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Resumo Grafos de conhecimento são grafos multi-relacionais que permitem or-
ganizar informação de maneira a que esta seja não apenas pasśıvel de
ser inquirida, mas que também permita a inferência lógica de nova
informação por parte de humanos e especialmente sistemas computa-
cionais. Recentemente vários métodos têm vindo a ser criados de
maneira a maximizar a informação que pode ser retirada destas estru-
turas, sendo a área de “Machine Learning” um dos grandes propul-
sores para tal. “Knowledge graph embeddings” (KGE) permitem que
os componentes destes grafos sejam mapeados num espaço latente, de
maneira a facilitar a aplicação de tarefas como a predição de novas
ligações no grafo ou classificação de nós.

Neste trabalho foram exploradas as capacidades e limitações da
aplicação de modelos baseados em “Knowledge graph embeddings”
a redes biomédicas existentes, dado que a biomedicina é uma área na
qual têm sido feitos esforços no sentido de organizar a sua vasta base
de conhecimento em grafos de conhecimento, e onde esta capacidade
de predição pode ser usada para potenciar avanços nos seus diver-
sos doḿınios. Para tal, no presente trabalho, vários modelos foram
estudados e uma pipeline foi criada para treinar os mesmos sobre algu-
mas redes biomédicas. Os resultados mostram que estes modelos con-
seguem de facto ser precisos no que diz respeito à tarefa de predição de
ligações em alguns conjuntos de dados, contudo esta precisão aparenta
ser afetada por caracteŕısticas inerentes à estrutura do grafo.

Adicionalmente, com o conhecimento adquirido durante a realização
deste trabalho foi criado um “notebook” que tem como objetivo servir
como uma introdução à área de “Knowledge graph embeddings” para
investigadores interessados em explorar a mesma.





Abstract Knowledge graphs are multi-relational graph structures that allow to
organize data in a way that is not only queryable but that also allows
the inference of implicit knowledge by both humans and, particularly,
machines. In recent years new methods have been developed in order to
maximize the knowledge that can be extracted from these structures,
especially in the machine learning field. Knowledge graph embedding
(KGE) strategies allow to map the data of these graphs to a lower di-
mensional space to facilitate the application of downstream tasks such
as link prediction or node classification. In this work the capabilities
and limitations of using these techniques to derive new knowledge from
pre-existing biomedical networks was explored, since this is a field that
not only has seen efforts towards converting its large knowledge bases
into knowledge graphs, but that also can make use of the predictive
capabilities of these models in order to accelerate research in the field.
In order to do so, several KGE models were studied and a pipeline was
created in order to obtain and train such models on different biomedical
datasets. The results show that these models can make accurate pre-
dictions on some datasets, but that their performance can be hampered
by some inherent characteristics of the networks.

Additionally, with the knowledge acquired during this research a note-
book was created that aims to be an entry point to other researchers
interested in exploring this field.
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Chapter 1

Introduction

With the rise in the amount of data produced and archived in the last decades in the
research and business fields, the necessity to make sense and to derive new knowledge from
it also grew.

Following the release of Google’s Knowledge Graph, interest around this type of struc-
ture rose. The main reason being that it allows not only to store the data, but to maintain
structural meaning between said data, allowing for seamless integration between knowledge
from various domains, as such many fields saw efforts being made in order to generate such
structures, one such field being the biomedical field with projects such as Bio2RDF[2] and
UniProtKB[3].

Alongside this movement, the Machine Learning (ML) community also became inter-
ested in the idea of developing ML methods that could derive new knowledge based on
the one already existent in these structures, being it by predicting new links, labeling ex-
iting nodes, or discovering groups of nodes that share similar characteristics (clustering).
Performing such tasks on graph like structures was however not a new concept. Pioneer
works such as Locally linear embedding (LLE) [4] proposed in 2000, explored the idea
of representing the entities of a graph as vectors that preserved the context about their
structural context. Using these vectors it was then possible to apply some more tradi-
tional ML methods, such as neural networks, in order to derive new knowledge. However,
knowledge graphs differ from the traditional single-relational graphs that these algorithms
worked with, the main difference being the multi-relational nature of knowledge graphs
comparatively to the others. In multi-relational graphs the connections between the en-
tities contained additional information about the type of relation the connected entities
establish between them. As such, a new set of solutions was developed in order to not only
embed the entities of the graph but also the different types of relations in it.

Despite growing in popularity in the last years, knowledge graph embeddings are a new
concept, and research around it is still being done. This work places focus on applying
such concepts to the growing number of available biomedical knowledge graphs and under-
standing the viability of using such methods to improve and/or accelerate the discovery of
new knowledge.

As such, this work proposes to fulfil the following objectives:
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• Exploring the state of the art knowledge graph embedding methods, going in depth
on the theoretical concepts behind them;

• Comparing different open source libraries available for Knowledge graph embedding;

• Defining a pipeline to find, train and test knowledge graph embedding models for
link prediction on biomedical datasets;

• Creating an educational notebook to serve as an entry point for researchers interested
in getting started with using Knowledge graph embeddings.
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Chapter 2

Background

The concept of embedding is not new. Its rise in popularity is connected to the work of
Bengio et al. described in the paper “A Neural Probabilistic Language Model” [5], where
the authors propose a new method that allows obtaining lower dimension representations
of words while preserving information about the context they appear on a given corpus,
based on having neural networks learning a distributed representation of the words. This
representation allows computer systems to have a deeper understanding of the words,
closing the gap between human and machine understanding of concepts (it allows, for
example, to answer questions such as “How similar are apples to oranges?”). Given this
property this paper created a new wave of research in the ML field, especially in the Natural
Language Processing (NPL) community.

In this chapter, the concept of embedding will be further explored, starting with word
embeddings, all the way up to single and multi-relational graph embeddings, discussing
their potential use on biomedical data along the way.

2.1 Word Embeddings

In 2003 Bengio et al.[5] proposed the first neural probabilistic model for the task of
predicting the probability of a sequence of words. Compared to the N-gram model, which
was the state-of-the-art model at the time, the model proposed by Bengio, learnt dis-
tributed representations of words (embeddings), which allowed the model to understand
similarities between words, and as such make better predictions. However the popularity
of word embedding in the NLP research field is attributed to Mikolov et al., who in 2013
created “word2vec” [6], a set of models that allowed training embeddings of words that
could then be applied on several NLP tasks. The paper proposed two single hidden layer
feed forward network architectures, the “Continuous Bag of Words” (CBOW) model and
the “Skip-Gram” model, both having become standards in the word embedding world 1.
In the CBOW model, the network learns to predict the target word based on the words in

1https://code.google.com/archive/p/word2vec
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its k-sized neighborhood (its context). On the other hand the Skip-Gram model does the
inverse, meaning that it learns to predict the context based on the target word.

After training the network on a training set, the weight matrices of the single hidden
layer of the model are low dimensional representations of the embeddings.

2.2 Graphs Embeddings

Networks (or graphs) are a prominent concept in the academic world. In the book
“Network Science” [7], the author shows that the use of the term is increasing at a faster
rate than terms such as “evolution” or “quantum” since the 1980’s (figure 2.1).

Figure 2.1: Frequency of different terms on literature across the years

Source: http://networksciencebook.com/chapter/1#summary

Given the popularity of these structures, the ML community developed an interest in
being able to extract information from them. The concept of graph embeddings appeared
as a way to represent the nodes of a graph in a manner that is easy to feed to pre-existing
ML models.

The different existing methods can be categorized by the type of graph they work with
and by the strategy they use to obtain the embeddings. In terms of the type of network
they operate upon, they can be categorized into “Single-relational network embedding
methods” and “Multi-relational network method”.

2.2.1 Single-relational network embedding methods

Single relational graphs/networks are graphs whose connections are unlabeled, meaning
that it is not possible to differentiate two connections between nodes.

Inside the category of single-relational network embedding methods, different strategies
are used to obtain the embeddings. According to a survey made by Palash Goyal et al. [8]
they fall under one of the following three categories:
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• Factorization methods;

• Random-walk methods;

• Neural network based methods.

Factorization Methods

The key idea behind factorization methods is the decomposition of a matrix that repre-
sents connections between nodes of the graph into a product of lower dimension matrices,
which will be used to obtain the embeddings. Different algorithms can use different types
of matrices, such as adjacency matrices (eg. LLE [4]), Laplacian matrices (eg. Laplacian
Eigenvectors [9]), node transition probability matrices (eg. GraRep [10]), and others.

In 2000, Roweis et al. proposed “Locally Linear Embedding” (LLE) as a solution to
the non-linear dimensionality reduction problem. This algorithm starts by constructing a
similarity graph by connecting each datapoint with its k-nearest neighbors (based on some
measure of distance, such as Euclidean distance). Then, on the basis that the dataset is big
enough and that every node in this graph has very close neighbours, it assumes that each
node can be represented as a linear combination of its corresponding neighbours. Based
on this concept, it proceeds to obtain an adjacency matrix W, where each element Wij

represents the weight of node j in the representation (linear combination) of node i. To
obtain such a matrix, a cost function based on the error of reconstruction of the original
datapoint(Xi) given its neighbours(Xj) is minimized (Equation 2.1).

E(W ) =
∑
i

|Xi −
∑
i

(WijXj)|2 (2.1)

Then, given the proximity between the nodes and the datapoint in question, it can be
assumed that the reconstruction matrix W is approximately the same in a lower dimension
(d < D). As such, it is possible to obtain a lower dimension representation of Xi, repre-
sented by Yi, by minimizing the cost function (Equation 2.2), that like the previous one,
is based on the locally linear reconstruction errors, but in which the weights Wij are fixed
and the optimization is done in relation to Yi.

φ(Y ) =
∑
i

|Yi −
∑
i

(WijYj)|2 (2.2)

The aim of traditional matrix factorization such as Locally Linear Embeddings and
Laplacian EigenMaps is the factorization of first-order proximity matrices (for example
the adjacency matrix). More recent matrix factorization methods work over matrices that
allow the preservation of higher order proximity, in order to embed the graph structure.
GraRep [10] and HOPE [11] are good examples of the latter case. GraRep makes use of
the node transition probability matrix, whilst HOPE uses a node similarity matrix, based
on Katz Index and Common Neighbors similarity metrics.

5



Figure 2.2: DeepWalk pipeline

Random Walk Based Methods

Random walk based methods are heavily inspired by the core ideas behind the Skip-
Gram variant of word2vec algorithm discussed before. The core mechanism behind random
walk approaches is to derive sentence-like structures from graphs, that instead of being
sequences of words, are now sequences of nodes. This is done by randomly or “semi-
randomly” traversing the graph to generate said sequences.

DeepWalk [12] was one of the pioneer works in the field. It is the most basic form
of a random-walk algorithm. It performs M completely random N-jump walks, for every
node of the graph, generating a corpus like dataset that can be used to train a Skip-Gram
word2vec model.

Node2vec [13], appears as a flexible variant of DeepWalk in terms of the sampling strat-
egy used. The authors state that the problem of sampling neighbours of a node can be
viewed as a problem of local search. As such, they argue that at least the two extremes
of local search (breadth-first search and depth-first search) should be supported. Thus
their sampling algorithm allows for Breadth-first Sampling (BFS) whose node sequences
will highlight the role of the nodes on their immediate neighbourhood, Depth-first Sam-
pling (DFS) which emphasizes the position of the node on the whole graph, as well as
in between sampling techniques. This feature is achieved by the introduction of two new
hyperparameters p (return parameter) and q (inout parameter). The return parameter p
controls the probability of revisiting the previous node of the sequence, while the inout
parameter q controls the probability of transitioning to unexplored nodes.

More recent algorithms still try to improve the random walk strategy, by discovering
and solving some inherent flaws of its predecessors. Struc2vec [1] for example solves the
structural similarity conservation problem that other models have. For bigger graphs, the
conservation of structural similarity between two distant nodes (distance larger than the
skip-gram window) is impossible, since they will never appear in the same context (in the
same node sequence). To solve this problem struc2vec proposes the generation and use of
a metagraph, instead of working directly on the original one. The first step to construct this
metagraph is to obtain a measure of structural similarity between all pairs of nodes for each
possible neighbourhood size, which ranges from zero to the diameter of the graph (largest

6



path on the graph). After obtaining the similarity measures it is possible to generate an
N -layered graph, where each layer n is a complete weighted graph and the connections
between a pair of nodes are representative of their structural similarity considering an n
(n 6 N) neighbourhood size. It is also a property of this metagraph that the different
layers are connected by their corresponding nodes (node x on layer 0 connects to node x
on layer 1, so on and so forth). With this structure it is possible to perform biased random
walks, and similarly to node2vec, have two hyperparameters that allow us to stay in a
close neighbourhood (by “restricting” the walk to lower levels of the multilayered graph,
where small radius neighbourhoods are considered), or explore structurally similar nodes
further away, by branching into higher level layers.

