
Universidade de Aveiro
2021

Francisco
Quadrado Lopes

Exploração De Realidade Virtual Para Suporte Ao
Laboratório De Psicologia Experimental

Exploring Virtual Reality To Support The
Experimental Psychology Lab

Universidade de Aveiro
2021

Francisco
Quadrado Lopes

Exploração De Realidade Virtual Para Suporte Ao
Laboratório De Psicologia Experimental

Exploring Virtual Reality To Support The
Experimental Psychology Lab

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia Informá-
tica, realizada sob a orientação científica do Doutor Samuel de Sousa Silva,
Investigador do Instituto de Engenharia Eletrónica e Informática de Aveiro, e
da Professora Doutora Sandra Cristina de Oliveira Soares, Professora Auxiliar
do Departamento de Educação e Psicologia da Universidade de Aveiro.

Dedico este trabalho à minha família pelo incansável apoio durante
todo meu percurso académico.

o júri / the jury

presidente / president Prof. Doutor Joaquim Arnaldo Carvalho Martins
Professor Catedrático da Universidade de Aveiro

vogais / examiners committee Prof. Doutor José Casimiro Nunes Pereira
Professor Adjunto do Instituto Politécnico de Tomar

Doutor Samuel de Sousa Silva
Investigador do Instituto de Engenharia Eletrónica e Informática de Aveiro

agradecimentos /
acknowledgements

Em primeiro lugar, quero deixar um agradecimento especial ao meu orien-
tador Doutor Samuel Silva pelo acompanhamento exemplar durante toda a
realização desta dissertação, que sempre me encaminhou pelo rumo certo.
Quero ainda agradecer à Prof. Sandra Soares pela partilha dos seus conheci-
mentos da Psicologia que me proporcionaram um entendimento sucinto sobre
os conceitos psicológicos abordados nesta dissertação.
Gostaria também de agradecer ao Prof. Paulo Dias e ao Doutor Bernardo
Marques por me disponibilizarem o equipamento de Realidade Virtual neces-
sário para a realização desta dissertação.

Palavras Chave realidade virtual, unity, continuous flash suppression, processamento de ame-
aça, psicologia experimental.

Resumo O processamento de ameaça é uma área da psicologia que estuda como
é processada a resposta emocional a estímulos de medo sob inconsciência.
Os investigadores estudam esta área apresentando estímulos ameaçadores
a participantes em condições de inconsciência visual, usando paradigmas de
supressão visual, em laboratórios de psicologia experimental. Estes para-
digmas exigem que duas imagens diferentes sejam mostradas a cada olho
para criar o estado de inconsciência. Um desses paradigmas é a "breaking-
Continuous Flash Suppression" (bCFS). Os métodos tradicionais usam equi-
pamento especial para exibir uma imagem diferente para cada olho. No en-
tanto, estes têm vários factores insatisfatórios, como o custo ou a eficácia.
A Realidade Virtual (RV) é uma tecnologia cujo uso tem vindo a aumentar
em estudos recentes e tem-se mostrado promissora. Nesse sentido, em co-
laboração com o Departamento de Educação e Psicologia, propõe-se avaliar
se a tecnologia RV será uma alternativa adequada para substituir os métodos
tradicionais actuais através de sessões experimentais de recolha de dados. É
desenvolvida uma aplicação para realizar experiências de processamento de
ameaça com o paradigma bCFS que permite a recolha de dados, suportando
RV e os métodos tradicionais atuais, satisfazendo uma lista de requisitos cri-
ada para orientar o seu desenvolvimento.
A aplicação desenvolvida é capaz de realizar as experiências necessárias e
fazer a recolha dos dados resultantes para a análise, suportando RV e os
métodos tradicionais. A configuração da experiência é feita através de um
ficheiro de configuração que permite definir vários parâmetros que produzem
diferentes condições na experiência. O sistema da aplicação é capaz de exibir
estímulos com precisão, incluindo outras funcionalidades, como a calibração
de imagem e recursos de resolução de problemas em tempo de execução.
A aplicação de software desenvolvida permite, no seu estado actual, a recolha
de dados experimentais para validar a Realidade Virtual como uma tecnologia
adequada para o laboratório de psicologia experimental.

Keywords virtual reality, unity, continuous flash suppression, threat processing, experi-
mental psychology.

Abstract Threat processing is a psychology field that studies how the emotional re-
sponse to fear stimuli is processed under unawareness. Researchers study
this area by presenting to participants threat inducing stimuli in visual un-
awareness conditions, using visual suppression paradigms in the experimen-
tal psychology labs. These paradigms require that two different images are
shown to each eye to create the unaware state. One such paradigm is
breaking-Continuous Flash Suppression (bCFS). The traditional methods use
special equipment to display a different image to each eye. However, these
have several unappealing factors, such as expensiveness or effectiveness.
Virtual Reality (VR) is a technology that has seen its use increase in recent
research studies, showing promising results. In this regard, in collaboration
with the Department of Education and Psychology, it is proposed to evaluate
VR technology as a suitable alternative to current traditional methods through
experimental data collection sessions. An application system is developed to
perform threat processing experiments implementing the bCFS paradigm that
allows the data collection, supporting VR, and the current traditional methods,
satisfying a list of requirements created to guide its development.
The application developed is capable of performing the experiments required
and collecting the resulting data analysis, supporting VR and the traditional
methods. The experiment setup is achieved via a configuration file that allows
setting various parameters to produce different experiment conditions. The
system is capable of displaying stimuli accurately, containing other functional-
ities such as image calibration, and runtime troubleshooting features.
The software application developed allows, in its current state, the experimen-
tal data collection to validate Virtual Reality as a suitable technology for the
experimental psychology lab.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Context . 1

1.2 Background to the Research . 1

1.3 Challenges . 2

1.4 Objectives . 3

1.5 Document Structure . 4

2 Background 5

2.1 Virtual Reality Technology . 5

2.1.1 VR Accessibility and Usability . 6

2.1.2 Advantages and Disadvantages of VR . 7

2.1.3 Developing VR Experiences . 8

2.2 Virtual Reality Research in Experimental Psychology 9

2.3 Threat Processing Research . 10

2.4 Discussion . 11

2.5 Chapter Conclusions . 12

3 Experiment Protocol 13

3.1 Experiment Context . 13

3.2 Protocol . 13

3.2.1 Methodology . 13

3.2.2 Stimuli . 14

3.2.3 Experiment Procedure . 16

i

3.3 Computational Requirements . 17

3.4 Equipment . 18

3.4.1 HTC Vive . 18

3.4.2 Desktop Monitor . 20

3.5 Chapter Conclusions . 23

4 Experiment Software Platform 25

4.1 Conceptual Software Architecture . 25

4.1.1 Configuration Parser . 26

4.1.2 Pre-Task Manager . 27

4.1.3 Experiment Engine . 28

4.2 Application Development With Unity . 30

4.2.1 Unity’s Development Framework . 30

4.2.2 Experiment Engine Scripts Hierarchy . 31

4.2.3 Stimuli Presentation . 33

4.2.4 Scene Objects Scaling Methodology . 35

4.2.5 Data Management . 38

4.3 Configuration File . 38

4.3.1 XML File Structure & Properties . 38

4.3.2 Configuration Parameters . 39

4.4 Application Usage & User Interface . 43

4.5 Runtime Troubleshooting Features . 46

4.6 Chapter Conclusions . 48

5 Conclusions & Future Work 49

5.1 Conclusions . 49

5.2 Future Work . 50

A Experiment Object Presentation Notes 53

A.1 Virtual Reality Head Mounted Display Estimations 53

A.1.1 VR HMD Screen Dimensions . 53

A.1.2 VR HMD Eye-to-Screen Distance . 54

A.2 VR Object Presentation Observations . 56

A.3 Unity Object Presentation Process . 56

B Configuration File Usage Notes 59

B.1 Configuration File Manual . 59

B.2 Configuration File Compatibility Discussion . 67

B.3 Future Improvements . 67

ii

C Application Usage Notes 69

C.1 Application Input Mapping . 69

C.2 System Requirements . 73

C.3 Future Improvements . 73

References 75

iii

List of Figures

1.1 Common threatening species to humans. 2

2.1 "The Sword of Damocles", Ivan Sutherland, 1968 . 6

2.2 A typical modern VR setup. 7

2.3 Screen Door Effect and Chromatic Aberration Examples. 8

2.4 Unity Logo. 8

3.1 Stimuli images selected for the experiments. 14

3.2 Frame dimensions and stimuli position presentation for the experiment. 15

3.3 Frame RGB channel filter processing for the Red-Blue anaglyph glasses. 16

3.4 Experimental trial stimuli presentation procedure. 17

3.5 HTC Vive system. 19

3.6 Desktop monitor selected for the experiments. 21

3.7 Red-Blue Anaglyph 3D Glasses. 21

3.8 Representation of a mirror apparatus as a four-mirror stereoscope. 22

3.9 Head-chin rest equipment example. 23

4.1 Diagram of the application’s conceptual architecture. 26

4.2 Configuration Parser component diagram . 26

4.3 Pre-Task Manager component diagram. 27

4.4 Experiment Engine component diagram. 29

4.5 Unity GameObject representing a cube. 31

4.6 Unity Sprite GameObject inspector window. 31

4.7 Hierarchy of Experiment Engine scripts of all supported platforms. 32

4.8 Desktop platform experiment frame example. 33

4.9 Binocular (VR and desktop with mirror apparatus) platform experiment frame example. 34

4.10 Example demonstration of overlapping images with and without Additive Blending. . . . 34

4.11 Right Triangle of visual angle. 35

4.12 Two right triangles complement the length of an object. 36

4.13 Demonstration of the image deformation of a resized stimulus in both dimensions. 37

v

4.14 Participant information data page example. 43

4.15 Pre-Calibration page example. 44

4.16 Calibration phase in the Desktop with mirrors platform. 45

4.17 Trial of the "bCFS Fovea Periphery" experiment in the Desktop with mirrors platform. . 46

4.18 Error message window. 46

4.19 Warning message window. 47

4.20 Information message window. 47

A.1 Screen dimension representation of the VR HMD . 54

A.2 Human eye FOV representation. 55

A.3 Unity Canvas GameObject inspector window. 57

A.4 Unity Canvas and Camera of the desktop platform in 3D perspective view. 58

C.1 Vive controller input diagram. 69

vi

List of Tables

3.1 Experiment session methodology. 14

3.2 HTC Vive HMD specifications. 19

3.3 Desktop monitor specifications. 20

B.1 Implemented experimental paradigm parameter values. 60

B.2 Implemented display platform values. 61

B.3 Implemented experiment’s color filtering values. 63

B.4 Implemented size/distance unit values. 64

B.5 Implemented reference dimension values. 64

B.6 Implemented sort type values. 65

B.7 Implemented page name values. 66

C.1 Single frame calibration phase (desktop platform using anaglyph glasses) input action

mapping. 70

C.2 Dual-frame calibration phase (VR and desktop using mirror apparatus platforms) input

action mapping. 71

C.3 Experiment (and training) phase input action mapping. 72

vii

Glossary

2D Two-Dimensional
3D Three-Dimensional
AMOLED Active-Matrix Organic Light-Emitting Diode
API Application Programming Interface
AR Augmented Reality
bCFS breaking-Continuous Flash Suppression
CFS Continuous Flash Suppression
CSV Comma-Separated Values
FOV Field of View
HMD Head Mounted Display
IPD Interpupillary Distance
LED Light-Emitting Diode
RGB Red, Green, and Blue
SDK Software Development Kit
TN Twisted Nematic
VR Virtual Reality
XML eXtensible Markup Language

ix

CHAPTER 1
Introduction

"It is not the strongest of species that survives, not the most intelligent... it is the one that is
the most adaptable to change." - Charles Darwin

1.1 Context

Throughout evolution, humans and their ancestors have faced potentially lethal dangers,
most notably through predation. As reviewed by Isbell [1], snakes have been lethal since
the origin of primates. Their survival depended on how quickly their visual system would
detect threats before they strike. Those whose visual system was more responsive had better
chances for survival. This responsiveness to fear and threat became an unconscious, instinctive
reaction.

Charles Darwin was one of the first scientists to study our unconscious reactions to threat.
In 1872, Darwin went to a reptile house in the zoo and stared at a poisonous viper behind
glass [2]. He pledged not to move or flinch when the snake tried to strike. Darwin had never
experienced the bite of a poisonous snake, and yet, without fail, he "jumped a yard or two
backwards with astonishing rapidity" every time the snake lunged at the glass even though in
his conscious mind he knew the snake could not hurt him. Darwin concluded that our fear
reflexes are guided by an evolutionary system deep in the human brain.

People who feared the right dangers survived to pass on their genes. In passing on their
genes, the trait of fear and the response to it were selected as beneficial to the race. Fear is
an act of survival, as it promotes escape and avoidance when life is at stake.

1.2 Background to the Research

Threat processing is a psychology field that, essentially, studies how the emotional stimuli
that humans perceive as fear are processed under unawareness. Research of these matters
is actively performed in Experimental Psychology, addressing the different cognitive and
behavioral aspects of threat processing.

1

Researchers study human and nonhuman primates’ cognitive responses to threats in
the experimental psychology labs, presenting threatening stimuli, such as snakes, arachnids,
and fearful faces, in different visual conditions of unawareness. Subjects are also shown
non-threatening (neutral) stimuli to compare cognitive response versus threatening stimuli.
Researchers display these stimuli to participants using computer monitors in the psychology
lab experiments.

Several studies support that threatening stimuli elicit faster cognitive activation in hu-
mans [3] and primates [4] [5] when presented in visual unawareness states. Visual unawareness
is achieved in the experimental lab by presenting stimuli to subjects in visual taxing con-
ditions, such as in the peripheral visual field, with brief exposure duration and cluttered
environments. Some researchers studied a novel interocular suppression paradigm, Continuous
Flash Suppression (CFS) [6], creating an absence of visual awareness, and measured the time
needed for stimuli, such as faces, to break the suppression and gain access to awareness [7],
breaking-Continuous Flash Suppression (bCFS).

Recently, Gomes et al. studied the advantage of threat stimuli, such as arachnids [8] and
snakes [9], in accessing awareness using bCFS. The data gathered in these studies presented
consistent preferential processing for threatening stimuli, showing more prevalence for snakes
than other threatening species under visual taxing conditions. These results align with Isbell’s
review [1] that primates’ visual systems evolved to be more responsive to snakes, their prime
threat for survival.

Figure 1.1: Snakes and arachnids are among the most common threat inducing species to humans.
Images retrieved from here1 and here2.

1.3 Challenges

Lab experiments to study threat processing allow scientists to study specific cognitive
and behavioural aspects of emotional stimuli that humans perceive as threats in a controlled
setting. Creating such environments that immerse the participant is a challenging task:

• The lab is far from an ecological setting for studying threat and elements in the lab
environment might result in sources of distraction for the participants;

• The characteristics of the stimuli and their location’s spatial perception can be affected
by the adopted experimental paradigm [10];

1https://www.pinclipart.com/pindetail/bxomwi_we-foster-support-for-snake-conservation-cobra-silhouette/
2https://www.pinclipart.com/pindetail/ibombwb_spider-web-silhouette-drawing-dessin-d-araigne-a/

[last accessed: 28/02/2021]

2

https://www.pinclipart.com/pindetail/bxomwi_we-foster-support-for-snake-conservation-cobra-silhouette/
https://www.pinclipart.com/pindetail/ibombwb_spider-web-silhouette-drawing-dessin-d-araigne-a/
https://www.pinclipart.com/pindetail/bxomwi_we-foster-support-for-snake-conservation-cobra-silhouette/
https://www.pinclipart.com/pindetail/ibombwb_spider-web-silhouette-drawing-dessin-d-araigne-a/

• The experimental paradigms often involve implementing complex visual stimuli tech-
niques (e.g., masking stimuli to preclude their access to consciousness) or using expensive
equipment (e.g., mirror stereoscope).

For example, Gomes et al. conducted experiments [8] [9] involving a different technique
that required manipulating the Red, Green, and Blue (RGB) channels to display the stimuli
with anaglyph glasses using the bCFS experimental paradigm. This manipulation of the
stimuli’s natural colors limits the experiment’s ecology validity by compromising the proper
color tone. In this case, the experiment results are mostly tied to the stimuli’s shape.

In this regard, proposing and using methods and technologies that might immerse the
participants in the experimental setting, providing a richer manipulation of visual stimuli
(e.g., showing a threat stimuli in more realistic conditions), might benefit the evolution of
threat processing research.

In recent years, Virtual Reality (VR) and Augmented Reality (AR) have been considered for
implementing more realistic experiment environments for participants. Foerster et al. [11] [12]
used a VR Head Mounted Display (HMD) to assess human visual processing capabilities
with such devices, showing that VR provides reliable results similar to current traditional
methods. VR devices also benefit from enclosing the entire visual field, eliminating any visual
distractions for experiment participants. Korisky et al. [13] showed that using AR goggles to
suppress real-world objects using CFS provides suppression durations comparable to those
obtained in experiments using on-screen CFS. Using AR goggles in experiments can provide
realistic environments as there can be, using real-world stimuli.

Nevertheless, the use of these technologies is still in its infancy, and much needs to be
done to increase its value further and use it in Experimental Psychology.

1.4 Objectives

VR is an up-and-coming technology that has a high potential for Experimental Psychology.
This dissertation’s overall goal is to introduce VR technology into Experimental Psychology
research by evaluating VR as a suitable option for experiments in the threat processing
field while exploring its different requirements and features. To this end, it was decided to
address the implementation of a current and challenging experimental paradigm, bCFS, since
it requires special presentation techniques in which VR technology could excel.

Therefore, this work’s objectives that are intended to be achieved are listed in the following
points:

• Review current methods and advantages of VR in Experimental Psychology along with
the approaches considered to study threat processing (e.g., bCFS);

• Define an experimental protocol, in collaboration with the Department of Education
and Psychology, supporting the validation of VR based paradigms for threat processing
research;

• Explore VR frameworks that allow using the potential of VR technology to implement
the devised experimental paradigms;

3

• Develop proofs-of-concept for the proposed methods by supporting the implementation
of new experimental methods to be used in Experimental Psychology studies considering
bCFS;

• Validate the proofs-of-concept according to the experimental protocol established with
the Department of Education and Psychology.

1.5 Document Structure

This Dissertation is divided into five chapters, of which chapter 1, the Introduction, has
already been presented. The rest of the document is structured as follows:

Chapter 2: Background context on the subject in question. It describes VR technology’s
evolution history and its proliferation in the modern computer era, along with an overview of
VR’s usage in Experimental and Clinical Psychology. Then, it discusses the research in the
threat processing field and the standard methods currently used to perform the psycholog-
ical experiments. The chapter is concluded by associating VR’s potential in Experimental
Psychology.

Chapter 3: Describes the experiment protocol designed, in collaboration with the
Department of Education & Psychology of the University of Aveiro, to conduct the experiments
to evaluate VR technology for psychological experiments. It is also delineated the requirements
list that guides the software platform development and clarifies the equipment selected for
each experimental setting.

Chapter 4: Details the software platform development, presenting its designed architec-
ture and development solutions to support the experiment protocol and requirements. It is
also explained the procedures and features for the creation of experiments and application
program usage.

Chapter 5: This last chapter presents a conclusion of all the work developed and a
summary of what was accomplished. Also, suggestions for future work are presented to
continue this project.

Appendices: Finally, and to provide additional detail on some of the aspects of the work
carried out, not presented in main chapters for the sake of brevity, this document also includes
3 Appendices.

Appendix A explains the estimations calculated for the VR HMD’s display sizes and
eye-to-display distance required for the stimuli presentation process. It discusses some of the
nuances of using VR headsets for stimuli presentation and finalizes by explaining the in-app
stimuli presentation methodology.

Appendix B presents a manual on the configuration file usage to prepare experiments,
discussing the parameters and values used and their role for experiment set up. It also
addresses its compatibility with other types of experiments and future improvements.

Appendix C explains the keys and buttons implemented to control the program and input
responses during experiments. It also mentions the system requirements and presents possible
improvements for application usage.

4

CHAPTER 2
Background

Experimental Psychology seeks to explore and better understand cognitive behavior through
experimental research methods. Visual stimuli have a substantial importance in Experimental
Psychology, which prompts the improvement of techniques and quality of researchers’ methods.
A prominent area for improvement is using technology that better engages the participants’
attention to the experiments. Virtual Reality promises improvements in this aspect. In recent
years, experimental psychologists have actively explored this technology, showing encouraging
results in Experimental Psychology usage.

