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Resumo A ascensão da estratégia DevOps e a transição de uma economia de produto
para uma economia de serviços conduziu a mudanças significativas no pa-
radigma do ciclo de vida do desenvolvimento de software, entre as quais o
abandono do modelo em cascata em favor de métodos ágeis. Uma vez que
o DevOps é parte integrante de um método ágil, permite-nos monitorizar as
versões actuais, recebendo feedback constante dos clientes, e melhorando
as próximas versões de software. Apesar do seu extraordinário desenvolvi-
mento, o DevOps ainda apresenta limitações relativas à segurança, que ne-
cessita de ser incluída nas pipelines de integração contínua ou implantação
contínua (CI/CD) utilizadas no desenvolvimento de software.
A adopção em massa de serviços na nuvem e software aberto, a ampla di-
fusão de contentores e respectiva orquestração bem como das arquitecturas
de micro-serviços, quebraram assim todos os modelos convencionais de de-
senvolvimento de software. Devido a estas novas tecnologias, a preparação e
expedição de novo software é hoje em dia feita em curtos períodos temporais
e ficando disponível quase instantaneamente a utilizadores em todo o mundo.
Face a estes fatores, a abordagem habitual que adiciona segurança ao final
do ciclo de vida do desenvolvimento de software está a tornar-se obsoleta,
sendo crucial adotar metodologias DevSecOps ou SecDevOps, injetando a
segurança mais cedo nos processos de desenvolvimento de software e impe-
dindo que defeitos ou problemas de segurança fluam para os ambientes de
produção.
O objectivo desta dissertação é reduzir o impacto de vulnerabilidades em
micro-serviços através do exame das respectivas imagens e contentores por
um conjunto flexível e adaptável de ferramentas de análise que funcionam em
pipelines CI/CD dedicadas. Esta abordagem pretende fornecer uma coleção
limpa e segura de micro-serviços para posteriormente serem lançados em
ambientes de produção na nuvem. Para atingir este objectivo, desenvolve-
mos uma solução que permite programar e orquestrar uma bateria de testes.
Existe um formulário onde podemos seleccionar várias ferramentas de aná-
lise de segurança, e a solução executa este conjunto de testes de uma forma
controlada de acordo com as dependências definidas. Para demonstrar a
eficácia da solução, programamos um conjunto de testes para diferentes ce-
nários, definindo as pipelines de análise de segurança para incorporar várias
ferramentas. Finalmente, mostraremos ferramentas de segurança a funcio-
nar localmente, que posteriormente integradas na nossa solução devolvem
os mesmos resultados.





Keywords Application security, Container security, DevSecOps, SecDevOps, Secure
SLDC, CI/CD, Docker, microservices, Kubernetes.

Abstract The rising of the DevOps movement and the transition from a product econ-
omy to a service economy drove significant changes in the software develop-
ment life cycle paradigm, among which the dropping of the waterfall in favor of
agile methods. Since DevOps is itself an agile method, it allows us to moni-
tor current releases, receiving constant feedback from clients, and improving
the next software releases. Despite its extraordinary development, DevOps
still presents limitations concerning security, which needs to be included in the
Continuous Integration or Continuous Deployment pipelines (CI/CD) used in
software development.
The massive adoption of cloud services and open-source software, the widely
spread containers and related orchestration, as well as microservice architec-
tures, broke all conventional models of software development. Due to these
new technologies, packaging and shipping new software is done in short pe-
riods nowadays and becomes almost instantly available to users worldwide.
The usual approach to attach security at the end of the software development
life cycle (SDLC) is now becoming obsolete, thus pushing the adoption of De-
vSecOps or SecDevOps, by injecting security into SDLC processes earlier
and preventing security defects or issues from entering into production.
This dissertation aims to reduce the impact of microservices’ vulnerabilities by
examining the respective images and containers through a flexible and adapt-
able set of analysis tools running in dedicated CI/CD pipelines. This approach
intends to provide a clean and secure collection of microservices for later re-
lease in cloud production environments. To achieve this purpose, we have
developed a solution that allows programming and orchestrating a battery of
tests. There is a form where we can select several security analysis tools, and
the solution performs this set of tests in a controlled way according to the de-
fined dependencies. To demonstrate the solution’s effectiveness, we program
a battery of tests for different scenarios, defining the security analysis pipeline
to incorporate various tools. Finally, we will show security tools working locally,
which subsequently integrated into our solution return the same results.
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chapter 1
Introduction

With the rising of the DevOps movement, the Software Development Life Cycle (SDLC)
is changing from the waterfall model to agile models [14], allowing faster and at

scale delivery of value and adaptation to market needs. New iterative and incremental [2]
development methods benefit organizations by improving their business and increasing the
quality of services delivered to clients. DevOps created or drove the use of new technologies
such as cloud, containers, serverless, and open-source software in general. As cloud services
and open-source software became widely adopted, monolithic applications tend to be replaced
by microservices [16]. There is a tendency to migrate these applications to the cloud, and
larger companies tend to move their applications from large virtual machines to several
containers instead. Microservices’ based applications frequently consist of clusters of hundreds
of containerized services. These container clusters require availability, fault tolerance, and
possibly geographically scattered. With the application’s footprint increasing, container
cluster management’s complexity grows, and a new cloud service model called Containers-as-
a-Service (CaaS) [27] emerges. CaaS providers deliver a container orchestration platform [9]
to integrate and manage containers at scale. These platforms allow multiple provisioning and
deployment options, such as auto-scaling, automated deployment [7] and can operate multiple
containers as one entity for availability, scaling, and networking.

Microservices interact through Application Programming Interfaces (APIs) independent of
the programming language and machine architecture. Therefore, surface exposure is distinct
from the monolithic application’s standard functions or routines, which only interact with other
parts of the same application. In these container environments, microservices introduce new
threat vectors. These can arise from images’ integrity, how registries manage them, the level of
isolation provided by orchestrators, vulnerabilities inside containers, and the operating systems
that host the containers. Implementing microservices and their hosting containers expands the
attack’s surface in different directions, so it is vital to secure these services and correspondent
containers before production for successful conformity and protection. Providing a secure
Microservices Architecture (MSA) requires establishing a secure life cycle of containerized
applications and controlling the interprocess communications of microservices. New best
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2 chapter 1. introduction

practices for MSA security need to be adopted, such as encryption of all communications,
requests’ authentication, well-defined APIs and avoiding secrets inside the source code.

A novel challenge arises for traditional security methods that strive to manage these new
threat vectors and related surroundings. Security operations potentially delay several times
the application deployment in production environments. Furthermore, we may question: How
can organizations ensure applications are trustworthy to release in production? How to follow
security standards, compliance controls, regulations, and company policies without delaying
development?

DevOps (see Figure 1.1) has different stages: plan, create, verify, package, release, configure,
monitor. SDLC is a continuous cycle, applications are released daily or hourly, and fluctuations
in the SDLC increase. Organizations acknowledge that DevOps’ agility and speed bring new
challenges, and securing the DevOps process is vital.

Figure 1.1: DevOps workflow. Image by Kharnagy [10]

With these challenges, an innovative movement called DevSecOps [15] appears. DevSecOps
or SecDevOps [24] is the practice of including application security principles in a typical
DevOps cycle, delivering security best practices earlier in SDLC. Reducing vulnerability
impact in applications running inside containers will provide a clean and safe collection of
microservices launched into production environments. Numerous vulnerability scanning tools
can integrate into DevSecOps, for example, Static Application Security Testing (SAST) or
Dynamic Application Security Testing (DAST) tools.

This thesis will study the integration of Application Security Testing (AST) in software
development pipelines [11] by checking applications, their docker images, and related containers
with Continuous Integration and Continuous Delivery (CI/CD) tools. We concentrate on the
verify phase of the DevSecOps toolchain (see Figure 1.2). Our approach allows teams to apply
various security checks on their CI/CD workflows while following organizations’ policies. The
pipelines will pass or fail, depending on the validation results of the security tools used. This
will allow organizations to apply testing patches or remediation’s during development and
start injecting AST in the CI/CD pipeline.

2



1.1. problems of security within ci/cd pipelines 3

Figure 1.2: DevSecOps toolchain [8]

1.1 Problems of security within CI/CD pipelines

Organizations nowadays use microservices, agile models, and cloud computing [13], releasing
software several times a day. Multidisciplinary teams participate in the software development
of applications deployed and released online, maintaining and applying application security
policies and mechanisms that warrant data privacy and client protection. Therefore, it
reduces risk, protects the brand image by preventing leaks, builds and preserves customer
confidence, and safeguards the integrity of the organizations’ data and their customers’
privacy. However, security is usually verified by internal security teams or external audits
from third-party providers at the end of the SDLC, leading to delays in application release
and reducing the frequency with which clients receive new releases. Companies involved in
the fast-growing sector of online shopping already felt the need for security. For example, the
payment card industry data security standard ensures that all entities that store, process, or
transmit cardholder data maintain payment security [19]. Maintaining and applying security in
applications will reduce risk, protect the brand image by preventing leaks, build and preserve
customer confidence, and safeguard the integrity of organizations’ data and the privacy of
their customers.

Moreover, another problem arises if security checks are not applied in all versions of the
applications that are released. If there are vulnerabilities in an application, this factor could
lead to exposure of clients’ private data, service unavailability, direct or indirect financial
damage, and consequently a decrease in customer credibility. We could say that every team
needs to address security, that it is everyone’s job, and that security awareness workshops
improve people’s behavior. Still, such measures to avoid security issues are not enough.
When it is everyone’s job, very often, no one will take ownership of the security issues and
related changes. Another important aspect is the error-prone human factor. One appropriate

3



4 chapter 1. introduction

solution is to apply security checks and validation as part of the software life cycle to improve
application release speed. These security checks, validations, and tests need to be part of
software pipelines to achieve it.

Alongside with embedded application Security in CI/CD pipelines in the SDLC, an effective
security training could benefit organizations even more than just general security awareness
workshops. Security training is a capability, a preventive control. Because of their knowledge
and skills, developers are the right people for the job: Developers are familiar with the software
and development teams of their organization. They have an in-depth understanding of the
organization’s technical issues and challenges. That is why hiring these developers as security
champions [25] are advisable.

1.2 Research goals

Our work’s main objective is to create a system for incorporating arbitrary safety tests
in CI/CD pipelines. This work’s motivation is reducing the occurrence of vulnerabilities in
containerized application services launched in cloud production environments. Organizations,
teams, and developers perceive the security risks inherent to new agile and fast software
development practices using DevOps methodologies. Therefore, it is essential to support
them by providing solutions and tools that adopt preventive software development practices.
In this context, the idea of an integration solution appears. This solution will run several
vulnerability analysis tools used in CI/CD pipelines during SDLC or by programmers locally
on their machines. We need a flexible and adaptable solution that selects a set of analysis
tools, runs them in dedicated CI/CD pipelines, and finally collects their results. We have
developed a system that allows programming and orchestrating a battery of security tests.
There is a form where we can select several security analysis tools and according to the defined
dependencies, a set of tests is performed in a controlled way.

Our approach was creating different scenarios with applications in two different contexts.
The two contexts are locally in a Virtual Machine (VM) and inside our solution. We make a
validation with several vulnerability analysis tools and several vulnerable applications. Each
vulnerable application is tested locally in an isolated environment, then inside our solution,
and finally, we compare the results. We use vulnerability analysis tools such as secret detection,
dependency scanning, static and dynamic application security testing for each vulnerable
application for both contexts.

The obtained results demonstrate that inside our solution the analysis tools’ effectiveness
is not compromised. If a tool works in isolation, the same analysis tool will work in our
solution’s environment. We run these tools isolated inside virtual machines and later within
the solution to demonstrate this. The tools’ results remain unchanged whether they run
within our solution or locally in virtual machines. Our solution runs the tools in isolated
containers within a specific CI/CD pipeline that evaluates different security aspects selected
and defined by developers and organizations. We define several scenarios that show that the
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solution allows a controlled execution according to several dependencies. It is possible to
orchestrate that a current test does not pass to a higher test if it fails or allows a particular
test to fail. It is simple to add new tools to a battery of tests, integrating several analysis
tools with different purposes.

