing so.

signEye is the most similiar system compared the project of this dissertation. In
Figure 1.2 is presented an illustration of the signEye module from Signbox.

Figure 1.2: Signbox’s signEye module.

Seemetrix

Seemetrix [14] is an anonymous audience analytics solution consisting of client
applications and a web dashboard. The application determines and tracks every person
in front of the device estimating their gender, age group, emotions and dwell time.

The collected data is then sent to the web dashboard for analysis. The dashboard
allows to monitor and control devices running Seemetrix application and information

3

visualization regarding the obtained metrics. An illustration of the application running
is provided in Figure 1.3.

Figure 1.3: Seemetrix application for audience measurement.

1.2 Objectives

The objective of this dissertation concerned the development and integration of
real-time audience assessment features into a Digital Signage system. This involved
adding functionalities to several components of the system aimed at content adaptation
according to audience behaviour. To better understand these developments, three areas
of interest are defined below:

• Data Collection;
• Data Extraction;
• Data Mining.

For data collection, a functionality for continuous real-time face detection was
implemented in the Content Display Agents. On the server side, processes for data
extraction and mining were introduced. These processes contain methods for extracting
data in order to perform face and emotions recognition and head pose estimation.
Moreover, manipulation of this data aims to provide users of the system with information
that facilitates an understanding of the impact of the digital contents being dessiminated
by the system.

4

1.3 Dissertation Structure

This dissertation is organized in seven chapters with the present one, Introduction,
as the first. The ones remaining are the following:

• Chapter 2 - Architecture: definition of the architectural elements;
• Chapter 3 - Content Management: discussion about the image processing behind

content management;
• Chapter 4 - Content Display Agent: presentation of the software solution of the

content display and data collection agent;
• Chapter 5 - Data Extraction and Mining: description of the processes for data

extraction and mining;
• Chapter 6 - Results: discussion of results obtained during tests of the system;
• Chapter 7 - Conclusions: summary of the dissertation outcome.

5

CHAPTER 2
Architecture

The Digital Signage solution to serve as the starting point of this project already
had a well-defined architecture that comprised three main groups: Web Server, Content
Management Dashboard and Content Display Agents. This previous work was done by
a colleague for his own dissertation [15].

This chapter provides insights on this architecture, going through all the components
of the system, contextualizing their functionality. To begin, the system architecture
is illustrated in Figure 2.1. Sections 2.1, 2.2 and 2.3 present the dependencies of the
Web Server, the Content Management Dashboard and the Content Display Agents,
respectively.

Figure 2.1: Architectural diagram of the system [15].

7

2.1 Web Server

As the central component of the system, the Web Server was implemented using
Django [16], a high-level Python Web framework that encourages rapid development
and clean, pragmatic design, allowing for fast application development from concept to
completion, assuring security principles and providing quick and flexible scalability . This
framework follows the philosophy of “batteries-included”, which means the inclusion
of functionality for authentication, url routing, template engine, Object-Relational
mapper (ORM) and database schema migrations [17].

The framework embraces the Model-View-Controller (MVC) design pattern. This
entails separation of data presentation from user interactions logic handling. This being
said, it implements its own logic under the MVC concept, since it considers handling
the Controller a part of the pattern itself, thus making Django, mostly referred to as, a
Model-Template-View (MTV) framework [18].

It also has large community support and provides built-in administration GUI that
gives control over users authentication and database models and finally, facilitates
end-to-end application development since it includes a lightweight web server, making
it a great tool for full-stack software development.

2.1.1 Content Transformation

The system was designed to support three types of files and a couple of formats for
each one. For images, the options are Joint Photographic Experts Group (JPEG) and
Portable Network Graphics (PNG). For video, Audio Video Interleave (AVI) and MPEG-
4 (MP4) are used. Lastly, for presentation files, Portable Document Format (PDF) and
PowerPoint (PPT) are supported.

In order to achieve the necessary transformations of the multimedia contents uploaded
to and manipulated in the system, several python libraries are used. These are listed in
Table 2.1 coupled with a brief description for each one.

8

Library Description

imghdr [19]
Determines the type of image contained in a file or byte stream.

Used to validate image files extensions on upload
(.JPEG or .PNG)

PyPDF2 [20] Designed to operate over PDF files. Used to validate PDF files
extensions on upload.

pdf2image [21] Reads a PDF file and converts it into a PIL Image object.
Used for PDF files conversion to images.

python-pptx [22]
Handler for Microsoft PowerPoint files that allows for creation

and modification of presentations. Used for validation
of uploaded PPT files.

ffmpy [23] Command line wrapper for FFmpeg. Uses Python
subprocess [24] module for command execution.

Table 2.1: Python libraries used in the server side [15].

FFmpeg

FFmpeg [25] is a multimedia framework, able to decode, encode, transcode, mux,
demux, stream, filter and play a wide variety of video and audio file formats. It allows
a user to operate on audiovisual files directly [26]. This framework is a key dependency
of this project since, when paired with the other libraries of the system, it fulfills its
needs for content manipulation, be it, format transcoding, video editing and scaling
among other features.

2.1.2 Data Extraction

According to the objectives of this dissertation, defined in Section 1.2, in the Web
Server, were introduced data extraction capabilities concerning three main areas. The
first one, face recognition, is the process of identifying and verifying the identity of
individuals through photos or video. Algorithms extract specific and distinctive details
about people’s faces and convert them to mathematical representation to perform
comparisons with other faces on record [27]. No image of the audience is saved, only
anonymous descriptors that allow to differentiate detected subjects. The second one,
emotion recognition, is the process of mapping facial expressions to identify emotions on
a human face [28]. And the last one, head pose estimation, relates to the interpretation
of facial landmarks in order to estimate the direction the head is oriented to [29].

In Chapter 5, it will be presented the implemented computer vision module that
contains the solution associated with these capabilities, and in this Section, are listed
three libraries used to fulfill that solution.

9

Dlib

Dlib is a modern C++ toolkit containing machine learning algorithms and tools
for creating complex software in C++ to solve real world problems [30]. Although it
is written in C++ it has great compatibility with Python. Like OpenCV, it has a
multitude of algorithms that bring capabilities for several fields. The one of most interest
to this project is image processing, since Dlib has high performance face recognition
features.

ONNX Runtime

ONNX Runtime is an open source project that is designed to accelerate machine
learning across a wide range of frameworks, operating systems, and hardware platforms.
It enables acceleration of machine learning inferencing across all of your deployment
targets using a single set of API [31]. It brings this project the capability to identify
emotions through facial expressions.

OpenCV

Open Source Computer Vision (OpenCV) is an open source computer vision and
machine learning software library [32]. This library’s algorithms are used to develop
real-time computer vision applications, concept in which lie different fields. For this
project, the capabilities associated with the field of image processing are once again the
ones used the most, making use of methods for estimation of subjects head pose.

2.1.3 Database

With the need to store data associated with user information and permissions,
multimedia contents and processed information derived from the collected data a
database was prepared. Django officially supports several, such as PostgreSQL, MariaDB,
MySQL, Oracle and SQLite [33]. In this project the last one, SQLite3, is used. This
database is very popular and implements small, fast, self-contained, high-reliability, full-
featured, Structured Query Language (SQL) database engine [34]. Another important
advantage is that the database information is stored in a file, giving the system great
portability.

2.1.4 Data Mining

As important as the processes for data collection and extraction was the process
of data mining, since the aim of this solution was to provide users with information
related to contents performance and impact on the audience that interacts with the
Content Display Agents. This entails manipulations and calculations performed on the
collected and extracted data.