This chapter details Virtual Reality technology and briefly reviews its usage in recent
Experimental Psychology studies. Then, it discusses threat processing studies, outlining
some of the leading experimental paradigms used. Finally, an association between virtual
reality usage in threat processing research is made, exhibiting the advantages the technology
promises, comparing them to traditional methodologies.

2.1 Virtual Reality Technology

Virtual reality is a technology that has been around for decades. The initial versions were
bulky and expensive, only used in high-end industrial and military facilities. Ivan Sutherland
invented the widely considered first HMD system in 1968 [14]. The device was so heavy it had
to be tethered to the ceiling, as shown in figure 2.1. Nowadays, improvements in computing
power and manufacturing massification of computer hardware allow technologies such as VR
to be more compact, portable, and comfortable to use. These technology improvements result
in more accessibility at the consumer-level, increasing VR’s popularity.

In general, VR is the computer-generated simulation of a Three-Dimensional (3D) envi-
ronment using special electronic equipment. The objective is to achieve a strong feeling of
being present in the virtual environment by simulating as many senses as possible, such as
vision, hearing, touch, and even smell [15]. VR involves wearing an HMD (such as goggles) to
view the 3D environment and look around by moving your head and walk using hand controls

5

or motion sensors. Hand controls also allow interaction with the virtual world’s objects and
performing other specific actions.

Figure 2.1: "The Sword of Damocles", Ivan Sutherland, 1968. With his students’ help, Ivan Sutherland
created the first virtual reality and augmented reality head-mounted display system.
Image retrieved from here1.

2.1.1 VR Accessibility and Usability

Nowadays, VR HMDs are available through different manufacturers. The Oculus Rift2 and
HTC Vive3 are considered the first consumer-level VR systems to popularize the VR market.
These devices include integrated displays in the goggles and motion sensors to track them
virtually (as illustrated in figure 2.2). The affordable prices, simple installation, and ease of
use made VR an appealing choice for new experiences, both at a consumer and non-consumer
levels.

VR’s usage is currently more prevalent among gaming applications, but its use in non-
gaming applications can prove beneficial by providing immersive experiences. Allowing
people to virtually travel to other places [16], train specialized personnel for specific practice
exercises [17], and aid in remote therapy for mental health patients [18] are among the many
possible VR uses.

1https://alchetron.com/Ivan-Sutherland [last accessed: 28/02/2021]
2Oculus home page (https://www.oculus.com).
3Vive home page (https://www.vive.com).

6

https://alchetron.com/Ivan-Sutherland
https://alchetron.com/Ivan-Sutherland
https://www.oculus.com
https://www.oculus.com
https://www.vive.com
https://www.vive.com

Figure 2.2: A typical modern VR setup. The VR HMD is connected to a computer that processes
the VR environment and sends it to the HMD. The motion sensors (both at the top
corners of the image) track the HMD and hand controllers in line of sight (dashed orange
lines) to simulate their real-world movement in the virtual environment. The blue area
represents a marked zone where the person can move freely. Image retrieved from here4.

2.1.2 Advantages and Disadvantages of VR

The best asset of VR systems is the level of immersion in a 3D virtual world it introduces by
stimulating, most frequently, three of our senses: vision, touch, and hearing. The vision is the
most stimulated by this technology, having modern display techniques inside the goggles that
provide a wide Field of View (FOV) of the virtual space. The goggles also provide a shielded
enclosure to prevent possible visual distractions from the outside. Touch is stimulated through
haptic feedback, although still very limited, in the hand controllers and hearing through sound
from headphones or speakers. VR devices are also very portable and light-weight, making
them easy to transport and install for experiments and comfortable for people to use.

However, in some circumstances, the technology can not achieve a complete immersion
level given some limitations. Due to the eyes being very close to the displays and the resolution
not being significantly high, a person can notice a screen door effect [19] [20]. Simultaneously,
a form of chromatic aberration [21], caused by lens dispersion, can be detected (see figure 2.3
for an illustration on these factors). Some people may be prone to cybersickness [22], similar
to motion sickness, in particular circumstances that involve virtual locomotion. However,
existing research shows that some techniques [23] [24] can reduce cybersickness, such as sitting
down and assuring good VR experiences by improving any latencies or erratic movement in
the application.

4https://learnvr.org/3-dimensional-space-and-virtual-reality-understanding-x-y-z-coordinates/
[last accessed: 28/02/2021]

7

https://learnvr.org/3-dimensional-space-and-virtual-reality-understanding-x-y-z-coordinates/
https://learnvr.org/3-dimensional-space-and-virtual-reality-understanding-x-y-z-coordinates/

(a) Screen Door Effect. (b) Chromatic Aberration.

Figure 2.3: Screen Door Effect and Chromatic Aberration Examples. On the left, screen door effect
caused by low pixel density compared to viewing distance through the VR lenses. On the
right, lens view of the chromatic aberration caused by lens dispersion. Images retrieved
from here5 and here6.

2.1.3 Developing VR Experiences

The growing popularity of VR technology and the demand for better VR experiences has
motivated the creation and improvement of VR development tools. The most popular VR
development frameworks are Unity7 and Unreal Engine8. While both software frameworks are
game development engines at heart, they also allow developing non-gaming applications for
many sectors9,10. Unity is arguably the most popular and easy to use software development
framework, widely adopted by researchers to create VR experiences for their studies (see
section 2.2).

Unity

Unity is a cross-platform game engine developed by Unity Technologies [25] and is one
of the most prevalent for VR development. It provides the tools to develop VR applications
quickly while being reasonably easy to use. Unity supports C#11 to develop scripts that
implement the application logic and behavior [26]. Unity’s vast popularity comprises a large
community that shares resources and documentation to aid in development.

Figure 2.4: Unity Logo.

5https://byteside.com/2020/10/samsungs-new-displays-to-eliminate-screen-door-effect-in-vr/
6https://forums.oculusvr.com/community/discussion/28380/chromatic-aberration

[last accessed: 28/02/2021]
7Unity home page (https://unity.com/).
8Unreal Engine home page (https://www.unrealengine.com).
9Unity has been used in sectors such as Automotive, Filmmaking, and Architecture, among others.

10Unreal Engine has been used in sectors such as Architecture, Live Events, and Simulation, among others.
11C# documentation (https://docs.microsoft.com/en-us/dotnet/csharp/) .

8

https://byteside.com/2020/10/samsungs-new-displays-to-eliminate-screen-door-effect-in-vr/
https://forums.oculusvr.com/community/discussion/28380/chromatic-aberration
https://byteside.com/2020/10/samsungs-new-displays-to-eliminate-screen-door-effect-in-vr/
https://forums.oculusvr.com/community/discussion/28380/chromatic-aberration
https://unity.com/
https://unity.com/
https://www.unrealengine.com
https://www.unrealengine.com
https://unity.com/solutions/automotive-transportation-manufacturing
https://unity.com/solutions/film-animation-cinematics
https://unity.com/solutions/architecture-engineering-construction
https://unity.com/solutions
https://www.unrealengine.com/en-US/architecture-solution
https://www.unrealengine.com/en-US/industry/broadcast-live-events
https://www.unrealengine.com/en-US/industry/training-simulation
https://www.unrealengine.com/en-US/industry/more-uses
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/

Unity has a wide variety of supported platforms [27], including practically every VR
platform [28], making it simple to later implement other VR systems. For VR development,
Unity contains tools such as SteamVR and the OpenVR Software Development Kit (SDK).

SteamVR & OpenVR SDK

SteamVR12 is a runtime platform developed by Valve13 for VR systems [29], including
a set of tools and services to run and create VR experiences [30]. One of such tools is the
OpenVR SDK14. The OpenVR SDK is implemented in SteamVR and acts as an Application
Programming Interface (API) between VR software and hardware, providing a way to develop
VR experiences for different VR systems [31].

Unity SteamVR support is made via a plugin released by Valve called SteamVR Unity
Plugin [32] [27].

2.2 Virtual Reality Research in Experimental Psychology

With the rise of VR accessibility, researchers started adopting the technology to study its
effectiveness to provide reliable results and improve the quality of the experimental methods
used in their research. Experimental Psychology is a scientific field that started using VR
more frequently in experiments to assess its benefits in various Psychology fields.

The enhanced visual perception and sense of existence in the virtual world induced
by virtual reality can revolutionize current treatment forms for psychiatric disorders in
psychotherapy. Researchers have reviewed VR to evaluate its efficacy in exposure therapy
to treat phobias [33] [34], effectively showing that VR exposure is preferred over traditional
methods such as In Vivo exposure [35]. VR exposure therapy has been evaluated over many
studies for different phobias, such as social anxiety disorder [36], acrophobia [37], animal
phobias [38] [39], and others [40] [41] [33], finding that VR is a promising therapy innovation.

Social acceptance of new technologies, such as VR, is essential for its standardization in
psychological experiments and procedures. Older adults usually reveal more negative attitudes
towards new technologies [42] [43] than younger adults, eliciting more age-sensitive designs
for easier acceptance. However, researchers found that older adults’ attitude towards VR
was positive [44] after the first exposure to immersive virtual reality. Furthermore, older
adults, having more sensory and cognitive frail conditions, completed VR experiments without
reporting cybersickness [44] or adverse side-effects [45]. Using a newer generation of VR HMDs
can significantly reduce adverse symptoms [46], which is essential to ensure the reliability of
results and health and safety standards.

VR’s enhanced visual perception and enclosed visual field are the most common features
researchers look for with this technology. Foerster et al. studied the advantage of using VR
to assess visual processing capabilities [11], which depend on visual testing conditions that
threaten reliability and visual processing speed. They found that VR produced reliable results

12SteamVR main page (https://www.steamvr.com/).
13Valve home page (https://www.valvesoftware.com).
14OpenVR SDK Repository (https://github.com/ValveSoftware/openvr).

9

https://www.steamvr.com/
https://www.steamvr.com/
https://www.valvesoftware.com
https://www.valvesoftware.com
https://github.com/ValveSoftware/openvr
https://github.com/ValveSoftware/openvr

as the standard method and improved visual processing speed and visual working memory.
The same authors [12] also found very similar results in a related study focusing more on
visual selective attention and processing capacity. They commented on VR’s convenience
for bedside testing (i.e., the performance of clinical diagnostic testing at the site of patient
care) on patients who cannot be transported or sit upright when using HMDs for clinical
purposes. Studies also observed improved visual search performance on real scenes using
VR compared to Two-Dimensional (2D) displays [47], replicating results successfully when
translating traditional paradigms to VR [48]. These findings further cement VR as a suitable
contender to improve experimental paradigms for visually focused experiments and provide
higher quality ecological conditions.

Brookes et al. have created the Unity Experiment Framework (UXF) [49] to assist in
designing behavioural experiments using Unity. This framework contains features that help
behavioural scientists implement several forms of data collection and configuration settings to
create their experimental programs, hiding potential shortcomings for scientists unfamiliar
with programming. This framework supports Unity projects in any platform but was designed
specifically for virtual reality behavioural experiments. Although still in early development,
UXF elicits interest to be used for Unity developed experiments.

VR technology has a lot to offer for Experimental Psychology, and researchers should further
explore this technology to improve and expand the conventional methods and procedures
commonly used. The sense of involvement in an environment is paramount for experimental
studies that benefit from visual fidelity and ecologically valid settings. One such Psychology
field that can benefit from VR’s previously mentioned advantages is threat processing study.

2.3 Threat Processing Research

Threat processing is a Psychology field that studies human cognitive response to fear
(threat) stimuli. Research in this field studies human processing of ecologically-relevant stimuli
and their susceptibility in accessing visual awareness, molded by our ancestors’ evolutionary
survival [1] against predators. Over the years, threat processing research has implemented
different experimental paradigms to assess preferential access to awareness from specific
stimuli.

Researchers found that threatening stimuli detection prevails over neutral stimuli using
experimental paradigms such as visual search in visually taxing conditions. For instance,
presenting stimuli in the visual periphery [50], stimuli camouflaged in a cluttered environ-
ment [51] [52] [50], and brief stimulus exposures [52] [50], which are conditions that may
have been critical for survival, shared similar results favouring threatening stimuli detection.
The results show more preference of snakes in accessing visual awareness, which is more
of an ecologically-relevant threat [1] than other phobia-inducing stimuli such as arachnids.
Several experimental paradigms have been considered for this field of research, and, recently,
a novel technique has been proposed with exciting results: bCFS, a toned-down version of
CFS [6]. CFS is an interocular suppression technique that allows stronger visually demanding

10

conditions by suppressing static images with dynamic noise. It has awakened more interest by
researchers on how threatening stimuli are processed under these conditions.

CFS is a variant paradigm of binocular rivalry [53] in which each image, the stimulus, and
dynamic noise, is displayed to each eye. The traditional methods to get this binocular effect
requires a monitor to display the stimuli and special equipment used to display the images
to each eye. Researchers commonly use a mirror apparatus, such as a mirror stereoscope,
that reflects an image to each eye or a Red-Blue 3D anaglyph glasses, manipulating the RGB
channels to filter the stimuli to each lens, as demonstrated in Gomes et al.’s experiments [8] [9].
The experiments require participants to place their head in a fixed position, usually using a
head-chin rest. The anaglyph glasses method’s issue is that the images are constrained to
the red and blue channels, thus degrading the stimuli’s ecological value by precluding their
presentation in their actual colors. The mirror apparatus is the preferable method of the two,
although it is an expensive and delicate item.

Nevertheless, researchers have explored CFS, studying the strong suppression effect of this
technique and that threatening stimuli, such as fearful faces [54] [10], angry body postures [55],
spiders [56] [8] and snakes [8] [9], have preferential access to visual awareness and break
suppression (bCFS [7] [57] [58]) faster than neutral stimuli. The bCFS paradigm shortens the
time for the stimuli to break suppression, which would take minutes compared to CFS. In
order to control how long it takes to break suppression, the bCFS paradigm is implemented,
introducing a progressive fade out of the dynamic noise to reduce the suppression effect.
This variant of CFS has been adopted by several studies, including Gomes et al.’s [8] [9]
experiments.

2.4 Discussion

Many studies have analysed the potential VR in Experimental Psychology due to the
high level of immersion and enhanced visual perception it provides to experiments. CFS is
an experimental paradigm that would highly benefit from a more ecological setup, namely
favoring the binocular aspect, so it would be an interesting point to demonstrate VR usage in
the lab.

Abandoning 3D anaglyph glasses adds the possibility of applying natural colors to stimuli
using the VR display, providing a better ecological setting. Although a better option than the
anaglyph glasses, the mirror apparatus is an expensive and delicate item compared to a VR
headset. The traditional methods require using head-chin rests to fix the participant’s head in
place, which is also very expensive. The VR HMD provides the same binocular functionality
as the mirror apparatus while being more comfortable to use in the experiment tasks, as
the head-chin rest is not required. The VR headset displays a screen to each eye, making it
possible to show different images to each eye, as is required with the CFS paradigm. The
visual isolation from the surrounding environment provided by the HMD goggles helps to
maintain the participant focused on the experiment tasks by blocking any visual distractions
from the outside.

11

Establishing the suitability of VR to implement such a challenging technique as bCFS can
positively contribute to improving research on threat processing and can serve as grounds for
continued evolutions to improve the experiments’ ecology in the future. To this end, Unity’s
popularity and potential capability to develop a variety of experiences elicit interest to explore
it for core aspects that fulfill this work’s objectives. Unity also supports frameworks built by
the community, such as UXF, that help create applications to support experimental protocols.
It may be interesting to analyze whether such tools are relevant to the current work.

There is currently a lack of research for CFS using VR for threat processing, and it would
be interesting to see more research with these settings. For this reason, this dissertation will
focus on implementing VR for threat processing experiments using the CFS paradigm.

2.5 Chapter Conclusions

This chapter provides a short overview of Virtual Reality technology and its use in
recent Psychology research, with a greater focus on the advantages it brings for experimental
binocular paradigms used in threat processing research.

To better understand Virtual Reality, a first introduction is done by briefly discussing
its technological evolution and describing the features such technology provides compared
to desktop monitors. Some of the recent studies that evaluate VR usage in Experimental
Psychology are then discussed to get a better idea of VR’s benefits. It is then discussed threat
processing research focusing on the leading experimental paradigms used, such as CFS, an
experimental binocular paradigm.

Finally, it is discussed the advantages that the VR technology could provide to threat
research, comparing to current methodologies. Consequently, this brings the focus of this
dissertation, which is to implement VR for threat processing experiments using the CFS
paradigm as a demonstration. These experiments will allow evaluating VR’s capabilities
in the Experimental Psychology lab. The next chapter will discuss the elaboration of an
experimental protocol to conduct these experiments.

12

CHAPTER 3
Experiment Protocol

This chapter contextualizes the objectives, protocol methodology, and procedure for the
experiments that support VR equipment validation to implement the bCFS technique. Based
on the defined experimental protocol, the experiments’ requirements are delineated, which
inform the computational system’s development to support it. Additionally, the available
equipment deemed relevant for this work is described, which further establishes a set of
requirements for the software platform to adopt.

3.1 Experiment Context

According to this dissertation’s objectives, the focus is to develop a computerized system
that allows assessing the viability of using a VR HMD in the experimental lab for threat pro-
cessing experiments considering the bCFS paradigm as a demonstration given the challenging
characteristics of the technique as a visual stimulus. In collaboration with the Department
of Education and Psychology of University of Aveiro, an experiment protocol was designed
to study the cognitive response to threat stimuli. It aims to test VR’s reliability to produce
similar results to previous works that successfully used other platforms to implement bCFS
(desktop monitor). The next section presents the devised protocol methodology and procedure
for the experiments.

3.2 Protocol

In the following section, the main aspects that the experiment protocol encompasses
will be discussed. First, the experiment sessions’ methodology is described, followed by the
stimuli used in the experiments, and finally, the list of requirements the application should
incorporate.

3.2.1 Methodology

The participants perform the experiments on both platforms (desktop monitor and VR),
separated a week apart. They are randomly divided into two groups, each group with the

13

same amount of participants. Each group starts the first session on a different platform than
the other, i.e., group 1 uses the desktop monitor, while group 2 uses VR, and swap platforms
in the following week, as shown in table 3.1.

PlatformGroup Session 1 Session 2
1 Desktop Monitor Virtual Reality
2 Virtual Reality Desktop Monitor

Table 3.1: Experiment session methodology. Participants are separated into two groups. In each
group, participants start the first experiment using the opposite platform than the other
group. In the following week, participants swap platforms for the session.

Establishing a week of separation between sessions allows the participants not to start
the second experiment already accustomed. Allowing time off the experiment is essential to
provide reliable results. If done incorrectly, the results could show improvements in the second
experiment due to participants already accustomed to the CFS effects. This methodology
grants more reliable results for the assessment of VR’s viability in this experiment.

3.2.2 Stimuli

The stimuli selected for this experiment consists of five images of snakes as threat stimuli
and five images of birds as neutral stimuli (see figure 3.1 for an illustration). All images used
are grayscale and were chosen from those used in Gomes et al. (2017) experiments [8], snake
images initially from Soares et al. (2014) Experiment 4 [50]. The images are trimmed of any
white background space to the smallest dimension that encompasses the stimuli to ensure
coherence usage and processing.

Figure 3.1: Stimuli images selected for the experiments. The top row comprises the neutral stimuli
(birds) and the bottom row the threat stimuli (snakes). Images adapted from the Gomes
et al. (2017) experiments [8].

The literature often uses visual angles to define the stimuli dimensions since they define
the size of the stimuli in our field of view instead of on the display referential (e.g., pixels). For
instance, the perceived size of a line with 100 pixels length depends on the screen resolution,
size, and the distance from the viewer to the screen. The specification in visual angles enables
that, for each case, the size of the stimuli in display coordinates is computed when the
experimental setup is fully defined and aims to ensure consistency across setups.

14

Participants are presented with a 16◦ × 16◦ frame with a 0.5◦ white noise pattern border.
The stimuli appear in the foveal and peripheral vision, distancing 1◦ and 6◦ of visual angle,
respectively, both at the left and right sides of a fixation cross located at the center of the
frame (see figure 3.2 for an illustration of the frames).

(a) Fovea stimulus presentation. (b) Periphery stimulus presentation.

Figure 3.2: Frame dimensions and stimuli position presentation for the experiment. The left image
shows the fovea position, while the right image shows the periphery position for the
stimuli. Each position is presented both at the left and right sides of the frame.

The CFS effect is created using Mondrian pattern mask images in the experiments (see
figure 3.3 for a reference). These masks are composed of randomly arranged grayscale circles
of varying diameters and presented at a rate of 10 frames per second to create the CFS effect.
These mask images were generated using a Python1 script2. Due to not having a mirror
apparatus display available, to allow a binocular viewing of an image to each eye, enabling
CFS requires using "Red-Blue anaglyph glasses" (e.g., Gomes et al., 2017 [8] & 2018 [9]) on
the desktop experiment. Stimuli are presented with a blue RGB channel filter and masks
with a red RGB channel filter.