1.3 Document structure

This document consists of seven chapters, the first of which is the present introduction.
The following chapters are:

Chapter 2. Context. We discuss the technological context as the background for this work.
Chapter 3. Existing solutions. We present the security initiatives to add security testing

in CI/CD pipelines, and analyze the available open-source and commercial solutions related
to secret detection, static, dynamic analysis and integration solutions. We also approach the
tools chosen for PoC scenarios and critical analysis.

Chapter 4. Architecture. In this chapter we determine the goals, analyze the usage
scenarios and define the requirements to achieve the design of our security solution.

Chapter 5. Implementation. We explain the available choices, the decisions making, and
how we implement the software components for our solution’s Proof of Concept (PoC).

Chapter 6. Evaluation. We present the proof of concept scenarios, analyze if we fulfill the
defined requirements, and summarize our solution’s potentialities and results.

Chapter 7. Conclusion. Finally, we show the final notes about the work developed, issues
raised, and future work possibilities.
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chapter 2
Context

In this chapter we discuss the technological context as the background for this work. The
chapter is divided into four sections: Cloud computing, DevOps, Containers and CI/CD

pipelines.

2.1 Cloud computing

Cloud computing is the on-demand provision of computer power, databases, storage,
applications, and other computer resources via the Internet with charge-per-use. Cloud services
platforms provide fast access to flexible and low-cost computing resources, whether running
image-sharing applications to millions of users or supporting critical business operations [4].

This cloud computing concept, or the internet operating system as referenced by some
authors such as Tim O’Reilly [17], provides access to infrastructure on-demand and at scale.
Cloud computing started in 2006, when Amazon released Amazon Web Services (AWS). The
architectural need dated to 2000, when Amazon’s new business website service fought to become
highly available and effective at scale [20] and therefore needed to increase computing resources
and improve their strategies related to provisioning services automatically and expeditiously
mainly because of Black Friday, Christmas, New Year and other special occasions. However,
during the rest of the year, all infrastructure resources were underutilized. With this in mind,
they tried to monetize the underutilized infrastructure and began providing enterprise IT
infrastructure services as web services, now usually referred to as cloud computing1.

In 2008, Google launched Google App Engine2 that made it easy to build web applications,
APIs and mobile backends at scale. This was the first service of the Google Cloud Platform
(GCP). Google App Engine is a Platform-as-a-Service (PaaS)3 that allows developers to build,
host, and run their applications on Google Cloud. In 2010, Microsoft launched Windows

1https://aws.amazon.com/about-aws
2https://cloud.google.com/blog/products/gcp/your-favorite-languages-now-on-google-app-engine
3https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
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Azure platform4, and the first services available were Windows Server in the cloud and SQL
Azure hosted databases.

Benefits of cloud computing

Cloud computing provides access to infrastructure on-demand and at scale. Companies,
especially start-ups, can benefit from this “self-service infrastructure model”. Programmable
resources, dynamic capabilities, and a pay-as-you-go pricing model bring several advantages to
business, like agility, elasticity, and cost savings. Companies can “stop guessing about capacity”
and eliminate upfront investment in computing, storage, cooling, power supply, specialized
staff, hardware, networking, or other IT infrastructure. Additionally, they can avoid wasting
time and money with market predictions to estimate needs, acquire, upgrade, or retire IT
infrastructure assets.

Operations and development departments can increase speed and agility to manage the
infrastructure with programmable web services, treat Infrastructure as Code (IaC), roll-
back application versions, use canary or blue/green deployment strategies, clone production
environments for staging, create development environments and “go global in minutes” by
provisioning applications in several regions worldwide in a short period.

Infrastructure-as-code and immutable infrastructure

In the shift from traditional infrastructures within a private data center to cloud systems,
there are two main changes: first, the cloud ecosystem is primarily API driven, and second,
there is a much broader elasticity of the infrastructure where, rather than months to years, it is
now between hours to days the time a resource may exist. The need to bring the infrastructure
up and down one time, a hundred times, or a thousand times appear. There is a shift in the
fluidity of our infrastructure, and the cloud infrastructure is now disposable.

A question arises how to obtain the process guideline, code it, and ultimately automate
it? If we define IaC5, we can see an incremental history of who modified what and how
infrastructure is specified currently in a version control system. Cloud infrastructure is
managed as code, usually referred to as IaC. IaC speeds up infrastructure deployment and
allows rapid iterations. It also eliminates non-standard configurations (snowflakes), builds
consistency and repeatability to infrastructure provision and deployment processes. Examples
of tools that enable IaC are Chef6, Puppet7, and, Ansible8.

Being the notion of immutability is linked to the idea that once we create something, it
no longer changes. Immutable infrastructure9 follows that idea and is an approach for the
provision, deployment, and maintenance of the infrastructure that never modifies servers

4urlhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2010/january/cloud-patterns-designing-
services-for-microsoft-azure

5https://www.hashicorp.com/resources/what-is-infrastructure-as-code
6https://www.chef.io
7https://puppet.com
8https://www.ansible.com
9https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-infrastructure
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after their deployment. On an immutable infrastructure approach, we never upgrade it on
the spot. It means that if a server exists in version v1.0, we will not try to upgrade it to
v1.1. We destroy the server from version 1.0 and create a new one based on a golden image
tested and approved with version v1.1. This approach has positive security implications,
because it is predictable and deterministic, avoiding occasional deviation or configuration
drifts and removes administrative services such as SSH or FTP. Immutability has trade-offs if
an application had a state and writes it to a local disk or volume. In these cases, we need
to externalize the data so that the machine holding that application can be destroyed and
created safely. Examples of tools that enable immutable infrastructure are CloudFormation10

and Terraform11.

2.2 DevOps

DevOps is a series of activities that simplify the processes between software production
and IT teams to design, validate, and deliver software more quickly and efficiently [3]. The
concept of DevOps is grounded on creating a collaborative culture among teams that were
historically separated in their own silos. The rising of DevOps brings advantages like increasing
trust, solving critical issues earlier, allowing faster software releases, providing users with new
features more often, and enabling the proper management of unplanned work.

DevOps model defined

DevOps model12 is a blend of philosophy, practices, and tools that improves organizations’
ability to provide software and services faster. It is a collaborative culture with pillar ideas
such as respect, trust, a healthy attitude about failure, and avoiding blame, as Flickr stated in
2009 on the “10+ Deploys Per Day: Dev and Ops Cooperation”13. presentation. Organizations
that adopt DevOps model have delivery pipelines with common build, test, and release steps
that serve the client and receive a feedback loop enabling them to monitor the current release
and plan the next ones accordingly. In some DevOps models, security teams are becoming
closer to, or even integrated, with development and operations’ teams.

With the proliferation of public and private cloud platforms, such as AWS and OpenStack,
there has been a trend in adopting disposable infrastructure instead of conventional static
servers. There are distinct strategies to treat servers, choosing pets versus cattle, to manage
their creation and destruction. One option is treating servers as pets [1], a common approach
when working with legacy infrastructure. Another option is treating servers as cattle in elastic
cloud infrastructure and emerging microservices. Cattle are servers destroyed after fulfilling
their mission or having a problem, usually lasting one update iteration. Alternatively, pets

10https://aws.amazon.com/cloudformation
11https://www.terraform.io
12https://aws.amazon.com/devops/what-is-devops/
13urlhttps://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-

flickr?type=powerpoint
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are servers that persist months or years of uptime and are fixed or serviced by operations
teams. The cattle approach favors the stateless, microservice cloud-native methodology and
the pet approaches any monolithic program, potentially an individual appliance.

The DevOps trinity

At its core, DevOps aims to align all life-cycle software development participants on three
planes – people, processes, and tools – often referred to as the DevOps Trinity14. In this
structure, the SDLC has considered two pieces to build a final construction; upstream and
downstream, namely, development and operations. These two ingredients are components of
the same software delivery process, although entirely decoupled in most organizations.

2.3 Containers

Containers are repeatable, self-contained execution environments, faster to wind up and
down than virtual machines. They bring granular control over resources and lower footprint of
each application in physical, virtual, or cloud hosts. They bring consistent environments, they
run anywhere and provide some isolation. An application with dependencies and configuration
with hooks into the Operating System (OS), can be packaged and shipped in a container.

Containers versus virtual machines

VMs share the same virtualized hardware resources within the hypervisor and run on
top of it. Containers15 uses a complete operating system (OS) with binaries, libraries, and
application files. VMs consumes system resources and causes overhead when several VMs
are running on the same physical server. In containers, there is no hardware emulation,
which means a reduced penalty in terms of used resources. VMs can give us a consistent
run-time environment and application sand-boxing, but containers bring extra benefits like
small storage occupation, low overhead, increased portability, more consistent operation, and
greater efficiency, providing better application development.

What problems can containers solve?

Containers can solve different problems, such as compatibility issues in application deploy-
ment, reduce resource footprint, impact on servers, bringing agility to software development.
Containers isolate applications from each other unless they are explicitly linked. That means
they avoid concerns about dependencies’ conflicts or resource contention16.

Containerized software runs reliably in different environments such as laptops, workstations,
testing environments, or even production seamlessly. It has the ability to deploy applications

14https://www.cloudbees.com/blog/what-devops
15https://www.netapp.com/us/info/what-are-containers.aspx
16https://cloud.google.com/containers/

10



2.3. containers 11

quickly, consistently, and smoothly. Containers minimize the impact of CPU, RAM, I/O, and
networking consumption of a running application, since containers share binaries and libraries
with other containers running in the same host. They can also help solve dependency loop
problems, updated versions of an application, keep track of old versions, and roll back to
other versions in a matter of seconds.

Container runtime

A container runtime17 is a lower-level component typically used in a container engine but
can also be used manually for testing. runc it is the most widely used container runtime that
Docker, CRI-O, and other container engines rely upon. The Open Containers Initiative (OCI),
created in June 2015 by Docker and other container industry leaders, presently holds two
specifications: the runtime specification (runtime-spec) and image specification (image-spec)18.
The OCI is an open governance structure for creating open industry standards around container
formats and runtimes.

Container engine

A Container engine is a software portion that receives user requests, including command-
line choices, pulling images, and operating the container from the end-user viewpoint19. There
are several container engines, including Docker20, CRI-O21, RKT22 and LXC23. In Docker, the
Docker engine is responsible for distribution, orchestration, volumes, and networking. It has
a daemon called containerd and incorporates the BuildKit24, a Dockerfile-agnostic builder
toolkit used in the image build process for Docker25.

Microservices

One of the primary reasons for using containers is the growing adoption of microservices-
based architectures. With microservices26, it is possible to run multiple components of the
same application on the same hardware independently, having much more control over the
individual pieces and their life cycles. The microservices architecture is a series of independent
services, each with its own unique purpose27. They are autonomous, specialized and typically
interact over well-defined APIs.

17https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
18https://opencontainers.org/
19https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
20https://www.docker.com
21http://cri-o.io
22https://github.com/coreos/rkt
23https://linuxcontainers.org
24https://github.com/moby/buildkit
25https://docs.docker.com/engine/reference/commandline/build/
26https://www.redhat.com/en/topics/microservices/what-are-microservices
27https://www.docker.com/solutions/microservices
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Microservices advantages

Therefore, we can ask why using microservices and if there are advantages involved. Each
component service in a microservices architecture can be developed, deployed, and managed
without affecting other service operations. Besides, each service is designed for a kit of
capabilities and concentrates on solving a particular problem. This architecture provides
a way to build microservices optimized for DevOps and CI/CD pipelines in the software
development lifecycle. In short, microservices are highly sustainable and testable, loosely
connected, individually deployable, built around company capabilities, and operated by a
small team28, and these are the advantages they can offer.