Figure 2.3 shows the results of embedding a “symmetric” graph with deepwalk,
node2vec and struc2vec. It is made clear that struc2vec does a better job at keeping
isometric nodes closer in the embedding space. This of course comes at the cost of a higher
level of complexity compared with the aforementioned algorithms, given the necessity to
calculate similarity for each pair of nodes, as well as the cost of representing and storing
the multilayered graph.

Figure 2.3: Results of different graph embedding methods on a mirrored network [1]
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Neural Network Based Methods

Previous works such as Deepwalk or node2vec use neural networks to obtain the embed-
dings, requiring an initial processing of the data in order to obtain input for that network.
Other methods uniquely based on neural networks exist that do not require complex strate-
gies to obtain an input for the network. Many of these neural network solutions are based
around a particular architecture called deep autoencoders. An example of an algorithm
that adopts such an approach is the structural deep network embedding algorithm (SDNE)
[14]. It uses a semi-supervised deep autoencoder network that preserves the second-order
proximity of each node by reconstructing its original neighborhood structure passed as
input. At the same time, the pairwise similarities of some pairs of nodes are used in order
to adjust the embedding process in a supervised way.

2.2.2 Multi-relational network embedding methods

The embedding methods referenced until this point are designed considering networks
with indistinguishable connections types between their nodes. Independently of this im-
pediment, it has been shown previously that they do a great job at extracting information
from real world networks, such as social networks and biomedical networks (for exam-
ple, protein-protein interaction networks). However, there are many networks, biomedical
ones included, that do not follow this simplistic architecture. These networks are multi-
relational, meaning the relations established between these nodes are labeled in some way.
Many of these multi-relational graphs are derived from Knowledge Bases (KB) and are
more commonly referred to as Knowledge Graphs (KG) [15]. For these types of graph
both the entities and relations have to be embedded. Similarly to what was mentioned
until now, many strategies have been thought out to achieve this goal, each with their own
advantages and disadvantages. The current existing knowledge graph embedding methods
can be broadly classified into three groups [16]:

• Matrix Factorization or Tensor Decomposition Models;

• Geometric Models;

• Deep Learning Models.

Matrix Factorization/Tensor Decomposition Models

Matrix factorization methods are based on a 3-dimensional matrix Me×e×r, where e
is the number of entities and r the number of relation types in the original graph and
where each element Mi,j,r indicates the existence of a relation r between entities i and
j (1 if it exists or 0 if not). The matrix can then be decomposed into a combination
of lower dimension vectors that are to be used as the embeddings for both entities and
relations. The different algorithms can then minimize the value of an operation involving
the embeddings of a given known fact. Different algorithms use different operations to
compute the scoring.
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Geometrical Models

Considering the premises that an entity of the knowledge graph is a point on a d
dimensional latent space, and that relations are transformations on that latent space,
geometrical models adjust their representations of both entities and relations in such a
way that for any known fact/triple in a training set, the transformation of the head entity
of the triple given the relation of the same triple should be close to the tail entity of the
triple. As such, the general scoring function of these models can be described by Equation
2.3:

φ(h, r, t) = δ(τ(h, r), t), given τ is a transformation type (2.3)

Different algorithms in this category, can use different types of transformations and/or
different latent spaces in order to define their scoring function.

Deep Learning Models

The model categories presented before make use of simple operators such as multipli-
cation or sum of embeddings so that they can be scalable and support datasets with larger
sizes. However, this can come at the cost of learning less expressive representations of
the entities in the graph. In these shallow models, the size of the embeddings is the only
hyperparameter that can be modified in order to obtain more features (more expressive),
which can in turn lead once again to scalability problems since the total number of param-
eters to train is given by (num ent + num rel) ∗ embedding size. Deep models use deep
neural networks that learn a set of parameters (weights and biases), that are “global” and
do not increase exponentially with the number of relations and entities of the network.
This feature allows to increase the complexity of the network and learn more expressive
features, without having to sacrifice scalability by largely increasing the embedding size.
Algorithms that fall into this category normally differentiate themselves by the architecture
of the network used.

Table 2.1 presents a division of the studied methods based on their taxonomy, as well
as the general idea on how they work.
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Type of Model Model Name
Year

of
publication

Summary

DistMult [17] 2015

Entities are represented as a d dimen-
sional vector.
Relation embeddings are diagonal ma-
trices.
The scoring function is a trilinear prod-
uct of entities and relations.
Treats all relations as symmetric.

Complex [18] 2016

Similar to DistMult, but extends to the
complex vector space.
Eliminates problem of treating all re-
lations as symmetric

HolE [19] 2016

Does not use the trilinear product as
the scoring function.
Uses circular correlation.
The relations embeddings have the
same shape as the entities’.

ANALOGY [20] 2017

The relation vector (r) must be a nor-
mal matrix.
For each pair of relations their compo-
sition must be cumulative.

Matrix Factorization

SimplE [21] 2018
Similar to DistMult but each entity has
two associated embeddings depending
on their role as head or tail.

TransE [22] 2013

Represents relations between the
embeddings of the entities as transla-
tions.
Ideally: h + r = t
Performs poorly with one-to-many and
many-to-one relations.

TransH [23] 2014

Similar to TransE but sees relations as
translations on an hyperplane.
Each relation is characterized by two
vectors.
Allows for one-to-many and many-to-
one relations.

TransR [24] 2015

Separates the entity space from the
relation space (each relation has its
space).
Different relations focus on different
aspect of the entities involved.

Geometry based

RotatE [25] 2019

Extrapolates transformations to the
complex space.
Relations represent rotation on this
space.
Allows for more complex patterns,
such as symmetry, anti-symmetry, in-
version, etc.
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Type of Model Model Name
Year

of
publication

Summary

ConvE [26] 2017

Head and relation embedding are re-
shaped and concatenated forming a
matrix.
That matrix is passed by various con-
volutional layers and a dense layer.
The result is combined (dot product)
with all possible tails, obtaining a “pre-
diction” for each tail.

ConvKB [27] 2017

Tail embedding is also concatenated to
the input matrix.
Final classification is now binary (fact
or not a fact).

Deep Learning

ConvR [28] 2019

Similar to ConvE, but does not con-
catenate the head and relation embed-
ding nor it uses global filters.
It constructs relation specific filters
and “applies” them to a matrix ob-
tained from the head vector.

Table 2.1: Taxonomy and summary of the studied KGE methods

2.3 Graph embedding based link prediction and ap-

plications in the biomedical field

The prediction of new interactions between entities can be said to be a desirable feature
when it comes to the biomedical field, as it allows researchers to more easily generate new
hypotheses of possible associations, and quickly transition to testing phases of the research.
As such, there is a rising interest in using machine learning models on the existing data
of the field. However, in order to take advantage of these methods, it is necessary to feed
them the already existing knowledge, so that they can generate new one. A traditional
way of doing this is to manually engineer a set of features that best describe the entities
of the dataset in question. However, this approach comes with some problems. Firstly,
the time investment and expertise needed to define such a set of features. Secondly, the
fact that the entity representations obtained tends to not be very reusable, needing to be
re-engineered when in a new problem context. And finally, the fact that data can require
heavy data pruning, when there is a considerable amount of data entries with incomplete
sets of features. The use of graph embedding methods solves the aforementioned problems
since it extracts a set of latent features from the node interactions, and as such makes it
easier to use biomedical datasets without having as much expert knowledge in the area.

Under the biomedical scope, several fields can benefit from the use of such graph em-
bedding methods.
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2.3.1 Pharmaceutical Field

The pharmaceutical field has a large and ever-growing industry associated with it,
whose European market was valued at around 207 thousand million euros in 2017 [29].
However, the industry has large costs associated with research and development (around
35 thousand million euros in 2017 [29]). As such, new methodologies that can aid the
drug discovery process, like link prediction based on knowledge graph embeddings, can be
highly valuable.

Drug repurposing (or drug repositioning) is one of the areas where link prediction can be
applied. It represents the concept of taking pre-existing and tested drugs and finding new
uses for them. This strategy reduces not only the time to market, given that the repurposed
drugs have already undergone numerous stages of testing that ensure their safety, but it also
reduces the costs associated with the testing phases as well as development related costs
(production structures, etc). In sum, this strategy offers a better trade of risk vs reward
than other alternatives [30]. This type of analysis is usually based on drug-target and drug-
disease interaction networks [31]. Drug-target interaction (DTI), as the name suggests,
refers to interactions between different chemical compounds and biological targets on an
organism (most frequently proteins), usually resulting in the change of behaviour of the
latter. Networks that model such interactions can vary in complexity. The most simple kind
are bipartite networks of drugs and their targets, in which there is only one type of relation
and thus easily embedded by the single-relational network embedding methods. However,
drug-target networks can become more complex, for example by specifying in what way
the entities relate with each other (adding relation types). In this case, the network turns
into a multi-relational one and has to be handled by the appropriate embedding methods.

Drug-disease interaction (DDI) refers to the interaction between different chemical
compounds and different diseases. Similarly to DTI networks, they can range from simple
bipartite networks, to more complex multi-relational networks, where the interactions are
more descriptive, providing more information on how a certain drug affects a particular
disease (for example “prevents”a “treats”, “alleviates”)[32].

Another use of link prediction under the scope of the pharmaceutical field is the dis-
covery of new adverse drug reactions [33]. Adverse drug reactions (ADR), are side effects,
normally undesirable, caused by one or multiple drugs. These effects are unpredictable and
sometimes manifest under very specific circumstances, thus issuing the need for rigorous
and numerous test phases before drugs reach the market. Graph embedding methods can
be used to feed link prediction models and help with the generation of hypotheses, thus
accelerating the testing phases and reducing costs.

2.3.2 Multi-omics Field

Another field that benefits from the use of link prediction is the multi-omics field.
Omics refers to the studying and understanding of the structure, function, and dynamics
of particular families of molecules, such as genes (genomics), proteins (proteomics), lipids
(lipidomics), transcripts (transcriptomics), among others [31]. Protein-protein interaction
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(PPI) networks are prime examples of networks that can be combined with link prediction
in order to gain further understanding on the underlying molecular mechanisms different
proteins are involved in. Protein-protein interactions are crucial in proteomics, given that
the corroboration of certain interactions can often serve as evidence to determine the func-
tion of unlabeled proteins [34]. Two popular approaches when studying these interactions
are mass spectrometry (MS) and yeast two-hybrid screening (Y2H) [34], but these meth-
ods are costly. Looking specifically at the yeast two-hybrid screening, it allows to check for
the interaction between two proteins, and can cost thousands of dollars per pair of proteins
tested. It is in this context that graph embedding based link prediction can help reduce
the costs by generating hypotheses of probable interactions, meaning that researchers can
send fewer pairs for screening.

2.3.3 Clinical field

Lastly, it is worth mentioning the medical and clinical fields as potential beneficiaries
of link prediction methods. Electronic health records (EHR) are the digital versions of the
traditional paper medical records. These allow for the reduction of medical error and delays
in treatments by providing better accessibility and clarity compared to the traditional paper
versions [35]. However, since this information is in most cases inserted by human hand,
it is prone to contain inconsistencies and incompleteness. Given the modeling of these
records into a knowledge graph structure, it is possible to use link prediction methods in
order to fill in the missing information [36].

Tables 2.2 and 2.3 presents some literature related to the use of graph and knowledge
graph embedding respectively on tasks of link prediction over biomedical networks.
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Paper
Year

of
Publication

Task
Embedding

Method
AUC

node2vec: Scalable Fea-
ture Learning for Net-
works [13]

2016 PPI prediction node2vec
75.43%

(using 10-fold
Cross Validation)

Deep mining hetero-
geneous of biomedical
linked data to predict
novel drug-target associa-
tions [37]

2017
DTI

prediction
DeepWalk

98.96%
(using 10-fold

Cross Validation)

Large-scale extraction of
drug–disease pairs from
the medical literature [38]

2017
DDI

prediction
Expanded LINE —–

Predicting MicroRNA-
Disease Associations
Using Network Topolog-
ical Similarity Based on
DeepWalk [39]

2017
MiRNA-disease

association
prediction

DeepWalk
93.70%

(using 5-fold
Cross Validation)

Integrating node embed-
dings and biological anno-
tations for genes to pre-
dict disease-gene associa-
tions [40]

2018
Disease-gene
association
prediction

node2vec (refined
with biological
annotations)

88.00%
(using 5-fold

Cross Validation)

Predicting miRNA-
disease association from
heterogeneous informa-
tion network with GraRep
embedding model [41]

2020
MiRNA-disease

association
prediction

GraRep
91.25%

(using 5-fold
Cross Validation)

Table 2.2: Researches that uses single-relational graph embeddings on biomedical networks
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Work
Year

of
Publication

Task
Embedding

Method
MRR Hit@10

Inference of Biomedical
Relations Among Chemi-
cals, Genes, Diseases, and
Symptoms Using Knowl-
edge Representation
Learning [42]

2019
New biomedical

relation inference
TransE 17.28% ——-

Clinical Knowledge Graph
Embedding Representa-
tion Bridging the Gap
between Electronic Health
Records and Prediction
Model [36]

2019 EHR embedding

HEXTRATO
(TransE

variant for
ontology data)

Best
aprox.
57.6%

——-

Distantly Supervised
Biomedical Knowl-
edge Acquisition via
Knowledge Graph Based
Attention [43]

2019
UMLS

graph completion

SimplE NER
(SimplE

based method)
33.90% 65.10%

Drug Target Discovery
Using Knowledge Graph
Embeddings [44]

2019 DTI prediction
ComplEx-SE

(ComplEx
based method)

78.00 88.00

Incorporating Domain
Knowledge into Medical
NLI using Knowledge
Graphs [45]

2020
NLI enrichment

via KG
embeddings

DistMult ——– ——–

Table 2.3: Researches that uses multi-relational graph embeddings on biomedical networks
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Chapter 3

Methods

The main objective of this work is to explore the use of link prediction methods based
on KGE over biomedical networks. Such a goal is achieved by studying, applying and com-
paring different state-of-the-art models to a set of biomedical networks. Another objective
is the creation of a simple pipeline that can serve as an entry point, for both biomedicine
and computer science researchers, into this field. As such, this pipeline must provide some
level of abstraction, while at the same time allowing the user to dive into the intricacies of
the models used.