When overlapping the stimuli and masks in the frame, each eye of the participants will
only see the images in the same color as the glasses’ corresponding lens (for an illustration
of this process, see figure 3.3). For the sake of equivalence and testing all setups, it was
considered the implementation using anaglyph glasses and extended the same technique to the
VR setup. This approach deteriorates the experiments’ ecological validity by using unnatural
colors but maintains stimuli coherence on both platforms for a more reliable evaluation. This
approach is also supported on the mirror setup for future-proofing. Nevertheless, the same
procedure to generate and show the stimuli in the VR and mirror setups can be done adopting
the natural colors on the stimulus and mask frames.

According to the literature, the most common choice is to present the stimulus to the
dominant eye. While, for the sake of illustration, the stimulus is shown as being presented to

1Python main page (https://www.python.org/).
2The Python script was retrieved from this repository (https://github.com/AnoAn/Mondrian-generator)

[last accessed: 28/02/2021].

15

https://www.python.org/
https://www.python.org/
https://github.com/AnoAn/Mondrian-generator
https://github.com/AnoAn/Mondrian-generator

the dominant eye (see figure 3.4), it can also be presented to the non-dominant eye. It depends
on the experiment’s research questions addressed; for instance, presenting the stimulus to the
non-dominant eye can make it even harder to detect.

Figure 3.3: Frame RGB channel filter processing for the Red-Blue anaglyph glasses. From left to
right, the original stimulus and Mondrian mask in the frame, their filtering to the blue
and red RGB channels, respectively, and the frame with the resulting RGB channel
filtering

3.2.3 Experiment Procedure

The procedure for the experiments is similar to those used in Gomes et al. experi-
ments [8] [9]. Participants’ eye dominance is evaluated using the Miles test [59]. They are
seated down either in front of a computer monitor or with a VR HMD. Participants are
positioned 50 cm away from the screen for the monitor experiments, with the screen at eye
level, using a head-chin rest to fix the head in the same position. Using VR, participants
place the HMD in their head and adjust the head straps to sit comfortably, positioning the
goggles to the closest distance to the eyes to obtain the widest FOV achievable. There is
an opportunity for the participant to adjust the VR goggles’ Interpupillary Distance (IPD)
before the experiment and a calibration phase to adjust the frame’s position in the display.
For reference, the participant follows the same desktop platform procedure for the mirror
apparatus, placing the device in an appropriate position that equates to 50 cm from the
monitor. When the participant is comfortable and ready, the experiment starts.

Each trial in the experiment (see figure 3.4 for an illustration) starts by presenting a
blank frame for a second, containing only a fixation cross. Then, CFS masks appear, to the
non-dominant eye, interchanging every 0.1 seconds (10 frames per second) to create the CFS
effect. During this process, the stimuli image starts to fade in for 1.1 seconds until fully visible.
Then, the CFS effect is reduced for 4 seconds until it is no longer visible, to break suppression
(bCFS). The trial ends when the participant inputs a response or after 7 seconds.

16

All participants are instructed to identify, as quickly as possible, which side in the frame
the stimulus, or any part of it, became visible. All experiments start with a training session,
consisting of 20 trials, including stimuli not shown in the main experiment. This session allows
participants to understand the task better and clear any doubts that may surface. The main
experiment consists of 120 trials (10 stimuli × 2 sides × 2 positions × 3 repetitions). All trial
responses (including the training) are stored accordingly (reaction times, side responded, if
the participant responded to the correct side or not). The start, duration, and stop times of
each experiment’s phase, together with relevant information about the participant, such as
age, gender, and dominant eye, are also stored in the experiment’s results.

Figure 3.4: Experimental trial stimuli presentation procedure. The image includes the timings of each
trial phase and illustrative frames for the content seen through the anaglyph 3D glasses
lenses from the content on screen (bottom row). The VR platform is only presented
the separated frames (first and second rows) to each eye. The presentation procedure is
equal on all platforms.

3.3 Computational Requirements

The experimental protocol described above requires that the computational methods
support stimuli creation, implement the different experimental steps, and allow experimental
data collection. A list of requirements was established from an analysis of the protocol,
which directed the software platform’s development to satisfy them successfully. The list of
requirements is divided into three main parts, which are as follows:

• Overall experiment implementation:
– Support VR technology and standard methods in the experiments to compare

results;
– Support visual stimuli based experiments allowing independent stimuli, per eye
(e.g., bCFS);

– Support multiple ways for participants to input responses, and standardize one
solution for all experiment platforms.

17

• Stimuli presentation:
– Implement the trial methodology specific to the scenario of bCFS (as exemplified

in figure 3.4);
– Support the definition of display parameters in visual angles.

• Configuration and data storage:
– Support experiment setup (e.g., select stimuli images, configure stimuli sizes)

through a customizable human-readable configuration file;
– Register and store participant responses in an easy to process file format.

Application support for VR is, naturally, an essential part. The main goal is to support the
evaluation o VR’s viability for threat processing in the experimental lab using CFS paradigms.
To this end, it was agreed that the experiment would benefit from having a standardized
method, between all platforms, for participants to input their responses. Using the hand
controllers, bundled with the VR system, in each experiment would allow more coherence in
the responses and offer participants to be in a relaxed position. Developing the application
infers another goal: to establish the overall grounds that enable the implementation of new
experimental methods relying on visual stimuli presentation for Experimental Psychology.
Without loss of generality and given the relevance and characteristics of bCFS (e.g., profiting
from binocular rivalry), the proposed platform is designed to fully endorse the experimental
protocol for its testing in VR and validations towards other platforms.

The more technical aspects of this list of requisites, such as the configuration file, visual
angle display definition support, participant response processing, and all the requisites
mentioned above, are discussed in more detail in chapter 4.

3.4 Equipment

The protocol designed, in collaboration with the Department of Education and Psychology,
was made considering the validation of a set of technologies to implement the bCFS experi-
mental paradigm. Each experiment setting requires specific equipment to interact with the
application system and display the stimulus in its way. In this sense, the existing equipment
available at the lab was considered. The equipment required for the experiments consists of a
VR system (HMD, hand controllers and base stations), a computer monitor, and anaglyph
3D glasses. The mirror apparatus equipment is also included for reference. The following
section describes the equipment’s specifications and intended use.

3.4.1 HTC Vive

HTC Vive, or Vive for short, is a VR headset developed by HTC3 and Valve. This
VR system is composed of an HMD, controllers, and base stations (see figure 3.5 for an
illustration). The Vive was chosen due to being one of the two VR units available in the
laboratory and its widespread adoption in previous studies and among VR enthusiasts.

3HTC home page (https://www.htc.com) .

18

https://www.htc.com
https://www.htc.com

Figure 3.5: HTC Vive system. From top to bottom: Vive base stations, HMD, and hand controllers.
Image retrieved from here4.

Head-mounted Display

The Vive headset is the display used for the VR experiment. It possesses two Active-Matrix
Organic Light-Emitting Diode (AMOLED) displays that project different images, one for
each eye, to produce more realistic 3D virtual environments. The specifications5 for the Vive
HMD are presented in table 3.2.

Specifications
Feature Technical Specification

Display Device Dual AMOLED panels
Resolution 1080x1200 pixels per eye, 2160x1200 pixels combined
Display Size 91.44mm diagonal

Display Dimensions 67.9mm width; 61.1mm height (estimated)
Refresh Rate 90 hertz (Hz)
Field-of-View 110 degrees

Table 3.2: HTC Vive HMD specifications.

The VR HMD serves as a dual-screen that projects two different images for each eye in the
experiments, allowing the CFS effect. The displays are enclosed, in a shielded way, covering
any possible distractions for participants during the experiment. The possibility of displaying
different images to each eye can benefit experiments by showing images in natural colors,
rather than using specific techniques that require special equipment and changes in the RGB
channels, as is the case in the desktop experiment. Nevertheless, the VR experiment will use
the same color scheme required for the desktop.

The official Vive specifications do not mention the display size. As such, these values had
to be estimated. For an in-depth review of these measures, see Appendix A.

4https://blog.vive.com/us/2016/02/21/unveiling-the-vive-consumer-edition-and-pre-order-information/
[last accessed: 28/02/2021]

5For more specification details, the reader is forwarded to the Vive Specs & User Guide
(https://developer.vive.com/resources/vive-sense/hardware-guide/vive-specs-user-guide/)
[last accessed: 28/02/2021].

19

https://blog.vive.com/us/2016/02/21/unveiling-the-vive-consumer-edition-and-pre-order-information/
https://blog.vive.com/us/2016/02/21/unveiling-the-vive-consumer-edition-and-pre-order-information/
https://developer.vive.com/resources/vive-sense/hardware-guide/vive-specs-user-guide/
https://developer.vive.com/resources/vive-sense/hardware-guide/vive-specs-user-guide/

Hand Controllers

The Vive VR system contains hand controllers that are used to interact with the virtual
environment. For both VR and desktop experiments, the participant holds a controller in
each hand and uses it to interact with the application, inputting reaction responses during
the trials. Maintaining the hand controllers’ usage for both platforms provides a standard
method for participants to input their responses, assuring more coherence in the results.
This approach takes advantage of the hand controllers, allowing participants to be in relaxed
positions instead of constraining their hands on a keyboard, which may feel uncomfortable.

As a side note, the hand controllers require that the Vive HMD is connected to the
computer and detected by the tracking system. Therefore, in the desktop experiment, the
HMD needs to be present to use the hand controllers for inputs. There is a workaround to
make the hand controllers work alone using Vive trackers or fiddling with configuration files,
but, due to lack of such equipment and time constraints, it was not explored.

Base Stations

Vive base stations are the primary devices of Vive’s tracking system. The HMD and
controllers require them to track their position and communicate. The base stations benefit
from being very simple to set up, only needing to plug them into the power outlet and pressing
a synchronize button after being mounted in place.

3.4.2 Desktop Monitor

The monitor used for the desktop experiment is a Dell Professional P2212H6 (see figure 3.6
for an illustration), and its specifications can be seen in table 3.3.

Specifications
Feature Technical Specification

Display Device Light-Emitting Diode (LED) Twisted Nematic (TN) panel
Resolution 1920x1080 pixels
Display Size 546.8mm diagonal

Display Dimensions 476.64mm width; 268.11mm height
Refresh Rate 60 hertz (Hz)

Table 3.3: Desktop monitor specifications.

Since the VR and desktop displays are of different types, some variables are introduced
that need consideration. The nature of TN panels may induce incorrect color presentation
when viewed from a specific angle. However, the participant is always in the correct position
to view the display’s correct color scheme granted by the experiment protocol. The TN
panel may also present different color tones than the VR AMOLED screen. The screen door
effect is also much more noticeable in the VR HMD. These are minor details that should be
acknowledged when evaluating both platforms, as they can influence results.

6Dell Professional P2212H specification page (https://www.dell.com/ae/business/p/dell-p2212h/pd)
[last accessed: 28/02/2021]

20

https://www.dell.com/ae/business/p/dell-p2212h/pd
https://www.dell.com/ae/business/p/dell-p2212h/pd

Figure 3.6: Desktop monitor selected for the experiments. Image retrieved from here7.

Red-Blue Anaglyph 3D Glasses

Anaglyph glasses have special lenses that filter a specific RGB color channel (see figure3.7
for an illustration). These glasses are used to separate images that are on the same color
channel as the lens. The anaglyph glasses used in the experiments contain lens filters for
the red and blue RGB channels. The desktop experiment relies on these glasses to separate
overlapping red and blue channel images so that the participant can only detect one image
on each eye and successfully produce the CFS effect. The stimuli are always presented using
the blue RGB channel to the dominant eye. The lens of the glasses cannot be changed, so in
the cases where the dominant eye is on the opposite side of the blue lens, for lack of a better
solution, the glasses are used upside down in order to match the participant’s dominant eye
correctly.

Figure 3.7: Red-Blue Anaglyph 3D Glasses. Image retrieved from here8.

It is noteworthy that stimuli can sometimes be marginally noticed in the red lens due to
the color blending. To make matters worse, changing the stimuli to the red lens does not
solve the problem, as the masks are much more noticeable for occupying more space in the
frame and being continuously changed. Although this solution has been proved successful in
other studies, it is far from optimal. VR makes for a better case for providing the possibility
to use natural colors, considering the mirror apparatus can be unattainable.

7https://www.dell.com/support/home/en-ae/product-support/product/dell-p2212h/overview
[last accessed: 28/02/2021]

8https://www.amazon.com/-/es/Visoína-película-formato-Anaglyph-piezas/dp/B0848VWL3B
[last accessed: 28/02/2021]

21

https://www.dell.com/support/home/en-ae/product-support/product/dell-p2212h/overview
https://www.amazon.com/-/es/Viso�na-pel�cula-formato-Anaglyph-piezas/dp/B0848VWL3B
https://www.dell.com/support/home/en-ae/product-support/product/dell-p2212h/overview
https://www.amazon.com/-/es/Viso�na-pel�cula-formato-Anaglyph-piezas/dp/B0848VWL3B

Mirror Apparatus

The mirror apparatus allows a binocular visualization of a monitor’s reflected images. A
participant could view the monitor’s separate images through this device, allowing experiments
without the techniques used to implement binocular rivalry using just the desktop display.
Although this device is expensive and unavailable in the laboratory to be used for the
experiments, the application system supports it. The experiment stimuli are displayed in two
separate frames: one frame presents the stimulus, while the other presents the CFS effect.
The mirror apparatus reflects each frame to the corresponding eye, as shown in figure 3.8.
This support was developed as a proof-of-concept for future implementations of experiments
that might need to use such devices.

Figure 3.8: Representation of a mirror apparatus as a four-mirror stereoscope.

Head-Chin Rest

All the experimental setups for the bCFS paradigm (and, overall, whenever visual stimuli
are presented) require that the participant’s head is in a fixed position relative to the stimuli,
which is kept throughout the experiment. While this is not required for the VR goggles, an
HMD, action needs to be taken to ensure it for the other two desktop monitor setups. This
fixed positioning is accomplished using a head-chin rest (see figure 3.9 for an illustrative
example). This equipment is expensive and can be uncomfortable to use during experiments,
as the participant is constrained to a fixed position for a prolonged time.

22

Figure 3.9: Example of a head-chin rest used to fix the participant’s head position for experiments.
Image retrieved from here9.

3.5 Chapter Conclusions

This chapter described the experiment protocol with detail designed in collaboration with
the Department of Education and Psychology, to conduct experiments that allow assessing
VR’s technology viability as a suitable alternative for threat processing experiments.

The protocol was designed for an experiment using the bCFS experimental paradigm as an
example demonstration to compare VR and standard methods. It was described the specific
equipment that was available to conduct the experiments, which elicits a set of requirements to
accomplish. In this regard, it was established a list of requirements that guides the application
system development to satisfy them accordingly.

The next chapter will detail the software platform design and development that meets the
requirements established.

9https://lafayetteevaluation.com/products/head-chin-rest [last accessed: 28/02/2021]

23

https://lafayetteevaluation.com/products/head-chin-rest
https://lafayetteevaluation.com/products/head-chin-rest

CHAPTER 4
Experiment Software Platform

The current chapter aims to describe the application system design and development
solution to support the experiment protocol, considering the requirements identified in the
previous chapter. It is presented a conceptual vision of the different blocks that compose
the system, followed by some details regarding its development and features that fulfill the
requirements proposed.

4.1 Conceptual Software Architecture

The application developed for this dissertation was driven by the experiment protocol
requirements listed previously in chapter 3. To summarize, the application is required to
support VR technology, and standard technology methods, for experiment paradigms based on
CFS. It should process a configuration file to set up experiments and register experiment data
in a simple data format. The objective is to build an application that serves as a foundation
to implement other experiment paradigms that benefit from the binocular properties of
VR technology, such as the CFS paradigm. To do this, the conceptual architecture for the
application was designed to implement different experiments based on the presentation of
visual stimuli while fulfilling all the established requirements for the particular experiment
protocol planned for this project.

As can be seen in figure 4.1, the application architecture contains three principal com-
ponents. A Configuration Parser reads and processes the configuration file data, providing
that information to the other system modules. A Pre-Task Manager reads the information
regarding the experimental paradigm and platform specified in the configuration data and
loads the corresponding experiment scene that supports those specifications. Finally, an
Experiment Engine performs all the actions regarding the experiment set up, execution, and
data collection. These components will be discussed in more detail in the following sections.

25

Figure 4.1: Diagram of the application’s conceptual architecture.

4.1.1 Configuration Parser

The Configuration Parser component is responsible for processing the configuration data
provided in the configuration file to simplify access by other system components (see figure 4.2
for an illustration). A Data Parser module reads the configuration file and processes all the
information to create a single instance (object) through deserialization1. This process occurs
when other components request access to the configuration data object if it has not been
processed already. The components of the system can then obtain the configuration details
directly.

Figure 4.2: Configuration Parser component diagram. A Data Parser module loads the configuration
file and deserializes it to a configuration data object, accessible by other components.

1For more details on serialization, and for the sake of brevity, in this document, the reader is forwarded to
Microsoft’s documentation here
(https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/)
[last accessed: 02/03/2021].

26

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/

Processing the configuration file is required to simplify its access by the system. Files
stored in persistent storage, such as computer hard disk drives, cannot be directly understood
by computer language. Computer systems need to deserialize the file’s data, converting it
to a data object of the same state that the system can understand. When the system needs
to access the configuration data, it only needs to access the data object created instead of
reading and processing it every time.

4.1.2 Pre-Task Manager

The Pre-Task Manager handles the initial section of the application before the experiment
trial section starts (an illustration for this component can be seen in figure 4.3). At the
beginning of the experiment, the participant is shown descriptive pages about the experiment,
customized through the configuration file. A Page Manager module reads the configuration
data to fill the pages with the corresponding text information. After the introductory pages,
the Pre-Task Manager starts preparing the information to start the experiment. The Page
Manager loads a page to insert relevant participant information, such as age, gender, and
dominant eye, where a Participant Data Manager validates these values to proceed. Finally,
an Experiment Loader module reads the specified platform in the configuration file, loading
the corresponding scene that supports the experiment in that platform.

Figure 4.3: Pre-Task Manager component diagram. This component precedes de experiment tasks and
introduces the participant to the experiment, collecting relevant participant information
for the experiment.

The dominant eye entered in the participant information page directs the experiment
objects’ set up to display the stimuli to the corresponding dominant eye. All participant
information is stored at the end of the experiment, along with the experiment results.

27

4.1.3 Experiment Engine

The Experiment Engine is the core component of the application, controlling all the
experiment’s details and performance (see figure 4.4 for an illustrative diagram). This
component starts setting up the experiment scene by preparing the objects that are displayed
to the participant. An Experiment Assembler module reads the configuration data to set up
the specified sizes of scene objects and obtain information regarding the folder locations for
stimuli to be used in the experiments. This module then loads the images from local storage
to create the experiment and training sets. These sets are assembled by another module
(Experiment Manager, which will be explained later). After the experiment scene objects are
ready, their positions can then be calibrated, if necessary, using an Object Position Calibrator
module. This process is more useful using platforms that separate the objects to each eye
directly, i.e., in VR, still being possible on all supported experiment platforms.

Nevertheless, the Object Position Calibrator reads inputs from the controllers (or keyboard),
moving the objects in the display to better accommodate the images to the participants’ IPD.
While the Vive headset contains an integrated IPD adjuster, it may also be necessary to
the image distances in the application. After setting up the experiment and calibrating the
objects, the experiment training and evaluating session can start.

The Experiment Executer module controls the experiment execution, respecting the
experimental paradigm specified in the configuration file. The module obtains each trial’s
phase duration for stimuli control and trial set repetitions, reading the configuration data.
This module listens for participant input during the trials and uses an Experiment Manager
to evaluate that response.

The Experiment Manager is a module that identifies the experimental paradigm specified
in the configuration data to perform distinct operations to satisfy it. As previously mentioned,
the Experiment Assembler provides the stimuli images to the Experiment Manager to create
a set containing the stimuli with all their position iterations for the experiment and an
identifier name to distinguish each iteration in the results. At the start of each trial, the
Experiment Executer calls the Experiment Manager to update the trial with the next stimulus
to be presented and its associated position. The Experiment Manager is also responsible
for evaluating the participant’s trial response by comparing the given response with the
experiment’s defined inputs and creating a trial result to be registered. Having a separate
module to handle paradigm-specific operations streamlines the implementation for different
experiments.