10

Matplotlib

Matplotlib [35] is a comprehensive library for creating static, animated, and interac-
tive visualizations in Python. It is easy to use and makes possible the display of charts
which help understand and interpret the data generated by the system.

2.2 Content Management Dashboard

This component is the access point for users to control and interact with the system.
The webpage is served by Django and accomodates a simple interface that hosts a
good range of user interactions. These range from user management, content upload
and manipulation, real-time deployment and information visualization related to the
generated data, firstly, from the cameras attached to each of the registered Content
Display Agents and secondly, manipulated in the Web Server.

2.3 Content Display Agents

As the last component of the system we have the Content Display Agents. These
are autonomous operating agents which are made up of a Raspberry Pi [36], coupled
with a Pi Camera [37], connected to a display through High-Definition Multimedia
Interface (HDMI). These agents act as the interaction point for subjects and display
the multimedia contents generated and disseminated through the Content Management
Dashboard, mentioned in Section 2.2. Along side the display process runs another
process that continuously captures images of the area in front of the displays and
detects subjects that may be engadging with the contents. More details on the software
solution running on the Content Display Agent will be presented in Chapter 4.

The case study of this dissertation was to use the Digital Signage system at Instituto
de Engenharia Electrónica e Telemática de Aveiro (IEETA) with the goal of dissemi-
nating science and good information. A deployment scenario example of the Content
Display Agent, using a display in the insitute, is shown in Figure 2.2. In Chapter 6 will
be presented the experimental results for this case study.

11

Figure 2.2: Content Display Agent setup at one of IEETA’s displays.

2.3.1 Hardware

Raspberry Pi, a UK based foundation, provides affordable single board computers in
order to enable people all over the world to experience computing and digital technologies
[38].

The use of these computers allowed for easy deployment and setup of the Content
Display Agents. Raspberry Pi have shown that cheap, yet serviceable computer boards
are the perfect platform for interfacing with many different devices making it very
suitable for applications in Internet of Things (IoT) context [39].

Raspberry Pi 3 Model B+

For this project, version 3 of the Raspberry Pi single board computer was used, as
illustrated in Figure 2.3. With sufficient processing power for the Python programme
it needs to run, a chip for wireless LAN connections and varied Input/Output (I/O),
including full size HDMI, DC power input and CSI camera port, allowing for a connection
to the Raspberry Pi camera, thus making it a good fit to act as an agent of the system.

12

Figure 2.3: Raspberry Pi single board computer [40].

Raspberry Pi Camera Module V2

The camera module is easilly attachable and has an 8 megapixel sensor. The camera
specifications provided a capable tool for this project, allowing for capture of high
definition video and photographs. In Figure 2.4 is possible to see a captured image.

Figure 2.4: Image captured with the Pi Camera.

2.3.2 Software

The intended functionalities for the Content Display Agent software solution required
some dependencies in order to fulfill the needs for displaying multimedia contents and
capture the subject engadgement. In Table 2.2 are listed some of the libraries, with
respective descriptions, and after that are presented the most important ones.

13

Library Description

screeninfo [41]
Module for fetching location and resolution of connected
physical screens. Used to fetch the Content Display Agent

screen resolution.

netifaces [42] Module for fetching connection interfaces. Used to find
suitable MAC address of the Content Display Agent.

requests [43]
Module for HTTP communication. Used to perform

HTTP GET and HTTP POST requests between Content
Display Agents and the Web Server.

Table 2.2: Python libraries used in the Content Display Agent [15].

OMXPlayer

For the content display OMXPlayer [44] was used. It is a command-line media
player that comes pre-installed in the Raspeberry Pi operating system and is able to
play back popular audio and video file formats [45].

Pi Camera

The Pi Camera Python package [46] was needed in order to capture frames from the
Raspberry Pi camera module. This package provides an interface to the camera module,
allowing to connect to it and initialize the camera with the desired configurations.

Dlib

Dlib was used in the software of the Content Display Agent for its image processing
capabilities for detecting faces. An example of a detection is provided in Figure 2.5.
Only images where a positive detection is made are sent to the Web Server. More
details of the implementation will be presented in Chapter 4.

Figure 2.5: Face Detection using Dlib.

14

CHAPTER 3
Content Management

The purpose of this chapter is to address the system features for content management.
It focuses on two of the architectural components of this project, the Web Server (Section
2.1) and the Content Management Dashboard (Section 2.2).

To start, Section 3.1 presents the division of resources. In Section 3.2 the permissions
strategy used in the system is introduced. Sections 3.3 and 3.4 detail the content
transformation processes and content management dashboard. Following, in Section
3.5, it is presented the database diagram and, to finish, in Section 3.6, it is where the
improvements and new developments are described.

3.1 Resources Division

This Digital Signage solution gives freedom to the users to create and dispose
multimedia contents into any order, and consequently display them [15].

To do this, three different resource types were defined to be the footprint for content
organization in the system. Those types are the following:

• Contents - base resource that represents items uploaded by users that can be of
any of the types metioned in Section 2.1.1;

• Timelines - composition of Contents with predefined sequence;
• Views - composition of Timelines with predefined sequence.

For visualization of this structure an illustration is provided in Figure 3.1.

15

Figure 3.1: Diagram for composition of the system resources [15].

3.2 Permissions Strategy

The solution takes advantage of Django containing a built-in authentication system
[47] that couples authentication and authorization. This way, to access the system users
require authentication with the corresponding credentials, also, since the system can be
accessed by multiple users it is important that management of multimedia resources
is restricted to the respective owners, hence the use of permissions. The system is
comprised of two permission levels: role based permissions and user permissions, as
illustrated in Figure 3.2.

Figure 3.2: System Permissions diagram [15].

3.2.1 Role Based Permissions

As shown in Figure 3.2, the system contains two types of users. The first one,
Administrator, is a user with the reponsability of managing users access and permissions.
For this, an Administrator user has access to a restricted area called Users that provides

16

control for all of this. In addition, this user has no restrictions when it comes to
multimedia resources management, being able to add, edit and delete any kind.

The second user type, Regular User, lives inside the system restricted by the
permissions set by Administrator Users.

3.2.2 User Permissions

For a Regular user the system is designed to have two more permission levels:
Resource level and Object level.

The Resource level refers to the permissions for access to the areas of the Content
Management Dashboard that relate to each of the three resource types described in
Section 3.1, Contents, Timelines and Views.

The attribution of these permissions is done at the creation or edition of a user
in the restricted area for user management. Both the user creation and edition forms
have controls for the insertion of user basic information as well as a checkbox group for
permission definition. An example is provided in Figure 3.3.

Figure 3.3: Content Management Dashboard page for user creation.

When it comes to the Object level it refers to the access to specific multimedia
resources. Following the principle of an Access Control List (ACL) the permissions are
associated with the object and the list contains all users permissions to access it.

Although by default the user has access only to the objects he has created [15],
this can be changed by an Administrator user by accessing the resource permissions
page. In every resources list (Content, Timeline and View), each entry representing a
resource object contains a padlock button (example in Figure 3.8) that redirects to the
previously mentioned page. Figure 3.4 presents an illustration of this process.

17

Figure 3.4: Content Management Dashboard page for resource level permission handling.

3.3 Content Transformation

The process of content transformation can be summarized into three steps and those
are listed below:

1. Content Upload;
2. Timeline Creation/Edition;
3. View Creation/ Edition.

3.3.1 Content Upload

As the first step this one is the most straight forward. Using Django’s File Upload
[48] files are saved to the Web Server, followed by the validation of file extension support.
To finish the upload process a second validation is done according to the file format
using the Python libraries presented in Table 2.1.