3.1 Technologies

Given the objectives mentioned above, and considering the time frame of development
available, some open-source tools were used to help fulfill the objectives proposed:

• Neo4J: A pure graph database, used to store and easily modify the dataset of one
of the experiments made in this work.

• Pykg2vec: A python library that implements a vast array of state-of-the-art knowl-
edge graph embedding models, as well as tools that facilitate optimization and link
prediction.

The following sections describe these technologies and a comparative analysis with other
options.

3.1.1 Neo4J

Neo4J is a graph database that allows the storing, visualization and modification of
graph-like structures. In simple terms “a graph database is a database that uses a graph
structure”[46]. They are composed of two types of elements: nodes and edges. Nodes
represent the entities of a dataset, for example, proteins in a PPI network. Edges on the
other hand are the relations that connect those nodes. The main advantage of using such
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Figure 3.1: Example of a simple city and country relation on GraphDB’s data model

databases when working with graph data is the abstraction they provide, which allows the
user to query the data in a “graph intuitive” manner, despite the way the data is stored
underneath.

Comparison with alternatives

“Graph database” is an umbrella term. There exists numerous graph databases that
vary significantly in terms of their storage mechanism as well as their data model. For this
work, three graph databases were explored: Neo4J, Grakn and Ontotext’s GraphDB. The
choice for Neo4J over the other alternatives took into consideration diverse aspects, such
as query language, visualization tools, integration with other technologies, among others.

Data model Data model, or more specifically, graph data model, refers to how the
databases represent the core components of the graph: nodes, relations and their prop-
erties. The three databases chosen cover different data model variants: property graphs,
hypergraphs and triple stores [47].

Ontotext’s GraphDB falls into the RDF Triple Store category. There are some diver-
gences in the community on whether triple stores should belong to the graph database
category. This work follows the classifications proposed by the book “Graph Databases”
[48], that argues that this type of data model falls in fact under the graph database cate-
gory, given they are logically linked. However, it is stated that they are to be distinguished
from “native” graph databases such as Neo4J since they do not support index-free adja-
cency. Triplestores derive from the Semantic web movement, and as such they are built
having in mind the RDF language. Their graph model is a true representation of this
format. All entities are nodes and are connected with relation links. Since it does not na-
tively support properties, it requires the explicit representation of the properties as nodes
connected to the entity they are associated with (Figure 3.1).

Neo4J has a property graph data model. This means that both entities and relations
can have properties associated with them, without having to have workarounds for these
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Figure 3.2: Example of a simple city and country relation on Neo4J’s data model

Figure 3.3: Example of a simple city and country relation on Grakn’s data model

kinds of situations, as occurs with triplestores (Figure 3.2).
Grakn follows a hypergraph data model. A hypergraph is a special type of graph that

has hyper-edges instead of the typical edges/relations seen on other graph types. Whilst
the typical edge assumes there are only two end point entities (a head and a tail), hyper-
edges allow relations with two or more entities by introducing an intermediary “relation
node”. However this forces all relations to be “bidirectional” (Figure 3.3).

In terms of data model, GraphDB and Neo4j seem to be the better choices, since their
structure is much more similar to the input accepted by the studied knowledge graph
algorithms, whilst Grakn’s model diverges from that ideal and as such requires some data
manipulation when exporting the dataset which is not ideal.

Query language Regarding their query languages, the main comparison points looked
at were the simplicity, ease of learning, and the capabilities they provide (however this last
point is heavily influenced by the data model).

GraphDB uses the standard RDF query language SPARQL. Given the underlying data
model which does not support properties on nodes, this query language can become quite
verbose.

Grakn uses their own query language Graql. Similarly to RDF it is very triple oriented
and seems adapted for something like an OWL structure.

Neo4j also uses their own query language Cypher. This language is more modeled for
graph traversing, it is visually intuitive, making it the most easy to read and understand
of all the three query languages. On top of its simplicity, Cypher also provides a set of
easily accessible built-in procedures that further simplify more complex queries.

The following snippets present a side-to-side comparison of the syntax of the different
languages for querying the names of cities that belong to the country “Portugal” and have
a population count higher than 10000.
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#SPARQL:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX places: <http://www.example.org/places#>

SELECT ?city_name

WHERE {

?country places:name "Portugal".

?city rdf:isa places:City;

places:name ?city_name ;

places:population ?population .

?city places:in_country ?country.

FILTER (?population > 10000) .

}

--GRAKQL:

match

$c isa city, has population>10000, has name $c_n;

$p isa country;

(in_country: $c, contains_city: $p) isa has_city;

get $c_n;

//CYPHER:

Match (n:City)-[:in_country]->(m:Country)

where n.population>10000

return n.name

Ease of data integration Integrating multiple datasets is a common task when it comes
to working with biomedical data. As such, it was taken into consideration, the ease of
performing such a task on the given database alternatives.

On this subject Neo4J and GraphDB have clear advantages given their schema-free
capabilities compared to Grakn that, like relational databases, need a schema to be set
beforehand, making it harder to easily add new data from different sources without needing
to change the original schema.

Visualization tools Visualizing the graph, or certain parts of it, is a valuable tool
when creating or modifying a dataset. All the studied alternatives provide a client with
visualization capabilities.

Ontotext’s GraphDB visual graph tool (Figure 3.4) allows to see specific nodes and
their relations or even subgraphs resulting from a SPARQL query.

Grakn’s “Workbase” is a special tool that allows the user to connect to a running Grakn
server, execute and see the results of “match” queries. This tool also allows to visualize
the inherent schema of the database (Figure 3.5).
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Figure 3.4: GraphDB’s visual graph tool

Figure 3.5: Grakn Workbase
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Out of the three Neo4J’s visualization capabilities have a slight edge, since its browser
application functions as a Cypher console and visualization tool at the same time, allowing
to visualize the result of the query executed on real time. Also, their more advanced
“Bloom” visualization tool allows for the visualization of very large datasets with minimum
resource consumption (Figure 3.6).

(a) Neo4J Browser

(b) Neo4J Bloom tool

Figure 3.6: Neo4J visualization tools
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Discussion

Given that the objective of using a graph database in the context of this work is to
load and alter pre-existing databases, Neo4J stood out as the ideal candidate, given its low
learning curve, the power to write complex queries in a short and readable way as well as
the similarity of its data model to the input of the used algorithms.

It is worth mentioning however that the other alternatives can be viable in different
situations given their unique data models and features. An example would be Grakn and
its hypergraph data model, that would have the advantage when working with ML models
based on hypergraphs.

3.1.2 Pykg2vec library

Pykg2vec is a python library that provides implementations of multiple state-of-the-art
knowledge graph embedding based link prediction models, being a central component in
the realization of this work.

In light of the fact that the knowledge embedding field is not very mature, the number
of support libraries is low. That number is further reduced when considering libraries that
are not specific to one model. Three libraries were studied that adhere to these constraints:
AmpliGraph [49], OpenKE[50], and pykg2vec[51].

Comparison with alternatives

Different factors were taken into consideration when choosing between the three studied
alternatives.

Continued library support Taking into account the fact that the knowledge graph
embedding field is still in development, with new models and variations of older models
appearing frequently, it was important that the chosen library also adapted accordingly.
All the three studied alternatives have good levels of support, all having seen updates in
the last year.

Model diversity One of the possible byproducts of having continued support on these
libraries manifests as the introduction of new models to the library. Despite this factor
not being an indicator of the quality of the library, it portraits the authors’ view on their
idea of expansion. OpenKE seems to tend to only implement well established and baseline
models such as TransE and focus more in terms of optimizing training times. Whilst the
Pykg2vec approach leans more towards keeping up to date with the latest models in the
field and trying to bring a working implementation of them into their library, having at
the moment of writing twenty-three different knowledge-graph embedding models.

Since one of the objectives of this work is studying the results of applying different types
of models to biomedical networks, as well as providing a “playground notebook” so that
other researchers can also explore on their own, the approach of pykg2vec is the one that
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best aligns with these objectives. However, in more business focused scenarios, OpenKE’s
approach of using well established and more time efficient implementations is most likely
the best choice.

Time of training A small experiment was put in place in order to compare the three
libraries in terms of training times. This experiment was performed under the most similar
conditions possible. These tests were performed using the 12GB NVIDIA Tesla K80 GPU

(provided by the Google Colab tool), using the TransE model on the Wordnet18 dataset,
with the following hyperparameter settings:

• embedding size: 20

• epochs: 100

• batch size: 128

• learning rate: 0.01

• sampling: uniform

• loss function: margin loss

• negative rate: 1

• normalization: L1

• margin: 2

• optimizer: SGD

It is also important to mention that the source code of pykg2vec had to be tinkered
with, in order to make a fair comparison between these libraries. This is due to the fact
that the train method it implements performs validation during training and ends with
a full test on the test set at the end. In that regard, the validation and test steps were
removed to perform this comparison, so that the closest conditions could be obtained. The
results are presented in Table 3.1.

Library
Total Training Time

(in seconds)
Seconds per epoch

OpenKE 253.7 2.5
AmpliGraph 366.7 3.7
Pykg2vec 882 8.8

Table 3.1: Comparison of training times of the different studied KGE libraries

In terms of training time OpenKE displays the best results. This edge in training time
can be attributed to the fact that OpenKE implements heavy calculations at a lower level
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using C++. Whilst the difference between Ampligraph and pykg2vec difference in training
times, can result from differences between frameworks (PyTorch and Tensorflow) as well
as differences in efficiency of the implementation.

Hyperparameter tuning In the field of machine learning, hyperparameters are special
parameters that have a direct impact on the learning process of the corresponding model.
In the case of knowledge graph embedding models, this can include: embedding size, learn-
ing rate, and many others. However, given the number of the hyperparameters the typical
model has, and the range of values those can take, the search for a good combination can
be time-consuming. As such, various approaches to search for such combinations were
created. During the evaluation of the different libraries, the inclusion of hyperparameter
search algorithms were considered as a positive bonus. In that aspect both AmpliGraph

and Pykg2vec presented built-in tools to perform hyperparameter search. Ampligraph im-
plements grid search and random search. Grid search is a simple hyperparameter search
algorithm that performs an exhaustive search given a subset of options for each hyper-
parameter, making it very time-consuming if the training process is long. On the other
hand, random search, randomly selects a set of parameters given a search space. Despite
this randomness, it has been shown that this method can find sets of hyperparameters that
result in models that preform similarly to the one found by grid search in a smaller amount
of time [52].

Pykg2vec uses a probabilistic search algorithm instead, more concretely Bayesian op-
timization. This method allows to further reduce the search times, by minimizing the
number of calls to the training process, which is the time bottleneck of the two previous
methods. It does this by generating and updating a probabilistic model based on past
calls to the training function, that closely mimics the real model aiming t´´o find best
hyperparameter combinations in less time [53].

Given the training times of the used models in this work, the inclusion of these tools in
the libraries was factored in when choosing from the libraries. However, it is to note that
these search algorithms can be implemented in any library if needed.

Ease of extending One other aspect that was taken into consideration was how easy
it was for developers to modify the library, for purposes of implementing new models, or
simply adding or modifying tools the developer might need. OpenKE is the least flexible
model when it comes to this aspect. This derives from the fact that it implements some
of its operations at a lower level using C++, requiring the developer to have a much
deeper understanding of the training process implementation, as well as demanding that
the developer understands the compilation tools in place. On the other hand, Ampligraph
and pykg2vec are programmed exclusively in python, providing well defined API structures
easy to extend and modify.

Available Documentation Lastly, it was taken into account the quality of the docu-
mentation offered by each library. In this aspect, OpenKE shows the most problems, since
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the only documentation provided in their official website is relative to an old version that
has many dissimilarities to the recent release. This old version can still be found on their
Github repository however it is discontinued. In terms of pykg2vec and Ampligraph, both
have available documentation that is updated and detailed. However, it can be argued
that Ampligraph’s documentation is better structured and provides a bit more insight on
their implementation.