Finally, when the experiment is complete, the results are stored in a file for analysis. A Data
Manager module collects the trials’ results, given by the Experiment Manager, throughout
the experiment. It registers the participant’s information, entered on the participant data
page at the experiment’s pre-task, and the display platform and experimental paradigm used
for the experiment. The Data Manager also records the start, duration, and ending times for
each section (pre-task, training, and experiment times). The module saves the experiment
results in the location specified by the configuration file.

28

Figure 4.4: Experiment Engine component diagram. This component takes care of the experiment
setup, execution, and data collection.

Experiment Manager Role

It is important to note that designing a specific experiment entails implementing a specific
Experiment Manager variant. For example, for this dissertation’s experiment, an Experiment
Manager was developed to handle the "bCFS Fovea Periphery" experimental paradigm and
perform the required actions. In an effort to support different experimental paradigms, two
other variants that perform generic actions were implemented, allowing an experimental
data collection that does not require specific actions or behaviours, such as a particular
reaction input or evaluation of trial response. The Experiment Manager’s variant used for the
experiment is directly tied to the experimental paradigm defined in the configuration file.

If an experiment requires unique behavior for an experimental paradigm that is not
supported, the only implementation necessary would be a variation of the Experiment Manager
to support those conditions. Since the other Experiment Engine’s components already take
care of the experiment setup, execution, and data collection, the implementation would be set.

29

4.2 Application Development With Unity

Unity was the tool selected to develop the computational system, after successful testing
on its support for core aspects of the requirements previously listed in chapter 3, and its
support for multiple platforms, such as VR, most notably. Having selected Unity, the UXF
framework was explored for its potential to assist in the development of the system. However,
despite being a tool that can be very useful in the future, the current work requirements did
not justify the investment in implementing this tool, as most of its essential features would not
be used. The application only explored 2D aspects, considering the requirements established.

The next section will briefly discuss Unity’s development framework2 to get some insight
into some of the terms mentioned and then elaborate on the application’s development.

4.2.1 Unity’s Development Framework

A Unity engine application is the collection of one or more scenes. Everything that runs in
the application exists in a scene. Each scene can be thought of as a section in the application
to perform a specific task. Virtually everything in a scene is composed of GameObjects that
serve different purposes, depending on their type.

A GameObject is the base type for all objects in a Unity scene. Every GameObject is
composed of components that add functionalities to them. For example, a text displayed in a
scene is simply a GameObject with a "Text" component attached. The default component
of a GameObject is the Transform, which handles the GameObjects’ position, rotation, and
scale in the virtual environment. The combination with components can make GameObjects
act as lights, 3D/2D objects, shadows, among others. The scene is rendered into the display
by a "Camera", which is also a GameObject.

Behaviour can be implemented by developing a C# script and attaching it to a GameObject.
These scripts must derive from the MonoBehaviour base class, which provides access to Unity’s
event functions3, such as "Awake", "Start", and "Update", and other features necessary to
create a Unity application. As a demonstration of these concepts, figure 4.5 illustrates an
example of the components that form a cube GameObject, with a script attached that makes
the cube rotate given a speed.

A component that is going to be mentioned frequently throughout this section is SpriteRen-
derer. As the name suggests, this component renders a Sprite into view. A Sprite is a 2D
graphic object that represents an image in a virtual environment. The Transform and the
SpriteRenderer components contain properties to manage the Sprite’s presentation, most
notably the size, position, color, and material (see figure 4.6 for an illustration on those
properties inside Unity), which will be proved useful further down in this section.

2To get a better insight on the full features of Unity, the reader is forwarded to the cor-
responding online resources (https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/august/
unity-developing-your-first-game-with-unity-and-csharp) [last accessed: 02/03/2021]

3For more details, see Unity’s event function order of execution documentation
(https://docs.unity3d.com/Manual/ExecutionOrder.html) [last accessed: 02/03/2021]

30

https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/august/unity-developing-your-first-game-with-unity-and-csharp
https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/august/unity-developing-your-first-game-with-unity-and-csharp
https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/august/unity-developing-your-first-game-with-unity-and-csharp
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

(a) Unity default GameObject cube.

(b) Unity cube inspector window.

Figure 4.5: Unity GameObject representing a cube. (a) shows the cube representation in the scene;
(b) shows the Unity inspector window containing all the components representing the
GameObject as a cube. The "Rotate Cube" script attached adds behaviour to the cube,
rotating it in its axis, given a rotation speed.

Figure 4.6: Unity Sprite GameObject inspector window. The Transform component can control
the Sprites’s position and size, while the SpriteRenderer component controls the image
texture, color, and material.

4.2.2 Experiment Engine Scripts Hierarchy

The main goal for the considered experimental protocol is to implement the bCFS paradigm.
As explained previously (see section 4.1.3), the experiments are performed by the Experiment
Engine component. To this end, a specific Experiment Engine type had to be created
that supports visual stimuli presentation experiments based on the CFS technique. Each
platform supported is implemented in different Unity scenes, containing different versions of

31

an Experiment Engine script to support the execution of experiments for that platform. The
Experiment Engine’s core functionality is the same for all platforms, the only difference being
the setup of the scene, which requires different procedures.

The Experiment Engine scripts inherit the Monobehaviour base class to interact with
the scene’s GameObjects and use Unity event functions. Using inheritance, the "Engine"
scripts for each platform derive from preceding base scripts that implement shared system
functionalities. With this hierarchy, each "Engine" class implementation focuses on specific
functionalities instead of implementing everything in a single script. Any alterations done in a
base script are immediately applied to the derived scripts, making maintenance of the scripts
more manageable. Figure 4.7 illustrates the hierarchy for all supported platform Experiment
Engine scripts.

Figure 4.7: Hierarchy of Experiment Engine scripts of all supported platforms. Dashed lines are
scripts that implement shared functionalities, while the solid lines represent the final
"Engine" script versions.

The "BaseEngine" implements basic functionalities that any experiment type should use,
such as instantiating a Data Manager and getting a reference to the configuration data.
The "CfsEngine" implements functionalities specific to the CFS paradigm and the setup of
some scene objects. This script implements the Experiment Executer that performs the CFS
paradigm used by all platforms. It also instantiates an Experiment Manager variant for the
type of experimental paradigm specified in the configuration file. For the scene setup, the
"CfsEngine" sets the stimuli to be displayed to the specified dominant eye and sets up the

32

stimuli objects’ sizes to the configured amount.
The final scripts in the hierarchy perform specific actions to the platform they will manage.

These actions are mostly tied to the way the scene is set up. The "BinocularView" scripts
have to manage two separate frames since the platform they control needs to display an image
to each eye, while the "Desktop" script only needs to manage one. The actions performed are
for the scaling, positioning, and calibration of the scene objects.

4.2.3 Stimuli Presentation

The stimuli used in experiments are images and are presented into the experiment frame.
The frame presented in the experiment scene comprises a group of SpriteRenderers, i.e., the
white noise, fixation cross, frame background, stimuli, and the Mondrian pattern CFS masks,
as shown in figure 4.8. The binocular platforms, i.e., VR and desktop with mirror apparatus,
have two separate frames: one frame displays the stimulus to one eye, while the other produces
the CFS effect to the other eye (see figure 4.9 for an illustration). All frame objects are
manipulated to the same extent, only the masks needing special handling for the desktop
experiment presentation.

Figure 4.8: Desktop platform experiment frame example. This figure shows the blending process
to display both the stimuli and CFS masks (at full opacity). The viewable objects that
compose the frame are labeled.

All frame objects have their size manipulated to fulfill the specified size in the configuration
file. The frame background, stimuli, and masks also have their color changed to the red or blue
RGB channels to comply with the specifications imposed using the "Red-Blue anaglyph glasses".
Otherwise, the color could be set to use the natural colors of the images. However, for the
desktop experiment, the masks require changes on their material. In Unity, SpriteRenderers
are organized on layers, with the one sitting in the highest being shown primarily. The default
material of Sprites are opaque and hide the Sprites in the lower layers.

For the desktop experiment, only one frame is shown, and the masks sit on the layer above
the stimuli images. During the first step of the trial, raising the stimulus opacity into view,
the mask completely hides it and it cannot be seen, which hinders the CFS paradigm. Using

33

Figure 4.9: Experiment frame example for the binocular platforms (VR and desktop with mirror
apparatus). These platforms display an experiment frame to each eye: one frame presents
the stimulus, while the other produces the CFS effect. The dashed line represents the
binocular isolation, done by the display platform, between each frame.

"Additive Blending" can solve this issue (see figure 4.10 for an illustration) by allowing the
masks to blend with the Sprites on the layers below. This blending effect can be produced by
modifying the mask’s SpriteRenderer material’s Shader file4. The mask SpriteRenderer with
the additive blending material blends itself with the stimulus Sprite in the layer below, which
can then be pickup up by the anaglyph glasses so the participant can see the stimulus and
mask separately. The VR and desktop with mirrors experiment scenes do not require this
manipulation of the Sprite’s material since two separate frames are displayed directly to each
eye. One frame displays the stimulus, and the other the CFS masks.

(a) Normal presentation (no blending). (b) Additive Blending.

Figure 4.10: Example demonstration of overlapping images with and without Additive Blending.

The stimuli presentation procedure is identical for all platforms, independent of the special
treatment discussed above. The presentation is done in the Experiment Engine, using the
Experiment Executer and Experiment Manager modules. The stimuli images are read from an
accessible storage directory, whose path is specified in the configuration file, containing only

4For a better reference of this modification, see the "Details" section in this Unity documentation page
(https://docs.unity3d.com/2019.3/Documentation/Manual/SL-Blend.html) [last accessed: 02/03/2021].

34

https://docs.unity3d.com/2019.3/Documentation/Manual/SL-Blend.html
https://docs.unity3d.com/2019.3/Documentation/Manual/SL-Blend.html

the images intended for the experiment. The same process is used for the Mondrian masks,
which are loaded into memory, so the mask SpriteRenderer uses them to rapidly change them
(10 frames per second) and create the CFS effect. The experiment set is created, using the
experiment’s specific Experiment Manager, containing the generated Sprites and their position
information for each trial. The Experiment Executer reads the next stimulus to be presented
for the trial, and uses the Experiment Manager to interpret the position information. The
stimulus object is placed accordingly, proceeding with the trial procedure. This process is
repeated until the end of the experiment.

4.2.4 Scene Objects Scaling Methodology

Scene object setup is guided through the settings included in the configuration file. These
settings control the object’s size and position in the scene. In Experimental Psychology, the
size of the objects observed in experiments is usually measured using visual angles, focusing
on the perceived size of a stimulus instead of its real size. If the object is moved further away,
the visual angle decreases and is perceived as smaller5. The distance from the observer’s eyes
to the object influences its visual angle calculation.

The visual angle calculation can be decomposed into a simple trigonometry task, using a
right triangle, as illustrated in figure 4.11. Knowing that the tangent is given by the opposite
and adjacent sides’ ratio, the angle (θ) is obtained using the arctangent (arctan) function as
in the following equation:

θ = arctan(Opposite
Adjacent

) (4.1)

Since the visual angle is influenced by the size of the stimulus (opposite side) and its
distance to the eyes (adjacent side), the resulting visual angle can be obtained using this
method.

Figure 4.11: Right Triangle of visual angle. The tangent value of the angle is defined to be the ratio
of the opposite side length (size of the stimulus) to the adjacent side length (distance
from the eye to the stimulus). Image retrieved from this page6.

Although the opposite side of the right triangle represents the size of the stimulus, it only
represents half of its length, and thus half of the visual angle, as can be seen in figure 4.12.

5For more detailed information and an interactive example, visit this page
(https://elvers.us/perception/visualAngle/va.html) [last accessed: 02/03/2021]

6https://www.sr-research.com/eye-tracking-blog/background/visual-angle/
[last accessed: 02/03/2021]

35

https://www.sr-research.com/eye-tracking-blog/background/visual-angle/
https://elvers.us/perception/visualAngle/va.html
https://elvers.us/perception/visualAngle/va.html
https://www.sr-research.com/eye-tracking-blog/background/visual-angle/

Two mirrored triangles can be used to cover the distance from the stimulus’ center to each side,
which doubles the angle value. The visual angle is calculated using the arctan equation 4.1 by
doubling the angle obtained using the distance and half the stimulus’s size. The following
equation gives the visual angle (θ):

θ = 2 × arctan(Size/2
Distance

) (4.2)

The "Size" and "Distance" have to be in the same measurement unit. The θ angle unit is
radians, which can then be converted to degrees by multiplying 180◦

π (approximately 57.296).

Figure 4.12: Two right triangles complement the length of an object. A right triangle only completes
the length from the center to one of the sides of the object. A mirrored right triangle is
added to complete the length of the other half. Image retrieved from this page6.

Presenting the scene objects with the correct visual angle size requires more calculations
to translate this value into the number of pixels the display should present. This number
is obtained by calculating the visual angle of one pixel (angle per pixel) of the display and
dividing the object’s visual angle size by this value. The display’s angle per pixel is obtained
by dividing its visual angle by the resolution. Using equation 4.2, where "Size" is the display’s
size, and dividing by the display’s resolution, its angle per pixel is found:

AnglePerP ixel = 2 ×
arctan(Size/2

Distance)
Resolution

(4.3)

Finally, the object’s pixel size is obtained with:

ObjectP ixelSize = ObjectV isualAngleSize

AnglePerP ixel
(4.4)

For positioning the object in the display, the pixel values are obtained similarly. Only in
this case, the values are interpreted as the pixel distance from the screen’s center.

It is important to note that resizing scene objects is done using only one of its dimensions
as a reference, specified in the configuration file. Since the scene objects are images, resizing
them horizontally and vertically could disrupt their aspect ratio and appear deformed (see
figure 4.13 for an illustrative example). Resizing only one dimension of the image prompts the
system to resize the other dimension accordingly, maintaining the aspect ratio. For an object

36

https://www.sr-research.com/eye-tracking-blog/background/visual-angle/

to have the same width and height, such as the frame’s noise border, the image should have
an aspect ratio of 1. The system calculates the object’s corresponding pixel amount using
each pixel’s angle of the referenced dimension.

The display size specifications should be defined with the most accuracy possible to provide
precise pixel amounts for the object’s size. If the specifications are inaccurate, the object
could be represented with a greater or smaller size than the effective one due to the angle
per pixel being influenced by the incorrect display size. Using the angle per pixel angle of a
given dimension also helps if the display used does not have perfectly "squared" pixels. If an
overall angle per pixel value of the display is used, it could present differing sizes for the same
visual angle when resizing an object on the width and another on the height. For instance, if
resizing an object with 2◦ of visual angle on a display without "squared" pixels, its apparent
width size could represent the effective 2◦, when resizing with the width as the reference,
while when resizing it on the height, it could present a different size than the effective 2◦ it
should have. Using the angle per pixel of a reference dimension to resize an object ensures a
higher standard of reliability, as this approach accounts for the factors mentioned above.

(a) Normal stimulus image. (b) Deformed stimulus image.

Figure 4.13: Demonstration of the image deformation of a resized stimulus in both dimensions. (a)
presents a stimulus image resized using only one dimension as a reference; (b) shows a
stimulus resized to have the same width and height size.

Scene object setup methodology is identical on all platforms by using the configured scene
object size values, display specifications, and the methods described above. For the desktop
experiments, the display specifications are detailed with all the information needed. However,
for the VR experiments, not all specifications needed about the HMD are listed (equipment
specifications can be found in section 3.4).

Specifications for the Vive do not explicitly include the headset’s display dimensions (height
and width) and lack information about the distance from the eyes to the screen. Therefore
these values had to be estimated. The width and height were calculated using the diagonal
size provided and the aspect ratio of the screen. The distance from the eyes to the display was
estimated using the display’s known FOV (110◦) and the calculated display size, substituting
these values in equation 4.2 and solving for "Distance". The values obtained were 61.1mm
width, 67.9mm height, and a distance of approximately 51.2mm.

This methodology for VR display object scaling seems plausible, although its effectiveness
is debatable due to the fisheye lens distortion preventing the exact determination of the

37

stimuli pixel size. However, this methodology aims to standardize a system that performs
scene object scaling on all platforms. Display dimensions and eye-to-display distance can
be specified in the configuration file and later configured when obtaining more accurate
information that validates the effective screen dimensions and eye-to-display distance of a VR
HMD. Appendix A contains an in-depth review of the metrics estimated for the VR headset
and discusses some of the challenges of using this scaling method using the VR HMD. It also
explains the methodology adopted to achieve the correct pixel representation of stimuli to the
display using Unity.

4.2.5 Data Management

The data generated throughout the application lifecycle is collected using a Data Manager.
The experiment data is stored in a Comma-Separated Values (CSV) file format at the end of
the experiment. The Data Manager assembles the experiment data to be stored in a single
CSV line of the experiment results file. By storing all the participant’s data in a single line
enables that the data for additional participants to be appended to the same file and, later,
opened with software tools such as Excel7 or SPSS8, commonly used for the analysis.

The data collected into the results file ranges from relevant information about the partici-
pant: age, gender, and dominant eye; a unique alphanumeric ID to distinguish each result, the
platform and experimental paradigm used in that experiment, timestamps for the start, end,
and elapsed times of each session of the experiment: introductions, training, and experiment;
and all the data of each trial of the training and experiment sessions.

CsvHelper9, a community-made .Net library for reading and writing CSV files, was used
to streamline the manipulation and handling of experiment results in one line and into the
CSV files.

4.3 Configuration File

The configuration file contains all the parameters necessary to configure and set up an
experiment. It is written in eXtensible Markup Language (XML) as it promotes an organized
structure for each specific parameter. The information regarding the configuration file’s
properties and parameters is discussed in more detail in this section.

4.3.1 XML File Structure & Properties

XML is a markup language that defines rules to encode documents in a readable format
for humans and systems. Elements and attributes compose and XML document (see listing 4.1
for an example of an XML document file structure). Elements mark up a section of the
XML document and hold a value or nest other elements, while attributes add descriptive
information to an element. The XML document starts with a root element that encloses all
elements that form the document’s structure.

7Microsoft Excel main page (https://www.microsoft.com/pt-pt/microsoft-365/excel).
8IBM SPSS main page (https://www.ibm.com/analytics/spss-statistics-software).
9CsvHelper main page (https://joshclose.github.io/CsvHelper/).

38

https://www.microsoft.com/pt-pt/microsoft-365/excel
https://www.microsoft.com/pt-pt/microsoft-365/excel
https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
https://joshclose.github.io/CsvHelper/
https://joshclose.github.io/CsvHelper/

<root_element>
<element attribute="value">

<nested_element>Value</nested_element>
<nested_element other_attribute="other_value">Value</nested_element>

</element>
<element>Value</element>

</root_element>

Listing 4.1: Example of an XML document structure.

The information contained in an XML document can be parsed to a system through
deserialization. Deserialization reconstructs the XML document information into a single
machine-readable object representing that information and maintaining its structure. For the
application, the object created represents the XML configuration data that can be accessed
by the system to set up the experiment.

The XML format was chosen to create the configuration file due to its high verbosity and
structure. Compared to other alternatives, it provides more readability and better appeal
for researchers unfamiliar with this concept. This assumes a particular relevance for the
context of this work since it enables researchers at the Psychology lab to more easily customize
configurations, e.g., to define the dimensions of a new desktop monitor to use or add more
stimuli to the list. XML has the cost of creating larger files, though it is a negligible factor
for its purpose.

4.3.2 Configuration Parameters

The experiment set up is done by setting different values to the parameters in the
configuration file. These parameters were organized to generalize their use so that experiments
with different experimental paradigms can use the same parameter set. Listing 4.2 presents a
minimal configuration file that complements the proposed experimental paradigm, labeling
every parameter to facilitate identification. A "configurations" element nests all parameters,
holding all the information of the configuration file. This section describes the primary
function of each parameter and its settings. Appendix B presents an extended version of this
section, providing a better insight into using the configuration file to set up experiments.

Experimental Paradigm

The experimental paradigm, labeled with "Experimental Paradigm Setting" in listing 4.2,
is specified using the "experimental_paradigm" element. This element contains a unique value
that indicates the experimental paradigm to be used, instructing the system to set up and
perform the experiment accordingly. The given configuration example shows the experimental
paradigm for this dissertation’s experiment, with the codename bCFS_F_P. The "bCFS"
portion appoints to an experiment that uses the bCFS paradigm. The "F_P" portion indicates
Fovea and Periphery, respectively, which are the positions for the stimuli in the experiment
frame, creating the visual angles intended to be studied using this method. Another two

39

codenames were implemented to add support for other experimental paradigm settings, which
are detailed in appendix B.