The page of the Content Management Dashboard that allows for content upload is
illustrated in Figure 3.5.

Figure 3.5: Content Management Dashboard page for Content upload.

3.3.2 Timeline Creation/Edition

It is in this step that users are allowed to combine Contents. In the Timeline creation
(or edition) page a form is displayed containing controls for insertion of a name for the
timeline, a dropdown button where it is possible to choose the Contents to be part of
the Timeline and a table where the added Contents are listed and can be ordered by a

18

dragging action. Each entry of the table provides an input for definition of Content
display duration.

In the specific cases of Contents of presentation format (PDF and PPT) this duration
value is used for the display time of each slide or page, amounting to a total duration
of duration * number of slides. Since FFmpeg requires files in image or video format,
these presentation format files have to be converted. For PDFs the conversion process
starts by creating an image for each slide and registering the names for each of them in
a text file. At this point FFmpeg can read the text file and create the video file. As for
the PPTs, they have to first be converted to PDF using LibreOffice’s command line
converter [49] and only then be subject to the process mentioned before.

In Figure 3.6 it is provided and illustration of the Timeline edition page.

Figure 3.6: Content Management Dashboard page for Timeline edition.

3.3.3 View Creation/Edition

View creation is an automatic process triggered by the registration of a Content
Display Agent in the system (more details presented in Section 4.1.2). When this
happens the View is initialized as unconfigured, having no name and no Timelines
associated. In order to have multimedia contents displaying in the Content Display
Agent the View has to to be configured first. To do this, similarly to the Timeline
creation page, the View edition page displays a form with controls for the name, a
dropdown button to choose Timelines and a table listing the added ones with the same
dragging action to set the order.

On View form submission, with the help of FFmpeg, the MP4 file creation process
is started. When finished, the View video file will be available for the corresponding
Content Display Agent to fetch it and start displaying.

The page for View edition is identical to the page for Timeline edition, presented in
Figure 3.6.

19

3.4 Content Management Dashboard

As previously mentioned in Section 2.2, Django is capable of exposing a webpage,
for which in this project, the implementation was done using Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS) and Javascript [50].

After a successfull log in, the user lands in the main page of the Content Management
Dashboard, as illustrated in Figure 3.7.

Figure 3.7: Content Management Dashboard initial page.

Also in Figure 3.7, it is possible to see the interface contains top and left navigation
bars. The first, allows users to access the profile page and to logout. The second one,
allows for navigation to the areas corresponding to each resource type introduced in
Section 3.1, as well as the user management area. These navigation links are displayed
according to the user permissions described in Section 3.2.2.

Clicking on the navigation links the user is taken to the resources listing pages.
Examples are provided in Figures 3.8 and 3.9.

(a) Contents Listing (b) Timelines Listing

Figure 3.8: Content Management Dashboard resource listing pages (1).

20

(a) Views Listing (b) Users Listing

Figure 3.9: Content Management Dashboard resource listing pages (2).

3.5 Database

The database of this project capitalizes on Django’s database-access API. The
database tables are mapped from Python subclasses of Django’s Model class [51]. A
diagram of the structure, showing the database tables and their respective fields, is
provided in Figure 3.10.

Figure 3.10: Diagram of the database structure.

21

3.6 Improvements and Developments

In order to start the development process, some requirements were established. The
first one was implementation of design improvements to the webpage, concerning a
cleaner look and responsive capabilities. Other than that, it was important to include
the ability to preview the multimedia resources in the system, making clear to the user
what they really are working with.

When it comes to the objectives of this dissertation it was required the introduction
of a new page, accessible from every resource list (Contents, Timelines and Views),
where it is possible to display the data generated associated with each resource, process
that is explained in more detail in Chapter 5.

3.6.1 Design

As a way of making the webpage cleaner Bootstrap’s [52] Card [53] class was used.
This is a flexible and extensible content container that includes options for headers and
footers, which help organize the pages. An illustration of this can be found in Figure
3.4 where the option for the card header is active and displays the content name, in
the card body lives the information of interest, in this case, the users permissions for
resource access, and at the bottom in the footer, is the button for submission of the
performed changes.

For content display in web pages Bootstrap also provides control over building a grid
layout using columns [54]. In order to address the requirement of responsive capabilities
these columns were reimplemented using column classes with extensions for activation
in specific display sizes. To see this in action, Figure 3.11, showing a screenshot of a
mobile display, provides a comparison to Figure 3.3, which shows a screenshot of a
desktop display.

22

Figure 3.11: Content Management Dashboard page for user creation on a mobile device
screen.

3.6.2 Resource Preview

Controls for preview of the multimedia resources in the system were added. For
Contents, a preview button was added to the Content edit page that, when clicked,
opens the respective file in a new tab of the browser. For Timelines and Views, the
preview implementation passed by adding a video control in the respective resource
type edit page, as illustrated in Figure 3.12 for the generated MP4 file from View
configuration.

Figure 3.12: View Preview.

23

3.6.3 Content Transformation

During the development process, it was detected that conversion of PDF files was
generating video files with longer duration than expected. For example, if a PDF file
had 3 pages, and the defined time for each page was 10 seconds, while the generated
video should have 30 seconds total duration, it would have 33 seconds and the extra 3
seconds would be a continuation of the last page. It was important to do this correction
because, when processing a viewer detection, calculations are made to determine which
multimedia content was displaying at that exact moment (more on this matter in
Chapter 5).

That being said, after converting a PDF to a video file, FFmpeg’s method ffmpeg
_extract _subclip() was used. This trimming action generates a final video file with
expected duration.

3.6.4 Knowledge Discovery

This requirement for the Content Management Dashboard was of great relevance to
this dissertation’s objectives, since it was about providing access to information about
the multimedia contents “performance”, aiming for an understanding of the impact, of
the multimedia contents, on the subjects who visualize them. It is possible to visualize
information about Contents, Timelines and Views, in the respective info page, accessible
from each entry in the resources list pages.

Taking as an example a View info page, illustrated in Figure 3.13, it is possible to
navigate to its corresponding edit page from the header of the card, since users migth
want to perform some changes after interpretation of the information. On the card
body, at the top, are referenced the lower layer multimedia resources that are part of
this View, which are the Timelines that compose it, linking to their respective info
page. This is also the case for Timelines, but not for Contents, since these are the
introductory resource type. Having these references provides easy navigation through
the resource tree.

After that, information like Display Time, Attention Time, Average and Cumulative
Attention values, number of detected subjects and the number of total captured frames
is presented. The reasoning for the information fields provided, and the implementation
behind them, is explained in more detail in Chapter 5.

It is also possible to access data in a graphical way. For that, a line chart of the
atention values per captured frame over time, and a pie chart of the number of times
emotions from a specific set were recognized, are presented, as shown in Figure 3.14.
At the bottom can be found a simple form where, with the input of specific start and
finish timestamps, the information for that specific period of time is provided.

24

Figure 3.13: Content Management Dashboard page for View information (1).

Figure 3.14: Content Management Dashboard page for View information (2).

25

CHAPTER 4
Content Display Agent

The purpose of this chapter is to provide a detailed description of the software
running in the terminal agents metioned in Section 2.3. To start, in Section 4.1, it will
be addressed the part of the solution regarding the display of contents, presenting it’s
features and life cycle. After that, in Section 4.2, the sofware implementation in charge
of collecting data from the Pi Camera will be introduced.