Discussion

In the end, pykg2vec was the chosen library to use for building the pipeline. This choice
stems from their exploratory philosophy (given the diversity of models available) which,
as mentioned earlier in the “Model diversity” subsection aligns with the “educational”
purposes of this work. This factor is translated into the implementation of the latest
models, the flexible nature of their architecture, and tuning tools made available. However,
such benefits come at the cost of time performance compared to OpenKE for instance.

3.2 Embedding and link prediction

In order to obtain good embeddings of the entities and relations of some dataset, it
is necessary to follow a pipeline of steps. This pipeline starts with the selection of which
models to use, followed by the preparation and loading of the data to embed, the opti-
mization phase, the training phase, and finally the testing and metric collection phases.
In this section, the different stages of the embedding process will be discussed, explaining
the choices taken along the way.

3.2.1 Models used

As mentioned before, the first step to be taken is to decide which model to use in
order to obtain the embeddings. The strategy adopted in this work was to use a range
of models that cover the different families of models available, as such a baseline model
was chosen from each of those families (TransE, DistMult and ConvE). This allows for an
understanding of the impact that different strategies can have on the results of the different
experiments made.

TransE

TransE [22] was the first KGE model to introduce a geometric interpretation of the
latent space. The core idea behind this approach is that, for a given true fact/triple, and
assuming that relations can be seen as translations on the embedding space, the result of
applying such a transformation to the head of the known fact should be geometrically close
to the tail. On the other hand, given a non-observed fact/triple, this should not occur.
The geometrical closeness is obtained using a dissimilarity measure function d that takes
the form of either L1 or L2 norm according to the original paper. Lastly, in order for the
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model to learn the embeddings, the authors propose to minimize a pairwise margin-based
loss function (Equation 3.1). This requires a set of known triples S and a set of corrupt
triples S’ obtained by replacing the head or tail by a random entity on known training
triples.

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

[m+ d(h+ r, t)− d(h′+ r, t′)], m is the margin hyperparameter (3.1)

Minimizing this function will ideally lead to the distance between h + r and t to be
close to zero, whilst the distance of h′ + r to be close to the margin value m (hyperpa-
rameter that can be changed). It is to note that given the relatively simple approach, the
performance of TransE can be affected by the dataset it is applied to. A known problem of
this model is connected to the rudimentary transformation it considers, leading to perfor-
mance losses when dealing with one-to-many and many-to-one relations [23]. Looking at
two triples such as <Universidade de Aveiro, located in, Aveiro> and <Glicinias,

located in, Aveiro>, using TransE to obtain their embedding will result in them having
very similar representations despite being very different entities.

DistMult

DistMult [17] can be argued to be one of the baseline models when it comes to tensor
decomposition, given many other models derive from the concepts introduced by it. It
forces relation embeddings to be diagonal matrices (of dimension k × k, where k is the
embedding size hyperparameter). This is done to allow the scoring function to be computed
as a trilinear product, as shown in equation (3.2).

φ(h, r, t) = 〈h r t〉 = hT diag(r) t (3.2)

However, it can be seen that this scoring function is commutative, meaning it is the
same for (h, r, t) and (t, r, h), which in turn means that all relations are considered as
symmetric, which could be false and problematic in some datasets.

ConvE

Convolutional neural networks are a popular type of deep model, mainly encountered
in the image classification field. The core idea behind them is to use several convolutional
layers (hence the name) that apply a set of low-dimensional filters w to the input data. The
product of such a stack of convolutional layers is a feature map that can be passed through
a number of dense layers to obtain a fact score. One of the advantages of these types
of networks is that, comparatively to the traditional deep fully connected architectures,
convolutional networks require a lower number of parameters, making them less prone to
over adapt to the data (overfit), as well as making them faster to train. As such, the
authors of ConvE found this type of architecture to be a good middle ground to both the
expressiveness and overfitting problems. ConvE is the simplest multilayer convolutional
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Figure 3.7: ConvE’s architecture

architecture, using a single two-dimensional convolutional layer [26]. In order to calculate
the score of a given triple, ConvE generates a two-dimensional matrix by reshaping and
stacking the embedding of entity one with the embedding of the relation. That matrix is
then used as the input for the two-dimensional convolutional layer. This process results
in a feature map that is flattened and passed through a dense layer with k neurons. The
score is finally calculated by applying the dot product between the output of the dense
layer (a vector of dimension k) and the embedding of the second entity of the triple.

It is to note that in this architecture dropout layers are used as a form of regularization
to further avoid overfitting scenarios. A general view of the architecture is shown in Figure
3.7.

3.2.2 Data preparation

Following the decision of which models to use, it is necessary to prepare the data before
passing it into said models for training. As mentioned in the technologies section, the KGE
library chosen for this work was pykg2vec, and as such, the format in which the data is
passed to it, has to obey its restrictions. Pykg2vec requires user defined datasets to be in
the form of three .txt files (<DatasetName>-train.txt, <DatasetName>-valid.txt and
<DatasetName>-test.txt), each of them having one triple/fact per line with tab-separated
values (TSV) ie. <head entity>\t<relation>\t<tail entity>. It is also worth noting
that all of these files need to be under the same directory.

3.2.3 Training pipeline

After having the data prepared and having decided the models to use, it is possible to
start the training process. The approach taken to obtain the embeddings and a model to
perform link prediction based on them can be summarized with the pipeline presented in
Figure 3.8.
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Figure 3.8: Pipeline used in order to obtain, train and test the models used

3.2.4 Training Methods

In Figure 3.8 it is possible to identify two different trainer components. Despite having
very similar roles, they vary slightly in their implementation.

In machine learning, training refers to the process of providing the learning model with
training data from which this can learn. During this training process, the model is shown
the entirety of each training example, such that it can compare its current predictions with
the truth (based on some loss function) and adjust its parameters/weights accordingly.
In the case of KGE models, these parameters are mainly the embeddings of the entities
and relations present in the graph. However, some models such as ConvE and ConvKB,
which are built using convolutional neural networks as well as fully connected layers, have
additional parameters to tweak.

Out of the box pykg2vec offers two alternative training processes, the first one being
slower but more complete. In this case, besides updating the model parameters based on
the training set and the values of the loss function across a certain amount of epochs,
it also periodically evaluates the current model against a validation set which contains
triples that the model has not seen before. This validation allows the training process to
understand if the model is still generalizing, by verifying if the decreasing values of loss
it observes correspond in fact to gains in performance on unseen data, or if otherwise the
model is adapting to the training data, which is commonly referred as overfitting. In the
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case this training process detects in fact a decreasing performance on the validation set
over several epochs, this stops the training process early (early stopping). This process
variant is described by the train model() method. Other than training the model this
method also tests the model at the end against the testing set. In order to complement
the functionalities already provided by this training method, a Tensorboard logger was
implemented in order to allow for the visualization of the training process. The second
variant of training process that the library offers does not perform successive validations,
it does not implement an early stopping mechanism and it does not perform a test at
the end. The main objective of this training process is to be as fast as possible. The
method that implements this type of training process is the tune model() method, that
given its characteristics is used in the trainer inside the hyperparameter search stage of the
pipeline. Independently of the used method, it is necessary to configure some parameters
so that the training process can occur. This ranges from general variables, such as the
name of the model, or the path to the directory the dataset is located in, to the specific
hyperparameters of the model in question. Below, a list of global configuration parameters
and model hyperparameters relevant for this work is presented.

Relevant Global Configuration Parameters

Model Name (mn): As the name suggests, it is the name of the model the user intends
to use on the dataset.

Experimental Setting (exp): This parameter is a flag that indicates if the user wants
to use their own set of hyperparameters to train the dataset (true), or if he pretends to
use the default hyperparameter values (available for specific datasets such as FB15k).

Dataset Name (ds) and Dataset Path (dsp): These arguments describe the name
of the dataset to use. In case it is a user defined dataset (not included with the library),
the path where the train, test and validation files reside.

Number of test triples (tn): Despite the name, this refers to the number of triples
to use in the validation steps (referred to as mini-tests in the source code).

Test step (ts): It defines the epoch periodicity in which validation (mini-test) is per-
formed, (i.e. if test step = 10, every 10 epochs validation is performed).

Hyperparameter Absolute Path (hpf): The pykg2vec library allows the user to
define the hyperparameters of the models in YAML files. This configuration parameter
defines the path where this YAML file resides.
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Device (device): This configuration variable tells the library if the user pretends to
make use of the GPU to train the model. It can take the value of “cuda”, if the GPU is
to be used, or “cpu” if the user pretends to only make use of the CPU. This variable can
affect the training times considerably.

Relevant Model Hyperparamters

When it comes to hyperparameters, despite the configuration object (Config) being
model agnostic, not all hyperparameters are used by every model. This factor can be seen as
a poor implementation choice, since it requires the user to have some prior knowledge of the
models used in order to not “waste” time over-configuring. The following hyperparameters
presented are the ones used at least by one of the used models.

k (hidden size): k represents the hidden size, which in other terms means the de-
sired size of the output embeddings. Normally, and especially in shallower models, larger
embeddings can allow obtaining more expressive embeddings, leading to better link predic-
tion performances, but on the other hand larger embeddings lead to larger training times,
hindering the scalability to larger datasets.

epochs: In machine learning an epoch corresponds to the passing of the entire training
dataset through the model. The more epochs the model trains for, the better it will usually
get. However, this gain in performance is not infinite, the model will reach a plateau in its
training, in which giving it more epochs to train will not result in gains in performance.
In the worst-case scenario, it can even start to overfit to the training dataset.

opt: opt refers to the optimizer algorithm used to find a minimum in the loss function.
This optimizer depends on other hyperparameters such as the learning rate. The choice of
optimization algorithm can have a great impact on the results obtained from training.

batch size: The batch size refers to the number of training examples (in this case
triples) that are passed through the model before updating the internal its weights/pa-
rameters. This batch size can range between two extremes. On the one hand, having the
batch size of one, meaning that the new values of the weights are calculated after each
triple of the training dataset is passed through the model. This will inevitably turn the
process slower. Using this approach will also introduce instability in the convergence of
the loss function into a minimum, given that less information is given on the best direc-
tion it should proceed. However, this instability is not entirely undesirable, since it allows
escaping non-optimal shallow valleys in the loss function. On the other hand, it is possible
to have the batch size equal to the number of training examples, this makes the process
faster, but requires a large amount of memory as a trade-off, it is also more prone to be
stuck in a locally optimal solution. It is a best practice to settle on a middle ground, where
some stability and time can be gained, while being able to find the best loss minimum
possible. As such, the best value can be found with a trial-and-error approach.
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lr: lr refers to learning rate. As mentioned before, the learning rate is a hyperparameter
that controls the process of optimization. It determines the step size taken when moving
towards the minimum. When choosing the learning size, it is important to have into
account the effects it can have on the task of achieving the best minimum possible. Too
high a learning rate can lead to overshooting, meaning that the step taken is so large, that
the minima is passed over. On the other hand, too low a learning rate makes the learning
process slower and can lead to the training process to get stuck on a local minimum.

neg rate: The negative rate dictates the number of corrupt triples generated for each
positive triple. If the negative rate is one, it means that for each positive triple a negative
one is generated.

• The previous hyperparameters are relevant to the following models:
TransE, DistMult, ConvE

sampling: It refers to the strategy to be used when choosing which part of the triple to
corrupt. It can be either “uniform”, in which case the probability of corrupting either the
head or tail of the triple is 50%. Or it can be “bern” in which case a Bernoulli sampling
strategy is adopted. Exceptionally it can take the value of “adversarial negative sampling”
when dealing with the RotatE algorithm, that is a sampling method proposed by the
authors of that model, and which they argue boosts the model efficiency.

• The previous hyperparametes is relevant to the following models:
TransE, DistMult

margin: This parameter is used on models implemented using a margin based loss
function, in this case TransE and RotatE. It represents the distance that corrupt the triple
should have between the projection of the head embedding given a relation and the tail
embedding. The higher the value, the further away they are from each other.

l1 flag: If the flag is “true”, L1 norm (also known as Manhattan distance) is used when
calculating the distance between h + r and t in TransE; if “false”, L2 norm (Euclidean
distance) is used instead. Figure 3.9 shows the intuition behind both of these strategies.

• The previous hyperparameters are relevant to the following model:
TransE

lmbda: The lambda parameter is the value that controls the level of regularization
applied to some models.