<configurations>

<!-- ## Experimental Paradigm Setting ## -->
<experimental_paradigm>bCFS_F_P</experimental_paradigm>

<!-- ## Display System Settings ## -->
<display_system platform="Desktop">

<display pixel_width="1920" pixel_height="1080" width="476" height="267"/>
<distance_to_screen>500</distance_to_screen>

</display_system>

<!-- ## Data Settings ## -->
<data participant_id_length="8">

<csv csv_delimiter=";">
<save_path base_folder="Desktop">Experiment Results</save_path>
<filename>Experiment_Results.csv</filename>

</csv>
</data>

<!-- ## Experiment Settings ## -->
<experiment_settings color="Red_Blue" training_set_size="20" trial_repetitions="3">

<frame size="16" size_unit="Degree" reference_dimension="Height">
<stimuli size="2" size_unit="Degree" reference_dimension="Height" sort_type="Random">

<positions distance_unit="Degree">
<position horizontal_distance="1" vertical_distance="0" label="fovea"/>
<position horizontal_distance="6" vertical_distance="0" label="periphery"/>

</positions>
</stimuli>
<masks cfs_step="100" size="15" size_unit="Degree" reference_dimension="Height"/>

</frame>
<duration raise_stimulus="1100" lower_mask="4000" stimulus_exposed="3000"/>
<experiment_data_folders>

<experiment_folder>Experiment Stimuli</experiment_folder>
<training_folder>Training Stimuli</training_folder>
<mask_folder>Masks</mask_folder>

</experiment_data_folders>
</experiment_settings>

<!-- ## Pre-Task Pages Settings (content omitted) ## -->
<pre_task_pages>[...]</pre_task_pages>

</configurations>

Listing 4.2: An example of a configuration file that complements the bCFS experimental paradigm
proposed. Each parameter is separated and labeled for clarity. The Pre-Task pages
parameter is omitted for the sake of brevity.

Display System

The display system parameter is specified with the "display_system" element and contains
the settings concerning the experiment’s platform. The platform itself, i.e., desktop, desktop
with mirrors, or VR, is specified here as a value. Each platform contains a display to present
stimuli to the participant. Its dimensions and resolution need to be specified to calculate
scene objects’ pixel size using visual angles. The participant’s view distance to the display

40

influences stimuli size calculation, which is specified in this parameter. Listing 4.2 shows an
example of this parameter for an experiment using the Desktop platform.

Data

The data parameter, specified with the "data" element, contains all the settings necessary
for the experiment results CSV file. It allows to specify the CSV delimiter, save path, and
filename. There are two ways to specify the save path: combining a base folder, recognized
by the operating system10, e.g., Desktop, MyDocuments, with a relative path (if needed),
or writing the absolute path. If the system recognizes the base folder indicated, it will get
its absolute path and join it with the relative path stated. This method makes it easy to
relocate the experiment files to different computers or folders without affecting its functioning.
Listing 4.2 shows an example of a data parameter using the "base folder and relative path"
approach.

The results collected from each participant are identified by a randomly generated unique
ID, whose length is also specified in this parameter.

Experiment Settings

The experiment settings parameter is responsible for all the values necessary to prepare
the experiment scenery and execution, and it is specified with the "experiment_settings"
element. Listing 4.2 presents an example of the settings used to set up the experiment for the
experimental protocol designed.

The color used for the experiment can be specified to control the experiment’s displayed
color filtering. The experiment stimuli can be displayed using the natural colors or with the
Red-Blue RGB filtering process through this setting. The number of trial repetitions for the
experiment can be specified, and, for the training phase, the training set used can be limited
to display only the indicated amount trials.

This parameter allows defining the sizes of the experiment frame, stimuli, and masks while
indicating those values’ measurement type. The sizes can be interpreted in visual angles,
using degree and radians as possible measurements, and in pixels, directly using that value to
display on the screen. In the example given, the stimuli size is defined as 2 and interpreted as
degree units (2◦). The reference dimension is also stated, which instructs the system to scale
the stimuli to that size, according to their height or width.

The stimuli are also presented in various positions. Each position stated is defined by
a horizontal and vertical distance from the frame’s center, using a label to identify them.
The positions’ distance measurement, which has the same measurement types as discussed
previously, is indicated to inform the system how to interpret each position. The stimuli’s trial
presentation order can be organized randomly, alphanumerically ascending, or descending. The
listing 4.2 example demonstrates the positions used for the proposed experimental paradigm’s
experiments, organizing the stimuli randomly for presentation.

10This is obtained using a specific enumerator as described here (https://docs.microsoft.com/en-us/
dotnet/api/system.environment.specialfolder?view=netcore-3.1) [last accessed: 02/03/2021]

41

https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1

The example also demonstrates the duration steps of each trial according to the stimuli
presentation procedure of the experimental protocol designed. Each trial phase performs a
specific action to be carried out during the amount of time specified. The CFS time step
can be set to determine how many times per second the masks are interchanged, creating
the CFS effect. The duration and CFS step values are all interpreted as milliseconds. The
configuration example shows the CFS step to be 100 milliseconds, changing masks at a rate
of 10 frames per second.

The experiment settings also allow setting the path for image folders used in the experiments.
This path can either be an absolute path or a relative path. When using a relative path, the
application will try to read it from a pre-defined folder under the application data directory.
The training and experiment folders should contain stimuli images to present during the
training and experiment phase, respectively. The mask folder should include pre-rendered
Mondrian pattern images to display and create the CFS effect. Using this approach allows
full control to the examiner to add or change stimuli without needing further assistance.

Pre-Task Pages

The pre-task pages parameter allows the system to set a customized text for the descriptive
pages that appear before the experiment. The specific page to which the text and description
should appear can be specified. Listing 4.3 shows an example of the structure for this
parameter. Section 4.4 exemplifies figures on how the text set in this parameter is presented
in the interface.

<pre_task_pages>
<page name="Introduction">

<title>[Introduction Title]</title>
<description>[Introductory experiment description]</description>

</page>
<page name="Participant_Information">

<title>[Participant Information Title]</title>
<description>[Participant information instructions]</description>

</page>
<page name="Pre_Calibration">

<title>[Pre-Calibration Task Title]</title>
<description>[Calibration phase description]</description>

</page>
<page name="Pre_Training">

<title>[Pre-Training Task Title]</title>
<description>[Training phase description]</description>

</page>
<page name="Pre_Experiment">

<title>[Pre-Experiment Task Title]</title>
<description>[Experiment phase description]</description>

</page>
<page name="Experiment_End">[...]</page>

</pre_task_pages>

Listing 4.3: Pre-Task pages parameter. The title and description values are set between square
brackets to imply the text that should be set. For the sake of brevity and demonstration,
the values are not explicitly set.

42

4.4 Application Usage & User Interface

The interface design’s main focus was for it to be minimalist, without any aspects such as
animations that might distract the participants. The application segregates experiments into
five phases: pre-task, calibration, training, experiment, and final phases. This section discusses
the application’s usage and each phase’s purpose, in agreement with the experimental protocol
designed. Additional detailed information regarding the implemented input controls to use
the application can be found in appendix C.

Before starting the application, the experiment should be set up using the configuration
file with the parameter values required. Then, the system reads the configuration file at
startup to layout the correct scenery for the experiment.

The Pre-Task phase is the first event presented by the application. This segment
contains a page that describes the experiment to be performed and an area to set experiment
relevant information about the participant. The application navigation is done by pressing
the button at the bottom of the screen.

The first page introduces the participant to the experiment. It can describe the tasks to be
done, display a welcoming message for the participant, and so forth (all descriptive pages are
similar, only changing the text content; see the calibration page example in figure 4.15). The
text set in the configuration file will appear on the page. The next page is the information
area that contains a small form to enter relevant participant information such as age, gender,
and dominant eye (see figure 4.14 for an illustration). A smaller text can appear in red,
alerting for invalid values or no values inserted and averting continuing the experiment with
erroneous or missing participant information.

Figure 4.14: Participant information data page example. The information is entered in the input
fields to use for analysis. The dominant eye inserted will instruct the application
to display the stimuli to that eye. The text displayed can be edited through the
configuration file. The displayed page has been cropped and zoomed for readability.

43

This phase is complete after entering the participant data. The next phases encompass the
tasks to be performed by the participant. Each task contains an initial page that describes
the task to be performed. Like the first page of the application, each page’s text can be set in
the configuration file.

The Calibration phase provides a chance to calibrate the scene objects’ position. The
displayed images for the calibration are the same for each eye. It is displayed a fixation cross
in the center and a white noise border, having the same size as the frame, specified in the
configuration file. The frame can be repositioned both vertically and horizontally using the
Vive hand controllers. For binocular view displays, i.e., VR and desktop with mirrors, the
horizontal movement is symmetrical between the images (moving the left image to the left
makes the right image go to the right and vice-versa). There is the option to move them
independently from each other (moving only the left or right image freely) by combining the
movement keys with a specific key.

Figure 4.15: Pre-Calibration page example. It appears before the calibration task to describe to
the participant details regarding the calibration process. The descriptive pages that
precede the tasks have the same layout, only changing the text content. The displayed
page has been cropped and zoomed for readability.

This phase is used on all platform displays but should be more useful for the platforms
that project different images directly to each eye, as is the case in VR and desktop with
mirrors platforms. Initially, the scene’s objects are evenly centered; however, participants may
feel that their eyes are forcefully converging to the frame’s center because it is not perfectly
aligned with their eyes. The frames can then be moved to calibrate their position and align
with the participant’s eye’s center, relaxing eye focus (see figure 4.16 for an illustration of this
process).

Since the IPD can vary between participants, this phase is mandatory. After the images
are calibrated, or the calibration is not necessary, the images’ position can be accepted to
move on to the next task.

The Training phase is where the participant gets accustomed to the experiment task

44

(a) Initial image in the calibration phase.

(b) Image calibrated with a narrower distance in-between.

Figure 4.16: Calibration phase in the Desktop with mirrors platform. The images show the positioning
of the scene frames before and after calibration. For the lack of a better representation
of the VR calibration phase, the desktop with mirrors platform is shown.

and input controls. It simulates the experiment environment in a shorter number of trials,
specified in the configuration file. The participant’s trial response input is distinguished by
the hand controller that responded; a left controller input would mean that the participant
perceived the stimulus in the left of the frame and vice-versa. The results obtained in this
phase are not considered for analysis but are stored to keep a record for the experiment session.
The task is preceded by a page that explains the training phase’s purpose and details.

After setting everything up for the experiment and giving the participant the chance to
practice, the Experiment phase begins. A page describes to the user the experiment task
will begin and that the results obtained in this phase will be evaluated.

The participant goes through all the trials of a full-length experiment. The results obtained
are stored and saved to a CSV file for analysis.

The Final phase displays a simple page to announce the experiment’s end, thanking the
participant for the participation in the experiment, and a button to exit the application.

45

Figure 4.17: Trial of the "bCFS Fovea Periphery" experiment in the Desktop with mirrors platform.
The image shows a phase of the trial where the stimulus is at full opacity and the CFS
effect is about to reduce. For the lack of a better representation of a VR experiment
trial, the desktop with mirrors platform is shown.

4.5 Runtime Troubleshooting Features

Using a configuration file to set values to build an experiment is prone to some errors
happening. A format and content validation feature was implemented for the application
to help identify these errors and fix them. The purpose of this feature is to provide helpful
information about issues that may emerge. Its messages are shown in a window, created for
this purpose, and may be of informative, warning, or error type.

Error Messages

The most common errors may happen when setting up the configuration file for the
experiment. For example, one of the configuration parameters’ values is incorrectly set up,
which prompts an error that stops application execution. The window shows the error message
(see figure 4.18), so it is possible to identify that error’s origin. The error messages are
identified by a red cross icon and stop the application’s execution.

Figure 4.18: Error message window. The message shows an error in a configuration file’s parameter
value. The value "Degreee" is not valid; it should be "Degree".

46

Warning Messages

The warning messages happen when a critical operation has been interrupted. An example
of this behaviour is when saving the experiment data in the results file. A program, such as
Microsoft Excel, can lock the access to the file, which interrupts the saving process. A window
displays a message that warns of this occurrence and suggests closing the program locking file
access. The saving process can be started again by pressing a "backup save" key, displayed in
the window (see figure 4.19 for an illustration of this event). A yellow exclamation mark icon
identifies the warning messages.

Figure 4.19: Warning message window. The message displayed warns of the existence of another
program locking access to the results file. The program should be closed, and the saving
process should be retried by pressing the key indicated.

Information Messages

The informative messages are self-explanatory. These messages often appear when exiting
the application, prompting confirmation to exit the application. When clicking to exit the
application at the end of the experiment, the window will present a message with the results
file’s save location and the ID attributed to that experiment’s participant (see figure 4.20 for
an example). A blue circle icon with a lowercase "i" identifies the information messages.

Figure 4.20: Information message window. This message is displayed at the end of the experiment.
It shows the save location of the experiment results file and the participant’s ID of that
session.

47

4.6 Chapter Conclusions

This chapter described the design and development of an application system to support the
experiment protocol requirements. To this end, it was presented the conceptual architecture
and its different blocks that compose the application, followed by the application’s development
and its features that fulfill the requirements proposed

Firstly, it was explained the system’s architecture, which is essential to get a better grasp of
the application workflow. It was then explained the application’s development with Unity and
methodology to support the experiments’ protocol requirements, which details the processes
that occur to set up experiments. The configuration file concept detailed how it drives the
experiment set up and its potential to provide different experiment iterations.

Finally, it was explained the application’s usage and shown its user interface, displaying
some of its features and robustness concepts.

48

CHAPTER 5
Conclusions & Future Work

5.1 Conclusions

This dissertation approached several aspects regarding the evolution threat processing
research in the Experimental Psychology lab. Threat processing is a Psychology field that
studies the emotional stimuli that humans perceive as fear processed under unawareness. As
in many works in Experimental Psychology, visual stimuli play a pivotal role in this research
field. Recent experimental paradigms have considered increasingly complex methods for
stimuli creation and presentation, e.g., bCFS. This complexity, along with a need to move
into more ecologically valid experimental settings, prompt the consideration of novel methods
and technologies. In this respect, VR has a strong potential, and interest in this technology
has been steadily increasing for Experimental Psychology research. This work proposes the
creation of a system that allows a study of VR’s benefits to provide a richer manipulation of
visual stimuli.

This dissertation’s general objective was to propose a platform that supports the validation
of VR for threat processing research using protocols based on the presentation of visual
stimuli such as bCFS. To this effect, and collaborating with the Department of Education
and Psychology of the University of Aveiro, an experimental protocol was elaborated to carry
out data collection experiments that support the validation of VR based paradigms for threat
processing study. The protocol focused on the bCFS experimental paradigm as its complex
methodology is well suited for VR. Then, based on the requirements obtained from the
previous step, different frameworks were explored. Unity was tested for its support on core
aspects of the work to carry out, e.g., create and present bCFS stimuli, gather results, with
success, which prompted its selection to develop the platform for experiments.

Subsequently, it was developed the system platform that supports the experimental
protocol. The system implements the computational methods for the requirements established,
supporting multiple platforms, registering user inputs, supporting display parameter definition
in visual angles, storing the experimental data, and so forth, having the versatility to configure
different experiment settings through a configuration file. Additionally, it was added support to

49

calibrate the visual stimuli to align with the participant’s eyes and implemented troubleshooting
features that help handling system errors that may occur. Regarding the goal of validating
the proposed methods, this was only addressed to a minimal extent. It was demonstrated
that the methods support the execution and data collection of experiments in the different
setups. However, an extensive validation, supported on the collection of participant data, as
was initially intended, was not performed due to constraints evoked by the current pandemic
situation. At this time, there is no chance to conduct an experimental data collection.

The application system developed still has some limitations that should be noted for future
utilization. Specific experiments that require different inputs or outcomes to what is supported
need to be explicitly implemented. The application was developed with a comprehensive
design to comprise many possible experiments. However, not every possible experiment
variation can be accounted for, and some experiment types may require features that were not
developed. The application does not support every VR system. Some VR headsets operate on
different frameworks that will not be compatible with the one implemented in this application
version (SteamVR). VR usage was tested using the HTC Vive, which was the only VR system
available.

Despite not having met the goal to evaluate VR through experimental data collections,
the application is prepared to configure and run experiments for this purpose when the time
comes.

5.2 Future Work

There are several expectations for future work, whether it is to improve the current version
of the application system or take the positive aspects and evaluate the negatives to develop a
new, improved version.

Since the VR platform’s assessment as a suitable option was not carried out, an experi-
mental data collection should be the first task to do in the future, when the circumstances
allow it. After the assessment is carried out, if proved successful, another study exploring the
3D perception advantages could be explored in this field, creating scenes that render a 3D
environment, simulating threatening situations in real-life scenarios.

The application would benefit from implementing various VR frameworks to have better
support for other VR headsets. Currently, the VR framework used is SteamVR, which is not
directly supported by all VR headsets. This implementation would allow better VR displays
than the HTC Vive, such as the newly released Oculus Quest 21. HTC Vive is a tethered
headset that requires a tracking system to be installed. VR systems such as the Oculus Quest
2 streamlines the system setup and portability. It is a wireless VR headset with inside-out
tracking, which does not require installing a standalone tracking system. This headset also
bears a high-resolution display that improves image quality and reduces the screen door effect
significantly, making for a great candidate for the Experimental Psychology lab.

Translating visual angle sizes to the corresponding pixel size displayed is paramount for
experiments. The current methodology for this process had the purpose of creating a standard

1Oculus Quest 2 home page (https://www.oculus.com/quest-2/)

50

https://www.oculus.com/quest-2/
https://www.oculus.com/quest-2/

process for all platforms. However, this methodology is not straightforward to use in VR
displays. VR headsets’ display process is complex and draws many variables that seem to
influence the sizes displayed. Appendix A.2 contains a detailed discussion on this topic.
This methodology would benefit from an eye-to-display distance that better represents the
distance to the perceived image in the HMD. A thorough investigation of how the VR display
mechanics work would help estimate this distance, replacing the eye-to-display distance used
previously. If this distance is estimated, it could then be specified in the configuration file to
provide more accuracy in the visual angle translation process.

Although the application is not heavy on performance, it could benefit from performance
optimizations if needed in the future. Unity provides a Data-Oriented Technology Stack
(DOTS)2 containing features that can improve performance, such as dedicated multi-threaded
code support. For example, in the current version of the application, these features could be
leveraged to reduce the processing time of images when converting them to Sprites.

UXF is an appealing framework to consider for the design of behavioural experiments.
While While the application’s requirements did not justify its integration, a newer version
of UXF (2.0)3, containing additional and improved features, has been released during the
development of this work. It introduces new and user-friendly features that can enhance the
application, such as the new User Interface system and Data Handler methodology. In case
the experiment data collection gets more resource-intensive, UXF includes a multi-threaded
file Input/Output feature to boost performance that can be implemented if required.

Despite the limitations and methods with room for improvement, the work carried out
provides an insight for future endeavours.

Additionally, some noteworthy observations and discussion of possible improvements
regarding the experiment object presentation (especially using VR), configuration file usage
and compatibility, and application usage are mentioned in appendices A, B, and C.

2Unity DOTS main page (https://unity.com/dots)
3UXF 2.0 main page (http://immersivecognition.com/unity-experiment-framework/), and documen-

tation (https://github.com/immersivecognition/unity-experiment-framework/wiki/UXF-2.0).
[last accessed: 02/03/2021]

51

https://unity.com/dots
https://unity.com/dots
http://immersivecognition.com/unity-experiment-framework/
http://immersivecognition.com/unity-experiment-framework/
https://github.com/immersivecognition/unity-experiment-framework/wiki/UXF-2.0
https://github.com/immersivecognition/unity-experiment-framework/wiki/UXF-2.0
https://github.com/immersivecognition/unity-experiment-framework/wiki/UXF-2.0

APPENDIX A
Experiment Object Presentation

Notes

This appendix serves as a supplementary section focusing on detailing the VR HMD
measurements’ estimation, namely the width and height for the display screens and the overall
distance of the eye to the screen. These are measurements required to calculate the pixel size
of stimuli to be displayed in the VR headset. It will also be discussed some of the nuances
that the VR display type has. Finally, it explains the process of translating the stimuli size
into the pixel representation on display using Unity.

A.1 Virtual Reality Head Mounted Display Estimations

The VR HMD selected for experiments, the HTC Vive, lacks official specifications1 by the
manufacturer regarding the screen. There is no explicit mention of each screen’s dimension
size and about the overall eye-to-screen or even the lens-to-screen distances. This information
is essential to calculate the stimuli’s pixel size for experiments, so these values had to be
estimated.