4.1 Content Display

The Content Display Agent’s software started as a single thread Python program.
When an agent is properly set up, the program is set to run on boot and permanently
until a shutdown occurs. It requires an active network connection to be able to establish
a connection to the Web Server (Section 2.1) over Hypertext Transfer Protocol (HTTP).
On program start, a series of steps are in place to ensure the agent functions as intended,
meaning, being able to register in the Web Server, in order to have its associated View
configured, and consequently be able to fetch the corresponding generated MP4 video
file. When the download is complete, a video player process is started and, in order to
keep the multimedia contents updated, the agent periodically checks for view updates
on the server, downloading the new video file if necessary. A diagram representation of
this cycle is provided in Figure 4.1.

27

Figure 4.1: Life cycle of the Content Display Agent content display process.

4.1.1 Web Server Communication

Requests to the Web Server are directed at URL endpoints exposed by Django.
Through its life cycle, the software required three URLs, which are listed below:

• login/ ;
• monitor/new _monitor/ - Section 4.1.2;
• monitor/check _for _changes/ - Section 4.1.5.

To have protected connections to the server a request to the login URL asks for a
valid Cross-site request forgery (CSRF) token. Only with this token can the remaining
GET and POST requests be acknowledged by the server.

4.1.2 Registration

Agent registration requires the MAC address of the device, obtained with netifaces
[42], and the screen resolution of the connected display, obtained using screeninfo [41].
In the Web Server, the monitor/new _monitor/ URL, receives this information to
serve as unique identification for each of the registered Content Display Agents and to
correctly generate the digital contents. The request response contains the server path
for the corresponding video file.

4.1.3 Content Download

Video file download is done with an HTTP GET request to the previously obtained
path. Successful download creates a local file and in case of download failure, for
example when View configuration hasn’t been done yet, which means the video file
doesn’t exist, the request is repeated periodically until it is possible to perform a
successfull download.

If on program start, the video file already exists locally from a previous boot, video
playback is started right away, skipping the initial download. If during the agent’s
downtime changes were performed to the View, update of the video file will be done
the next time the agent checks for View updates, as explained in Section 4.1.5.

28

4.1.4 Video Playback

Having the local video file available, video playback is started by launching an
OMXPlayer process. The player takes as input the video file path and some attribute
flags to set the intended behaviour. Using -g, the player is enabled for log generation,
in order to have clean display of the contents, the background is set to black with -b
and the status information is hidden with -no-osd. Finally, -loop is used to keep the
video playing repeatedly.

4.1.5 View Update

Since the Content Display Agents can be running for long periods of time, to avoid
restarting the agent in order to fetch the latest version of the video file, it periodically
polls the Web Server, checking for updates on the View. Polling is done every 60 seconds
and, if the server reports View changes, the process for content download is triggered
and performed as described in 4.1.3, followed by a reload of the OMXPlayer process.

4.2 Data Collection

In sight of the objectives presented in Section 1.2, data collection is the first process
of the audience assessment functionality of the system.

As metioned in Section 4.1, the software was implemented to run on a single thread,
thus making the introduction of multi-threading the first goal of the implementation,
since both the content display process and the data collection process require blocking
code to perform it’s continuous life cycle, and the objective was to have them run side
by side.

The new process is in charge of connecting to the Pi Camera and continuously
capture images of the area in front of the display, while performing real-time face
detection and reporting to the Web Server when atleast one detection is made.

4.2.1 Multi-Threading

Implementation of multi-threading was done using the threading module [55] included
in Python. The creation of custom threads required the definition of subclasses of the
Thread class overriding the constructor __init __(self, [args) and the run(self, [args])
method. Two subclasses were created, one for the content display process and another
for the data collection process. With code readability and organization in mind, in
the run(self, [args]) method of each thread only lives the code responsible for the life
cycle of each process and the supporting variables and methods are part of a third
class representing a shared space. This class is passed as an argument to both threads,
which allows for information sharing between them. In Figure 4.2 is provided a diagram
illustration of the main thread of the software.

29

Figure 4.2: Improved main thread of the Content Display Agent software.

4.2.2 Content Display Thread

This thread was the re-implementation of the life cycle detailed in Section 4.1 with
the addition of two features. The first, had to do with reporting to the Web Server that
the digital contents of the View have started playing in the agent. This was done after
every OMXPlayer process start or reload, by calling the method report _view _start(),
which performs an HTTP POST request to a new URL endpoint exposed by the server,
monitor/view _start. In this URL, the server expects the payload of the request to
contain as data the absolute datetime in milliseconds of when the player was started.

The second, is meant to synchronize the start of image captures in the data collection
thread. Using the Event class provided by the threading module, it is possible to have
communication between the threads in the form a flag. Again, right after the start of
the OMXPlayer process, this event flag is set() to True by the content display thread.
In this way, the data collection thread can check the flag value and decide to perform
an image capture or not.

4.2.3 Data Collection Thread

The data collection thread starts by establishing a connection to the Pi Camera.
Then, it enters a continuous loop where it checks the Event flag value to ensure captures
are only done when the digital contents are displaying. If they are, it checks for the
presence of subjects in the camera field of view. When a detection occurs, the captured
image is reported to the Web Server for extraction of data. In Figure 4.3, an illustration
of this life cycle is provided.

30

Figure 4.3: Content Display Agent data collection thread.

4.2.4 Image Capture

Using the dependency presented in Section 2.3.2, the Pi Camera is initialized with a
resolution of 640 * 480 pixels at a framerate of 30 frames per second. Higher resolutions
proved demanding on the modest computing power of the Raspberry Pi, increasing the
time needed to perform face detection.

Calling the capture() method captures an image to a numpy array object which is
then passed through the face detection algorithm. The algorithm takes about a second
to run, so, even though the camera runs at 30 frames per second, the agent is only
capable of processing captures at 1 frame per second.

4.2.5 Face Detection

The regions of interest in an image are the faces of subjects engadging with the
displaying contents. Face detection is performed using Dlib’s pre-trained Histogram
of Oriented Gradients (HOG) based face detector [56]. HOG is a feature descriptor
technique that counts occurences of gradient orientation. The algortithm extracts the
bounding boxes of faces and returns a list of objects equal in length to the number of
faces detected in the image. The length of this list serves as the validation required
for acknowledgement of successful detections in the agent and contributes for close
to real-time detections. Full face detection is done server side, more details will be
presented in Chapter 5.

4.2.6 Detection Report

If one face is detected by the face detection algorithm, the captured image is encoded
to JPEG through OpenCV’s imcode() method and reencoded to text. At this point, the
thread reaches the last step of its life cycle and an HTTP POST request to the URL
monitor/viewer _detected is performed. Its payload contains the absolute datetime

31

in millisseconds of the moment of image capture, the relative time in seconds of the
position in the video, possible to get from OMXPlayer when the detection occurs, and
finally, the enconded image. Completing this step restarts the agents’s capture life
cycle.

32

CHAPTER 5
Data Extraction and Mining

In order to achieve this project’s main objective, concerning the integration of
audience assessment features into the Digital Signage solution, the concepts of data
extraction and data mining were introduced. Data extraction is the process which allows
the system to retrieve data from the image sources provided by the data collection
process [57]. Data mining is the process that makes the system capable of finding
patterns and correlations within the extracted data, in order to understand relevant
information [58].

Section 5.1 presents the proposed metrics generated by the system. Section 5.2
presents the flow of data through the system. The introduction of the computer vision
module is provided in Section 5.3. To finish, the changes to the database models
required for storage of the mined data are presented in Section 5.4.