Container orchestration

Container orchestration is an automatic process for handling or scheduling individual
containers’ work for microservices’ based applications across multiple clusters29. Containers
changed the way organizations build, ship, and maintain applications. Essential aspects that
lead to the rising of container orchestration were applications moving from monolithic to
microservices, the mass adoption of containers30, and the demand for automated ways to
provision, schedule, and manage containers at scale. Mastering the lifecycle of containers,
mainly in large and dynamic environments, has become vital. To maintain, operate, and auto-
mate many tasks, software teams use container orchestration31. Many container orchestration
platforms are based on open-source versions like Kubernetes or Docker Swarm, but there
are also commercial versions, such as Red Hat OpenShift, Amazon ECS, Azure AKS, among
others.

Figure 2.1: Kubernetes components. [28]

28https://microservices.io
29https://avinetworks.com/glossary/container-orchestration/
30https://sysdig.com/blog/sysdig-2019-container-usage-report/
31https://blog.newrelic.com/engineering/container-orchestration-explained/
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Kubernetes

Kubernetes32 is a lightweight, expandable, open-source platform for handling containerized
workloads and resources. It has declarative configuration capabilities, providing manifests
to define resources such as source code and consequent automation. Container orchestration
platforms like Kubernetes can help build, test, monitor, and run the whole application lifecycle
smoothly and efficiently. In Kubernetes, containers that are part of the same application form
groups of logical units for easy management and service discovery.

Figure 2.1 shows a Kubernetes cluster33 with all components connected. A Kubernetes
cluster comprises one or more worker machines (nodes)34 run containerized applications. The
worker nodes host the Pods35 that are the application workload components. The control
plane36 controls the worker nodes and resident Pods in a cluster. In production environments,
the control plane typically operates through multiple machines, and the cluster generally runs
various nodes, ensuring fault-tolerance and high availability.

The component kube-apiserver (api) is a part of the Kubernetes control plane that
exposes the Kubernetes API. etcd is a reliable and highly-available key-value database used
as backup store for all cluster data. kube-scheduler (scheduler) is a control plane component
that tracks the recently created Pods with no designated node and selects the node to operate.
-controller-manager (c-m) is a control plane component that handles controller processes.
cloud-controller-manager (c-c-m) lets a cluster connect to the cloud provider’s API and
splits components that communicate with the cloud platform from those only interacting with
the cluster.

2.4 CI/CD pipelines

A CI/CD pipeline37 is a sequence of steps that must complete successfully to produce a
new software release. Continuous integration or continuous delivery (CI/CD) pipelines are
activities directed at optimizing software delivery through the DevOps or Site Reliability
Engineering (SRE)38 approach. The steps that generate a CI/CD pipeline are distinct tasks
bundled in a pipeline stage. These tasks are commonly known as jobs. Software releases in
the SDLC go through a series of typical stages, build, test, and deploy stages that are part of
a CI/CD pipeline. A source code repository triggers a new pipeline cycle. A change in the
source code will trigger a CI/CD tool notification, which executes the corresponding pipeline.
Other common triggers include workflows that are automatically scheduled or started by the
user. The application is compiled on the build stage, has the code tested by an automated
process on the test stage, and finally deployed to production on the deploy stage. Notice

32https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
33https://kubernetes.io/docs/concepts/overview/components
34https://kubernetes.io/docs/concepts/architecture/nodes
35https://kubernetes.io/docs/concepts/workloads/pods
36https://kubernetes.io/docs/reference/glossary/#term-control-plane
37https://www.redhat.com/en/topics/devops/what-cicd-pipeline
38https://www.redhat.com/en/topics/devops/what-is-sre
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that there is a previous deploy stage to a staging environment before the deploy stage to a
production environment in most contexts. Other custom stages can exist in pipelines according
to the organizations’ constraints or different teams’ specifics.

CI and CD

A CI/CD pipeline automates software development by building code, running tests,
and delivering new iterations of the application safely. These automatic pipelines remove
manual errors, providing feedback loops to developers and enabling rapid product iterations.
Continuous integration (CI) emphasizes testing automation to validate that the application
does not break whenever new commits integrate into the main branch.

Continuous integration (CI) is a prerequisite of CI/CD, requiring that developers merge
code changes to the master branch several times per day. For each code merged, an automated
process triggers a new pipeline. First, building the application from the source code; then run
a test sequence including unitary tests, user interface test, security test, or others; and finally
create an artifact which can be a binary of the application, container image or website build.

The (CD) term could mean Continuous Delivery or Continuous Deployment. They are
very similar, with only a significant difference in triggering application deployment, the first
requires manual approval, and the second has an automated process. In Continuous Delivery,
the code changes rolled continuously, although the deployments initiated manually. This
means that every change in staging environments is proven to be deployable at any time on
production since staging is nearly a replica of a production environment for software testing.
Continuous Deployment goes beyond Continuous Delivery since every code change passing
through all phases of a staging pipeline is released to production and disseminated to the
customers without human intervention. Only a failed test will prevent a new change from
being deployed in production.

14
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chapter 3
Existing solutions

The present chapter is dedicated to analyzing the existing solutions that verify security in
applications, focusing on microservices deployed in Kubernetes in Docker run-times. We

present the security initiatives to add security testing in CI/CD pipelines, and analyze the
available open-source and commercial solutions related to secret detection, static, dynamic
analysis and integration solutions. We also approach the tools chosen for PoC scenarios and
critical analysis.

3.1 Security initiatives to add security testing
in CI/CD pipelines

In the European Union, the General Data Protection Regulation (GDPR) [6] is applicable
from 25 May 2018 in all member states. After that, many companies analyze how they can
increase their applications’ security level to follow GDPR obligations and avoid compliance
issues. Security breaches can also have disastrous consequences on companies. For example,
CodeSpaces - a code hosting and software collaboration platform - went out of business after
a malicious party gained access to the company’s AWS control panel [21]. Most of their
data, configurations, and offsite backups were either partially or entirely deleted. With data
breaches, GDPR regulation, PCI Data Security Standard (PCI DSS), other security standards
or quality controls, building applications with security architecture design and built-in security
in the development lifecycle became a vital piece for organizations.

Organizations aspire to deliver applications quickly and expeditiously, and a growing
number of companies adopt DevOps methodology [18]. To follow agile development, comply
with security standards and regulations, organizations must embrace new strategies to face
these new challenges. Organizations start including AST in their CI/CD pipelines to ensure
their applications are adequately tested before they reach production. This study [18]
demonstrates the importance of including security validation in the CI/CD pipeline throughout
the SDLC. In case of vulnerabilities in applications, attackers or malicious actors can access

15
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private data or even secrets of users or companies. The same study analyzed nineteen
developers of a specific company. These developers perform CI/CD pipeline tasks but rarely
deal with security aspects. The research results show that CI/CD pipeline potentially presents
high-risk vulnerabilities within applications, with non-encrypted connections outside the
pipeline components and nonrestricted accesses.

Continuous integration and continuous delivery is a well-known activity in DevOps to
ensure the quick delivery of new features. Standard security management strategies cannot
stay current with this rapid life cycle of application development. Data breaches continuously
compromise users’ PII and secrets [12] by disclosing confidential information to unauthorized
parties. Therefore, delivering high-quality protection for software systems has become progres-
sively vital. DevSecOps attempts at incorporating security strategies into current DevOps
activities. In particular, AST automation is a significant field of research in this phenomenon.
According to T. Rangnau et al. [23], most of the current works incorporate only static code
analysis and ignore dynamic test methods. This work [23] introduces alternatives to SAST
integration techniques into a CI/CD pipeline, presenting approaches to integrate automated
dynamic testing techniques into a CI/CD pipeline. DAST focuses on evaluating how a running
application reacts to malicious requests. While significant, SAST cannot identify all security
flaws in the system. In reality, static analysis can only discover vulnerabilities explicitly
obtained from the source code, being a small subset of web applications’ most common
vulnerabilities. In contrast, with dynamic security testing, an application is targeted similarly
to real-world environment attacks by hackers or malicious actors. Dynamic application security
testing focuses on measuring how a running application reacts to malicious requests and
capable of covering a much broader spectrum of flaws.

After the analysis of relevant works [12] [23] [5], we established that our solution would
serve mainly to frame the execution of arbitrary tools in the AST area, such as: secret
detection, static analysis, and dynamic analysis. We do not want to define a testing structure,
but a way to frame several tests to be defined by the teams or individual developers in their
CI/CD pipeline.

3.2 Secret detection

The secret concept is related to something that grants access to systems or enables
authentication or authorization for humans or services. A secret is a piece of information only
obtainable by one person or a group of individuals and not known by others. Secrets1 can grant
access to a system allowing users or services to authenticate or authorize themselves. Examples
of secrets are passwords, usernames, access keys, API tokens, Pretty Good Privacy (PGP)
or Secure Shell (SSH) keys, Transport Layer Security (TLS) certificates, or asymmetric
credentials. Secret provides authentication of a system or service and authorizes someone to
perform actions like reading, writing, or even destroying data.

1https://www.hashicorp.com/resources/what-is-secret-sprawl-why-is-it-harmful
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The Uber data breach in 20162, disclosed the company’s data on riders and drivers,
including names, phone numbers, and email addresses, to unauthorized parties. After that
event, organizations face new challenges concerning secret management to avoid the “secret
sprawl”3 phenomenon that has emerged when businesses and organizations migrate to the
cloud. In addition to data breaches, organizations and users made public their source code
repositories of software applications. These organizations or users send repositories to cloud
hosting providers for collaborative software development using version control. The problem
appears when this shared code is part of applications that need to handle credentials or secrets
used for authentication, such as API keys, tokens, passwords, or certificates.

In [12] the authors analyze the rising problem of secret spread proliferation in GitHub.
This work analyses secret leakage on GitHub by examining multiple files collected from public
commits of repositories and a public snapshot of open-source repositories. This research
reveals that information leaks impact over one hundred thousand repositories, and thousands
of private secrets are disclosed daily. In [22] the authors present a tool for static analysis called
Security Linter for Ansible and Chef scripts (SLAC). SLAC avoids secrets such as user names,
passwords, and other hard-coded secrets embedded in the configuration files of Configuration
Management (CM) tools. CM tools install and maintain applications on a server already in
operation. While DevOps or operations teams are provisioning servers in cloud infrastructure
or other systems at scale, handling CM tools could sometimes leave hard-coded secrets inside
IaC config files. If this scenario occurs and secrets get disclosed, they could end up in malicious
actors’ hands, potentially employing them to exploit the provisioned systems. This work [22]
intends to help practitioners avoid insecure coding practices while developing infrastructure
as code.

Justification for having secrets inside source code can be an application or tool that needs
to work off-line without external dependencies - a bank with data located in a particular
country or region for legal motives. Several options are available to protect sensitive content,
avoid plain-text credentials in playbooks, roles, configurations, or manifests, and accomplish
these requirements. Organizations and their teams can use tools to encrypt secrets at rest
in source code. Some examples are Mozilla SOPS4 and Ansible Vault5. Isolation of secrets
from source code is mandatory in specific organizations; there are tools to handle secrets for
protecting sensitive data in transit and at rest. These tools can provide, audit, and revoke
secrets at scale for services or even humans. Examples of these tools are HashiCorp Vault6

and Google Berglas7.
2https://www.nytimes.com/2017/11/21/technology/uber-hack.html
3https://www.hashicorp.com/resources/eliminating-secret-sprawl-in-the-cloud
4https://github.com/mozilla/sops
5https://docs.ansible.com/ansible/latest/user_guide/vault.html
6https://www.vaultproject.io/
7https://github.com/GoogleCloudPlatform/berglas
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3.2.1 Secret detection - commercial solutions

Besides open-source secret detection tools, there are also commercial versions like AWS
Secret Manager8, Google Secret Manager9 or CyberArk Secrets Manager10.