A.1.1 VR HMD Screen Dimensions

The display’s screen dimensions were simple to estimate, as the specifications stated the
screen’s diagonal size. The width and height could then be calculated using the aspect ratio
of the screens. The aspect ratio is given by the resolution of each screen, which is 1080 × 1200
pixels per eye, giving an aspect ratio of 9:10. The display’s dimensions can be obtained
using an online display dimension calculator2 with these values. The dimensions obtained are
approximately 67.9 millimeters (mm) in height and 61.1 mm in width. The calculations can
be done without relying on online calculators by merely using the Pythagorean theorem since
these measures form a right triangle on the screen (see figure A.1 for an illustration).

1Vive Developers: Vive Specs & User Guide (https://developer.vive.com/resources/vive-sense/
hardware-guide/vive-specs-user-guide/)

2Online display dimension calculator (https://planetcalc.com/1890/) [last accessed: 02/03/2021].

53

https://developer.vive.com/resources/vive-sense/hardware-guide/vive-specs-user-guide/
https://developer.vive.com/resources/vive-sense/hardware-guide/vive-specs-user-guide/
https://developer.vive.com/resources/vive-sense/hardware-guide/vive-specs-user-guide/
https://planetcalc.com/1890/
https://planetcalc.com/1890/

Figure A.1: Screen dimension representation of the VR HMD. The screen has an aspect ratio 9:10
given by the resolution of the screen. Knowing the diagonal size of the screen is 91.4
mm, the width and height dimension can be calculated using the Pythagorean theorem.

The Pythagorean theorem asserts that:

91.42 = Width2 +Height2

Knowing the screen’s aspect ratio is 9:10, it can be determined that Width = 9
10Height, and

Height = 10
9 Width. The Width and Height can then be calculated by

91.42 = Width2 + (10
9 Width)2

and
91.42 = (9

10Height)
2 +Height2

After simplifying the results and discarding the negative square rooted value, it is deter-
mined that the width and height are, approximately, Width ≈ 61.1 mm, and Height ≈ 67.9
mm.

A brief search online has brought attention to a similar display panel3 for VR HMDs. This
panel has the same diagonal size and aspect ratio as the HTC Vive’s and presents similar
display dimensions. Although the panel cannot be confirmed to be the one used in the HTC
Vive, its similar dimensions support the notion that the dimensions calculated are plausible.

A.1.2 VR HMD Eye-to-Screen Distance

The eye-to-screen distance is a delicate value to obtain. The method used to obtain this
distance is similar to the visual angle equation (4.2) explained in section 4.2.4. In this case,
the equation is solved for "Distance" as

Distance =
Size

2
tan(θ2)

,

3Similar VR HMD panel specifications (https://www.panelook.com/AMS361EP01_Samsung_3.6_OLED_
overview_33237.html) [last accessed: 02/03/2021].

54

https://www.panelook.com/AMS361EP01_Samsung_3.6_OLED_overview_33237.html
https://www.panelook.com/AMS361EP01_Samsung_3.6_OLED_overview_33237.html
https://www.panelook.com/AMS361EP01_Samsung_3.6_OLED_overview_33237.html

using the previously estimated display dimensions ("Size") and using the HMD’s horizontal
FOV as the visual angle (θ).

The FOV value considered was the whole 110◦, specified by the manufacturer, for two
main reasons. The first reason is that the VR HMD simulates stereoscopic vision, similar to
the human eyes (see figure A.2 for an illustrated reference), producing images that simulate
each eye’s view of the environment that the brain can process into a single picture. In this
regard, the FOV considered for calculation should include the whole vision provided by VR
HMD. An object’s visual angle is calculated in co-ordinance with its distance to both eyes
in a natural environment. Similarly, the same concept should apply to a VR headset in a
simulated virtual environment. The second reason is that the FOV provided by a single
display, the monocular FOV, of the VR headset is an unknown value. The FOV of the HMD
cannot be divided in half as the display images overlap, binocular FOV, and this value is
influenced by how the manufacturer set up the VR displays. The FOV value is not explicitly
stated if it is horizontal, vertical, or diagonal, so it was considered to be horizontal as it is the
most plausible value.

Figure A.2: Human eye FOV representation. The blue zone represents the visual area shared by
both eyes, the binocular FOV. The grey areas represent the visual field viewed by each
eye, the monocular FOV, the left grey area is view by the left eye and the right area by
the right eye.

The eye-to-display distance using the horizontal FOV encompasses both VR screens, giving
a total display of dimension 61.1 × 2 = 122.2 mm. The distance is calculated by replacing the
FOV value (θ) and the total display dimension ("Size") in the previously stated equation:

Distance =
122.2

2
tan(110

2)
≈ 42.8mm.

The estimated 42.8 mm of eye-to-display distance represents a plausible value as it seems
a realistic measure from the eyes to the VR HMD’s screens. The scene objects scaled using

55

this value resemble similar perceived sizes as in the desktop monitor. This estimated distance
has the assumption that the lens distance of the HTC Vive4 is at the closest position to the
participant’s eyes, which is the position that the VR HMD provides the widest possible FOV,
i.e., 110◦.

A.2 VR Object Presentation Observations

The nature of the VR device’s display has many parameters that need to be taken into
account. Using the process explained in section 4.2.4 to scale the scene objects to the correct
visual angle is not as straightforward as using the desktop monitor.

The VR headset includes a fisheye lens to each eye, magnifying and distorting the image
generated by the display. The display renders images of the virtual environment using inverse
lens distortion, such that both distortions cancel out, producing a final image that is perceived
naturally. This process enables a wider FOV on the VR HMD, which in the case of the HTC
Vive is 110◦. Therefore, the visual angles of presented stimuli after lens distortion cannot
be directly determined and compared to the desktop monitor, as it influences the scaling
process’s accuracy.

The way each VR display is set up in the headset may include another factor influencing
the scaling process. Each display presents a portion of the image that overlaps with the other
display. VR headset manufacturers should test and evaluate this stereoscopic visualization to
assert image correctness. The participant’s cranium features can also influence the overall
distance, as different people would have different distances to the lenses for the same lens
distance position in the VR headset.

The scene object scaling process explained in section 4.2.4 intends to standardize a method
that works for all display types. Although the VR HMD has many factors that influence
the image scaling process, a thorough investigation of how the VR display mechanics work
would help estimate the eye distance to the perceived image instead of merely using the
eye-to-display distance. Analyzing every aspect that influences the displayed image on the
headset: image and lens distortion, lens magnification, and image overlap; would allow an
educated estimation of the distance to the VR display’s perceived image. This value could
then be configured on the configuration file to provide more accuracy in the image scaling
process.

A.3 Unity Object Presentation Process

The experimental task has a 2D virtual environment, which eases the process of translating
visual angles of the perceived stimuli into its pixel representation. In Unity, this process
was achieved using a Canvas5, a GameObject composed, most importantly, by a Canvas
component and a Canvas Scaler script. Its general purpose is to draw its containing elements,

4HTC Vive manual on adjusting the lens distance on the headset
(https://www.vive.com/us/support/vive/category_howto/adjusting-the-lens-distance.html).

5Canvas component Unity documentation
(https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html) [last accessed: 02/03/2021].

56

https://www.vive.com/us/support/vive/category_howto/adjusting-the-lens-distance.html
https://www.vive.com/us/support/vive/category_howto/adjusting-the-lens-distance.html
https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html
https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html

such as images (experiment frame), into view. Figure A.3 shows the Unity inspector window of
the Canvas GameObject used to contain the desktop platform’s experiment frame. The most
significant fields to pay attention to are the "Render Mode" of the Canvas component, "UI
Scale Mode" of the Canvas Scaler script, and the "Width" and "Height" of the Rect Transform
component.

Figure A.3: Unity Canvas GameObject inspector window with the settings used to contain the
experiment object images. The "Width" and "Height" field adjust according to the
application window resolution. In full-screen the "Width" and "Height" would show the
monitor’s resolution’s 1920 and 1080 respectively, Unity editor does not allow a complete
full-screen.

The "Render Mode" field of the Canvas is set to Screen Space - Camera. This setting
essentially makes the Canvas and its containing GameObjects to be rendered by a Camera
GameObject, the "Main Camera", driving the Canvas to fill the screen space and accommodate
the Camera’s settings (see figure A.4 for an illustration). If the screen is resized or the resolution
changes, the Canvas will automatically match those changes. In this case, the "Width" and
"Height" of the Rect Transform component of the Canvas matches the same resolution of the
application window.

The "UI Scale Mode" parameter of the Canvas Scaler script is set to Constant Pixel Size.

57

This setting makes the items displayed on the Canvas comply with the display’s resolution,
allowing to scale of the frame’s objects in pixel size. This setting also allows the containing
objects to maintain the same amount of pixels regardless of the application window resolution,
which assures more consistency in the presentation of stimuli. If the application window is
resized, the objects will not change to match the same resolution, keeping the same size. The
"Pixel Perfect" field is enabled as, according to the documentation6, it forces the elements in
the canvas to be aligned with pixels, making them appear sharper and prevent blurriness.

Figure A.4: Unity Canvas and Camera of the desktop platform in 3D perspective view. The white
lines represent the camera perspective view. The Canvas matches the Camera’s view,
which encompasses the screen resolution. At the bottom right corner, a preview of the
camera view as seen from the monitor.

This concept is also applied to the VR platform, only in this case, there is a Canvas
rendered for each display that presents the corresponding experiment stimuli to each eye. The
VR HMD’s perceived FOV is not affected by this methodology, as both display’s rendered
Canvas have the same settings and background color, which makes the perceived image
appear as if it was a single Canvas across both screens. Each frame is then presented on the
corresponding display, overlapping them to perform the CFS effect used for the experiments.

6Canvas Pixel Perfect Unity documentation
(https://docs.unity3d.com/ScriptReference/Canvas-pixelPerfect.html) [last accessed: 02/03/2021].

58

https://docs.unity3d.com/ScriptReference/Canvas-pixelPerfect.html
https://docs.unity3d.com/ScriptReference/Canvas-pixelPerfect.html

APPENDIX B
Configuration File Usage Notes

This appendix thoroughly details information regarding the parameters’ value types
and their role in the experiment set up. It represents a manual explaining how to use the
configuration file to set up experiments. It also discusses its compatibility to set up other
types of experiments and possible improvements.

B.1 Configuration File Manual

Section 4.3.2 was given a brief explanation of each configuration parameter’s different values
and their primary function. The explanation was shortened to illustrate the configuration
file’s fundamental idea concisely. This section will keep a similar structure to section 4.3.2,
carefully reviewing each value type, possible values, and default values of the parameters to
fully explain how to use the configuration file to set up experiments.

The "configurations" element nests all parameters that compose the configuration file.
After deserialization, this element is converted to an object that holds all the configuration
data. The configuration file can be found in the application data directory under the
StreamingAssets/ExperimentData/Config folder with the filename "config.xml".

<configurations>
<experimental_paradigm/> <!-- Experimental Paradigm Parameter -->
<display_system/> <!-- Display System Parameter -->
<data/> <!-- Data Parameter -->
<experiment_settings/> <!-- Experiment Settings Parameter -->
<pre_task_pages/> <!-- Pre-Task Pages Parameter -->

</configurations>

Listing B.1: A demonstrative example of the XML configuration file parameter structure. Each
element represents a configurable parameter (labeled) that can be manipulated to set
different experiment configurations. The content of the elements has been omitted for
demonstration purposes.

59

Experimental Paradigm

The experimental paradigm parameter consists solely of the "experimental_paradigm"
element holding the value that stipulates the experimental paradigm to be performed. This
value is directly linked with the type of Experiment Manager used by the system (see the
"Experiment Manager" subsection in section 4.1.3 for a review). The software system supports
three different "experimental_paradigm" values, shown in table B.1.

Experimental
Paradigm Value Description

bCFS_F_P Specifies the fovea and periphery bCFS experimental paradigm
proposed for this work’s experiments.

bCFS_Simple Specifies a simplified bCFS experiment only registering the
participant’s reaction time.

bCFS_Sides Specifies a simplified bCFS experiment registering both the
participant’s reaction time and stimulus frame side guessed.

Table B.1: Experimental paradigm parameter values implemented in the software platform. Each
value instructs the application to set up and perform experiments specifically.

This work’s experimental paradigm value is bCFS_F_P (see listing B.2 for reference). The
application system identifies this value and prepares the experiments for the bCFS paradigm
presenting the stimuli to the fovea and periphery positions, as accorded in the protocol designed
for the experiments (see section 3.2 for reference). The other values were implemented so
the application could set up other experiments based on visual stimuli presentation that
use similar methodologies to obtain results, unconstrained from the fovea and periphery
experiments’ specific operations.

The bCFS_Simple value tells the software system to set up a simplified version of a bCFS
experiment, only evaluating the participant’s reaction time, disregarding the position where
the stimulus was detected. The bCFS_Sides value provides the same simplified version for
bCFS experiments as the bCFS_Simple value; however, it registers both the participant’s
reaction time and stimulus frame side guessed. Adding other experimental paradigm values
that instruct the software platform to perform different actions requires a specific Experiment
Manager version to be implemented, which is the system component that manages those
operations.

<experimental_paradigm>bCFS_F_P</experimental_paradigm>

Listing B.2: Example of an experimental paradigm parameter with the value for this work’s experi-
mental paradigm.

This parameter must contain a value as it is required to set up the experiments. In the
case of value omission, an error is shown, stopping application execution.

60

Display System

The display system parameter includes all the settings about the display platform used for
the experiments (see listing B.3 for a reference). The platform is specified in the "platform"
attribute, which holds a value to instruct the software application on which platform to set up
the experiments. Table B.2 presents the possible values to specify the experiment’s platform.
The application defaults to the Desktop platform in case the platform attribute is not included.

Platform
Value Description

Desktop
(DV)

Instructs the system to set up the experiment for the Desktop display
platform, using the Red-Blue anaglyph 3D glasses presentation method.

DesktopMirror Instructs the system to set up the experiment for the Desktop display
platform, using the mirror apparatus presentation method.

Vr Instructs the system to set up the experiment for the Virtual Reality
display platform.

Table B.2: Display platform values implemented in the software system. Each value instructs the
application to set up experiments to the specified platform value. The default platform
value (DV) is "Desktop" if it is not set.

The "display" element comprises the technical information about the display used for the
experiment, containing attributes that hold the values for the display’s width and height reso-
lution and dimensions. The "distance_to_screen" element has the value for the participant’s
eyes’ distance to the display screen. These values are required so the application system can
translate the specified stimuli visual angle sizes into its pixel representation, as explained in
section 4.2.4. The measurement unit used to define these values should be the same for the
size translation to work correctly, i.e., if the "distance_to_screen" value was set in millimetres,
the display’s size dimension should be specified in millimetres as well.

<display_system platform="Desktop">
<display pixel_width="1920" pixel_height="1080" width="476" height="267"/>
<distance_to_screen>500</distance_to_screen>

</display_system>

Listing B.3: Example of a system parameter configuration for the Desktop platform experiment. The
metric measurements ("width", "height", and "distance_to_screen") are in millimeters.

Data

The data parameter contains all the settings required to store and organize the experiment
results file (see listing B.4 for a reference). Section 4.2.5 discussed that the experiment results
are stored in the CSV format, saving the results in one CSV line to hold all experiment
results in a single file. The "data" element contains a "participant_id_length" attribute that
receives an integer value to identify the results with a randomized alphanumeric identification
with the specified length. The length of this alphanumeric identification defaults to 8 in
case of its omission. Since the results are stored in a CSV file, it is possible to configure the

61

"csv_delimiter" to better customize the data organization, with a default value ";" in case of
exclusion of this attribute.

<data participant_id_length="8">
<csv csv_delimiter=";">

<save_path base_folder="Desktop">Experiment Results</save_path>
<filename>Experiment_Results.csv</filename>

</csv>
</data>

Listing B.4: Example of data parameter settings, using the relative path with the base folder method
to generate the save path.

The filename and save path for the experiment results can be specified using the "filename"
and "save_path" elements, respectively. The "filename" holds a representative name given
to the results file. The save path for the experiment results can be specified in two distinct
methods (see listing B.5 for an example of both methods). It can be specified as an absolute
path or a relative path and a "base_folder" attribute. The latter method relies on a set of
special folders1 recognized by the operating system. The "base folder" should contain a value
that represents the intended base folder, e.g., Desktop, MyDocuments. This attribute will
instruct the application to get the absolute path to the specified special folder and join it with
the given relative path. Using the "base folder" method circumvents the necessity to replace
the absolute path if using a different computer or folder, since the software system gets the
path to the Desktop folder, for example, by itself.

<!-- Absolute path method -->
<save_path>C:\Users\[USERNAME]\Desktop\Experiment Results</save_path>

<!-- Relative path with base folder method -->
<save_path base_folder="Desktop">Experiment Results</save_path>

<!-- Both method examples generate the same path:
C:\Users\[USERNAME]\Desktop\Experiment Results -->

Listing B.5: Example of both save path methods. The first example shows the absolute path method,
while the second shows the relative path with the base folder method. Both demonstrated
methods produce the same save path, as shown in the last commented lines.

Experiment Settings

The experiment settings parameter contains the values responsible for the experiment
scenery set up and other procedure and execution settings. For a reference, see listing B.6,
which shows an example of the settings used to set up an experiment for the designed protocol,
discussed in section 3.2.

1The special folders are obtained using a specific enumerator as described here (https://docs.
microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1) [last accessed:
02/03/2021]

62

https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1

<experiment_settings color="Red_Blue" training_set_size="20" trial_repetitions="3">
<frame size="16" size_unit="Degree" reference_dimension="Height">

<stimuli size="2" size_unit="Degree" reference_dimension="Height" sort_type="Random">
<positions distance_unit="Degree">

<position horizontal_distance="1" vertical_distance="0" label="fovea"/>
<position horizontal_distance="6" vertical_distance="0" label="periphery"/>

</positions>
</stimuli>
<masks cfs_step="100" size="15" size_unit="Degree" reference_dimension="Height"/>

</frame>
<duration raise_stimulus="1100" lower_mask="4000" stimulus_exposed="3000"/>
<experiment_data_folders>

<experiment_folder>Experiment Stimuli</experiment_folder>
<training_folder>Training Stimuli</training_folder>
<mask_folder>Masks</mask_folder>

</experiment_data_folders>
</experiment_settings>

Listing B.6: Example of the experiment settings parameter for this work’s experiment.

The "experiment_settings" element nests all the other elements that compose this param-
eter. This element contains attributes that define some of the experiment procedure, such as
the color setting to display the stimuli, training set size and the number of trial repetitions
for the experiment. The "color" attribute contains a value that dictates the color filtering
used in the experiments. The values implemented can be seen in table B.3. The Natural color
setting is the default value when the "color" attribute is not specified. This value instructs the
application to present the frame stimuli’s true colors (stimuli and mask) to the participant
without applying color filtering. When the Red_Blue value is specified, the application filters
the stimulus and mask colors to the Blue and Red RGB colors, respectively. This setting is
required to separate the images to each eye when using the Red-Blue anaglyph glasses for the
desktop experiment.

Color Value Description
Natural

(DV)
Presents the experiment’s frame stimuli with the image’s natural color.

Red_Blue Presents the stimuli and masks filtered to the Red and Blue RGB channels,
respectively.

Table B.3: Experiment’s color filtering values implemented in the software system. Each value
instructs the application to present the experiment’s frame stimuli with distinct color
filtering. The default color value (DV) is "Natural" if it is not defined.

The number of trials for the training phase is specified in the "training_set_size" attribute.
This value is required to be defined to perform the training phase with any trial. If, by
mistake, the training set size is defined to be larger than the possible amount of trials (not
counting trial repetitions), the value defaults to that amount. The number of trial repetitions
is defined in the "trial_repetitions" attribute, which defaults to 1 in case of no definition.

The "frame" element nests the elements that form the objects of the experiment frame.
Each frame object can be resized through the "size" attribute, i.e., the noise border, stimuli,

63

and masks. This attribute should be followed by the "size_unit" and "reference_dimension"
attributes, which will instruct how to interpret the "size" value to translate to its display
pixel representation. Table B.4 shows the possible "size_unit" values the application system
recognizes to interpret "size". The default value for the size unit is Degree, as it is the most
common size measurement used for psychological experiments.

Size/Distance
Unit Value Description

Degree
(DV)

The system interprets the "size"/"distance" value as degrees of visual
angle and translates it to its display pixel representation.

Radian The system interprets the "size"/"distance" value as radians of visual
angle and translates it to its display pixel representation.

Pixel The system directly uses the "size"/"distance" value as the amount for
its display pixel representation.