5.1 System Generated Data

The aim of this computer vision solution is to mine quantitative data in order to
evaluate the impact of the multimedia contents on the subjects. This requires for the
proposed implementation to keep track of a set of metrics of interest. These are meant
to help measure engadgement time and quality, and are listed below:

• Display Time - the total time of content display;
• Attention Time (and Percentage) - time of subject engagement;
• Average and Cumulative Attention Coefficient - level of engagement (value ranges

from 0 to 1);
• Emotions - occurrences of recognized emotions;
• Number of Recognitions - number of different recognized subjects.

33

5.2 Data Flow

The flow of data through the system starts on the Content Display Agents, where it
is collected, it then reaches the Web Server where it is processed and stored. Commu-
nication between these components triggers several actions that are of interest to the
system when it comes to the system data it proposes to generate.

Every time a Content Display Agent is started it notifies the Web Server in order
to synchronize the information about the contents display time. During its life cycle,
presented in Figure 4.1, the agent periodically polls the server for changes, and when it
does, the content display time is incremented by the difference of time to the last poll,
which the server also keeps track of. Moreover, when a subject detection is done at the
agent, it promptly reports to the server, sending the captured image and timestamps.

Reaching the server, the data extraction process is started. The implementation
took into consideration that the time it takes for this process to end and return an
HTTP response affects the agent’s capture rate. With this in mind, a Thread is started
to run the method process _viewer() and perform the intended processing without
holding up the requests response. A diagram illustrating this process is provided in
Figure 5.1.

Figure 5.1: Flow of the data extraction and mining processes.

Section 5.3 will describe the first 5 steps of the process. For the last step, Content
Determination, the system uses the timestamps provided by the agent to determine
which Content, Timeline and View was displaying at the time of subject detection. On

34

successful determination of each of the resources, the extracted information is stored in
each of the corresponding database entries.

5.3 Computer Vision Module

This module holds all the computer vision capabilities of the system. It implements
methods for face detection, face recognition, head pose estimation, attention calculation
and emotions recognition. In Figure 5.2, some of the extracted information can be seen
drawn over a captured image.

Figure 5.2: Image with drawn annotations for the recognized subject ID, face bounding box,
facial landmarks and recognized emotion.

5.3.1 Face Detection

Using DLib’s HOG based frontal face detector the system is able to extract the
bounding boxes of the subjects faces present in the captured image. After that, going
through the boundind boxes list, DLib’s shape predictor method, previously loaded
with a pre-trained 68 point face landmarks model [59], is used to detect facial landmarks
such as eyes, eyebrows, nose, mouth and jawline that are present inside the bounding
box.

5.3.2 Face Recognition

To start, the face of the subject is extracted from the image as a numpy array, using
the prediction obtained with the face detection process and running DLib’s get face
chip method. This gives the system an object that is a definition of the candidate to be
passed through the recognition process.

Previously loading DLib’s face recognition model method with a pre-trained Residual
Neural Network (ResNet) model [59], that converts human faces into 128D vectors,

35

allows the system to compute face descriptors of the candidate using the numpy array
of the face.

With the candidates descriptors, the system loops through the existing face descrip-
tors, which are stored in a file on the Web Server, in order to find the best comparison.
If the best comparison is within the system recognition confidence value, the counter
for captured frames associated with this candidate is incremented. Otherwise, a new
ID and its corresponding descriptor is added to the descriptors file.

5.3.3 Head Pose Estimation

Taking the detected facial landmarks, the system is able to estimate the head
pose of the subject. Using OpenCV’s solvePnP method it calculates the rotation and
translations vectors that transform the 2D facial landmarks into 3D coordinates. It is
able to decompose a projection matrix created with the previously calculated vectors in
order to extract Euler Angles that describe the orientation of the face.

5.3.4 Attention Calculation

From the Euler Angles the system takes the pitch and yaw values to calculate the
subjects attention. For this, the system assumes that frontal orientation implies that
subjects are paying attention, providing an higher value for the attention coefficient.
Deviations from the frontal orientation decrease the attention coefficient value, and
if they are over 30 degrees, they aren’t considered, since this can mean that subjects
aren’t looking at the display, and also due to the face detection process difficulties to
detect faces after this point.

5.3.5 Emotions Recognition

Using ONNX Runtime, which supports Open Neural Network Exchange (ONNX)
open standard format machine learning models, loaded with a pre-trained model for
emotions, the system is able to infer which emotion a subject is displaying [60]. The
emotions are categorized in a set and are the following: Neutral, Happiness, Surprise,
Sadness, Anger, Disgust, Fear, Contempt.

5.4 Database Models

Storage of the extracted information is done for every resource type of the system,
Contents, Timelines and Views. In order to properly store it some changes had to be
done to the existing database models. These changes affect multiple database models,
and those are listed below:

36

• Content;
• Timeline;
• View;
• TimelineContents.
In Figure 5.3, it is presented an illustration of the database object-relation mapping

diagram containing the new fields added to the previously listed models. After that,
Table 5.1 highlights the added fields, and provides a description of their purpose as well
as the models they are included in.

Figure 5.3: Diagram of the database structure showing the new fields added to tables
Content, View, Timeline and TimelineContents.

37

Field Description Model(s)

attention_time Stores the total seconds
of subject engagement.

Content, Timeline,
View

average_attention Stores a dictionary of
relevant data. See Snippet 1.

Content, Timeline,
View

display_time Stores the total seconds of exposure. View

last_check Stores a datetime in milliseconds
of the last access to the model. View

last_detection Stores a datetime in milliseconds
of the last subject detection. View

last_start Stores a datetime in milliseconds
of the last View start. View

num_slides
Stores the number of slides or
pages of contents of the presentation
formats (PDF and PPT).

TimelineContents

recognition_confidence Stores the confidence coefficient
for the face recognition process. View

Table 5.1: New database fields and their description.

{
key: {

average_attention: [],
cumulative_attention: 0,
emotions: {

"Anger": 0,
"Comtempt": 0,
"Disgust": 0,
"Fear": 0,
"Happiness": 0,
"Neutral": 0,
"Sadness": 0,
"Surprise": 0,

},
emotions_list: [],
frames: 0
timestamps: []

}
}

Snippet 1: Example of an initialized key-value pair (key is a subject ID and value is a
dictionary containing the extracted data).

38

CHAPTER 6
Results

After having obtained a functional solution satisfying the identified requirements, it
was necessary to perform some tests to assess its efficiency. Accordingly, a demonstrative
scenario was conceived and an experiment planned and carried out. This chapter presents
such experiment and provides an analysis of the obtained results. Section 6.1 describes
the deployment scenario. Section 6.2 adressess the preparation of content for the
experiment. The guidelines for the participants are presented in Section 6.3. To finish,
in Section 6.4, it will be presented a discussion over the experiment results.

6.1 Deployment Scenario

The location of the experiment was IEETA. The institute building is on University
of Aveiro campus and contains offices and coworking open spaces used by faculty
and students. Spread across the area are three monitors used to display multimedia
contents, allowing for information dessimination about the departments project’s or
events. Figure 6.1 presents an illustration of the monitors.

Figure 6.1: IEETA’s three monitors.

Connected to these monitors are three Raspberry Pi 3 Model B+ [36] equipped with
a Pi Camera [37] and setup to run the software implemented as described in Chapter 4.
Figure 6.2 provides an illustration of the setup.