• The previous hyperparameter is relevant to the following model:
DistMult
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Figure 3.9: L1 vs L2 norm

hidden size 1: As mentioned previously, ConvE reshapes and concatenates the head
and relation embedding to obtain a matrix to pass as input to the convolutional layer.
The hidden size 1 influences this reshape. Giving a more concrete example, in case that
the embeddings of both the head and relation are vectors with size 1× 100 (k=100), and
considering a hidden size 1 of 10, a matrix of shape (1 ∗ hidden size 1) × ( 100

hidden size 1
)

will be the input of the convolutional layer. As such, it is imperial for the hidden size 1

to be a divisor of k, or it will create problems with the shape of the input matrix.

input dropout, feature map dropout and hidden dropout: This set of param-
eters defines the probability of dropout in different stages of the network. Dropout is a
common regularization technique used on neural networks to prevent overfitting. The main
idea behind dropout is that by randomly dropping units of the network, this is more prone
to generalize [54]. In the case of ConvE the authors propose the use of dropout at the
input matrix level (dropping some units of the matrix), at the feature map level (dropping
some of the 32 feature maps) and at the fully connected hidden layer level (dropping some
neurons).

label smoothing: Label smoothing is a regularization technique used in multi-class
neural networks to avoid overconfidence (meaning the predictions are consistently higher
than the real accuracy).

• The previous hyperparameters are relevant to the following model:
ConvE

As mentioned before, a practical feature made available by the library is the ability to
store configurations of various models, for various datasets in a YAML file and load the
model configuration programmatically from those files. An example of a TransE configura-
tion YAML file for the FB15K (freebase15k) and WN18 (wordnet18) datasets is presented
below:
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1 # TransE.yaml

2 model_name: "TransE"

3 datasets:

4 - dataset: "wordnet18"

5 parameters:

6 learning_rate: 0.01

7 l1_flag: True

8 hidden_size: 20

9 batch_size: 128

10 epochs: 1000

11 margin: 2.00

12 optimizer: "sgd"

13 sampling: "uniform"

14 neg_rate: 1

15

16 - dataset: "freebase15k"

17 parameters:

18 learning_rate: 0.01

19 l1_flag: True

20 hidden_size: 50

21 batch_size: 128

22 epochs: 1000

23 margin: 1.00

24 optimizer: "sgd"

25 sampling: "bern"

26 neg_rate: 1

Running the trainer

To summarize, in order to train a model with pykg2vec, first the configuration has to be
prepared and then passed to the model. The library offers an Importer object, that given
an algorithm name, returns the necessary configuration and model class objects. It also
makes available an argument parser that given a set of arguments generates the necessary
objects to pass to the configuration object. Finally, it is only necessary to build the trainer
with the model and configuration objects and start training.

The complete process can be done with the following code below:

1 from pykg2vec.common import Importer, KGEArgParser

2 from pykg2vec.utils.trainer import Trainer

3

4 #Define arguments

5 args = KGEArgParser().get_args(['-mn', <model_name>, '-ds',

6 <dataset_name>, "-dsp", <dataset_path>,"-tn" ,0 ,"-device", "cuda"])

7 #OR

8 #args = KGEArgParser().get_args(sys.argv[1:])

9

10

11 #Obtain config and model objects
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12 c_def, m_def = Importer().import_model_config(args.model_name.lower())

13 config = c_def(args)

14 model = m_def(**config.__dict__)

15

16 #Build and start training

17 trainer = Trainer(model, config)

18 trainer.build_model()

19 trainer.train_model()

3.2.5 Hyperparameter optimization

In order to get the most out of the chosen model, it is necessary to find a set of
hyperparameters that maximize its performance. A common practice to accomplish this
goal is to iteratively test out different sets of hyperparameters and, at the end, choose the
set that gives the best performance.

The most simple way of doing this is using the Grid Search method. This consists
of creating a list of possible values for each hyperparameter and testing all the possible
combinations of those values. However, this method can be very costly in terms of time
since the number of possible combinations can grow exponentially. For example, given a
set of 6 hyperparameters, if a user defines 3 possible values for each of them, that would
represent a total of 729 (36) possible combinations. In order to counter such an effect, a
Random Search method can be applied to reduce the number of combinations tested. This
method randomly picks from the possible values for the different hyperparameters to create
a defined number of sets to test. While it is possible this method may miss the optimal
combination of hyperparametets when compared Grid Search, it has been proven that for
a large number of combinations this method can find good models within a fraction of the
time of Grid Search [52]. Pykg2vec however provides an even more sophisticated method
of searching for the optimal model, Bayesian Optimization. In contrast to the previous
methodologies, it is based on probabilistic models in order to try to reduce the number of
calls to the training process.

It makes use of a surrogate model [55], which is a probability model tries to mimic
the objective function (the training and validation process) based on prior calls to it. The
main advantage is that the surrogate function is computationally cheaper than the true
objective function. As such, it is possible to more efficiently evaluate larger search spaces
and within smaller amounts of time. This process can be summarized in the following
steps:

1. Generate initial surrogate model

2. Find the combination of hyperparameter that best perform on the surrogate model

3. Test this set of hyperparameters on the objective function

4. Update surrogate model taking in consideration the metrics obtained
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5. Repeat from steps 2-4 until the number of predefined test steps is achieved

As mentioned before, pykg2vec uses this method, more concretely the Tree-structured
Parzen Estimator (TPE) variation, which has a specific surrogate model. Internally the
library makes use of the implementation provided by the hyperparameter optimization
library hyperopt [56]. The optimization tools provided by pykg2vec can be found under
the BaysOptimizer class.

The initialization of this class requires a set of arguments, as for the Trainer class. The
arguments that are needed for the Trainer class, with the exception of the hyperparameter
file path, are also required for the BaysOptimizer, since this class needs to instantiate a
Trainer object. Furthermore, an additional set of arguments can be configured.

Additional arguments used in BaysOptimizer

Maximum number of trials (mt): Represents the maximum number of tests per-
formed on the objective function before returning the best set of hyperparameters found.

Search space file (ssf): The path to a YAML file containing the possible values of
each hyperparameter of the model to be optimized. Those values can be in the form of a
range, in which case the Bayesian algorithm picks a value within that range according to
a defined distribution (for example, normal or log-normal). Those values can also be a list
of “choices” instead of a range, and in this case the value picked is a random value from
this list of options. An example is shown below.

1 model_name: "TransE"

2 dataset: "freebase15k"

3 search_space:

4 learning_rate:

5 min: 0.00001

6 max: 0.1

7 l1_flag:

8 - True

9 - False

10 hidden_size:

11 min: 8

12 max: 256

13 batch_size:

14 min: 8

15 max: 4096

16 margin:

17 min: 0.0

18 max: 10.0

19 optimizer:

20 - "adam"

21 - "sgd"

22 - "rms"

23 epochs:

24 - 100
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Running the optimizer

Given the arguments, it is possible to create the BayesianOptimizer object to start the
optimization process. This can be easily done by calling the optimize() method shown
in the code snippet below:

1 from pykg2vec.common import KGEArgParser

2 from pykg2vec.utils.bayesian_optimizer import BaysOptimizer

3

4 #Define the arguments

5 args = KGEArgParser().get_args(['-mn', <model_name>,

6 '-ds', <dataset_name>,"-dsp",<dataset_path> ,

7 "-ssf", <search space file path>, "-mt", "100","-tn",0,"-device", "cuda"])

8 #OR

9 #args = KGEArgParser().get_args(sys.argv[1:])

10

11 #Create Optimizer object

12 bays_opt = BaysOptimizer(args=args)

13

14 #Start optimization

15 bays_opt.optimize()

16

17 #Obtain the best hyperparameters

18 best = bays_opt.return_best()

However, in this work the optimize() method as well as the methods involved in the
optimization function called by it, get loss() (wrapper that configures the “Trainer”
object) and most notably tune model() (mentioned in the “Training” subsection ) were
not used, given that their implementations did not align with the practices followed in this
work. The main problem found in the implementation was the fact that the authors of
pykg2vec used the training loss as the optimization objective passed to the Bayesian opti-
mizer, while such metric would be able to identify sets of hyperparameters that presented
the apparent best performance, it is not a good practice to do so. The main reason behind
that is the fact that training loss is blind to the model generalization, meaning that it does
not factor the possibility of the model overfitting to the training data. While this can be
a lesser problem in some shallow models such as TransE, deeper models like ConvE tend
to easily overfit, especially with small datasets. As such, new methods were implemented
to substitute the existing ones (optimize mrr(), get imrr() and tune model mrr()).
The main point of difference being the use of the validation filtered mean reciprocal as the
metric to optimize instead of the training loss. The choice to use a validation metric has
the purpose of helping prevent the optimizer from choosing sets of hyperparameters that
lead to overfitting.

Taking advantage of the fact that the method was being re-implemented, a visualization
tool based on Tensorboard that registers information about the results of each run of the
optimizer was included. This tool has the goal of helping researchers figure out the impact
of the different hyperparameters on the performance of the model so that they can adjust
the searching space accordingly (Figure 3.10).
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(a) Parallel coordinates view of the hyperparameters in relation to the validation fMRR

(b) Scatter plot view of the hyperparameters in relation to the validation fMRR

Figure 3.10: Tensorboard tool for visualizing effects of different sets of hyperparameters
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3.2.6 Testing and Metrics

As mentioned in the “Trainer” subsection, the train model() method, used as the
final training when the hyperparameters have already been chosen, performs a test using
the test set. This test set is not seen by the model during training, and as such is a good
representation of the actual performance of the model.

In the knowledge graph embedding literature, the measuring of performance of link
prediction models is usually made based on three categories of metrics: mean rank, mean
reciprocal rank and hits@X. All of these metrics are based on ranking. During the testing
phase, each test triple is passed incomplete to the model by hiding one of the entities of
the triple at a time, < h, r, ? > in the case of tail prediction and <?, r, t > in the case
of head prediction. The model then returns a ranking of entities (with size equal to the
number of entities existing on the original graph), built based on the level of confidence
the model thinks said entity fits into the incomplete triple. The ideal scenario is for the
target entity to be the prediction with the higher score (higher rank). However, there are
two variants when it comes to computing the rank of the target, given the existence of
other valid predictions fro which the model attributed a higher confidence level: raw and
filtered.

Raw vs Filtered Ranking

To better understand the difference between these two scenarios, the following example
prediction will be used:

• Test Triple: <University of Aveiro, located in, Aveiro>

• Results of head prediction (<?,located in, Aveiro>)

1. <Glicı́nias, located in, Aveiro>

2. <Belém Tower, located in, Aveiro>

3. <University of Aveiro, located in, Aveiro>

Raw Ranking With this type of ranking, the ranks are attributed as is, which means
that valid predictions that score better than the target one still contribute to lower the
ranking of the target. Looking at the example prediction proposed above, the “University
of Aveiro” head prediction would be attributed a rank of 3 (third place) despite the fact
that the first prediction made by the model is in fact true (being true implies being present
in the original dataset before splitting).

Filtered Ranking On the other hand, the filtered ranking strategy, would attribute
rank 2 (second) to the “University of Aveiro” head prediction, since in this strategy only
the incorrect predictions (not present on the dataset) are used to lower the ranking of the
target prediction. It is common in the literature to focus on this type of ranking instead
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of the raw one, since this way the model is not being penalized for making other correct
predictions.
Given these two ranking strategies, all the metrics used will have their raw and filtered
counterpart.

Mean Rank (MR)

Mean rank as the name suggests is an indicative of the average rank in which the
target predictions are placed by the model. Given a list containing the ranking of all
the predictions made by the model on the testing data R, the mean rank is obtained as
following:

MR =
1

|R|
∑
r∈R

r (3.3)

A lower MR is correlated with a better model at predicting links. This metric is however
unreliable given it is sensitive to outliers (a bad prediction that ranks the target in last
place drastically increases the value of MR). As such, Mean Reciprocal Rank (MRR) is
more commonly used as a more reliable alternative.

Mean Reciprocal Rank (MRR)

As mentioned above the MRR metric is a more stable variant of MR, the main difference
is that it uses the inverse of the rank instead of the actual rank, which makes it more
resilient to outliers.

MRR =
1

|R|
∑
r∈R

1

r
(3.4)

Its values vary from 0 to 1, and values closer to 1 indicate a better model at predicting
missing links.

Hits@X

The hits metric gives the ratio of test predictions where the rank of the target was
equal or lower than the X threshold. It is common to see X taking the values of 1,3,5 or
10.

Hits@X =
r 6 X

|R|
, r ∈ R (3.5)

3.3 Limitations of the methodology used

As mentioned in the technologies section, the pykg2vec library has its own share of
shortcomings, most notably the increased training time compared to the other options. In
terms of the training methodology adopted, the main shortcomings are attached with time
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constraints that such iterative methods bring. Despite the Bayesian optimizer being one of
the most time efficient hyperparameter optimization strategies, finer searches still involve
human interaction in order to verify that the training process occurs as expected, and alter
the search space accordingly in order to obtain the best possible models. In some bigger
datasets this process can prove to be time-consuming.
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Chapter 4

Experiments and Results

Given the definition of the methodology to adopt, a sequence of experiments were
executed in order to test the initial hypothesis that link prediction based on multi-relational
graph embedding could be a positive asset when dealing with different biomedical datasets.
In total, three experiments were put in place. The first of them was done over the semantic
network of the “Unified medical Language System”(UMLS) [57], while the second and third
experiments were done on different variations of the “Comprehensive Antibiotic Resistance
Database”’s (CARD) “Antibiotic Resistance Ontology” (ARO)[58].