GitHub token scanning11 is written in Go12 and based on the Hyperscan13 library
developed by Intel according to GitHub Blog14. The token scanning feature is part of the
GitHub service that scans all changes to public repositories and public Gists15 for credentials,
but does not scan private repositories. Their goal is to identify secret tokens within the
committed code in real-time and notify the service provider to take action. GitHub token
scanning searches public repositories for established token formats to avoid malicious use of
mistakenly committed credentials. When someone commits code to a public repository, or
changes a private repository to public, GitHub scans the contents of commits in the repository
for tokens belonging to a set of service providers: Amazon Web Services (AWS), Azure,
Dropbox, Google Cloud, Slack, among others. If any set of credentials is detected, GitHub
notifies the service provider who issued the token. After that, the service provider should
revoke the token, issue a new one, or reach the developer directly.

GitGuardian16 can clean up the version control system preventing secrets from entering
the code base. This is a commercial solution to detect leaked sensitive information. They
supply two different target audiences: developers and enterprises. It is free to use for individual
developers and offers paid plans to protect organizations. They supply two different products,
GitHub Public Monitoring (SaaS) that can monitor public repositories, and Private Repository
Monitoring (On-premises) that can monitor private git repositories of organizations.

Nightfall Radar17 Nightfall Radar is an API that uses machine learning to search GitHub
repositories for confidential credentials and secrets, such as API keys for a wide variety of
services (AWS, GCP, Twilio, Stripe, and more). The main features that distinguish this
tool are that the exact types of keys or credentials do not need to be specified; all scans run
asynchronous, and when completed, users are notified via email or webhook18 endpoint; the
results are available in a user interface. A scan_id is required to identify the scan and retrieve
the scan results after authentication with the API is performed. Nightfall also states that it
does not store or track sensitive findings. This tool uses deep learning methods to overcome
the limitations of regular expression and Shannon entropy methods of other tools. Radar, an
in-depth learning strategy, uses a model trained with features extracted from a broad set of
API key patterns and their surrounding contexts in code.

8https://aws.amazon.com/secrets-manager/
9https://cloud.google.com/secret-manager

10https://www.cyberark.com/products/privileged-account-security-solution/application-access-manager/
11https://help.github.com/en/github/administering-a-repository/about-token-scanning
12https://golang.org/
13https://github.com/intel/hyperscan/releases/tag/v5.0.0
14https://github.blog/2018-10-17-behind-the-scenes-of-github-token-scanning/
15https://docs.github.com/en/github/writing-on-github/creating-gists
16https://www.gitguardian.com
17https://github.com/marketplace/watchtower-radar
18https://sendgrid.com/blog/whats-webhook
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Shieldfy19 discovers hard-coded secrets in repositories and notifies if it finds any secrets
in the source code. It can detect embedded tokens, secret keys, and sensitive personally
identifiable information (PII) in repositories to avoid accidentally including hard-coded secrets
in the source code. Shieldfy can automatically detect and patch security problems and
vulnerabilities in the source code before it goes into production. It has three main features: a
quick code review, low false positives, and automatic fix and remediation. To obtain security
feedback as soon as possible, it can analyze commits or even create pull requests. Another
component is the Analysis Engine that extensively analyzes the meaning and flow of the source
code to prevent false positives. Afterward, it prepares a patch for common vulnerabilities
found and generates pull requests for each patch. The company shuts down Shieldfy20 and
open-sourced part of the written code on Github21.

3.2.2 Secret detection - open-source solutions

Yelp’s Secret Detector22 enables to identify and avoid code’s secrets. Yelp Engineering
announced on their blog in 2018 that detect-secrets23 tool was open-sourced to prevent secrets
from being committed to the code base. It is written in Python24, designed to be used as
a git pre-commit hook25, but it can also be invoked with scan parameters. This tool offers
three components to set up: Client-side Pre-Commit Hook, Server-side Secret Scanning,
and Secrets Baseline. Besides finding secrets in the source code, it has other capabilities
like defining a baseline, accepting that there can be secrets in the source code currently,
and, after that, auditing the baseline for changes. The server side of detect-secrets is called
detect-secrets-server26 that can track multiple repositories, periodically scan them and send
alerts if it finds any secrets.

Repo Supervisor27 checks security misconfigurations in source code, scanning for pass-
words and secrets. Auth0 engineering open-sourced Repo Supervisor28. This security tool
provides secret detection in the source code, replacing the human factor as much as possible in
the secure software development life cycle. It is written in JavaScript29, and the main features
that distinguish it from other tools are the ability to decrease the number of false positives,
the capacity to scan data just for a file format, and serverless compatibility and webhook
mode to check pull requests. It can provide alerts through Slack, slick HTML reports, and
custom exclude lists.

19https://shieldfy.io/product/secrets-detection
20https://shieldfy.io/good-bye
21https://github.com/shieldfy
22https://engineeringblog.yelp.com/2018/06/yelps-secret-detector.html
23https://github.com/Yelp/detect-secrets
24https://www.python.org/
25https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
26https://github.com/Yelp/detect-secrets-server
27https://github.com/auth0/repo-supervisor
28https://auth0.engineering/detecting-secrets-in-source-code-bd63b0fe4921
29https://developer.mozilla.org/en-US/docs/Web/JavaScript

19



20 chapter 3. existing solutions

git-secrets30 prevents organizations from introducing secrets and credentials into git
repositories. Amazon Web Services - Labs created this tool that scans AWS credentials and
other sensitive information in git repositories. AWS security best practices31 advise people
to use git-secrets when using a public Git repository for document or code versioning and
sharing to avoid committing code or documents that contain sensitive information. This tool
scans commits and commits’ messages to prevent adding secrets into git repositories. If a
commit or commit message matches one prohibited regular expression pattern, the commit is
rejected.

truffleHog32 explores git repositories, searching for secrets, investigating profoundly
into the commit’s history and across branches. This tool is advantageous in discovering
unintentionally committed secrets. It scans every branch’s entire commit history, examines
each diff from each commit, and checks the secrets’ existence. It works with regular expressions
and entropy. For entropy tests, truffleHog measures the Shannon entropy for both the base64
charset and the hexadecimal charset for each text blob greater than 20 characters contained
in each diff.

gitrob33 is a recognition tool for GitHub organizations or users that helps identify
potentially confidential files sent over to public repositories. This tool will clone repositories,
iterate over the commit history, and flag files that match signatures on potentially sensitive
files. It is written in JavaScript, and its main distinguishing features are configurable depth, a
web interface that shows findings providing easy browsing and analysis, and the state of an
assessment in memory, meaning that the results will be lost when Gitrob34 finishes.

Gitleaks35 examines the source code in git repositories for secrets. It offers a way to
locate unencrypted secrets and other unauthorized forms of data in git repositories. This tool
is written in Go, supports GitLab and GitHub with repository scans for bulk organization or
repository owners (users), and scans requests for pull/merge in Continuous Integration (CI)
workflow. It can audit uncommitted changes (pre-commit scans), uses the go-git36 framework,
enables environment-specific configuration, and has a JSON output format.

yara4pentesters37 is a collection of rules for recognizing files containing juicy details
such as usernames, passwords, and similar. This tool uses YARA, a sort of Swiss knife for
malware researchers that does pattern matching. YARA is a mechanism that helps malware
researchers recognize and classify malware. By creating a YARA rule, researchers can make
textual or binary patterns consisting of a set of strings and boolean expressions that determine
its logic. The yara4pentesters tool uses a YARA rule with patterns related to usernames,
passwords, tokens, API keys, or other secrets instead of a malware family.

30https://github.com/awslabs/git-secrets
31https://aws.amazon.com/premiumsupport/knowledge-center/security-best-practices/
32https://github.com/dxa4481/truffleHog
33https://github.com/michenriksen/gitrob
34https://michenriksen.com/blog/gitrob-now-in-go/
35https://github.com/zricethezav/gitleaks
36https://github.com/src-d/go-git
37https://github.com/DiabloHorn/yara4pentesters
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repo-security-scanner38 is a command-line interface tool that detects secrets inadver-
tently committed to git repositories, such as passwords, tokens, private keys, and other secret.
This tool, written in Go, helps developers that accidentally pushed sensitive data to GitHub
to discover passwords, private keys, usernames, tokens, or other secrets. The only requirement
for this tool is to download any target repository to investigate. It can examine the entire
history of repository branches for secrets and add false positives to a file called .secignore.

repo-supervisor39 examines source code for security misconfigurations, passwords, and
other secrets. This serverless tool, written in JavaScript by Auth040 can scan all incoming
pull requests in webhook mode41. It can scan data in a specific file format like JavaScript
(*.js) or JavaScript Object Notation (JSON) files (*.json) and send Slack alert notifications
if detected secrets. There is an excluded list exclude list, that can decrease the number of
false positives. Without creating webhook, it is possible to use this tool if the source code is
downloaded for later analysis locally. The tool reports are in HTML.

secret bridge42 is a tool to help improve the ability to detect secrets exchanged on
Github. Written in Python, this tool can operate in two modes: event polling or webhook.
As soon as developers push new code to GitHub, events are received, and the script executes
detectors to find leaked secrets. Three tools are supported: detect-secrets, git-secrets and
trufflehog43.

GitGot44 is a semi-automated, feedback-driven tool to quickly scan for confidential secrets
via public GitHub information. In Python, this tool empowers users to quickly search for
sensitive secrets through public GitHub information. During scan sessions, users could provide
input suggestions on ignoring the scan results, and GitGot will suppress them in the results’
set. Users will blacklist files by file name, directory name, user name, or a fuzzy fit of the
files’ contents. Blacklists created from previous sessions can be saved and reused with related
queries (e.g., company.com v.s. subdomain.company.com v.s. company.org). Sessions can
even be paused and resumed at any time.

Ah, shhgit!45 searches secrets on GitHub in real-time. This tool, written in Go, finds
secrets and sensitive files in real-time across GitHub code and Gist commits. It does this
by listening to the GitHub Events API. It can also consume public APIs of GitLab and
BitBucket. There is the possibility to use the tool locally and include it in CI pipelines to scan
private repositories or other Git hosting services. This tool is distinct from other popular tools
like gitrob and truggleHog, that concentrate on excavating through the repository history to
discover secret files from organizations or users. The tool comes with one hundred and fifty
signatures with the possibility to add more or remove any of them by editing a configuration
file. Interesting features are increasing the number of concurrent threads or enabling the

38https://github.com/UKHomeOffice/repo-security-scanner
39https://github.com/auth0/repo-supervisor
40https://auth0.com
41https://auth0.engineering/detecting-secrets-in-source-code-bd63b0fe4921
42https://github.com/duo-labs/secret-bridge
43https://duo.com/labs/research/how-to-monitor-github-for-secrets
44https://github.com/BishopFox/GitGot
45https://github.com/eth0izzle/shhgit
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search for high entropy strings.

3.3 Static application security testing (SAST)

Static application security testing46 is a white-box testing methodology47 that is performed
with previous knowledge of the source code. It helps find security flaws48 in applications
without running the code. In our work, we will scan the application code itself and in particular
cases Dockerfile or application dependencies. In [26] the authors stated that SAST helps
discover software security flaws as early as possible. SAST is a focused security software test
and assists in auditing the source code. According to the same source, software security is
everyone’s responsibility by enhancing the stability, consistency, and quality of code. Adding
SAST into CI/CD pipelines adds value to developers by providing input about quality, style
recommendations, and possible vulnerabilities and making code review more streamlined and
transparent. For this reason, we considered the use of SAST tools in our security solution.