Table B.4: Size/distance unit values implemented in the software system. Each value instructs
the system to interpret the "size"/"distance" attribute value accordingly. The default
size/distance unit value (DV) is Degree if it is not specified.

The "reference_dimension" instructs the system to resize an image on the indicated
dimension. As stated in section 4.2.4, the images can become deformed if resized on both
dimensions due to not equaling the image’s aspect ratio. The implemented values can be seen
in table B.5. This value defaults to Height if it is not specified. As seen in listing B.6, stimuli
are resized to have the display pixel representation of 2◦ of visual field height.

Reference
Dimension Value Description

Height (DV) The system scales the object according to its height.
Width The system scales the object according to its width.

Table B.5: Reference dimension values implemented in the software system. Each value instructs the
software system to scale the object according to its height or width to avoid deformation.
The default reference dimension value (DV) is Height if it is not defined.

The "stimuli" element contains a "sort_type" attribute that instructs the software system to
organize the stimuli order accordingly for trial presentation. The sort type values implemented
can be seen in table B.6. The sort type value defaults to Random if it is not set. The "stimuli"
element contains a "positions" element that nests multiple "position" elements. These elements
contain the information of each position the stimuli should be presented during the experiment.
The "positions" element includes a "distance_unit" attribute, similar to "size_unit", which
holds the unit type (see table B.4) to interpret the included positions. Each "position" has
"horizontal_distance" and "vertical_distance" attributes to define its distance to the center of
the frame. Additionally, these elements contain a "label" attribute to identify each position
(these labels are not required in the bCFS_F_P experimental paradigm, as the system can
identify the positions).

The "masks" element contains an additional "cfs_step" element to set the time between
interchanging the Mondrian mask image to produce the CFS effect. This value is interpreted

64

as milliseconds by the system. As shown in the listing B.6 example, it is set to 100 milliseconds,
which is the time stipulated to create the CFS effect, discussed in section 3.2.

Sort Type
Value Description

Random (DV) Produces a random order for stimuli trial presentation.
Ascending Sorts stimuli alphanumerically ascending using their identification name.
Descending Sorts stimuli alphanumerically descending using their identification name.

None Stimuli are presented in the order they are loaded into the system.

Table B.6: Sort type values implemented in the software system. Each value instructs the system to
organize the stimuli accordingly for the experiment trials. The default sort type value
(DV) is Random if it is not set.

The "duration" element comprises the time duration for each phase of the trial. It contains
attributes representing each trial phase, performing a specific action with that duration
in coordination with the experimental paradigm. Each attribute value is interpreted in
milliseconds by the system and is specific to the bCFS paradigm. The "raise_stimulus"
attribute represents the duration to perform the stimulus’s fading to make it visible. The
"lower_mask" attribute indicates the duration to lower the intensity of CFS, while the
"stimulus_exposed" attribute retains the amount of time until the trial ends, where the
stimulus is exposed.

The objects presented during the experiment, i.e., stimuli and Mondrian mask images,
come from external locations (folders) of the computer, where the system will load every
image comprised in them. Using this approach allows full control to the examiner to add or
change stimuli without needing further assistance. These locations are specified in a set of
elements nested inside "experiment_data_folders". The "experiment_folder" sets the path
where the stimuli images intended to be used for the experiment are located. Similarly, the
"training_folder" sets the folder path to the stimuli images to be used for the training phase.
The "mask_folder" contains the folder path for the pre-rendered Mondrian pattern images
to be used to create the CFS effect. The folder path can be defined as an absolute path to
the location or relative path. When using a relative path, the software system will search
for it under StreamingAssets/ExperimentData, a generated folder under the application data
directory (see listing B.7 for an example).

<!-- Absolute path method -->
<experiment_folder>C:\Users\[USERNAME]\Pictures\Experiment Stimuli</experiment_folder>
<training_folder>C:\Users\[USERNAME]\Pictures\Training Stimuli</training_folder>

<!-- Relative path method -->
<mask_folder>Masks</mask_folder>
<!-- Generated Path:

[APPLICATION PATH]\[APP NAME]_Data\StreamingAssets\ExperimentData\Masks -->

Listing B.7: Example of the absolute path and relative path usage to indicate the experiment data
folder paths. The system searches for the indicated relative path under StreamingAs-
sets/ExperimentData in the application data directory.

65

Pre-Task Pages

The pre-task pages parameter allows the system to set a customized text for the descriptive
pages that appear before the experiment. The "pre_task_pages" element nests a set of "page"
elements, each containing "name" attribute and nesting a "title" and "description" element.
The "name" attribute instructs the system on which specific page the "title" and "description"
texts should appear. Table B.7 shows a description of all the values that identify the pages.
Listing B.8 shows the example used for section 4.4 to display the descriptive pages.

Page Name Value Description
Introduction Text is displayed in the first page that introduces to the task.

Participant_Information Text is displayed in the participant information area.
Pre_Calibration Text is displayed in the page before the calibration phase.
Pre_Training Text is displayed in the page before the training phase.

Pre_Experiment Text is displayed in the page before the experiment.
Experiment_End Text is displayed in the page at the end of the experiment.

Table B.7: Page name values implemented in the software system to instruct in which page to insert
the customized title and description text.

<pre_task_pages>
<page name="Introduction">[...]</page>
<page name="Participant_Information">

<title>Information data area</title>
<description>

Please enter the information requested.
This information is relevant for the experiment and analysis.

</description>
</page>
<page name="Pre_Calibration">

<title>Image Calibration</title>
<description>

The next task intends to calibrate the position of the scene images.
The system will present an image to each eye consisting of a fixation cross and a noise border.
Each image should be aligned with each eye.

Use the arrow keys or the controller's trackpad to move the images.
To move a single image, press the left/right control (CTRL) key, or the left/right trigger buttons,
accordingly, while moving the images.

</description>
</page>
<page name="Pre_Training">[...]</page>
<page name="Pre_Experiment">[...]</page>
<page name="Experiment_End">[...]</page>

</pre_task_pages>

Listing B.8: Example of the pre-task pages parameter used for section 4.4 to display the descriptive
pages. Some "page" elements are shown to have their content omitted for the sake of
brevity, as it was established a pattern of their usage.

66

B.2 Configuration File Compatibility Discussion

The configuration parameter structure was designed to be compatible with similar nature
experiments, using images as stimuli and presenting them in a frame that performs CFS.
However, the performance and result of experiments are dependent on the implementations of
Experiment Managers (see section 4.1.3 for a reference), which are directly tied to the defined
"experimental_paradigm" value.

For example, for this work’s experiment, a specific "Fovea Periphery" Experiment Manager
was created to control the experiment according to the established experimental paradigm.
This Experiment Manager will be used when specifying the bCFS_F_P experimental paradigm
value. There are two generic Experiment Managers variants to add support for other paradigms:
a "Simple" (bCFS_Simple) and a "Sides" (bCFS_Sides) Experiment Manager. The "Simple"
variant controls the experiment, similar to the "Fovea Periphery" implementation. However,
it does not have any specificity, registering only reaction times for the results. The "Sides"
variant has the same behaviour; however, it registers the reaction times and the side the user
guessed the stimulus to be, similar to the "Fovea Periphery" experiments.

The "Fovea Periphery" Experiment Manager includes specific processes to generate the
experiment set. It only requires two positions, the fovea and periphery, generating the left and
right positions for each. It also contains other processes for the evaluation and registration of
results. Conversely, the generic variants process the positions that are configured without any
specific processing. To this end, if the experiment requires handling special operations that
the generic Experiment Managers do not cover, it would be necessary to implement a specific
variant of it.

In case an experiment requires a different structure of the configuration file, that support
can be achieved by implementing the configuration data structure that allows the configuration
file’s deserialization to an object for the system to access. The configuration data object
can be instantiated by implementing a method that identifies the "experimental_paradigm"
value and returns the correct configuration data object. However, in the current software
application version, that support is not implemented, as it was not required.

B.3 Future Improvements

The configuration file could have some improvements made. The "duration" element
could have a similar structure to the "positions" element, where "duration" elements would be
nested to represent actions and their period. Implementing this methodology would add more
complexity, as it requires linking each "duration" to a specific action. Limiting the number of
durations each experimental paradigm supports and organizing them with an "order" attribute
could prove to be a solution for this issue. For instance, in this work’s experimental paradigm,
the trials have three phases, each with a given duration amount. If more or less than three
durations were instantiated in the configuration, the system would prompt an error, referring
to this issue. Linking a duration to each trial phase’s action could be accomplished by the

67

organized "duration" set, as the first "duration" of the set would be linked to the first action,
and so on.

Other "quality of life" improvements could be provided. The "base folder" method could
be implemented for the paths nested inside "experiment_data_folders". This approach
would bring the same advantages as the "base folder" method, as stated previously. The
data parameter could include an option that instructs the system to automatically join
a subfolder to the results save path corresponding to the experimental paradigm. For
instance, for this work’s "bCFS Fovea Periphery" experimental paradigm, a subfolder named
"BreakingCfsFoveaPeriphery" would be joined to the save path. This option would automatize
the process of explicitly instantiating the save path for each experimental paradigm if that
folder organization was required. Another improvement could come from creating an in-app
editor to manage the configuration file. This way, the examiner could edit the file without
searching for it in the application data directory and facilitating its manipulation through an
intuitive interface design.

68

APPENDIX C
Application Usage Notes

This appendix presents the defined keyboard keys and HTC Vive controller buttons to
interact with the software platform. Its purpose is to complement section 4.4, where it was
discussed the application usage, with the action that each input performs to control the
experiment or for the participant inputs. It will also mention the system requirements to use
the application and discuss some improvements that can be made.

C.1 Application Input Mapping

The software platform supports inputs from both the keyboard and the Vive controllers to
perform specific actions according to the application phase. The inputs will be necessary for
the calibration, training, and experiment phase. A Vive controller button diagram is shown in
figure C.1. This section will indicate each input supported and explain the action it performs.

Figure C.1: Vive controller input diagram. Image retrieved from here1.

69

https://www.vive.com/us/support/vive/category_howto/about-the-controllers.html

Calibration Inputs

The calibration phase aims to adjust the experiment frame’s position to align with the
participant’s eyes. For the binocular experiments, i.e., desktop with mirrors and VR, there
are two frames, one for each eye, that need to be controlled. The desktop experiment using
anaglyph glasses contains only a single frame.

The single experiment frame’s calibration phase supports four actions: frame repositioning,
frame repositioning speed control, reset position, and confirm positioning. Repositioning the
frame is done by pressing the left/right/up/down inputs to move the frame accordingly. The
keys supported to reposition the frame are the WASD or Arrow keys. The Vive controller
buttons for this action are the Up, Down, Left, and Right buttons of the Trackpad. The
reposition control input can be held to restricts the movement speed, providing more precision,
achieved by holding the Left/Right CTRL keys or the grip button using the Vive controllers.
Pressing the R key or the Menu button resets the frame’s position to the initial one, while
pressing the Enter key confirms the frame’s calibrated position, finishing the calibration phase.
Table C.1 shows the list of inputs and their action for the single frame calibration phase.

Input
Keyboard Vive controller Action Description

W or
Up Arrow

Trackpad
Up

Hold to move the frame towards the top.

A or
Left Arrow

Trackpad
Left

Hold to move the frame to the left.

S or
Down Arrow

Trackpad Down Hold to move the frame towards the bottom.

D or
Right Arrow

Trackpad Right Hold to move the frame to the right.

Left or Right
CTRL

Grip
button

Hold to restrict the frame’s movement speed when
moving.

R Menu
button

Click to reset the frame to the initial position.

Enter None Click to confirm the frame’s calibrated position and
finalize the calibration phase.

Table C.1: Input action mapping for the single frame calibration phase (desktop platform using
anaglyph glasses).

The calibration phase for the binocular (dual) experiment frames, i.e., VR and desktop with
mirror platforms, has a more advanced input mapping to accommodate a better calibration
control to both experiment frames. This input mapping shares the same reset, confirm,
and frame repositioning speed control actions previously discussed for the single frame
calibration. However, the repositioning input controls follow a different logic. Since there
are two experiment frames to be repositioned, the frame movement inputs move the frames
symmetrically. If a frame moves up or down, the other follows. If moving left or right, the

1https://www.vive.com/us/support/vive/category_howto/about-the-controllers.html
[last accessed: 02/03/2021]

70

https://www.vive.com/us/support/vive/category_howto/about-the-controllers.html

other frame moves the opposite way. The WASD keys, or the left Vive controller’s Trackpad
buttons (Up, Down, Left, and Right), move both frames using the left one as the reference
to manage which frame commands the movement. Similarly, the Arrow keys, or the right
controller’s Trackpad buttons, move both frames using the right one as the reference.

Additionally, it was added an input that selects a single frame to move solely. Holding
the Left Shift key or the left controller’s Trigger will select the left frame to move exclusively.
Similarly, holding the Right Shift key or the right controller’s Trigger will select the right
frame to move. While selecting a single frame to move, pressing any of the movement inputs
will move that frame. Table C.2 shows the list of inputs and their action for the dual-frame
calibration phase.

Input
Keyboard Vive controller Action Description

W or
Up Arrow

(Any)
Trackpad Up

Hold to move both frames, or the selected frame,
towards the top.

S or
Down Arrow

(Any)
Trackpad Down

Hold to move both frames, or the selected frame,
towards the bottom.

A (Left)
Trackpad Left

Hold to move both frames symmetrically to the left
frame’s left or the selected frame to the left.

D (Left)
Trackpad Right

Hold to move both frames symmetrically to the left
frame’s right or the selected frame to the right.

Left Arrow (Right)
Trackpad Left

Hold to move both frames symmetrically to the right
frame’s left or the selected frame to the left.

Right Arrow (Right)
Trackpad Right

Hold to move both frames symmetrically to the right
frame’s right or the selected frame to the right.

Left or Right
CTRL

(Any)
Grip button

Hold to restrict the frames’ movement speed when
moving.

Left
Shift

(Left)
Trigger

Hold to select the left frame to move exclusively.

Right
Shift

(Right)
Trigger

Hold to select the right frame to move exclusively.

R (Any)
Menu button

Click to reset the frames to the initial position.

Enter None Click to confirm the frame’s calibrated position and
finalize the calibration phase.

Table C.2: Input action mapping for the dual-frame calibration phase (VR and desktop using mirror
apparatus platforms). The Vive controller that performs a specific action is specified in
parenthesis.

Experiment Inputs

The Experiment (and training) phase performs the experiment trials, where the participant
will react to stimuli according to the experimental paradigm. There are two types of input
action sets defined for this phase: inputs to control the experiment and inputs to react to
the trials. All of the display platforms share the same inputs. However, the reaction inputs

71

vary according to the experimental paradigm. The experiment control input actions are not
influenced by this factor and remain the same.

The defined reaction inputs support the experiment trials for the implemented experimental
paradigms, i.e., "Fovea Periphery", "Simple", and "Sides" (see "Experimental Paradigm" in
section B.1 for a reference). The "Fovea Periphery" and "Sides" experimental paradigms
register which side of the frame the participant detected the stimulus. The detection of the
stimulus to the left side of the frame is registered by pressing the A key or the left Vive
controller Trackpad buttons or Trigger. Pressing the L key or the right controller Trackpad
buttons or Trigger registers a participant detection of the stimulus to the frame’s right side.
The "Simple" experimental paradigm only registers a reaction to the stimulus, regardless of its
position. Pressing the Spacebar key or the Trackpad buttons or Trigger of any Vive controller
registers the participant’s detection of the stimulus.

The experiment control inputs are organized into three distinct actions: start/pause
the experiment trial execution, reset experiment trial execution, and retry the save process.
Pressing the Enter key or the Menu button of any Vive controller starts or pauses the
experiment’s execution. At the beginning of the experiment trials, the participant presses this
button to start the experiment at will. If needed, pressing the same input during the trials
halts the experiment execution, while pressing it again resumes the experiment. If some event
disturbs the experiment execution, a reset to the beginning of the experiment execution can
be performed by pressing the R key. At the end of the experiment, if the experiment results’
save process was disrupted because, for instance, the save file’s access is locked by another
program, the save process can be retried by pressing the B key. Table C.3 shows the list of
inputs and their action for the experiment (and training) phase.

Input
Keyboard Vive controller Action Description

A (Left) Trackpad
or Trigger

Click to register the detection of the stimulus on the
frame’s left side.

L (Right) Trackpad
or Trigger

Click to register the detection of the stimulus on the
frame’s right side.

Spacebar (Any) Trackpad
or Trigger

Click to register the detection of the stimulus
("Simple" experimental paradigm only).

Enter (Any)
Menu button

Click to start/pause the experiment execution.

R None Click to reset the experiment execution to the
beginning.

B None Click to retry the save process of the experiment
results.

Table C.3: Input action mapping for the Experiment (and training) phase. The Vive controller that
performs a specific action is specified in parenthesis.

As a side note, it is possible to exit the application at any phase. Pressing the Escape key
will display a window that prompts a confirmation to exit the application. This option was
implemented if the application needed to be restarted for any reason, e.g., the configuration

72

file specified the wrong platform for that experiment session.

C.2 System Requirements

The software application is not very resource-intensive, and any modern system should be
able to run it. However, to use the HTC Vive VR system, the computer system should equip
the recommended specs2 for better compatibility. Additionally, the software platform requires
SteamVR to be installed in the system.

The computer should include a QWERTY keyboard that includes the Arrow keys to use
the implemented calibration phase keyboard inputs to the full extent.

C.3 Future Improvements

The software platform could have some improvements made, which were not required for
this version, to improve its usage quality. The application would benefit from an input mapping
system that allows changing keys or buttons instead of using a fixed input mapping. This
system could be implemented through an in-app menu or via a button mapping configuration
file. This solution could prove useful for different scenarios, such as if a different button
mapping was required for a particular experiment or a physically impaired participant.

The Vive controllers lack buttons to implement all input actions. While some were
purposefully implemented only for the keyboard (reset experiment execution and retry the
save process), the controllers lack an input method to confirm the frame position in the
calibration phase. This input could be implemented, for example, by creating a method that
detects the same inputs, e.g., Grip buttons, in both controllers being held at the same time
for a few seconds. This way, the whole calibration process could be controlled using the Vive
controllers.

Other "quality of life" usage improvements could be implemented, such as an input method
from the keyboard or Vive controllers to advance from the descriptive pages to the next,
essentially "clicking" the displayed "Next" button without the computer mouse. Another
input method could be added, which displays a "Help" page visually explaining all the inputs
available for that phase of the application.

2HTC Vive’s recommended computer specifications (https://www.vive.com/eu/ready/)
[last accessed: 02/03/2021].

73

https://www.vive.com/eu/ready/
https://www.vive.com/eu/ready/

References

[1] L. A. Isbell, “Snakes as agents of evolutionary change in primate brains”, Journal of Human Evolution,
vol. 51, no. 1, pp. 1–35, 2006. doi: 10.1016/j.jhevol.2005.12.012.

[2] C. Darwin, The expression of the emotions in man and animals. John Murray, 1872. doi: 10.1037/10001-
000.

[3] I. Almeida, S. C. Soares, and M. Castelo-Branco, “The distinct role of the amygdala, superior colliculus
and pulvinar in processing of central and peripheral snakes”, PLoS ONE, vol. 10, no. 6, e0129949, 2015.
doi: 10.1371/journal.pone.0129949.

[4] Q. Van Le, L. A. Isbell, J. Matsumoto, V. Q. Le, E. Hori, A. H. Tran, R. S. Maior, C. Tomaz, T. Ono,
and H. Nishijo, “Monkey pulvinar neurons fire differentially to snake postures”, PLoS ONE, vol. 9,
no. 12, N. P. Holmes, Ed., e114258, 2014. doi: 10.1371/journal.pone.0114258.

[5] R. S. Maior, E. Hori, M. Barros, D. S. Teixeira, M. C. H. Tavares, T. Ono, H. Nishijo, and C. Tomaz,
“Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys”, Neuroscience
Letters, vol. 504, no. 3, pp. 257–260, 2011. doi: 10.1016/j.neulet.2011.09.042.

[6] N. Tsuchiya and C. Koch, “Continuous flash suppression reduces negative afterimages”, Nature Neuro-
science, vol. 8, no. 8, pp. 1096–1101, 2005. doi: 10.1038/nn1500.

[7] Y. Jiang, P. Costello, and S. He, “Processing of invisible stimuli: Advantage of upright faces and
recognizable words in overcoming interocular suppression”, Psychological Science, vol. 18, no. 4, pp. 349–
355, 2007. doi: 10.1111/j.1467-9280.2007.01902.x.