4.1 Experimental playground

The models used in the experimental setup (TransE, DistMult and ConvE) are com-
putationally costly models. As such, it was necessary to have an environment in which
such models could be run under an acceptable time frame. Pykg2vec allows for the use
of a graphical processing unit (GPU) in order to drastically decrease the training times
of the models it makes available. These gains on performance are however tied to the
capabilities of the GPU. For this work, Google’s Colaboratory tool was used. This tool,
most commonly referred to as Google Colab is a free cloud service hosted on Google servers
that allows the user to run “python notebooks”, and to interact with the underlying Linux
machine. The most notable feature of this tool that led to its utilization was the fact that
it provides a 12GB NVIDIA Tesla K80 GPU, which far outperforms the other systems that
were available for this research. The caveat, is that it can lock running times depending
on the usage frequency which influenced some of the decisions made on each experiment.

4.2 Experiment One: UMLS’ Semantic Network

4.2.1 Dataset

The Unified Medical Language System (UMLS) [57], is a well established compendium
of multiple biomedical vocabularies. Its main selling point is the provision of a uniform
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and seamless mapping between terms from different sources, which allows for an easier
interoperability between clinical coding systems.

The UMLS is composed of three main components:

• Metathesaurus: The core of the tool, which contains said collection of terms from
different biomedical vocabularies mentioned above as well as their relationships.

• SPECIALIST Lexicon: A lexicon of English terms as well as specialized biomed-
ical terms present in the Metathesaurus. It includes syntactic, orthographic, and
morphological information about the terms.

• Semantic Network: A network of the categories of the terms in UMLS, and the
relations between them.

The semantic network of UMLS was chosen as the target dataset for this first experi-
ment. This network was not only chosen given the fact that it is easily accessible but also
because other works in the field of knowledge graph link prediction use this dataset as a
baseline. This is relevant given that it allows for the comparison of the chosen models with
other link prediction methods, based on graph embeddings or not. Another benefit of such
fact is that it can serve as validation for the chosen methodology, most prominently the
hyperparameter search approach taken, as well as validation for pykg2vec’s implementation
of these same algorithms, since other works used report their obtained performance using
their implementation of some of these models ([59], [26]).

The pykg2vec library offers access to this dataset out of the box. The characteristics
of the dataset are the following:

• Number of entities: 135

• Number of relation types: 46

• Total number of triples: 6529

• Number of triples on the training set: 5216

• Number of triples on the validation set: 661

• Number of triples on the test set: 652

4.2.2 Hyperparameter search and training of the final model

The first step to begin the experiment was to explore the dataset and understand
how the tweaking of the different hyperparameters of each model affected the learning
process. For such a task the Tensorboard tools added to the base library were important
assets, as they allowed to identify models where the decrease in the training loss function
corresponded to gains in the link prediction capabilities of the model on a validation set,
as well as identifying models that tended to overfit. Given a good understanding of the
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adjustable hyperparameters in relation to the performance on the dataset, a search space
of hyperparameters that surrounded such values was created for each model in order to
start the Bayesian optimizer process (each search process ran for 50 iterations). After the
searching process finished, a set of hyperparameters was found for each model (Table 4.1),
and as such the training process started. For the training of the final models, each of the
models was given a thousand epochs to train with validation steps occurring in intervals
of ten epochs. As mentioned before, these validation steps allow the training method to
understand if performance is being lost and if so, stop the training process early, which
made it so that not all the models ran for the initial defined thousand epochs. Figure 4.1
presents the validation fMRR and training loss of the final models.

TransE DistMult ConvE

Batch Size 32 25 16

Embedding Size 183 169 100

Optimizer ADAM RMS RMS

Learning Rate 0.005372 0.001120 0.001047

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 6.057259 − −
Regularization (Lambda) − 0.000186 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.2

Table 4.1: Hyperparameters used in the last version of each model for the UMLS dataset

Timings

The Tensorboard tool introduced in the train model() allowed to easily log the train-
ing time of each model. However, as mentioned before not all the models trained for the
same amount of epochs due to the early stopping mechanism in place, as such on Table
4.2 are registered not only the total training times in seconds of each model but also the
time per epoch ( (total train)

number of training epochs
). Despite providing this relative metric, the timings

obtained should not be used as an accurate comparison measure between the different
model variants, given that the different sets of hyperparameters used for each of them can
have an impact in the training times, most notably the batch size.

Testing Metrics

The final trained models were tested against a testing set which the models had never
seen before as described in the proposed methodology. Table ?? is a compendium of the
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Figure 4.1: UMLS’s training Loss and validation fMRR during the training process for the
different models

TransE DistMult ConvE
Total Train

Time
Time

per epoch
Total Train

Time
Time

per epoch
Total Train

Time
Time

per epoch
763 0.76 42 0.6 1412 2.88

Table 4.2: Total training time and training time per epoch of the models on the UMLS
dataset in seconds
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values of the metrics obtained in the testing phase. Both the raw and filtered variants of
each metric are also reported, as well as the reported values of other works using their own
implementations of the models on the dataset.

Model Work
MR MRR

Hits
@1 @3 @5 @10

Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt.

Transe
SoA[59] − 1.84 − − − − − − − − − 0.99

our 14.15 2.15 0.18 0.75 0.04 0.57 0.16 0.92 0.29 0.96 0.56 0.98

DistMult
SoA[59] − 5.52 − − − − − − − − − 0.85

our 21.89 6.2 0.12 0.65 0.02 0.56 0.08 0.7 0.14 0.77 0.35 0.84

ConvE
SoA[26] − 1 − 0.94 − 0.92 − 0.96 − − − 0.99

our 19.16 2.96 0.15 0.81 0.04 0.72 0.12 0.88 0.20 0.91 0.38 0.95

Table 4.3: Testing results of the different models on the UMLS dataset

4.2.3 Discussion

An initial look at the results shows a large discrepancy between the raw and filtered
versions of the metrics. This can most likely be attributed to the high connectivity of
this network. With only 135 entities and 6529 relationships, the ratio between number of
relations and entities is 48. Additionally, the number of occurrences of each relation type
in the network is skewed, being verified a higher concentration of some specific types of
relations in comparison with others (Figure 4.2). This can lead to a large number of possible
correct predictions for an incomplete triple (< h, r, ? > or <?, r, t >) where the relation
type has a high number of occurrences, and as such the filtered approach which does not
penalize the ranking of a prediction given other correct predictions, will show much higher
results. In this work, and similarly to other works in the area, a larger importance is put
into the filtered metrics.

A second observation that can be made is the slight underperformance of DistMult
compared to the other two models. The main hypothesis for this occurrence stems from
the scoring function this model employs. The score of each triple is given by the bilinear
product between the embeddings of all elements of the triple (hT diag(r) t). This operation
is commutative, and as such will score triple < h, r, t > the same as < t, r, h > which is
not always true in directed graphs.

Overall, this experiment allowed the validation of both the implementations of the
pykg2vec library in use as well as the pipeline defined in order to find good models. This
is corroborated by the fact that the obtained results are relatively close to ones reported
on other works in the area, with ConvE being the only one that presented some underper-
formance relative to the state of the art on some of the metrics (Hits@1 and MRR).
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Figure 4.2: Distribution of relation types on the UMLS dataset

4.3 Experiment Two: Comprehensive Antibiotic Re-

sistance Database

4.3.1 Dataset

The main objective of the second experiment was to test the use of link prediction
capabilities of knowledge graph embedding models, on a general network that fell under
the biomedicine scope and that was not already being used by other works in the area.
The main idea behind such a decision was to test if any kind of network could benefit from
these types of methods, without the need for the user to do any kind of data treatment.

The Comprehensive Antibiotic Resistance Database (CARD) is a project run by labo-
ratories belonging to McMaster University. It integrates data from different fields such as
molecular biology and biochemistry in order to provide a standardized and central database
of antimicrobial resistance (AMR) sequences and mutations. To provide such standardiza-
tion, all the data in the database follows a set of controlled vocabularies (ontologies), the
main one being the “Antibiotic Resistance Ontology” (ARO), which was used as the data
set for this experiment. This ontology comprehends entities such as antibiotic molecules,
resistance genes, mechanisms of resistance, as well as entities that encode higher level con-
cepts. These entities are connected by a set of relations that fall under one of the following
eleven relation types:
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• is a: A hierarchical relation type, that indicates that entity A is a “subclass” of
entity B;

• part of: Relation type that shows composition. Indicates that entity A is a com-
ponent that constitutes class B;

• has part: Is the inverse of the part of. It indicates that class A has a component
B;

• participates in: Relation that indicates that entity A is involved in process B;

• regulates: Relation that indicates a regulatory role that entity A has in relation
to entity B;

• derives from: A type of relation between class A and B where A is a derivation
of B;

• evolutionary variant of: A relation where gene A is a variant of gene B;

• confers resistance to drug class: Indicates that the presence of entity A confers
resistance to a certain drug class;

• confers resistance to antibiotic: Indicates that the presence of entity A is as-
sociated with the conferring of resistance to a specific antibiotic;

• targeted by: A relation where molecule A is the target of drug class B;

• targeted by antibiotic: A relation where molecule A is the target of a specific
antibiotic B.

Additionally to having a native network structure, which makes it suitable for the
context of this work, CARD’s ARO also has other properties that led to it being chosen.
Firstly, the fact that the scope of the dataset is an interesting target for link prediction
tasks, especially in the context of drug repositioning. Secondly, the fact that at the time of
writing no other work has been found that performs link prediction over the ARO ontology
network, making it a good dataset to experiment the hypothesis of these methods being
applicable to any sort of network in the biomedical field.

The ARO network is provided in the official website of the project1. The dataset is
made available in numerous ontology representation formats. The “Open Biological and
Biomedical Ontologies” (OBO) format was the one chosen as the starting point for the
process of transforming the dataset into a format that the pykg2vec library could ingest.
The first step taken was to translate this OBO format file into a graph like structure,
which was done with the help of the open-source python library obonet2. With some
scripting this structure was then loaded into a Neo4J database instance in order to allow
the visualization of the dataset. Figure 4.3 shows an overview of the entire network.

1https://card.mcmaster.ca/download
2https://pypi.org/project/obonet/
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Figure 4.3: Overview of the Original CARD Network

After the data was explored, the training, validation and test files required by the
pykg2vec library needed to be created. The first step was to obtain a list with all the
triples using the following Cypher query:

1 MATCH (n)-[r]->(m)

2 RETURN n.ARO_ID as h, Type(r) as r, m.ARO_ID as t

Given this list it was possible to generate the aforementioned training, testing and
validation sets using a simple holdout method. However, in the scope of this work a
different approach was taken in the case of the splitting process in order to test a variable
that could impact performance of these methods. This variable was the number of unique
entities in the training set. The reason behind testing such variables stems from a problem
commonly found in recommender systems literature, the “Cold start problem”. In the
case of recommender systems, it refers to the concern of a system not being able to draw
information for entities (users or items) which it has not gathered sufficient information
from. Given that the models used in this work attribute an embedding to each entity of
the network, which are then refined during the training process based on the triples they
appear on, these are prone to face similar problems. An extreme case scenario would be
the testing and/or validation set having a large number of triples containing entities not
seen in the training set. This would likely lead to underperformance comparatively to a
more balanced set. In order to understand if this variable could affect the performance of

48



Figure 4.4: Leave-one-out 5 fold cross validation split strategy

the models on this particular dataset, an extra layer was added to the splitting process.
Firstly the dataset was split using a holdout method (80% train, 10% validation and 10%
test) in a way that maximized the number of unique entities on the triples of the training
set (“ideal” split), by iteratively testing a large number of random splits and choosing the
best one. Next, a set of other five splits were generated where this maximization process
was not performed. The generation of these five splits followed the strategy used in “leave-
one-out cross-validation”, with 80% of the total dataset for training and the other 20% to
divide between validation and testing (10%+10%) as seen in Figure 4.4.

Both the “ideal split” and the five splits from cross validation ended up with the
following characteristics:

• Number of entities: 4550

• Number of relation types: 11

• Total Number of triples: 8550

• Number of triples on the training set: 6840

• Number of triples on the validation set: 855

• Number of triples on the test set: 855

Given this set of splits it was possible to compare the performance of the models on
the “ideal” split against the average performance on the other five “random” splits.

4.3.2 Hyperparameter search and training of the final model

Similar to what was done for the UMLS experiment, a series of manual experiments
were made in order to understand the impact of different hyperparameters on the perfor-
mance of the model. Afterwards, a search space was produced for each of the types of
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model used. This search space was then used to conduct a search for a good performing
set of hyperparameters on each of the splits generated (Table 4.4 presents the best hyper-
parameters for the “ideal” split and in “Appendix I” tables for each of the cross validation
splits can be found). Finally, using the set of hyperparameters found for the different mod-
els on each of the splits, a final version of each model was trained. Figure 4.5 presents the
evolution of the training loss and validation fMRR of each of the models on the different
splits.