3.3.1 SAST - commercial solutions

Black Duck49 by Synopsys focuses on reporting image inventory, mapping known security
vulnerabilities to image indexes, container inventory, and cross-project risk reports. Multi-
factor open-source discovery facilitates dependency analysis, file system scanning, snippet
matching, and binary analysis, finding security risks, and suggesting a list of known fixes. It
also analyzes the license risk, considering the containerized environment’s software licenses
bundled. Black Duck concentrates more on scanning and pre-production than on run-time
security.

Snyk50 has several security products: Snyk open-source, Snyk Code, Snyk Container, Synk
infrastructure as code, an Intel Vulnerability Database, and License Compliance Management.
Snyk enables organizations and developers to discover and address cloud-native applications’
vulnerabilities. Kubernetes applications are not just container images; they also include
prebuilt deployment models and default settings. Detecting vulnerable images in SDLC can be
done locally with Snyk command line, on source control hosting providers, Docker registries,
CI/CD pipelines, or even on Kubernetes clusters. There are two variants available, single
testing or continuous monitoring. Snyk scans the base image for its dependencies of operating
system packages installed by the package manager, libraries, and key binaries installed by
other forms. After deployment, Snyk protects images for newly discovered vulnerabilities and
Kubernetes applications for insecure configurations. Snyk focuses on detecting, fixing, and

46https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
47https://www.acunetix.com/blog/articles/dast-dynamic-application-security-testing
48https://www.owasp.org/index.php/Source_Code_Analysis_Tools
49https://www.blackducksoftware.com/
50https://snyk.io/product/container-vulnerability-management/

22



3.3. static application security testing (sast) 23

monitoring vulnerabilities in container images, and it can fix issues automatically, minimizing
the exposure.

3.3.2 SAST - open-source solutions

Clair51 is a project dedicated to static vulnerability analysis in the application container.
It is open-source, currently including OCI and Docker and enabling clients to use the Clair
API to catalog their container images and then match them to known vulnerabilities. Clair
is a static vulnerability analysis tool for containers that collect vulnerability data, store
them in a database, scan container images, and index the installed software packages. If any
vulnerability matches the identified software packages in the image, it can send alerts, reports,
or even block deployments.

Dagda52 is a tool to do a static analysis of identified vulnerabilities, trojans, viruses,
malware, and other malicious threats inside Docker images or containers. It can also monitor
the docker daemon and running containers for abnormalities. Dagda retrieves information
about the software installed on Docker images, such as the OS packages, programming
language dependencies, and verifies if the version is free of vulnerabilities. It uses ClamAV53,
as an antivirus engine to detect trojans, viruses, and malware in docker images or containers,
and it can also integrate with Falco54. Dagda supports multiple Linux-based images, like Red
Hat/CentOS/Fedora, Debian/Ubuntu, OpenSUSE, and Alpine, and uses OWASP dependency
check55 for analyzing multiple dependencies.

Anchore Engine56 helps developers to perform a thorough analysis of their container
images, run queries, generate reports, determine CI/CD pipeline policies and correspondent
behavior. It brings three core components to container certification: container inspection,
container image analysis, and container policy evaluation. The key features are image
analysis, policy management, notifications, CI/CD integration, Kubernetes integration, and
orchestration. Organizations can submit an image to be analyzed, see if the images have any
known vulnerabilities, evaluate the image against a predefined security policy, and set up a
notification subscription when the image is updated. It has a Docker image available and
can run in a CI/CD pipeline or within orchestration platforms, like Kubernetes. For CI/CD
pipelines, there is a Jenkins plugin57 available; however, there is also a standalone option
available called anchore-cli58 that runs on a command line. Anchore Engine is part of an open-
source collection from Anchore that provides adequate tools for secure development. There is a
toolbox made up of unique purpose tools for examining and scanning software projects among

51https://github.com/quay/clair
52https://github.com/eliasgranderubio/dagda
53https://www.clamav.net
54http://www.sysdig.org/falco
55https://github.com/jeremylong/DependencyCheck
56https://anchore.com/opensource
57https://plugins.jenkins.io/anchore-container-scanner
58https://github.com/anchore/anchore-cli
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this collection. The toolbox is composed by syft59 and Grype60. Syft produces a software bill of
materials for container image or file system passed to Grype, which generates a comprehensive
list of identified vulnerabilities within a container image or project directory. Grype find
vulnerabilities for major operating system packages and vulnerabilities for language-specific
packages.

3.4 Dynamic application security testing (DAST)

Dynamic application security testing61 is a black-box testing methodology62 performed
without any knowledge of source code scanning for potential vulnerabilities in running
applications. For our security solution, we considered their use on running containers.

3.4.1 DAST - commercial solutions

Sysdig Secure63 uses a unified platform to deliver security, monitoring, and forensics
in a container and has a microservices architecture. The key features are providing run-
time detection, supporting incident response and forensics, data enrichment, image scanning,
image auditing, and run-time vulnerability management. Scanning images can execute on
the build process or directly on the container registry. It provides integration into CI/CD
pipelines through an API or a Jenkins plugin. Sysdig Secure enforces compliance by preventing
images with critical vulnerabilities from being uploaded into the image registry. Vulnerability
information of package data comes from multiple sources. It is updated continuously from
NIST Database to Official Debian, Ubuntu, RedHat, CentOS packages and security trackers,
language-specific trackers, and other sources. Runtime protection will identify and block
threats in real-time. This protection covers various aspects, tracking an entire application,
container, host, and network system calls.

Aquasec64 is a platform for container protection that allows maximum visibility to container
operations, helping enterprises to identify and avoid malicious activities and possible attacks.
It is a security suite designed for containers, replacing signature-based approaches and using
machine-learned behavioral whitelisting, integrity control, and nano-segmentation. The key
features are continuous image assurance, image-to-container drift prevention, enforcing least
privilege, granular monitoring and logging, and container-level application firewall. This
platform provides security audits, container image verification, run-time protection, automated
policy learning or intrusion prevention. It offers an API and can be deployed on-premises or
in the cloud.

59https://github.com/anchore/syft
60https://github.com/anchore/grype
61https://www.gartner.com/en/information-technology/glossary/dynamic-application-security-testing-

dast
62https://www.veracode.com/security/dast-test
63https://docs.sysdig.com/en/sysdig-secure.html
64https://www.aquasec.com/use-cases/container-security
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Tenable65 facilitates DevOps processes seamlessly and safely by providing access to
container images’ protection – including bugs, ransomware, and policy breaches – through
the integration into the building process. The key features are DevOps pipeline integration,
in-depth visibility, automated inspection, continuous assessment, policy assurance, and run-
time security. It is based on a technology called FlawCheck66 that stores and scans container
images. It can integrate with CI/CD systems that build container images to ensure security
and compliance before containers reach production. The container run-time scanning detects
new container images running in production, not tested for vulnerabilities and malware,
assuring they are compliant with a policy.

NeuVector67 is a security platform that provides vulnerability management during the
entire CI/CD pipeline. It can assist across the whole container lifecycle, from image construc-
tion to container run-time and operation. The use cases are run-time protection, compliance,
and audit. It can automatically discover the behavior of applications, containers, services
and detect security escalations. It can monitor images in registries and admission control to
block vulnerable images from flowing to production. The key features are image scanning,
security auditing and compliance, integration with orchestration platforms and networking,
network visibility and security, host and container monitoring, reporting and logging, and
security auditing compliance. This product will secure the entire container stack in a con-
tainer environment since it includes images, registries, containers, hosts, networking, and
orchestrator.

3.4.2 DAST - open-source solutions

Falco68 is an open-source project designed to detect intrusions and anomalies on native
Cloud platforms such as Kubernetes, Mesosphere and Cloud Foundry. Falco may consume
events from a variety of sources and apply rules to those events in order to recognize anomalous
behaviour. Sysdig open-sourced Falco69 that became a sandbox project within Cloud Native
Computing Foundation (CNCF)70 sandbox project. It has Integrations with Kubernetes,
Mesosphere, Docker, rkt, among others. It enables organizations to gain insight into application
and container behaviors. The key features are platform-aware, container-native, and deep
visibility. It is a run-time security built for containers, based on prebuilt rules, allowing
organizations to enforce policies across containerized applications and microservices.

OWASP ZAP71 or Zed Attack Proxy (ZAP) from OWASP is an open-source Web application
vulnerability scanner, which is an automated tool that scans Web applications from the outside

65https://www.tenable.com/products/tenable-io/container-security
66https://www.tenable.com/press-releases/tenable-network-security-acquires-container-security-company-

flawcheck
67https://neuvector.com/container-security-platform
68https://falco.org/
69https://sysdig.com/opensource/falco
70https://cncf.io
71https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
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to look for security vulnerabilities such as cross-site scripting72, SQL injection73, command
injection74, path traversal75 and insecure server configuration. ZAP also features an API that
empowers developers to automate penetration testing and security regression testing within
applications’ CI/CD pipeline.

jaeles76 is a tool for automated Web application testing that can orchestrate and integrate
various Web scanners. This tool, written in Go, is a flexible and extensible framework for
building a custom Web application scanner. Jaeles use signatures to identify threads written
in YAML files. It includes a Web UI, REST API, and integrations with Burp Suite77 and
Osmedeus78.

Nikto79 is a Web server scanner that conducts detailed, multi-item Web server analyses.
This tool, written in Perl, attempts to identify installed Web servers and related software.
These checks will look for outdated versions and version-specific problems. It tries to recognize
configured web servers and applications, scans server configuration objects such as various
index directories and HTTP server options.

w3af80 is an open-source web application security scanner. Writing in Python, this tool
allows organizations and developers to detect vulnerabilities in their web applications. It has
web and console user interfaces. Uses tactical exploitation techniques to discover new URLs
and vulnerabilities. It supports different plugins such as brute-forcing, auditing, performing
SQL injections, file inclusions, cross-site scripting, among others.

3.5 SAST or DAST with CI/CD integration solu-
tions

In this section, we describe static or dynamic analysis tools that include CI/CD integration.
GitHub, GitLab Secure, and Wallarm FAST are commercial solutions and huskyCI and
Scan(skæn) are open-source solutions.

3.5.1 Commercial integration solutions

GitHub81 enables organizations to secure their repositories82 with features like features
like secret scanning, dependency analysis and code scanning depending on the type of license

72https://www.owasp.org/index.php/Cross-site_scripting
73https://www.owasp.org/index.php/SQL_Injection
74https://www.owasp.org/index.php/Command_Injection
75https://www.owasp.org/index.php/Path_Traversal
76https://jaeles-project.github.io
77https://portswigger.net/burp
78https://j3ssie.github.io/Osmedeus
79https://cirt.net/Nikto2
80http://w3af.org/
81https://github.com
82https://docs.github.com/en/free-pro-team@latest/github/administering-a-repository/securing-your-

repository
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subscription. Free and paid GitHub products include alerts from Dependabot83, a tool that
creates pull requests to keep the code dependencies secure and up-to-date. GitHub sends
Dependabot alerts upon detect any of the vulnerabilities in the GitHub Advisory Database
affecting the packages that a repository depends on. GitHub provides code scanning, but
is only available for organizations with an Advanced Security license. The GitHub One84

product includes GitHub Enterprise, plus Advanced Security. Advanced Security includes
code scanning and secret scanning (beta). Code scanning85 is a feature that organizations use
to analyze code in a GitHub repository to find security vulnerabilities and coding errors. Any
problems identified by the analysis are shown in GitHub. GitHub One also brings the ability
to use CodeQL code scanning with an existing CI system86

GitLab Secure87 can perform static and dynamic analyses on application source code,
verify for known vulnerabilities, and communicate them into merge requests, so that developers
can correct them before the merge. GitLab Secure allows organizations and users to analyze
various application security-related issues, such as container scanning, thread monitoring,
dependency scanning, static application security testing, secret detection, dynamic application
security testing, API fuzzing, among others. A security dashboard offers a high-level view of
vulnerabilities found in groups, projects, and pipelines. The threat monitoring page presents
security metrics of device environments run-time. Organizations and developers can identify
risks and apply correspondent remediation. The types of tests related to application security
are defined in YAML files in the application source code’s repository. Organizations or
users can select what type of tests they want to perform. Afterward, GitLab will run the
correspondent CI/CD pipeline.