[8] N. Gomes, S. Silva, C. F. Silva, and S. C. Soares, “Beware the serpent: the advantage of ecologically-
relevant stimuli in accessing visual awareness”, Evolution and Human Behavior, vol. 38, no. 2, pp. 227–
234, 2017. doi: 10.1016/j.evolhumbehav.2016.10.004.

[9] N. Gomes, S. C. Soares, S. Silva, and C. F. Silva, “Mind the snake: Fear detection relies on low spatial
frequencies.”, Emotion, vol. 18, no. 6, pp. 886–895, 2018. doi: 10.1037/emo0000391.

[10] T. Stein, K. Seymour, M. N. Hebart, and P. Sterzer, “Rapid Fear Detection Relies on High Spatial
Frequencies”, Psychological Science, vol. 25, no. 2, pp. 566–574, 2014. doi: 10.1177/0956797613512509.

[11] R. M. Foerster, C. H. Poth, C. Behler, M. Botsch, and W. X. Schneider, “Using the virtual reality device
Oculus Rift for neuropsychological assessment of visual processing capabilities”, Scientific Reports, vol. 6,
no. 1, p. 37 016, 2016. doi: 10.1038/srep37016.

[12] ——, “Neuropsychological assessment of visual selective attention and processing capacity with head-
mounted displays”, Neuropsychology, vol. 33, no. 3, pp. 309–318, 2019. doi: 10.1037/neu0000517.

[13] U. Korisky, R. Hirschhorn, and L. Mudrik, “"Real-life" continuous flash suppression (CFS)-CFS with
real-world objects using augmented reality goggles”, Behavior Research Methods, pp. 1–13, 2018. doi:
10.3758/s13428-018-1162-0.

[14] I. E. Sutherland, “A head-mounted three dimensional display”, in Proceedings of the December 9-11,
1968, fall joint computer conference, part I on - AFIPS ’68 (Fall, part I), vol. 33, ACM Press, 1968,
pp. 757–764. doi: 10.1145/1476589.1476686.

[15] T. Nakamoto, T. Hirasawa, and Y. Hanyu, “Virtual environment with smell using wearable olfactory
display and computational fluid dynamics simulation”, Institute of Electrical and Electronics Engineers
(IEEE), 2020, pp. 713–720. doi: 10.1109/vr46266.2020.00094.

75

https://doi.org/10.1016/j.jhevol.2005.12.012
https://doi.org/10.1037/10001-000
https://doi.org/10.1037/10001-000
https://doi.org/10.1371/journal.pone.0129949
https://doi.org/10.1371/journal.pone.0114258
https://doi.org/10.1016/j.neulet.2011.09.042
https://doi.org/10.1038/nn1500
https://doi.org/10.1111/j.1467-9280.2007.01902.x
https://doi.org/10.1016/j.evolhumbehav.2016.10.004
https://doi.org/10.1037/emo0000391
https://doi.org/10.1177/0956797613512509
https://doi.org/10.1038/srep37016
https://doi.org/10.1037/neu0000517
https://doi.org/10.3758/s13428-018-1162-0
https://doi.org/10.1145/1476589.1476686
https://doi.org/10.1109/vr46266.2020.00094

[16] I. P. Tussyadiah, D. Wang, T. H. Jung, and M. C. tom Dieck, “Virtual reality, presence, and attitude
change: Empirical evidence from tourism”, Tourism Management, vol. 66, pp. 140–154, 2018. doi:
10.1016/j.tourman.2017.12.003.

[17] R. M. Clifford, S. Jung, S. Hoerrnann, M. Billinqhurst, and R. W. Lindeman, “Creating a stressful
decision making environment for aerial firefighter training in virtual reality”, in 26th IEEE Conference
on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings, Institute of Electrical and Electronics
Engineers Inc., 2019, pp. 181–189. doi: 10.1109/VR.2019.8797889.

[18] S. Pedram, S. Palmisano, P. Perez, R. Mursic, and M. Farrelly, “Examining the potential of virtual
reality to deliver remote rehabilitation”, Computers in Human Behavior, vol. 105, p. 106 223, 2020. doi:
10.1016/j.chb.2019.106223.

[19] J. Nguyen, C. Smith, Z. Magoz, and J. Sears, “Screen door effect reduction using mechanical shifting
for virtual reality displays”, in Optical Architectures for Displays and Sensing in Augmented, Virtual,
and Mixed Reality (AR, VR, MR), B. C. Kress and C. Peroz, Eds., vol. 11310, SPIE, 2020, p. 22. doi:
10.1117/12.2544479.

[20] C. Hoffman, “What Is the “Screen Door Effect” in VR?”, How-To Geek, Feb. 2019, [Online; accessed
27. Oct. 2020]. [Online]. Available: https://www.howtogeek.com/404491/what-is-the-screen-door-
effect-in-vr.

[21] R. Beams, A. S. Kim, and A. Badano, “Transverse chromatic aberration in virtual reality head-mounted
displays”, Optics Express, vol. 27, no. 18, p. 24 877, 2019. doi: 10.1364/oe.27.024877.

[22] K. M. Stanney, R. S. Kennedy, and J. M. Drexler, “Cybersickness is not simulator sickness”, in
Proceedings of the Human Factors and Ergonomics Society, vol. 2, Human Factors and Ergonomics
Society, Inc., 1997, pp. 1138–1141. doi: 10.1177/107118139704100292.

[23] Y. Farmani and R. J. Teather, “Evaluating discrete viewpoint control to reduce cybersickness in virtual
reality”, Virtual Reality, vol. 24, no. 4, pp. 645–664, 2020. doi: 10.1007/s10055-020-00425-x.

[24] S. Thompson, “Motion Sickness in VR: Why it happens and how to minimise it”, VirtualSpeech, Apr.
2020, [Online; accessed 27. Oct. 2020]. [Online]. Available: https://virtualspeech.com/blog/motion-
sickness-vr.

[25] Unity Technologies, Unity, [Online; accessed 2. Sep. 2020], 2020. [Online]. Available: https://unity.com.

[26] ——, Scripting in Unity for experienced C# & C++ programmers | Unity, [Online; accessed 2. Sep.
2020], 2020. [Online]. Available: https://unity.com/how-to/programming-unity#if-you-have-c-
background.

[27] ——, Multiplatform | Unity, [Online; accessed 2. Sep. 2020], 2020. [Online]. Available: https://unity.
com/features/multiplatform.

[28] ——, Unity - Getting started with VR development in Unity, [Online; accessed 2. Sep. 2020], 2020.
[Online]. Available: https://docs.unity3d.com/Manual/VROverview.html.

[29] Valve Corporation, SteamVR (Steamworks Documentation), [Online; accessed 3. Sep. 2020], 2020.
[Online]. Available: https://partner.steamgames.com/doc/features/steamvr/info.

[30] SteamVR - Valve Developer Community, [Online; accessed 3. Sep. 2020], 2020. [Online]. Available:
https://developer.valvesoftware.com/wiki/SteamVR.

[31] D. Takahashi, “Valve launches OpenVR dev kit for virtual reality hardware makers”, VentureBeat, Dec.
2019, [Online; accessed 3. Sep. 2020]. [Online]. Available: https://venturebeat.com/2015/04/30/valve-
launches-openvr-dev-kit-for-virtaul-reality-hardware-makers.

[32] Valve Corporation, SteamVR Unity Plugin, [Online; accessed 3. Sep. 2020], 2020. [Online]. Available:
https://valvesoftware.github.io/steamvr_unity_plugin.

[33] E. Carl, A. T. Stein, A. Levihn-Coon, J. R. Pogue, B. Rothbaum, P. Emmelkamp, G. J. Asmundson,
P. Carlbring, and M. B. Powers, “Virtual reality exposure therapy for anxiety and related disorders: A
meta-analysis of randomized controlled trials”, Journal of Anxiety Disorders, vol. 61, pp. 27–36, 2019.
doi: 10.1016/j.janxdis.2018.08.003.

76

https://doi.org/10.1016/j.tourman.2017.12.003
https://doi.org/10.1109/VR.2019.8797889
https://doi.org/10.1016/j.chb.2019.106223
https://doi.org/10.1117/12.2544479
https://www.howtogeek.com/404491/what-is-the-screen-door-effect-in-vr
https://www.howtogeek.com/404491/what-is-the-screen-door-effect-in-vr
https://doi.org/10.1364/oe.27.024877
https://doi.org/10.1177/107118139704100292
https://doi.org/10.1007/s10055-020-00425-x
https://virtualspeech.com/blog/motion-sickness-vr
https://virtualspeech.com/blog/motion-sickness-vr
https://unity.com
https://unity.com/how-to/programming-unity#if-you-have-c-background
https://unity.com/how-to/programming-unity#if-you-have-c-background
https://unity.com/features/multiplatform
https://unity.com/features/multiplatform
https://docs.unity3d.com/Manual/VROverview.html
https://partner.steamgames.com/doc/features/steamvr/info
https://developer.valvesoftware.com/wiki/SteamVR
https://venturebeat.com/2015/04/30/valve-launches-openvr-dev-kit-for-virtaul-reality-hardware-makers
https://venturebeat.com/2015/04/30/valve-launches-openvr-dev-kit-for-virtaul-reality-hardware-makers
https://valvesoftware.github.io/steamvr_unity_plugin
https://doi.org/10.1016/j.janxdis.2018.08.003

[34] C. Botella, J. Fernández-Álvarez, V. Guillén, A. García-Palacios, and R. Baños, “Recent Progress in
Virtual Reality Exposure Therapy for Phobias: A Systematic Review”, Current Psychiatry Reports,
vol. 19, no. 7, pp. 1–13, 2017. doi: 10.1007/s11920-017-0788-4.

[35] A. Garcia-Palacios, C. Botella, H. Hoffman, and S. Fabregat, “Comparing acceptance and refusal rates
of virtual reality exposure vs. in vivo exposure by patients with specific phobias”, Cyberpsychology and
Behavior, vol. 10, no. 5, pp. 722–724, 2007. doi: 10.1089/cpb.2007.9962.

[36] S. Bouchard, S. Dumoulin, G. Robillard, T. Guitard, E. Klinger, H. Forget, C. Loranger, and F. X.
Roucaut, “Virtual reality compared with in vivo exposure in the treatment of social anxiety disorder: A
three-arm randomised controlled trial”, British Journal of Psychiatry, vol. 210, no. 4, pp. 276–283, 2017.
doi: 10.1192/bjp.bp.116.184234.

[37] D. Freeman, P. Haselton, J. Freeman, B. Spanlang, S. Kishore, E. Albery, M. Denne, P. Brown, M.
Slater, and A. Nickless, “Automated psychological therapy using immersive virtual reality for treatment
of fear of heights: a single-blind, parallel-group, randomised controlled trial”, The Lancet Psychiatry,
vol. 5, no. 8, pp. 625–632, 2018. doi: 10.1016/S2215-0366(18)30226-8.

[38] A. Miloff, P. Lindner, P. Dafgård, S. Deak, M. Garke, W. Hamilton, J. Heinsoo, G. Kristoffersson,
J. Rafi, K. Sindemark, J. Sjölund, M. Zenger, L. Reuterskiöld, G. Andersson, and P. Carlbring,
“Automated virtual reality exposure therapy for spider phobia vs. in-vivo one-session treatment: A
randomized non-inferiority trial”, Behaviour Research and Therapy, vol. 118, pp. 130–140, 2019. doi:
10.1016/j.brat.2019.04.004.

[39] C. Suso-Ribera, J. Fernández-Álvarez, A. García-Palacios, H. G. Hoffman, J. Bretón-López, R. M. Baños,
S. Quero, and C. Botella, “Virtual Reality, Augmented Reality, and in Vivo Exposure Therapy: A
Preliminary Comparison of Treatment Efficacy in Small Animal Phobia”, Cyberpsychology, Behavior,
and Social Networking, vol. 22, no. 1, pp. 31–38, 2019. doi: 10.1089/cyber.2017.0672.

[40] K. R. Gujjar, A. van Wijk, R. Kumar, and A. de Jongh, “Efficacy of virtual reality exposure therapy for
the treatment of dental phobia in adults: A randomized controlled trial”, Journal of Anxiety Disorders,
vol. 62, pp. 100–108, 2019. doi: 10.1016/j.janxdis.2018.12.001.

[41] J. L. Maples-Keller, C. Yasinski, N. Manjin, and B. O. Rothbaum, “Virtual Reality-Enhanced Extinction
of Phobias and Post-Traumatic Stress”, Neurotherapeutics, vol. 14, no. 3, pp. 554–563, 2017. doi:
10.1007/s13311-017-0534-y.

[42] T. Broady, A. Chan, and P. Caputi, “Comparison of older and younger adults’ attitudes towards
and abilities with computers: Implications for training and learning”, British Journal of Educational
Technology, vol. 41, no. 3, pp. 473–485, 2010. doi: 10.1111/j.1467-8535.2008.00914.x.

[43] N. Hauk, J. Hüffmeier, and S. Krumm, “Ready to be a Silver Surfer? A Meta-analysis on the Relationship
Between Chronological Age and Technology Acceptance”, Computers in Human Behavior, vol. 84,
pp. 304–319, 2018. doi: 10.1016/j.chb.2018.01.020.

[44] H. Huygelier, B. Schraepen, R. van Ee, V. Vanden Abeele, and C. R. Gillebert, “Acceptance of
immersive head-mounted virtual reality in older adults”, Scientific Reports, vol. 9, no. 1, p. 4519, 2019.
doi: 10.1038/s41598-019-41200-6.

[45] L. Appel, E. Appel, O. Bogler, M. Wiseman, L. Cohen, N. Ein, H. B. Abrams, and J. L. Campos,
“Older Adults With Cognitive and/or Physical Impairments Can Benefit From Immersive Virtual Reality
Experiences: A Feasibility Study”, Frontiers in Medicine, vol. 6, p. 329, 2020. doi: 10.3389/fmed.2019.
00329.

[46] P. Kourtesis, S. Collina, L. A. Doumas, and S. E. MacPherson, “Technological Competence Is a Pre-
condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience:
A Technological Review and Meta-Analysis”, Frontiers in Human Neuroscience, vol. 13, p. 342, 2019.
doi: 10.3389/fnhum.2019.00342.

[47] J. C. M. Figueroa, R. A. B. Arellano, and J. M. E. Calinisan, “A comparative study of virtual reality and
2D display methods in visual search in real scenes”, in Advances in Intelligent Systems and Computing,
vol. 591, Springer Verlag, 2018, pp. 366–377. doi: 10.1007/978-3-319-60591-3_33.

[48] B. Olk, A. Dinu, D. J. Zielinski, and R. Kopper, “Measuring visual search and distraction in immersive
virtual reality”, Royal Society Open Science, vol. 5, no. 5, p. 172 331, 2018. doi: 10.1098/rsos.172331.

77

https://doi.org/10.1007/s11920-017-0788-4
https://doi.org/10.1089/cpb.2007.9962
https://doi.org/10.1192/bjp.bp.116.184234
https://doi.org/10.1016/S2215-0366(18)30226-8
https://doi.org/10.1016/j.brat.2019.04.004
https://doi.org/10.1089/cyber.2017.0672
https://doi.org/10.1016/j.janxdis.2018.12.001
https://doi.org/10.1007/s13311-017-0534-y
https://doi.org/10.1111/j.1467-8535.2008.00914.x
https://doi.org/10.1016/j.chb.2018.01.020
https://doi.org/10.1038/s41598-019-41200-6
https://doi.org/10.3389/fmed.2019.00329
https://doi.org/10.3389/fmed.2019.00329
https://doi.org/10.3389/fnhum.2019.00342
https://doi.org/10.1007/978-3-319-60591-3_33
https://doi.org/10.1098/rsos.172331

[49] J. Brookes, M. Warburton, M. Alghadier, M. Mon-Williams, and F. Mushtaq, “Studying human behavior
with virtual reality: The Unity Experiment Framework”, Behavior Research Methods, pp. 1–9, 2019.
doi: 10.3758/s13428-019-01242-0.

[50] S. C. Soares, B. Lindström, F. Esteves, and A. Öhman, “The hidden snake in the grass: Superior
detection of snakes in challenging attentional conditions”, PLoS ONE, vol. 9, no. 12, H. Nishijo, Ed.,
e114724, 2014. doi: 10.1371/journal.pone.0114724.

[51] S. C. Soares, “The lurking snake in the grass: Interference of snake stimuli in visually taxing conditions”,
Evolutionary Psychology, vol. 10, no. 2, pp. 187–197, 2012. doi: 10.1177/147470491201000202.

[52] S. C. Soares and F. Esteves, “A glimpse of fear: Fast detection of threatening targets in visual search
with brief stimulus durations”, PsyCh Journal, vol. 2, no. 1, pp. 11–16, 2013. doi: 10.1002/pchj.18.

[53] R. Blake and N. K. Logothetis, “Visual competition”, Nature Reviews Neuroscience, vol. 3, no. 1,
pp. 13–21, 2002. doi: 10.1038/nrn701.

[54] P. Sterzer, T. Hilgenfeldt, P. Freudenberg, F. Bermpohl, and M. Adli, “Access of emotional information
to visual awareness in patients with major depressive disorder”, Psychological Medicine, vol. 41, no. 8,
pp. 1615–1624, 2011. doi: 10.1017/S0033291710002540.

[55] M. Zhan, R. Hortensius, and B. De Gelder, “The body as a tool for anger awareness-differential effects
of angry facial and bodily expressions on suppression from awareness”, PLoS ONE, vol. 10, no. 10,
M. Ptito, Ed., e0139768, 2015. doi: 10.1371/journal.pone.0139768.

[56] K. Schmack, J. Burk, J. D. Haynes, and P. Sterzer, “Predicting Subjective Affective Salience from
Cortical Responses to Invisible Object Stimuli”, Cerebral Cortex, vol. 26, no. 8, pp. 3453–3460, 2016.
doi: 10.1093/cercor/bhv174.

[57] T. Stein, M. N. Hebart, and P. Sterzer, “Breaking continuous flash suppression: A new measure of
unconscious processing during interocular suppression?”, Frontiers in Human Neuroscience, vol. 5,
p. 167, 2011. doi: 10.3389/fnhum.2011.00167.

[58] S. Gayet, S. Van Der Stigchel, and C. L. Paffen, “Breaking continuous flash suppression: Competing
for consciousness on the pre-semantic battlefield”, Frontiers in Psychology, vol. 5, p. 460, 2014. doi:
10.3389/fpsyg.2014.00460.

[59] W. R. Miles, “Ocular dominance in human adults”, Journal of General Psychology, vol. 3, pp. 412–430,
1930. doi: 10.1080/00221309.1930.9918218.

78

https://doi.org/10.3758/s13428-019-01242-0
https://doi.org/10.1371/journal.pone.0114724
https://doi.org/10.1177/147470491201000202
https://doi.org/10.1002/pchj.18
https://doi.org/10.1038/nrn701
https://doi.org/10.1017/S0033291710002540
https://doi.org/10.1371/journal.pone.0139768
https://doi.org/10.1093/cercor/bhv174
https://doi.org/10.3389/fnhum.2011.00167
https://doi.org/10.3389/fpsyg.2014.00460
https://doi.org/10.1080/00221309.1930.9918218

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Context
	Background to the Research
	Challenges
	Objectives
	Document Structure

	Background
	Virtual Reality Technology
	VR Accessibility and Usability
	Advantages and Disadvantages of VR
	Developing VR Experiences

	Virtual Reality Research in Experimental Psychology
	Threat Processing Research
	Discussion
	Chapter Conclusions

	Experiment Protocol
	Experiment Context
	Protocol
	Methodology
	Stimuli
	Experiment Procedure

	Computational Requirements
	Equipment
	HTC Vive
	Desktop Monitor

	Chapter Conclusions

	Experiment Software Platform
	Conceptual Software Architecture
	Configuration Parser
	Pre-Task Manager
	Experiment Engine

	Application Development With Unity
	Unity's Development Framework
	Experiment Engine Scripts Hierarchy
	Stimuli Presentation
	Scene Objects Scaling Methodology
	Data Management

	Configuration File
	XML File Structure & Properties
	Configuration Parameters

	Application Usage & User Interface
	Runtime Troubleshooting Features
	Chapter Conclusions

	Conclusions & Future Work
	Conclusions
	Future Work

	Experiment Object Presentation Notes
	Virtual Reality Head Mounted Display Estimations
	VR HMD Screen Dimensions
	VR HMD Eye-to-Screen Distance

	VR Object Presentation Observations
	Unity Object Presentation Process

	Configuration File Usage Notes
	Configuration File Manual
	Configuration File Compatibility Discussion
	Future Improvements

	Application Usage Notes
	Application Input Mapping
	System Requirements
	Future Improvements

	References