TransE DistMult ConvE

Batch Size 23 105 16

Embedding Size 82 116 160

Optimizer RMS ADAM RMS

Learning Rate 0.017058 0.002292 0.001109

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.752415 − −
Regularization (Lambda) − 0.0006860 −
Reshape Divisor − − 20

Input Dropout − − 0.3

Feature Map Dropout − − 0.3

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.2

Table 4.4: Best hyperparameters found for the “ideal” split of the original CARD’s ARO
dataset

Timings

Regarding timing measurements, the total train time as well as the training time per
epoch were registered for every model on each of the splits (Table 4.5). Additionally, the
table also presents the average train time and time per epoch across the different splits.

Testing Metrics

With the final versions of the models obtained, each of them was tested against their
corresponding testing set. Table 4.6 shows the results obtained for the different models
applied on each of the splits.

4.3.3 Discussion

Firstly, it is important to mention that in order to try to obtain better results, the
number of search iterations was increased for the TransE and DistMult models (100 instead
of the 50 used on the UMLS dataset). It was not possible to do the same for the ConvE

50



Figure 4.5: Training loss and validation fMRR of the different splits along the epochs on
the original ARO dataset
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TransE DistMult ConvE

Total Train
Time

Time
per epoch

Total Train
Time

Time
per epoch

Total Train
Time

Time
per epoch

Ideal Split 1484 1.48 421 0.51 216 4.32

CV Split 1 150 1.07 683 0.68 105 2.63

CV Split 2 841 0.84 590 0.75 256 5.12

CV Split 3 470 1.88 136 1.13 157 2.62

CV Split 4 1846 1.85 1600 1.6 152 2.17

CV Split 5 744 2.48 615 0.615 178 4.45

Mean 922.5 1.6 674.17 0.88 177.33 3.55

Table 4.5: Total training time and train time per epoch metrics of the different models for
the original ARO dataset. All the values presented are in seconds

Type Split
MR MRR

Hits
@1 @3 @5 @10

Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt.

TransE
Best 518.61 491.28 0.14 0.29 0.07 0.23 0.15 0.31 0.19 0.35 0.28 0.4

CV5 550.95 523.02 0.14 0.28 0.07 0.22 0.15 0.31 0.21 0.35 0.29 0.4

DistMult
Best 896 867.09 0.1 0.25 0.04 0.2 0.1 0.26 0.14 0.29 0.2 0.33

CV5 971.18 942.11 0.1 0.24 0.05 0.19 0.11 0.26 0.15 0.29 0.22 0.33

ConvE
Best 1139.88 1110.75 0.09 0.2 0.04 0.15 0.1 0.23 0.14 0.26 0.19 0.3

CV5 842 812.24 0.11 0.24 0.05 0.18 0.12 0.26 0.17 0.3 0.24 0.35

Table 4.6: Testing results of the different models on the original CARD’s ARO dataset

52



given its higher training time, that led Google’s Colab platform to terminate the search
process before the search process finished. However, it is also to note that the increase in
search iterations did not always find better models, and when it did, this only outperformed
the ones found using 50 iterations by a small amount.

Based on the obtained results, it appears that there is no clear advantage in trying
to create a split that maximizes the numbers of unique entities versus using a random
split. Upon this observation a closer look was taken at the splits and it was verified that
the difference in number of unique entities between the “ideal” split and the “worst” of
the cross validation splits is only 93 entities (4085 − 3992). Despite that, it could still
be argued that the five random splits were outliers and that the typical split could have
an even lower number of unique entities in the training set. To verify this hypothesis, a
hundred thousand splits were generated and the average number of unique entities was
obtained. The results showed that on average each split has 4014 unique entities, with
the lowest value obtained being 3943. With this information it is possible to confirm that
the cross validation splits were not outliers and are a good representation of the average
random split.

In terms of performance and comparing it to the one obtained in the UMLS dataset,
a large difference can be observed. While there are multiple factors that can lead to
such results, some of which are inherent to the domain the datasets represent, a few
hypotheses for this underperformance can be proposed. The first hypothesis is based
on the connectivity of the datasets. While the UMLS dataset is highly connected, with
an average of 48 relations per entity, CARD’s ARO dataset only has approximately 2
relations per entity. This sparsity makes it so that each entity embedding will not be as
“refined” comparatively to more connected datasets. The second hypothesis is related to
the unbalance of the dataset relations. Both UMLS and the ARO dataset are hierarchical
networks and as such their entities have a large number of hierarchical relations (“isa”
relations). However, this unbalance is even higher in the ARO network, with 4731 relations
out of the 8550 total triples being is a relations which in conjunction with the sparse nature
of the network seems to lead to a bad performance.

4.4 Experiment Three: Altered Comprehensive An-

tibiotic Resistance Database

Given the potential problems mentioned in the previous experiment, namely the large
prominence of hierarchical relations (is a relations) as well as the sparsity of the dataset,
a variation of the original dataset was generated in order to try and address these issues.
This variation prunes the dataset from some of the hierarchical entities (entities that only
are associated with others relations by is a relations), while also adding some new relations
derived from the already existing knowledge in the dataset, and from extra data available in
the CARD’s official website which is not present in the current downloadable dataset. The
objective of these changes is to understand if addressing some of the hypothesized problems
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with the previous dataset could translate into better link prediction performances. In
principle these changes do not alter the inherent validity/truth of the dataset, since most
of the changes made are deletions of existing relations and entities, and the only added
new relations are extracted from official sources.

4.4.1 Dataset

The main tool used to execute such restructuring was the Neo4J Browser tool which
allowed to query specific parts of the dataset in order to understand its structure, and
allowed to easily transform it.

As mentioned before, ARO has a hierarchical nature and as such it has a root node
(“process or component of antibiotic biology or chemistry”) from which all the other nodes
derive. Connected to this node there exist seven other nodes that are the roots for the
seven main branches of the graph, each one containing a specific type of data under it.
The seven nodes are the following:

• antibiotic molecule: Parent node for all the entities relative to the chemicals of
the network (antibiotics);

• resistance-modifying agents: Parent node for adjuvants and other potentiators
of antibiotic effectiveness nodes;

• mechanism of antibiotic resistance: Contains the different antibiotic resistance
strategies;

• determinant of antibiotic resistance: Contains the genes, gene products and
other entities that confer antibiotic resistances to certain organisms. Highly con-
nected with the mechanism of antibiotic resistance branch;

• antibiotic target: Parent node for all the entities that are in someway targeted by
an antibiotic or drug class;

• antibiotic biosynthesis: Root for the branch containing the names of different
types of antibiotic biosynthesis;

• component of AMR phenotype terminology: Root node for a collection of
terms related to the AMR field.

Antibiotic molecule, Mechanism of antibiotic resistance and Determinant of

antibiotic resistance, are the three main branches of the dataset containing a big part
of the entities in the dataset [58]. The main source of knowledge about the antibiotic resis-
tance processes comes from the relations between them. Other branches provide additional
entities that can interact with entities in these three main branches in order to provide
extra context and knowledge. However, two of these other branches do not provide useful
information to the context of the problem, given that their entities do not interact with
entities from other branches, as it can be verified by executing the following Cypher query:
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//Get all the 7 types of main "parents" as a collection

match (n)-[:is_a]->({name:"process or component of antibiotic biology or chemistry"})

with collect(n.name) as c

// From this 7 types get the ones whose children have interactions with the children

//of any other of the 6 remaining types

match (k)-[:is_a]->({name:"process or component of antibiotic biology or chemistry"})

match (y)-[*]->(k)

match (m)-[*]->(x)

match (m)-[r]-(y)

where x.name in c and x.name<>k.name

with k,count(distinct r)>0 as cnt

return k.name

//Result:

// -"antibiotic target"

// - "determinant of antibiotic resistance"

// - "antibiotic molecule"

// - "mechanism of antibiotic resistance"

// - "resistance-modifying agents"

As it can be seen, all the branches except antibiotic biosynthesis and component

of AMR phenotype terminology have at least one relation to an entity below another
branch. As such, and given the fact that those branches are mainly composed of is a

relations, they were prime candidates to be removed in order to reduce the concentration
of those specific relations.

After removing those two branches, an effort was made in order to make sense of the
remainder of the dataset, which was done by classifying the most entities in the dataset as
possible. As mentioned before, the CARD’s official website contains extra information not
present in the original dataset, one such information being a recently added classification
of some of the entities of the graph, reported in the 2020 CARD report paper [58]. Those
categories are the following:

• Drug Class: Entities that represent a general class of drugs, that are the parents
to antibiotic entities that share similar chemical structures;

• Antibiotic: Antimicrobial entities;

• Adjuvant: Chemical entities that can be combined with antibiotics in order to
enhance the effectiveness of those;

• AMR Gene Family: Parents to gene entities that share common biochemical func-
tions;

• Resistance Mechanism: Strategy used in order to obtain resistance to antibiotics;
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• Efflux Component and Efflux Regulator: Entities involved in antibiotic efflux
pump processes. Unlike the previous categories, the authors of CARD only attributed
this category to the parent entities from which the real components and regulators
derive from.

Beside the previous categories, one more classification was indirectly derived from the
website, that being the Gene class. Despite the class not being directly mentioned, it was
possible to identify Gene entities by verifying if the website made available their DNA
sequence as well as their protein homolog sequence. Additionally to the classifications
obtained using the website, a couple more entities were classified given their outgoing or
incoming relations. The first of them was the Target class, that was attributed to all enti-
ties that had an outgoing relation of either targeted by or targeted by antibiotic. The
second one being the Antibiotic Mixture class, that was given to nodes under the “antibi-
otic target” branch that had outgoing has part relations to Antibiotics or Adjuvants.
In the context of the domain, antibiotic mixtures are aggregations of different antibiotics
(with the possibility of having some adjuvant) that together target some component of a
bacterial agent. The Regulator class was attributed to any child of the Efflux Regulator

entity that had an outgoing regulates relation. And finally, the classes Efflux Pump and
Efflux Pump Subunit were given to entities under the Efflux Component “sub-branch”.
More concretely the Efflux Pump class was attributed to all entities that derived from one
of the five efflux pump superfamilies [60] (Figure 4.6):

• MFS: Major facilitator superfamily (“ARO:0010002”)

• ATP: ATP-binding cassette superfamily (“ARO:0010001”)

• SMR: Small multidrug resistance superfamily (“ARO:0010003”)

• RND: Resistance-nodulation-cell division superfamily (“ARO:0010004”)

• MATE: Multi antimicrobial extrusion protein superfamily (“ARO:3000112”)

The Efflux Pump Subunit class on the other hand was attributed to all entities that
made part of an Efflux Pump entity.

The next step taken was the addition of the some relations that could be inferred
form the official website, those being the belongs to drug class which connected di-
rectly each Antibiotic entity with its respective Drug Class ignoring possible hierarchi-
cal chains existing in between. Similarly the associated with resistance mechanism

was added in order to connect entities involved in conferring antibiotic resistance, and the
Resistance Mechanism they are involved in.

After all the classifications were attributed, it was then easier to better understand the
dataset and some more pruning was made. In the antibiotic branch, every node that was
not a Drug Class or Antibiotic was removed. Under the determinant of antibiotic

resistance and mechanism of antibiotic resistance branches (which for the most
part share their nodes), the Efflux Component and Efflux Regulator entities where
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Figure 4.6: Efflux pumps from the MATE superfamily

deleted since they were only used as parent nodes for the actual data entities. Also under
this branch every node that was hierarchically above an AMR Gene Family one, and that
did not contain any incoming or outgoing relation besides hierarchical ones was removed.

In terms of relations, the associated with resistance mechanism and
belongs to drug class were added in order to directly connect all Antibiotic entities
with their respective Drug Class and connect all entities involved in providing antibiotic
resistance with their correspondent Resistance Mechanism respectively, information that
was taken from the website. It is to note that cases in which an is a relation already
existed between those nodes it was substituted by these new relations.

At last, after all the transformations, the last step was to eliminate any small “is-
land” sub-graphs that were left. For this operation, Neo4J’s Bloom tool visually separates
all the sub-graphs. Given that all the observed sub-graphs were weakly connected, the
Weakly connected component procedure provided by the Graph Data Science Library

was used to find these nodes and remove them.