Wallarm FAST88, or Wallarm Framework for Application Security Testing is a cloud-based
application security framework conceived to help organizations automate protection and
conduct security testing for microservices, websites, and APIs. It empowers businesses to
reduce the time spent on security coverage significantly. Wallarm applies a DevSecOps
approach by integrating tests in every build, using protections, and unifying CI workflows. It
automatically transforms existing functional tests into safety tests and injects them in CI/CD
pipelines. Wallarm FAST includes Wallarm Cloud with AI capabilities and a FAST proxy.
The FAST proxy runs inside a Docker container that will capture requests and build baselines.
It then generates and performs a variety of security checks for each build. It is possible to
follow OWASP Top 10 standards or even specify testing policies list, such as payloads, fuzzer
settings or parameters. FAST can report vulnerabilities or abnormalities into CI/CD pipelines
and on ticket systems. Wallarm offers integration with various external platforms, including

83https://github.com/dependabot
84https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/githubs-

products#github-one
85https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-

your-code
86https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-

your-code/using-codeql-code-scanning-with-your-existing-ci-system
87https://docs.gitlab.com/ee/user/application_security
88https://wallarm.com/products/fast
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Slack, Telegram, Jenkins, CircleCI, GitLab, and Selenium.

3.5.2 Open-source integration solutions

huskyCI89 is a tool that can discover vulnerabilities within CI/CD pipelines by performing
security testing inside them. It can integrate and execute various static security analysis
tools. This tool combines support for languages like Python, Ruby, JavaScript, Go, Java,
and Terraform HCL. It uses GitLeaks to perform secret detection on source code repositories,
discovering passwords, API keys, tokens, and other hardcoded secrets. huskyCI is extensible
since it enables organizations or users to add custom security tests into huskyCI. The API
does the integration in CI/CD pipeline, and developers add a new job in a pipeline stage using
the huskyCI client. The client sends requests to the API and obtains detailed data on issues.
This data includes severity, file, line, and remediation advice so that developers can solve it.

Scan (skæn)90 is an auditing tool for organizations and teams applying the DevOps
approach. This tool discovers many forms of security vulnerabilities in applications and
infrastructure code. A single search can retrieve results without having to connect to remote
servers. Scan (skæn) has features optimized for DevSecOps workflow integration: overview
feedback for pull requests, build breaker automation, GitHub code scanning, and Bitbucket
code insights support. It was designed as a multi-scanner and incorporated various scanner
tools with twelve possible CI/CD integrations, namely: GitLab CI, Jenkins, Circle CI, Travis
CI, GitHub Actions, TeamCity and Bitbucket Pipelines, and among others. Scan has four
main features, credentials scanning, static analysis security testing, open-source dependency
audit, and license violation checks. The list of supported languages and frameworks has
twenty-three different items. Programming languages include Java, Python, Go, JavaScript,
and infrastructure as code includes Terraform, Ansible, Cloud formation, Kubernetes, and
Serverless. There is an integration for Visual Studio Code IDE via an extension. With this
extension, developers can conduct security audits and visualize the results inside the IDE.

3.6 Tools chosen for PoC scenarios

In this section, we indicate which tools we have chosen to test our solution and decision-
making motivations. First, we looked for and filtered only those tools with an API or CLI
integration. Secondly, we selected tools with a docker image maintained by their developers or
recommended by them. Since our security analysis pipeline runs various analysis tools inside
containers, this is an elimination factor. Third, to avoid licensing issues, inertia, delays, or
limitations, we chose open-source tools. The last factor was finding tools adapted for CI/CD
pipelines, with specific functionalities, such as returning a return state compatible with CI
pipelines.

89https://huskyci.opensource.globo.com/
90https://slscan.io
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For secret detection, we selected two candidates: truffleHog and shhgit. Both met the
requirements, had CLI, had Docker image, and were open-source. Although shhgit can scan
local repositories, there is no option to ignore paths and only return results in text or CSV
format. It is more suitable for remote Git or Gist repositories. The final choice was the
truffleHog because it is better suited for local repositories, an option to exclude a specific
path and return results in JSON format.

In SAST, we selected two candidates: huskyCI and Scan (skæn). Both met the require-
ments, had CLI, had a Docker image, and were open-source. huskyCI is designed and adapted
for CI/CD pipelines but has some drawbacks. It needs several components to work, such
as an API node, MongoDB and PostgreSQL databases, and a frontend representing extra
components to deploy and possible failure points. Scan (skæn) includes a docker image that
runs standalone without additional dependencies. huskyCI has five supported languages and
eight security tests available in contrast to the Scan (skæn) with twenty-three supported
languages and frameworks. Both Scan (skæn) and huskyCI do dependency scanning and
secret detection. Since Scan (skæn) supports more languages than huskyCI, it has more
security tests related to dependency scanning. The final choice is Scan (skæn) due to the
deployment simplicity and the broader range of languages and frameworks supported.

In DAST, we selected two candidates: W3af and ZAP. Both met the requirements, had
CLI, had Docker image, and were open-source. ZAP has a Docker image called zap2docker
with variants called stable, weekly, and live. These ZAP images’ development is active and
maintained, while W3af has a Docker image with five years old. We also found examples91 of
working integration with ZAP in GitLab CI pipeline. ZAP Docker image includes Python
scripts dedicated to active, passive, and API scans with batteries of tests already configured.
It is also possible to tune the image to fit and run inside CI/CD pipelines. The final choice is
OWASP ZAP due to the simplicity and flexibility of Docker images and correspondent scripts
included.

In terms of an external SAST, we choose a cloud platform called SonarCloud. This platform
integrates with CI/CD systems, such as GitLab CI, using a docker image including a CLI tool
called sonar-scanner. Sonar-scanner is part of SonarQube, an open-source platform developed
by SonarSource for continuous inspection of code quality. Despite being a commercial platform,
SonarCloud is free for open-source projects. SonarCloud enables us to visualize and analyze
the code in a dashboard without deploying an instance of SonarQube. We choose SonarCloud
due to CI integration, sonar scanner’s facility, visualization simplicity, and local deployment
absence.

3.7 Critical analysis

Our analysis focuses on the DevSecOps chain’s verification phase, namely, application
security testing. The application security testing has different approaches in the verification

91https://gitlab.tu-berlin.de/help/ci/examples/dast.md
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phase: from SAST or DAST to interactive application security testing (IAST) and software
composition analysis (SCA). In the various scenarios of our PoC, we only consider SAST and
DAST from the verify phase of DevSecOps toolchain 1.2. We consider that the investigation’s
software target already includes security concerns since its design and security faults or flaws
are outside our research scope. We build our solution to find coding errors or implementation
problems (bugs) and not design errors (faults). We intend to include vulnerability testing to
verify security issues in the software development to ensure that the applications that go into
production will not break the purpose of these applications’ services. The aim is to maintain
a continuous delivery integrated with production, avoiding disruptive processes.

Our main work objective is to create an integration solution that incorporates arbitrary
security tests on CI/CD pipelines. We want to give organizations the possibility to use several
CI/CD systems without being restricted to only one. We want developers to get results
from vulnerability analysis tools locally on their machines during the SDLC. We only used
containers for running the security analysis tools inside our solution. It should be possible to
run in VMs but our analysis did not measure them up. Our solution will use cross-sectional
vulnerability analysis tools used in CI/CD pipelines or developers. The idea is to encode a
battery of tests in a form and place it along with the application’s source code. This form,
which is sent to our solution, triggers automated tests, including several tools for detecting
vulnerabilities. These security tests will run in a CI/CD pipeline after the functional tests
pass.

To fulfill these purposes, we need solutions that allow this flexibility. HuskyCI and
Scan(skæn) are open-source solutions that integrate several static code analysis tools. Both
allow dealing with false positives and ignoring specific vulnerabilities. However, they do not
allow the integration of new tools or change test execution order. These two features are
central to our solution, and these two solutions are discarded. Wallarm FAST is a DAST plus
fuzzing with API and CI/CD systems integration but lacks flexibility. We cannot add new
analysis tools or define execution order, so Wallarm was excluded.

GitHub enables integrating new security tools with workflow templates in GitHub Actions.
The templates defined as code adds popular external services or setup new workflow with
custom tools. GitLab Secure enables integrating a diversity of existing and preconfigured
security testing tools and run them in GitLab CI. It also has code templates for the various
security tests. It is also possible to define new templates and add custom tools with specific
tests. GitHub and GitLab Secure both provide ways to define workflows or pipelines as
code in YAML files. It’s possible to run particular jobs within Docker containers. Both
GitHub and GitLab Secure have APIs to create workflows or pipelines. However, they are not
straightforward and require time and effort to integrate them on other CI/CD systems or by
developers on their machines. Although GitHub and GitLab Secure provide flexibility to add
new tools, organizations need to migrate all their source code to these platforms with all the
privacy implications.

The static or dynamic analysis tools described above 3.5 include integration into pipelines
CI/CD. Still, some lack flexibility, others simplicity and privacy. Our work differs from others
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for four main reasons. First, it provides independence from the CI/CD system type. The
second is simple to use in a CI workflow or on a programmer’s console machine. The third
can work alone in a cluster or private environment and finally is open-source.
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chapter 4
Architecture

This chapter describes the work carried out in this thesis, namely, the design and spec-
ification of what we call SecureApps@CI solution. This is meant to replace the existing

security testing applied at the end of SDLC. The new capabilities activated from beginning
to end and across SDLC will allow an earlier discovery and reduction of vulnerabilities, thus
effectively building a secure SDLC. The SecureApps@CI solution complements the work
already done by internal security teams and external security audits to provide precise and
valuable data for PCI audits1.

SecureApps@CI achieves three relevant improvements regarding the usual tests executed
manually by internal security teams or external auditors or companies at the end of the SDLC.
The first improvement is putting secret detection in place for the source code repositories at
every CI/CD pipeline run; the second is adding automated static code analysis to pipelines;
and the third is injecting automated vulnerability scans along the SDLC. Usually developers,
Development and Operations (DevOps) or even operations (Ops) teams perform ad-hoc secret
detection, quality assurance (QA) teams perform manual code review and security (Sec)
teams perform manual penetration testing. With this in mind, SecureApps@CI is born as
an integration solution that can launch several security tools, run them concurrently or
sequentially, and filter or aggregate their results. Finally, this solution launches a stack
of security tests that different teams can customize, thus, developers, operations, as well
as security teams are able to reduce risk, build customer trust, protect brand image, and
safeguard their organization’s valuable assets and their customers’ data privacy.

4.1 Goal

The main goal of the SecureApps@CI solution is to ensure that containerized applications
have no dangerous components, by providing a sanitizing process that guarantees these
applications will run free of vulnerabilities at the moment of their deployment. In the

1https://reciprocitylabs.com/what-is-a-pci-audit
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SDLC process, applications developed and released from a CI/CD pipeline generally do not
have a quality process focusing on security elements. During the development phase, QA
frequently links to user experience, usability, portability, or end-user experience activities to
ensure good interaction between the end-user (client) and the service that the application
itself provides. SecureApps@CI can tackle security issues from the beginning of the SDLC
process by analyzing three default test vectors: secret detection, static analysis, and dynamic
analysis. However, it can also analyze other custom vectors like license violation checks or
open-source dependency audits. Customized test vectors will need custom security tools added
to SecureApps@CI. We start by presenting the various SecureApps@CI scenarios, next we
enumerate the requirements, and then we move to its architecture. Lastly, we will approach
the design of the SecureApps@CI that is relevant to our PoC implementation and the results.