39

The Django Web Server was deployed to a Virtual Machine hosted by Serviços de
Tecnologias de Informação e Comunicação (sTIC) which makes connections possible
from any terminal inside the Eduroam network or over Internet connection using a
Virtual Private Network (VPN).

Figure 6.2: Content Display Agent setup at a IEETA monitor.

6.2 Contents

The choice of multimedia contents wasn’t to relevant when it comes to the evaluation
of the solution. That being said it was a requirement and for that reason and the
fact that at the time of this experiment the world was going through the COVID-19
pandemic, it felt positive to populate the system with multimedia contents regarding
this subject. As it is commonly understood, having access to accurate and up-to-date
information is very important to keep people safe and fight the disease and for this the
multimedia contents were collected from the portuguese Health Ministry’s COVID-19
website. As there were plenty of individual contents uploaded and most of them are
intended to be used together, they fall right into the digital signage solution capabilities.
A list of the generated Timelines is presented and Figure 6.3 shows these in the Content
Management Dashboard.

• Sintomas (two PNG files);
• Evitar a transmissão do vírus (one MP4 file);
• Cuidados (pdf);
• Atividade física (four JPEG files);
• Como colocar a máscara (8 PNG files);
• Recomendações gerais (one PDF file);
• Etiqueta Respiratória e Sintomas (two PDF files);
• Fluxograma de partilha de informação (one PDF file);

Every View was setup with all the timelines in the same order.

40

Figure 6.3: Experiment Timelines in the Content Management Dashboard.

6.3 Experiment Guidelines

To better understand the performance of the solution some guidelines were set. Only
in this way it is possible to gauge if the obtained results coincide with the expectations.
The experiment was designed to last 6 minutes and to have 3 different stages. In each
of the stages 4 participants were asked to behave in a certain way.

• Stage 1 (0 - 2min) - Direct engagement;
• Stage 2 (2 - 4min) - Sporadic engagement;
• Stage 3 (4 - 6min) - Engagement with a mask on.

6.4 Results Discussion

For this analysis the data to be considered relates to the View resource level. Having
timestamps associated to each entry of extracted data allowed to isolate the data
corresponding to the experiment time that is equal to 6 minutes. In Table 6.1 are
presented the audience assessment metrics obtained by the system.

Global Stage 1 Stage 2 Stage 3
Number of Frames 423 162 136 125
Number of Subjects 5 4 4 5
Attention Time 7m 3s 2m 42s 2m 16s 2m 5s

Attention Coefficient 0.59 0.62 0.51 0.65
Cumulative Attention 251.51 100.66 69.2 81.65

Table 6.1: Data generated by the system for the experiment.

Starting with the number of frames and focusing on the stages, its possible to see
that they are registered as expected, with the highest being Stage 1, and the lowest
Stage 3, even if not by the amount one would imagine, especially due to the use of the
mask. This means the system is capable of detecting subjects even with a part of the

41

face covered, but the success rate drops. That being said, looking at the number of
detected subjects, some more insight to this matter can be found. For Stage 1 and 2, 4
different subjects were detected, as expected, but in Stage 3 the system registered a
new subject. The introduction of the mask proves challenging for the face recognition
algorithm, since it removes some of the facial features extracted by the system.

Since the attention time amounts to the total sum of time of engadgement by all
of the subjects, it’s no surprise this time exceeds the display time, since there were 4
participants.

When comparing the attention coefficient and cumulative attention values, these are
reported as expected, with Stage 2 having the lowest value in both. Furthermore, Stage
3, while reporting a higher value for the attention coefficient when compared with Stage
1, has a lower value for the cumulative attention. This is understandable due to the
lower number of captured frames explained by the success rate drop mentioned above.

In Figure 6.4 is provided a chart illustration of the attention coefficient values over
the time of the experiment.

In order to help visualize the relevant parameters such as attention coefficient values
and emotions some charts were generated. Examples of those charts are provided in
Figure 6.4 and .

Figure 6.4: Recorded attention values over time for the experiment.

Looking at the data regarding the extracted emotions, overall the system mainly
recognized the Neutral emotion, only recording one occurence of a different emotion,

42

Sadness. This can relate to the multimedia contents not being prone to generating reac-
tions from the subjects, but more testing would be necessary to take better conclusions.
An illustration of the recorded emotions over the time of the experiment is presented in
Figure 6.5.

Figure 6.5: Recorded emotions over time for the experiment.

43

CHAPTER 7
Conclusions

This final chapter aims to provide an overview of the developed solution. The
main objective of this dissertation was the implementation and integration of audience
assessment features on an existing digital signage system. This required developments
in all the components of the project architecture.

Starting with improvements to the Content Management Dashboard, the develop-
ments focused on providing responsive design that enables a better user experience
when accessing the platform using a mobile device, followed by the introduction of a new
page related to every multimedia resource uploaded to and manipulated by the system,
which allows for users to review system generated information about the multimedia
contents and also the introduction of a preview feature for all of these same resources.

Moving to the Content Display Agents, the implemented software solution was
adjusted to handle the new data collection process. For this process, the agent was
coupled with a digital camera that allows for capturing the area in front the agents’
display. Throughout the time that the agent is displaying multimedia content, it
continuously analyses the feed captured by its camera in an attempt to detect viewers,
using face detection techniques. When such detection happens, it notifies the server,
triggering the operation of the computer vision and data mining algorithms running in
the server.

Finally, the Web Server, received a new module that contains all the computer vision
features for data extraction and mining. These involve face detection algorithms for
facial features extraction, face recognition algorithms for subject identification, emotions
recognition for understanding the emotional impact of the multimedia contents, and
finally, head pose calculation for measuring the level of engadgement by the subjects.

After all the developments, an experiment was planned and carried out in order to
evaluate the correct functioning of the system. All the objectives for this dissertation’s

45

project were met. That being said, future work can be done to improve the system,
especially relating to the manipulation of the data generated by the system in order to
provide users with stronger conclusions about the impact of the multimedia contents.
At this point, the system only outputs data for the user himself to interpret and act
upon. In the future it could be possible that the system is able to autonomously decide
what to adjust in the multimedia contents in real-time.

To conclude, while the system was designed to generate content-centric data, it could
easilly be made to generate user-centric data. With this approach it would be possible
to track subject interactions over time and understand which mutlimedia contents
captured their individual interest.

46

References

[1] R. R. Burke, “Behavioral effects of digital signage”, Journal of Advertising
Research, vol. 49, no. 2, pp. 180–185, 2009, issn: 0021-8499. doi: 10.2501/
S0021849909090254. eprint: http : / / www . journalofadvertisingresearch .
com / content / 49 / 2 / 180 . full . pdf. [Online]. Available: http : / / www .
journalofadvertisingresearch.com/content/49/2/180.

[2] J. Schaeffler, Digital Signage: Software, Networks, Advertising and Displays: A
Primer for Understanding the Business. Taylor Francis, 2012, pp. 1, 37, isbn:
9781136031533. [Online]. Available: https://books.google.pt/books?id=
9ZUrt7-igxQC&dq.

[3] Smarter solutions digital signage products, https://www.smarter-solutions.
ltd.uk/products/digital-signage/, Accessed: December 18, 2020.

[4] Computer vision and digital signage, https://core.ac.uk/download/pdf/
11678579.pdf, Accessed: January 19, 2021.

[5] R. Ravnik and F. Solina, “Interactive and audience adaptive digital signage using
real-time computer vision”, International Journal of Advanced Robotic Systems,
vol. 10, no. 2, p. 107, 2013. doi: 10.5772/55516. eprint: https://doi.org/10.
5772/55516. [Online]. Available: https://doi.org/10.5772/55516.