CALL gds.wcc.stream("myGraph")

YIELD nodeId, componentId

WITH componentId, collect(gds.util.asNode(nodeId).name) AS libraries

where size(libraries)<4

with apoc.coll.flatten(collect(libraries)) as nodeList

CALL apoc.periodic.iterate(
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Figure 4.7: Visualization of the modified dataset

"Match (n) where n.name in $nodeList return n","detach delete n",

{batch_size:1000,params:{nodeList:nodeList}}) Yield batch, operations

return 1

The graph shown in Figure 4.7 is the end result after all the transformations. It can
be observed that the majority of the entities are either Genes (Red) or Antibiotics (Blue).
Additionally, looking at the count of each type of relation in the dataset, it can be verified
that the number of is a relations was reduced from 4731 to 3306, which attenuates the
skewness mentioned before. Once again it is important to note that despite the number
of transformations done, the “validity” of the data was not compromised. This is assured,
given that these transformations were either the removal of entities, which can lead to the
loss of some data, but does not alter the “truth” of the remainder of the dataset. While
the addition of new relations was only made based on information, present on the official
website.

With this final version of the dataset, this was exported and splitted in the same
way as in “Experiment 2”, meaning that an “ideal” split that maximized the number of
unique entities in the training set, as well as five random splits obtained based on leave-
one-out cross validation strategy were obtained. Each resulting split has the following
characteristics:

• Number of entities: 4229

• Number of relations types: 14
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• Total Number of triples: 11210

• Number of triples on the training set: 8968

• Number of triples on the validation set: 1121

• Number of triples on the test set: 1121

4.4.2 Hyperparameter search and training of the final model

The process used in order to search and train the final versions of each model was the
same used in the previous experiments. That means that there was an initial search for
a range of hyperparameters that seemed to perform well on the dataset. Then given that
range, the search space yaml files were created and the searching processes started. At the
end, given the best hyperparameter sets found by the Bayesian optimizer algorithm, the
final versions of the models were trained. Table 4.7 contains the set of hyperparameters
used to train the different models on the “ideal” split, for tables for the rest of the splits
can be found on “Appendix I”. Figure 4.8 presents the evolution of the metrics of the final
training process of each of the models, where it can be observed that the learning process
of all the models converged (training loss converges), and at the same time the validation
mean reciprocal rank increased.

TransE DistMult ConvE

Batch Size 21 95 55

Embedding Size 87 71 120

Optimizer RMS RMS RMS

Learning Rate 0.002655 0.004570 0.001304

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 7.446822 − −
Regularization (Lambda) − 0.000964 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.3

Hidden Layer Dropout − − 0.3

Label Smoothing − − 0.1

Table 4.7: Best hyperparameters found for the “ideal” split of the altered CARD’s ARO
dataset

Timings

The total training time and training time per epoch of each of the models are presented
on Table 4.8.
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Figure 4.8: Training loss and validation fMRR of the different splits along the epochs on
the altered ARO dataset
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TransE DistMult ConvE

Total Train
Time

Time
per epoch

Total Train
Time

Time
per epoch

Total Train
Time

Time
per epoch

Ideal Split 1362 2.13 410 0.69 506 8.43

CV Split 1 769 0.78 357 1.28 525 8.75

CV Split 2 1403 1.4 1235 1.24 549 8.45

CV Split 3 478 0.66 2884 2.88 497 8.28

CV Split 4 235 0.62 173 0.67 436 10.9

CV Split 5 481 0.79 330 1.5 494 8.23

Mean 788 1.06 898.17 1.38 501.17 8.84

Table 4.8: Total training time and train time per epoch metrics of the different models for
the altered ARO dataset. All the values presented are in seconds

Type Split
MR MRR

Hits
@1 @3 @5 @10

Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt.

TransE
Best 441.46 173.56 0.18 0.36 0.11 0.29 0.2 0.4 0.24 0.46 0.32 0.53

CV5 485.83 222.68 0.19 0.39 0.12 0.32 0.21 0.42 0.25 0.46 0.31 0.51

DistMult
Best 794.95 525.88 0.14 0.22 0.09 0.15 0.15 0.25 0.19 0.3 0.26 0.36

CV5 883.54 597.67 0.12 0.2 0.07 0.14 0.12 0.22 0.16 0.26 0.23 0.31

ConvE
Best 937.9 667.46 0.2 0.29 0.13 0.21 0.24 0.34 0.29 0.39 0.34 0.44

CV5 955.34 679.91 0.18 0.26 0.09 0.18 0.23 0.32 0.27 0.37 0.33 0.42

Table 4.9: Testing results of the different models on the altered CARD’s ARO dataset

Testing Metrics

All the models were tested against their corresponding testing sets obtaining the per-
formance results shown in Table 4.9.

4.4.3 Discussion

Analogously to what was done on “Experiment 2”, the number of search iterations
given to the bayesian optimizer processes of the TransE and DistMult models was increased
from fifty to a hundred in order to push the search for a set of hyperparameters that could
maximize the performance of the models. Once again it was not possible to have the
same increase to the ConvE model given its higher training time in conjunction with the
restrictions imposed by the Colab tool used to run the experiment.

Based on the testing metrics obtained on this experiment, it can be observed that sim-
ilarly to what was happened in the previous experiment, the difference in the number of
unique entities on the training set between the “ideal” split and the cross validation ones
did not have a significant impact. Once again, a look at the dataset shows that by running
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a hundred thousand random splits the worst value for the number of unique entities on the
training set found was 4054 and an average of 4100, whilst on the “ideal” split the number
of unique entities on the training set is 4142, which justifies the similarity in performance
between the splits. Additionally to this observation, looking at the testing results, it ap-
pears that there were some improvements in performance when compared to the original
version. These results are however not a final indicative of the capabilities of these models
applied to this context, since that with more domain knowledge in the area of antibiotic
resistance it would be possible to further curate the graph in order to filter out parts of the
graph that are superfluous, and focus more on the entities that are involved in more inter-
esting relations to perform link prediction , such as confers resistance to antibiotic

and confers resistance to drug class.
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Chapter 5

Conclusion

The main objective proposed by this thesis was the exploration of the use of knowledge
graph embedding methods in order to derive new knowledge from pre-existing biomedical
multi-relational graphs. To that end a series of KGE models were studied and an unified
pipeline was used in place in order to obtain and train models capable of performing
link prediction tasks over a set of biomedical datasets. Based on the results obtained
on the three experiments carried out, it can be concluded that these models can achieve
good results on some biomedical datasets such as the UMLS semantic network, where
for the task of ranking the entities of the graph based on the likelihood of them being
the correct missing part of an incomplete triple (which are obtained from the testing set
triples), the model places the correct within the first ten predictions 98% of the time
(Hits@10). Despite that, this level of performance was not verified across all the datasets,
more concretely when using the models over the antibiotic resistance ontology (ARO)
graph of the “Comprehensive antibiotic resistance” database, the models did not perform
as well. However it was verified in a third experiment that by filtering down this dataset
and making it more connex it was possible to increase the performance obtained. As
such, taking all these experiments into account, the potential of using these methods over
biomedical networks is variable, it is not a “silver-bullet” for each and every situation, but
within certain datasets or in some cases, given certain adjustments to the original graph,
they can be valuable assets for a multitude of problems.

In view of these conclusions, potential users of these models should take into account
the use case in which they are planning to apply the model. Given the fact that the
predictions made by these models are not always true, they should not be used as the
determinant factors in crucial decision making software namely assisted medical decision
making software. However, given a scenario where an expert in the area can review the
predictions made, these models can be helpful in tasks such as the quick generation of hy-
potheses to be tested, for example in drug repurposing or drug adverse reaction contexts.
Additionally, given the fact that only baseline models were used in the scope of the experi-
ments made on this work, it is worth mentioning that the use of more recent models should
be considered, since it is likely that they could present better performance levels. Finally
users interested in using these models should also consider the use of alternative libraries,
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namely OpenKE, if their use case requires the training process to be fast. Otherwise if
their main goal is to explore with different and more recent models Pykg2vec is a better
option.

Future research can expand on the work done on this thesis by exploring strategies that
could better model the hierarchical nature of the datasets used here, and also devise or find
strategies that can reduce the perceived impact of connection sparsity on the performance
of these embedding methods.

Furthermore future works can also explore additional uses for the obtained embeddings,
being it using them on other downstream tasks, such as clustering, or use them to refine pre-
existing feature vectors obtained by some other methods such as text-mining embeddings
or even manually obtained sets of features.

Additionally to the aforementioned objective, the concepts learned during the execution
of this work were compiled and used to develop a python notebook that aims to serve as an
introduction to the use of knowledge graph embeddings for link prediction tasks, providing
a generalized training pipeline that could be used by researchers or other users interested
in applying these models to their own datasets (https://colab.research.google.com/
drive/10CS1n9 wLz0z75jvRDiK1Z3syvWq5met?usp=sharing). This notebook follows the
following structure:

• Installing the pykg2vec library;

• Training a model with a predetermined set of hyperparameters;

• Hyperparameter search;

• Using custom datasets;

• Using trained model to make inferences.
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Appendix I

TransE DistMult ConvE

Batch Size 35 72 36

Embedding Size 54 326 180

Optimizer RMS ADAM RMS

Learning Rate 0.001904 0.002469 0.002017

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 8.450403 − −
Regularization (Lambda) − 0.000788 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.3

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.1

Table 5.1: Best hyperparameters found for the 1st Cross Validation split of the original
CARD’s ARO dataset
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TransE DistMult ConvE

Batch Size 48 42 26

Embedding Size 113 100 140

Optimizer RMS ADAM RMS

Learning Rate 0.034886 0.001664 0.00141

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.3190745 − −
Regularization (Lambda) − 0.00537 −
Reshape Divisor − − 20

Input Dropout − − 0.3

Feature Map Dropout − − 0.3

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.1

Table 5.2: Best hyperparameters found for the 2nd Cross Validation split of the original
CARD’s ARO dataset

TransE DistMult ConvE

Batch Size 17 24 32

Embedding Size 40 297 140

Optimizer RMS RMS RMS

Learning Rate 0.00273 0.001041 0.001584

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 6.957936 − −
Regularization (Lambda) − 0.000512 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.2

Table 5.3: Best hyperparameters found for the 3rd Cross Validation split of the original
CARD’s ARO dataset
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TransE DistMult ConvE

Batch Size 17 14 42

Embedding Size 47 132 180

Optimizer RMS ADAM RMS

Learning Rate 0.003096 0.001016 0.001673

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 7.593912 − −
Regularization (Lambda) − 0.000545 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.2

Table 5.4: Best hyperparameters found for the 4th Cross Validation split of the original
CARD’s ARO dataset

TransE DistMult ConvE

Batch Size 12 123 16

Embedding Size 87 486 120

Optimizer RMS ADAM RMS

Learning Rate 0.012973 0.001226 0.001211

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.897107 − −
Regularization (Lambda) − 0.000533 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.2

Table 5.5: Best hyperparameters found for the 5th Cross Validation split of the original
CARD’s ARO dataset
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TransE DistMult ConvE

Batch Size 88 25 112

Embedding Size 49 102 120

Optimizer ADAM RMS RMS

Learning Rate 0.001169 0.004380 0.002142

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.106215 − −
Regularization (Lambda) − 0.000663 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.3

Hidden Layer Dropout − − 0.3

Label Smoothing − − 0.2

Table 5.6: Best hyperparameters found for the 1st Cross Validation split of the altered
CARD’s ARO dataset

TransE DistMult ConvE

Batch Size 30 41 109

Embedding Size 75 409 200

Optimizer SGD ADAM RMS

Learning Rate 0.0493355 0.001142 0.002659

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.190434 − −
Regularization (Lambda) − 0.000600 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.3

Label Smoothing − − 0.1

Table 5.7: Best hyperparameters found for the 2nd Cross Validation split of the altered
CARD’s ARO dataset
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TransE DistMult ConvE

Batch Size 130 9 76

Embedding Size 69 70 160

Optimizer RMS ADAM RMS

Learning Rate 0.004700 0.005523 0.001670

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.857968 − −
Regularization (Lambda) − 0.001317 −
Reshape Divisor − − 20

Input Dropout − − 0.3

Feature Map Dropout − − 0.3

Hidden Layer Dropout − − 0.3

Label Smoothing − − 0.2

Table 5.8: Best hyperparameters found for the 3rd Cross Validation split of the altered
CARD’s ARO dataset

TransE DistMult ConvE

Batch Size 173 120 18

Embedding Size 73 81 180

Optimizer SGD rms RMS

Learning Rate 0.0314065 0.010802 0.001009

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 9.878712 − −
Regularization (Lambda) − 0.001541 −
Reshape Divisor − − 20

Input Dropout − − 0.3

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.1

Table 5.9: Best hyperparameters found for the 4th Cross Validation split of the altered
CARD’s ARO dataset
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TransE DistMult ConvE

Batch Size 89 22 59

Embedding Size 63 76 100

Optimizer RMS ADAM RMS

Learning Rate 0.001138 0.005391 0.001544

Negative Rate 1 1 0

Normalization Type L1 − −
Margin 8.365610 − −
Regularization (Lambda) − 0.001305 −
Reshape Divisor − − 20

Input Dropout − − 0.2

Feature Map Dropout − − 0.2

Hidden Layer Dropout − − 0.4

Label Smoothing − − 0.1

Table 5.10: Best hyperparameters found for the 5th Cross Validation split of the altered
CARD’s ARO dataset
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