4.2 Scenarios

SecureApps@CI has two distinct scenarios in its foundation. As shown in Figure 4.1, it
can be called and used by pipelines or developers during the SDLC. CI/CD systems will call
SecureApps@CI API within CI/CD pipeline and developers will call it from their laptops
or workstations. Both options use a distributed version control system to work. On CI/CD
systems, the pipeline will run every time there are code changes. The SecureApps@CI API
can be requested in stages build, test, deploy, or other desired. A new security analysis will
run according to a configuration file. Developers download code from a source code repository,
make changes to one or more files within the code, send it over to the remote repository, trigger
an automated action that will call the SecureApps@CI API, and a new security analysis will
be executed.

Figure 4.1: Overview of scenarios

4.2.1 Scenario1 - inside the pipeline

As shown in Figure 4.2 the SecureApps@CI can be used by CI/CD pipelines or other
services running on any machine as long as it has an HTTP client installed. Let us consider a
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common application pipeline that starts with the build stage. It has build, test, and deploy
stages and on the test stage an API call is executed. This call sends a security analysis
definition to the SecureApps@CI. It triggers a new security analysis behind the scenes, runs
the correspondent security tools for each job defined in the security analysis definition received
and returns pass or fail depending on the sum of the security tools results. If all security
tools run without finding any security issues or the ones found are white-listed, the pipeline
will move on to the deploy stage and reaches the end. If security issues are found, no white
list is in place, the pipeline will fail and end.

Figure 4.2: Scenario1 - inside the pipeline

Developers, operations, or security teams can write a definition file and have a security
analysis running in their application pipeline, turning the security into a “low hanging fruit”
close to everyone inside these teams. Multidisciplinary teams like DevOps, SecDevOps, or
DevSecOps teams most likely will have an important role in the SecureApps@CI implemen-
tation, maintenance, and improvement. This can go even further and facilitate work and
interaction between teams around the security topic, which is often viewed as a major blocker
in application development. The success in the adoption of SecureApps@CI, the security
analysis, usage, and correspondent application sanitization and cleaning process will benefit
every team and the organization itself.

4.2.2 Scenario2 - the developer side

As shown in Figure 4.3, the SecureApps@CI can be used by the developer as long as
they have an operation system with an HTTP client installed. Let us consider a developer
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that creates new code, and afterward an API call is triggered by a hook2 or script. This
call sends a security analysis definition to the SecureApps@CI. The solution triggers a new
security analysis behind the scenes, runs the correspondent security tools for each job defined
in the security analysis definition received, returns pass or fail depending on the sum of
the security tools results. If all security tools run without finding security issues or they are
white-listed, the code will be sent to a VCS and a new application pipeline is launched. If any
security issues are found, and no white list is in place, then the code will need a review from
the developers or team involved in the SDLC of the corresponding application.

Figure 4.3: Scenario2 - the developer side

This scenario is particularly useful for teams during SDLC, when developers are imple-
menting new functionalities on specific branches of applications, and afterward merging code
to master when the functionalities are finally working. During this process, if they have the
ability to launch a security analysis of the SecureApps@CI with a simple API call, checking
the security issues and solving them before the application pipeline runs, this will avoid the
burden of waiting for the pipeline to finish to have the security analysis’ results.

This approach reduces the inertia of using the SecureApps@CI by decreasing the develop-
ment time, while avoiding potential stress or demotivation in using it. Since pipelines typically
have several stages including a test stage in the middle or in the end, if we add more analysis
of security tools, we will be creating obstacles to the development flow. For these reasons,
we expect programmers to have the best possible interaction with the solution, increasing
confidence, comfort, and motivation to continue using it.

2https://www.atlassian.com/git/tutorials/git-hooks
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4.3 Requirements

Given our main goal presented in Section 4.1 and having a CI/CD pipeline of applications
in mind, the solution’s design has the purpose of achieving a functional security analysis
solution. For the PoC we need flexible and integration capabilities, with developers and
CI/CD pipelines being able to interact with the system during the security analysis. To
achieve this, the SecureApps@CI must meet the following points.

Analysis definition

The definition of the security analysis pipeline is declared in a document which can be a
form. This document should have both a human and machine readable format and is sent
over to the SecureApps@CI as a file. Only one file format is allowed. In this document, it is
necessary to choose the application to be analyzed and correspondent details: the branch,
environment, source code repository, and team. There is also the possibility to add more
parameters to determine how, when, and where the tools will run. Special conditions such as
outbuildings or white lists can also be defined in the document.

Components

All components and pieces in the SecureApps@CI will be leveraged by open-source software.
The security tools built, analyzed, and tested by security analysis pipelines are just open-source
tools with a Command-Line Interface (CLI) or an API integration. Commercial security tools
can also be integrated, if adjusted and tested, but are out of the scope of PoC implementation.

Deployment

The deployment of all components in the SecureApps@CI uses a container engine to
launch them. The construction of components employs minimal container images to achieve
this requirement, including just applications and dependencies. Before each application runs
inside a container, a static analysis of dependencies is performed to ensure we do not run any
vulnerable dependencies. After a successful build of components, a container engine executes
their deployment.

Architecture

The architecture should be modular and extensible. Each block has a focused functionality,
consistent interfaces, and contains one or more components to fulfill this requirement. The
blocks that have boundaries with others and provide a service will expose it through an
API. This way, we ensure that blocks interacting and communicating with others can do it
consistently. The exceptions are the component that shows the results and the agent nodes
that run the security analysis. This way, the solution gains interoperability and provides the
flexibility to attach or detach new components inside each block if necessary.
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Availability

The SecureApps@CI must be available for CI/CD pipelines or developers without plugins
or additional packages. To reach this requirement, we created an API that works as an
interface between the developers or CI/CD pipelines and SecureApps@CI. This way they can
create a security analysis of an application just by making a request from an HTTP client
inside a source code repository.

Results and report

The analysis results include a Boolean output (pass or fail) and a detailed report that
each security tool provides. The report format depends on the security tool output; however,
whenever possible, we will prefer light data exchange formats, simple to read by humans and
easy to process by machines.

Web interface

The provided analysis results - the Boolean output, and a report - are visible through a
web interface, showing if the analysis passed or failed, and the detailed report output of each
security tool.

Distributed version control system

Git is the chosen distributed version control system. It is a strict requirement given the
context of SecureApps@CI. The environment of organizations in the context of our analysis,
and the consequent usage of CI/CD pipelines employ Git as the only distributed version
control system.

Client requirements

Clients of the solution must have an HTTP client. The potential clients of SecureApps@CI,
namely, autonomous CI/CD pipelines or machines operated by developers, need an HTTP
client installed to request new security analysis pipelines. The source code of the applications
to be analyzed must be in a Git repository, as stated in the previous requirement. By
reducing the client requirements to a bare minimum, we intend to improve compatibility and
consequently increase the adoption of SecureApps@CI.

4.4 Architecture

After studying and analyzing the SecureApps@CI requirements, we started modeling and
choosing the building blocks needed to satisfy and fulfill the requirements. As shown in
Figure 4.4, an architecture model emerged, having blocks providing a particular service to
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others. Our model’s building blocks are a receiver, a nucleus, an orchestrator, and a visualizer.
The receiver is an interface between clients and the SecureApps@CI. It listens for new security
analysis requests and receives a definition document from clients. Next, the nucleus manages
security analysis requests according to this definition, acting as a verifier of requests, a filter
of definition requirements, and a processor of actions to execute. Afterward, the orchestrator
works as a dispatcher launching agent nodes to execute security tools according to the analysis.
All jobs will run inside containers, in series or in parallel depending on the analysis definition
document. The security tools 1, 2, and n presented in the figure represent the possibility
of launching several security tools for each analysis. In each analysis, a nucleus will verify
dependencies, calculate logical operations between security tools, and aggregate each outcome
to produce the final results. Finally, the receiver will return a Boolean result to CI/CD
pipeline and the visualizer will show the results and detailed reports to the developers in
a dashboard. The visualizer may show the execution flow of the safety analysis pipelines;
however, our key foci are the results and reports.

Figure 4.4: Architecture of SecureApps@CI and its integration with CI/CD pipelines, developers
and arbitrary, external security analysis tools

4.5 Solution design

In this section, we will proceed with the design of SecureApps@CI solution. We start
by identifying the communications between the blocks of architecture. Next, we will define
the solution integration, the type of services used, the procedures, and the type of results of
SecureApps@CI analysis. Finally, we describe the security analysis flow. Notice that different
security tools can run on each analysis, such as secret detection, dependency issues, static or
dynamic analysis, external analysis, among others.

For example, a typical use case has the first stage mandatory (e.g., secret detection).
If there is a successful execution, the analysis moves to stage two. Secret detection fits in
stage one to ensure that organizations do not expose secrets, API keys, tokens, passwords,
or credentials to the outside world. After this, in stage two, a static analysis is done to
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verify the application code, configuration files, container related files, and dynamic analysis to
check vulnerabilities in running containers. Jobs can run parallel on stage one, for example,
two secret detection tools. Nevertheless, also in stage two, for example, static and dynamic
analysis can run simultaneously.

Architecture and communications

The three main components of the SecureApps@CI solution are the receiver, nucleus, and
orchestrator. Each will provide a service to the left block of the architecture model referenced
in Figure 4.4. We follow the principles of a microservices’ architecture, so we designed
each component as software application suites of independently deployable, loosely coupled,
collaborating services. These services have their stack, including the database if applicable,
and will communicate with one another over APIs. The use of APIs enables and promotes
faster dissemination of new functionalities and updates. Replacing or improving services can
be done without affecting other architecture services. The exception is the visualizer that is
not designed as a service and will not provide any consumer API. The visualizer depends
on the selected orchestrator since our system can use several orchestrators. We do not
know their ability to provide execution flows or be easily generalizable. It is not a priority to
visualize the executed flows but to ensure that the applications are clean, safe, and without
vulnerabilities. Therefore we have not defined an API for the visualizer.

Next, we will specify the messages between the various parts of the architecture and
describe the individual requests and responses from a high-level perspective. The first part is
to verify the authorization, namely, if the api_key on the request of a new security analysis is
valid. If the api_key in the request matches the configured key, the request is authorized. The
diagram in Figure 4.5, shows a message sequence chart with a failed authorization. A client
sends a security analysis request to the receiver, an authorization request is passed to the
nucleus that verifies the api_key and declares unauthorized since the key is not correct. The
client receives a response stating that the request is unauthorized and the security analysis
will not execute.

Figure 4.5: Message sequence chart - authorization checking failure

After the authorization request, the request for a new security analysis needs to be validated.
For this, the security analysis definition document will be parsed and passed through a linter3

3https://en.wikipedia.org/wiki/Lint_(software)
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to signal syntax or stylistic errors, invalid parameters and suspicious constructions. The
orchestrator performs the validation since it is aware of the specifics and constraints of
the definition document must have. It receives security analysis definitions and schedules
the security tools jobs accordingly to agents. The diagram in Figure 4.6 depicts a message
sequence chart with failed validation, which means that the security analysis will not occur.
A client sends a security analysis request to the receiver and an authorization request is
passed to the nucleus that verifies if the api_key is authorized to make the request. If the
authorization is valid, a validation request sent to the orchestrator will verify the request.
In this case, the request is invalid, the verification fails, and nucleus forwards the response
to the receiver. Finally, the client receives a response stating an invalid request and the
security analysis will not occur.