[6] Everything you ever wanted to know about computer vision. https : / /
towardsdatascience.com/everything-you-ever-wanted-to-know-about-
computer- vision- heres- a- look- why- it- s- so- awesome- e8a58dfb641e,
Accessed: January 19, 2021.

[7] Article on audience tracking as a trend in advertising, https://www.knowthis.
com/advertising/advertising-trends-audience-tracking/, Accessed: De-
cember 18, 2020.

[8] M. Mikusz, A. Noulas, N. Davies, S. Clinch, and A. Friday, “Next generation
physical analytics for digital signage”, in Proceedings of the 3rd International on

47

https://doi.org/10.2501/S0021849909090254
https://doi.org/10.2501/S0021849909090254
http://www.journalofadvertisingresearch.com/content/49/2/180.full.pdf
http://www.journalofadvertisingresearch.com/content/49/2/180.full.pdf
http://www.journalofadvertisingresearch.com/content/49/2/180
http://www.journalofadvertisingresearch.com/content/49/2/180
https://books.google.pt/books?id=9ZUrt7-igxQC&dq
https://books.google.pt/books?id=9ZUrt7-igxQC&dq
https://www.smarter-solutions.ltd.uk/products/digital-signage/
https://www.smarter-solutions.ltd.uk/products/digital-signage/
https://core.ac.uk/download/pdf/11678579.pdf
https://core.ac.uk/download/pdf/11678579.pdf
https://doi.org/10.5772/55516
https://doi.org/10.5772/55516
https://doi.org/10.5772/55516
https://doi.org/10.5772/55516
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://www.knowthis.com/advertising/advertising-trends-audience-tracking/
https://www.knowthis.com/advertising/advertising-trends-audience-tracking/

Workshop on Physical Analytics, ser. WPA ’16, Singapore, Singapore: Association
for Computing Machinery, 2016, pp. 19–24, isbn: 9781450343282. doi: 10.1145/
2935651.2935658. [Online]. Available: https://doi.org/10.1145/2935651.
2935658.

[9] T. Costa, M. Andrade, and P. Viana, “Predictive multi-view content buffering
applied to interactive streaming system”, 2019. [Online]. Available: https://doi.
org/10.1049/el.2019.0713.

[10] P. Tian, A. V. Sanjay, K. Chiranjeevi, and S. M. Malik, “Intelligent advertising
framework for digital signage”, in Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. New York, NY, USA:
Association for Computing Machinery, 2012, pp. 1532–1535, isbn: 9781450314626.
[Online]. Available: https://doi.org/10.1145/2339530.2339773.

[11] K. Nagao and I. Fujishiro, “Understanding viewers’ involuntary behaviors for
adaptive digital signage”, in Proceedings of the ACM Symposium on Applied
Perception, ser. SAP ’13, Dublin, Ireland: Association for Computing Machinery,
2013, p. 145, isbn: 9781450322621. doi: 10.1145/2492494.2501903. [Online].
Available: https://doi.org/10.1145/2492494.2501903.

[12] Signbox official website, https://signbox.tv, Accessed: January 19, 2021.

[13] Signbox’s signeye, https://signbox.tv/digital-signage-products/digital-
signage-facial-recognition, Accessed: January 19, 2021.

[14] Seemetrix official website, https://seemetrix.net/, Accessed: January 19, 2021.

[15] A. F. Batista, “Digital management of multiple advertising displays”, pp. 1, 28,
2018. [Online]. Available: http://hdl.handle.net/10773/25886.

[16] Official django website, https://www.djangoproject.com/, Accessed: December
19, 2020.

[17] Full stack python website, https://www.fullstackpython.com/django.html,
Accessed: December 19, 2020.

[18] Article on mvc design pattern in django, https://medium.com/shecodeafrica/
understanding-the-mvc-pattern-in-django-edda05b9f43f, Accessed: De-
cember 19, 2020.

[19] Python imghdr, https://docs.python.org/3/library/imghdr.html, Accessed:
December 19, 2020.

48

https://doi.org/10.1145/2935651.2935658
https://doi.org/10.1145/2935651.2935658
https://doi.org/10.1145/2935651.2935658
https://doi.org/10.1145/2935651.2935658
https://doi.org/10.1049/el.2019.0713
https://doi.org/10.1049/el.2019.0713
https://doi.org/10.1145/2339530.2339773
https://doi.org/10.1145/2492494.2501903
https://doi.org/10.1145/2492494.2501903
https://signbox.tv
https://signbox.tv/digital-signage-products/digital-signage-facial-recognition
https://signbox.tv/digital-signage-products/digital-signage-facial-recognition
https://seemetrix.net/
http://hdl.handle.net/10773/25886
https://www.djangoproject.com/
https://www.fullstackpython.com/django.html
https://medium.com/shecodeafrica/understanding-the-mvc-pattern-in-django-edda05b9f43f
https://medium.com/shecodeafrica/understanding-the-mvc-pattern-in-django-edda05b9f43f
https://docs.python.org/3/library/imghdr.html

[20] Python pypdf2, http://mstamy2.github.io/PyPDF2/, Accessed: December 19,
2020.

[21] Python pdf2image, https://github.com/Belval/pdf2image, Accessed: Decem-
ber 19, 2020.

[22] Python python-pptx, https://github.com/scanny/python- pptx, Accessed:
December 19, 2020.

[23] Python ffmpy, https://github.com/Ch00k/ffmpy, Accessed: December 19,
2020.

[24] Python subprocess, https://docs.python.org/3/library/subprocess.html,
Accessed: December 19, 2020.

[25] Ffmpeg official website, https://ffmpeg.org/, Accessed: December 19, 2020.

[26] D. Rodriguez, “Introduction to audiovisual transcoding, editing, and color analysis
with ffmpeg”, The Programming Historian, vol. 7, 2018. doi: 10.46430/phen0077.

[27] Article on face recognition in law enforcement, https://www.eff.org/pages/
face-recognition, Accessed: December 19, 2020.

[28] Article on trends in face recognition technology, https://www.thalesgroup.com/
en/markets/digital- identity- and- security/government/biometrics/
facial-recognition, Accessed: December 19, 2020.

[29] D. Canedo, “Focus estimation in academic environments using computer vision”,
2019. [Online]. Available: https://doi.org/10.1007/978-3-030-31332-6_54.

[30] Dlib official website, http://dlib.net/, Accessed: December 20, 2020.

[31] Onnx runtime official website, https://www.onnxruntime.ai/about.html,
Accessed: December 20, 2020.

[32] Opencv official website, https://opencv.org/about/, Accessed: December 20,
2020.

[33] Django databases documentation, https://docs.djangoproject.com/en/3.1/
ref/databases/, Accessed: December 19, 2020.

[34] Sqlite official website, https://www.sqlite.org/index.html, Accessed: Decem-
ber 19, 2020.

[35] Matplotlib official website, https://matplotlib.org/, Accessed: December 20,
2020.

49

http://mstamy2.github.io/PyPDF2/
https://github.com/Belval/pdf2image
https://github.com/scanny/python-pptx
https://github.com/Ch00k/ffmpy
https://docs.python.org/3/library/subprocess.html
https://ffmpeg.org/
https://doi.org/10.46430/phen0077
https://www.eff.org/pages/face-recognition
https://www.eff.org/pages/face-recognition
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/facial-recognition
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/facial-recognition
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/facial-recognition
https://doi.org/10.1007/978-3-030-31332-6_54
http://dlib.net/
https://www.onnxruntime.ai/about.html
https://opencv.org/about/
https://docs.djangoproject.com/en/3.1/ref/databases/
https://docs.djangoproject.com/en/3.1/ref/databases/
https://www.sqlite.org/index.html
https://matplotlib.org/

[36] Raspberry pi 3 model b+, https : / / www . raspberrypi . org / products /
raspberry-pi-3-model-b-plus/, Accessed: December 20, 2020.

[37] Raspberry pi camera module v2, https://www.raspberrypi.org/products/
camera-module-v2/, Accessed: December 20, 2020.

[38] Raspberry pi official website, https://www.raspberrypi.org/about/, Accessed:
December 20, 2020.

[39] M. Maksimovic, V. Vujovic, N. Davidovic, V. Milosevic, and B. Perisic, “Rasp-
berry pi as internet of things hardware: Performances and constraints”, 2014. [On-
line]. Available: https://www.researchgate.net/publication/272175660_
Raspberry _ Pi _ as _ Internet _ of _ Things _ hardware _ Performances _ and _
Constraints.

[40] Raspberry pi model 3 b+, https://www.raspberrypi.org/poducts/raspberry-
pi-3-model-b-plus/, Accessed: January 27, 2020.

[41] Python screeninfo, https://github.com/rr-/screeninfo, Accessed: December
19, 2020.

[42] Python netifaces, https://github.com/al45tair/netifaces, Accessed: Decem-
ber 19, 2020.

[43] Python requests, https://github.com/psf/requests, Accessed: December 19,
2020.

[44] Omxplayer github, https://github.com/popcornmix/omxplayer, Accessed:
December 20, 2020.

[45] Raspberry pi documentation on omxplayer, https://www.raspberrypi.org/
documentation/raspbian/applications/omxplayer.md, Accessed: December
20, 2020.

[46] Pi camera python package, https://picamera.readthedocs.io/, Accessed:
January 27, 2020.

[47] Django’s authentication system documentation, https://docs.djangoproject.
com/en/3.1/topics/auth/, Accessed: December 26, 2020.

[48] Django’s file upload documentation, https://docs.djangoproject.com/en/3.
1/topics/http/file-uploads/, Accessed: December 26, 2020.

[49] Libreoffice official website, https://www.libreoffice.org/, Accessed: December
26, 2020.

50

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/about/
https://www.researchgate.net/publication/272175660_Raspberry_Pi_as_Internet_of_Things_hardware_Performances_and_Constraints
https://www.researchgate.net/publication/272175660_Raspberry_Pi_as_Internet_of_Things_hardware_Performances_and_Constraints
https://www.researchgate.net/publication/272175660_Raspberry_Pi_as_Internet_of_Things_hardware_Performances_and_Constraints
https://www.raspberrypi.org/poducts/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/poducts/raspberry-pi-3-model-b-plus/
https://github.com/rr-/screeninfo
https://github.com/al45tair/netifaces
https://github.com/psf/requests
https://github.com/popcornmix/omxplayer
https://www.raspberrypi.org/documentation/raspbian/applications/omxplayer.md
https://www.raspberrypi.org/documentation/raspbian/applications/omxplayer.md
https://picamera.readthedocs.io/
https://docs.djangoproject.com/en/3.1/topics/auth/
https://docs.djangoproject.com/en/3.1/topics/auth/
https://docs.djangoproject.com/en/3.1/topics/http/file-uploads/
https://docs.djangoproject.com/en/3.1/topics/http/file-uploads/
https://www.libreoffice.org/

[50] Javascript official website, https://www.javascript.com/, Accessed: December
26, 2020.

[51] Django models documentation, https://docs.djangoproject.com/en/3.1/
topics/db/models/, Accessed: December 26, 2020.

[52] Bootstrap official website, https://getbootstrap.com/, Accessed: December 27,
2020.

[53] Bootstrap’s card class documentation, https://getbootstrap.com/docs/5.0/
components/card/, Accessed: December 27, 2020.

[54] Bootstrap’s columns class documentation, https://getbootstrap.com/docs/5.
0/layout/columns/, Accessed: December 27, 2020.

[55] Python documentation for threading module, https://docs.python.org/3/
library/threading.html, Accessed: December 22, 2020.

[56] Blog post about dlib’s hog based face detection, https://medium.com/mlcrunch/
face-detection-using-dlib-hog-198414837945, Accessed: January 27, 2020.

[57] Blog post about data extraction, https://www.alooma.com/blog/what-is-data-
extraction, Accessed: December 23, 2020.

[58] Blog post about data mining, https : / / www . sas . com / pt _ pt / insights /
analytics/data-mining.html, Accessed: January 27, 2020.

[59] Pre trained models for use with dlib, https://github.com/davisking/dlib-
models, Accessed: January 27, 2020.

[60] E. Barsoum, C. Zhang, C. C. Ferrer, and Z. Zhang, “Training deep networks for
facial expression recognition with crowd-sourced label distribution”, in Proceedings
of the 18th ACM International Conference on Multimodal Interaction, ser. ICMI
’16, Tokyo, Japan: Association for Computing Machinery, 2016, pp. 279–283, isbn:
9781450345569. doi: 10.1145/2993148.2993165. [Online]. Available: https:
//doi.org/10.1145/2993148.2993165.

51

https://www.javascript.com/
https://docs.djangoproject.com/en/3.1/topics/db/models/
https://docs.djangoproject.com/en/3.1/topics/db/models/
https://getbootstrap.com/
https://getbootstrap.com/docs/5.0/components/card/
https://getbootstrap.com/docs/5.0/components/card/
https://getbootstrap.com/docs/5.0/layout/columns/
https://getbootstrap.com/docs/5.0/layout/columns/
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://medium.com/mlcrunch/face-detection-using-dlib-hog-198414837945
https://medium.com/mlcrunch/face-detection-using-dlib-hog-198414837945
https://www.alooma.com/blog/what-is-data-extraction
https://www.alooma.com/blog/what-is-data-extraction
https://www.sas.com/pt_pt/insights/analytics/data-mining.html
https://www.sas.com/pt_pt/insights/analytics/data-mining.html
https://github.com/davisking/dlib-models
https://github.com/davisking/dlib-models
https://doi.org/10.1145/2993148.2993165
https://doi.org/10.1145/2993148.2993165
https://doi.org/10.1145/2993148.2993165

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Similar Systems

	Objectives
	Dissertation Structure

	Architecture
	Web Server
	Content Transformation
	Data Extraction
	Database
	Data Mining

	Content Management Dashboard
	Content Display Agents
	Hardware
	Software

	Content Management
	Resources Division
	Permissions Strategy
	Role Based Permissions
	User Permissions

	Content Transformation
	Content Upload
	Timeline Creation/Edition
	View Creation/Edition

	Content Management Dashboard
	Database
	Improvements and Developments
	Design
	Resource Preview
	Content Transformation
	Knowledge Discovery

	Content Display Agent
	Content Display
	Web Server Communication
	Registration
	Content Download
	Video Playback
	View Update

	Data Collection
	Multi-Threading
	Content Display Thread
	Data Collection Thread
	Image Capture
	Face Detection
	Detection Report

	Data Extraction and Mining
	System Generated Data
	Data Flow
	Computer Vision Module
	Face Detection
	Face Recognition
	Head Pose Estimation
	Attention Calculation
	Emotions Recognition

	Database Models

	Results
	Deployment Scenario
	Contents
	Experiment Guidelines
	Results Discussion

	Conclusions
	References