Figure 4.6: Message sequence chart - analysis document validation failed

Once the request has passed the authorization and validation stages, it starts to create an
analysis call to the orchestrator. If a new security analysis is accepted, the orchestrator
will launch all analysis jobs. Each job is composed of one or more security analysis tools that
will verify applications’ security issues and vulnerabilities. These security tools which create
results, the orchestrator collects them and forwards the raw results to the nucleus. The
nucleus filters the results, sends a response with filtered results to the receiver that passes
it to clients. The diagram in Figure 4.7 is a message sequence chart with a valid request,
meaning the security analysis will occur. The nucleus verifies and accepts the authorization,
the orchestrator validates the request, creates a new analysis, and correspondent analysis
tools are launched. The results of the analysis tools are retrieved properly: the orchestrator
routes the results to the nucleus, which filters and sends them back in response to the clients.
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Figure 4.7: Message sequence chart - valid analysis request

Integration

The SecureApps@CI will be introduced and integrated into CI/CD system by calling the
SecureApps@CI API on every pipeline that requires it, with the decision to be requested by
software developers before an application pipeline is triggered. In terms of the procedure
and process that SecureApps@CI supports, this solution has stages in which it performs
different jobs for each one. The number and order of stages can be customized according to
specific needs. In each stage, SecureApps@CI can run related jobs, and these can execute
security tools. Each job will run inside a container working as an agent node triggered by the
SecureApps@CI orchestrator. Every stage can be executed, skipped, or allowed to fail. We
can define if jobs will run in series or in parallel on each stage so that the security tools are
spin-up according to the inter-dependencies between stages. We can have stages that only
run if a specific stage (e.g., secret detection) has a successful output.

CI/CD pipeline integration

A CI/CD pipeline is a set of steps to be followed to deliver a new version of an application.
An API call to the SecureApps@CI API is required to request a new security analysis inside a
CI/CD pipeline. This API call will upload a security analysis document to the SecureApps@CI
solution. The security analysis document file will have a predefined format, and only that
format is allowed. Then, the CI/CD pipeline starts, the security analysis job or task is reached,
and a call to SecureApps@CI API is executed. Afterward, the security analysis runs, and
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finally, the SecureApps@CI API returns a response code.

Agent nodes’ jobs

The agent nodes receive jobs from the SecureApps@CI orchestrator. The jobs that an
agent node runs may use local services or remote depending on the security analysis document.
Local services are characterized by a restricted execution environment, based on open-source
applications and without internet access (offline). Remote services are provided by external
entities, with the inherent risk of publicly exposing sensitive data, without contracts or
subscriptions involved and the absence of inherent guarantees.

Analysis procedure

The security analysis settings are loaded from a document (file) that acts as a form
definition. The document containing analysis settings must exist inside the application
code repository. In a typical application development pipeline, tracking changes and trigger
pipelines are based on events in the Version Control System (VCS). A push or pull request on
a repository of code will trigger the application’s pipeline to run. We follow the same principles
in our security analysis procedure. Therefore, a change in the form definition, followed by a
push or pull, will trigger a new cycle of the application pipeline and, consequently, a call to
SecureApps@CI API that runs a new security analysis.

The solution is a security analysis that provides a self-service analysis service inside
CI/CD pipelines. Pipeline-as-code4 defines a series of capabilities that allow users to establish
mapping job processes with code housed and versioned throughout the source code repository.
To achieve better results, avoid errors, roll-back configuration, and keep consistency, the
application code has to be under source control. 5. To have a clear, straightforward, and
working security analysis is mandatory to have the security analysis document inside the
application repository. The document inside the code repository enables organizations to
track changes and audit the timeline history of security analysis settings.

Analysis result

The security analysis result includes a Boolean output response and a set of detailed
reports. The Boolean output response is equivalent to a true or false, like in a common CI/CD
pipeline of an application will have a failed or success status 6, here we have passed or
failed in the security analysis pipeline.

4https://docs.cloudbees.com/docs/admin-resources/latest/pipelines/pipeline-as-code
5https://aws.amazon.com/devops/source-control/
6https://www.jenkins.io/doc/book/pipeline/syntax/#post-conditions
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4.5.1 Security analysis flow

In Figure 4.8 we illustrate the security analysis flow, including authorization, verification,
orchestration, and describe the respective requests and possible responses from a high-level
perspective. The analysis flow shows a client (developer or CI/CD pipeline) sending a request
to the receiver interface. This request can be authorized or not depending on the key provided
is valid or invalid. The received request passes a verification to check if it is well-formed
(OK). The orchestration parses, filters, and launches the security tools in series or parallel
according to the security analysis definition form. The responses from security tools will go
to a verification that will process and translate the information received to a proper HTTP
status code, providing feedback to the client that originated the request. The status codes
available are success codes (2xx), 7, unauthorized code (403), 8 and client error code (4xx) or
server error (5xx). 9

Figure 4.8: Security analysis - API flowchart

7https://httpstatuses.com/200
8https://httpstatuses.com/403
9https://httpstatuses.com/
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chapter 5
Implementation

This chapter will explain the available choices, decisions made, and how we implement
the software components for a SecureApps@CI PoC. First, we explain the options

available and why we chose a specific type of integration and a file format for security analysis,
and a particular platform for orchestration. Second, we will do the analysis specification to
determine the variables and parameters needed to define a security analysis in a consistent
way. After determining the security analysis file format, the definition must describe the
decisions to apply when specific conditions are met, establish prerequisites, or set precedences
between stages. Third, we proceed with the API specification. The reason behind writing an
API definition and what it provides.

5.1 Security solution options

For the SecureApps@CI integration, we have two options on the table to analyze: an
API and a plugin. For the security analysis file format, the choices are between a standard
Jenkinsfile1 and YAML. For the orchestration platform, we need more than a container
orchestration since there is a need to define and manage security analysis pipelines in a
similar way that CI/CD pipelines for applications work. In CI/CD pipelines, the continuous
integration and continuous delivery or deployment enforce the automation of the building,
testing, and deployment phases of applications. In the security analysis pipeline, we need
to automate the arbitrary security analysis regarding applications. More specifically, these
pipelines will build the security tools involved, run correspondent security tests, and retrieve
their results.

We intend to have a security analysis described as code using a descriptive model, with
versioning history as developers use for source code. Security analysis as code concept is similar
to others that define infrastructure as code or pipelines as code. With this approach, the
purpose is to bring stability, consistency, tracking changes, adaptability to faster development,

1https://www.jenkins.io/doc/book/pipeline/jenkinsfile
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and transparency to developers using the security analysis pipeline as code. If a new change
on the security analysis definition file is required, any team can create Pull Request (PR)
on the repository. We can go even further if there is a proposal to change the definition
of security analysis. In this case, an affected team element will create a pull request in an
application repository. The PR needs to be accepted by those managing the repository; the
various teams involved can discuss and agree on changes bringing value and transparency to
organizations and their businesses.

Analysis integration

There were two alternatives analyzed, more concretely an API and plugin. We wanted
to enable organizations to adopt the CI/CD system that suits them best, migrate from one
CI/CD system to another, or even use more than one. A plugin must follow the development
of the CI/CD systems, and every time a new version of the system is released, the security
tool will need testing, adjustment, and integration to create a new plugin release. Finally,
the plugin option is bound to a specific CI/CD system, to have a plugin for several systems,
the development time increase further. An API it is platform agnostic, with well-defined
and manageable endpoints. This means a faster and iteratively integrated with application
development. Due to these reasons, and to warrant consistency and compatibility across
CI/CD systems, we chose an API and discarded the plugin option.

Analysis file format

Jenkins2 is a pillar, one of the ancient and widely adopted CI/CD systems. Jenkins project
started in 2004, originally called Hudson created by Kohsuke Kawaguchi, working at Sun
Microsystems. It uses a Jenkinsfile3 with declarative syntax. However, we chose YAML
instead of Jenkinsfile because of several factors. First, it is easy to read and write by humans
and simple to parse by machines. Second, a declarative pipeline in YAML is broadly embraced
by several CI/CD systems, such as GitLab CI4, Go-CD5, Azure DevOps pipelines6 and Google
Cloud Build7, Jenkins X8, among others. Third, software developer are already used to read
and write in YAML. Finally, our solution uses a CI/CD system for orchestrating the security
analysis pipeline, and this system uses YAML as the unique file format for defining CI/CD
pipelines. Due to these factors, our choice of YAML is clear and straightforward.

2https://www.cloudbees.com/jenkins/what-is-jenkins
3https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
4https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
5https://www.gocd.org/
6https://azure.microsoft.com/en-us/services/devops/pipelines/
7https://cloud.google.com/cloud-build
8https://jenkins-x.io/
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Container engine

The container engine chosen is Docker engine. Docker engine is a strict requirement given
the context of the SecureApps@CI. The environment of organizations in the context of our
analysis and the correspondent CI/CD pipeline deployments have Docker as the container
engine. Additionally, Kubernetes is configured with Docker as the container runtime, and its
Kubernetes that will run applications sanitized by our SecureApps@CI. Our CI/CD system
uses Docker engine as the container engine that will spin-up the security tools involved in the
security analysis pipelines.

Receiver and nucleus

The receiver and nucleus blocks of the architecture referred in figure 4.4 will run inside the
same container to reduce latency and improve performance. The receiver exposes an API and
receives requests from clients, while the nucleus verifies, processes, and manages the requests
without any API exposure. Both blocks were developed in Python.

Orchestrator and visualizer

The orchestrator and visualizer are two blocks with distinct functionalities, but they will
live inside the same entity in our case. The main reason to use a CI/CD system to assume
these blocks’ roles is that these systems include web terminals for showing running jobs, a
binary output of pipelines, and in some cases interactive terminals. This feature can tell us if
pipeline was canceled, suspended, failed, passed, and real-time log.

We analyzed two CI/CD systems, Jenkins and GitLab CI/CD. The Jenkins architecture
is fundamentally Server (Master) plus Agents and could use Docker within pipelines. It is
possible to have multiple containers with distinct images for different stages9. GitLab CI/CD
architecture essentially has at least one GitLab instance (Server) and one or more GitLab
Runners. Both Jenkins and GitLab have the possibility of having agents running in the Docker
engine. Jenkins has the jenkins/agent image and GitLab the gitlab/gitlab-runner

image. With both GitLab API and Jenkins API, it is possible to trigger a new pipeline cycle.
Jenkins needs plugins to declare pipelines and environment configuration in YAML. There are
experimental plugins and an incubated plugin to declare10. Since these plugins are not native
to Jenkins, they could bring unstable integration and interactions to our security analysis
pipeline. GitLab CI/CD requires less configuration for pipelines than other similar setups in
Jenkins.

GitLab ships to its container registry, which is ready for CI/CD container workflow without
installing, configuring, or maintaining additional plugins. GitLab Runners create and upload
job artifacts to GitLab and afterward, they are downloadable as an archive to GitLab UI or
GitLab API. These Job artifacts are a list of folders and files generated when a job finishes. This
feature is crucial once a security analysis pipeline finishes or breaks, since the teams involved

9https://www.jenkins.io/doc/book/pipeline/docker/
10https://plugins.jenkins.io/pipeline-as-yaml/
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may need to observe and analyze the job artifacts. The Auto DevOps functionality brings
DevOps best practices to the project by automatically configuring the software development
lifecycle. It can detect, build, test, deploy, and monitor applications. GitLab has protected
runners, that allow protecting sensitive information, such as the deployment of credentials
and secret detection, by allowing only jobs running on protected branches to access them. A
full comprehensive comparison table is available here11.

In terms of data persistence, GitLab uses Gitaly12 to keep the Git repositories, Post-
greSQL13 to persist the GitLab database data, and Redis14 to maintain GitLab job data.

GitLab is flexible in terms of job artifacts, it has a container registry built-in, consistency
and diversity of runners, the pipelines defined in YAML are clean, expressive and straight-
forward, and finally, the Auto DevOps capability enables the possibility of triggering a new
pipeline cycle with a change in .gitlab-ci.yml file plus a push to the repository. Our final
choice was GitLab CI/CD due to the number of available options and functions that will
provide to our final PoC implementation.

Agents and executors

The agent nodes are devices that run jobs or tasks defined in each state of the security
analysis pipelines. In our PoC we used three different Hardware devices (Laptop, VM and
Raspberry Pi) with two different architectures, AMD64 and ARM. Agents run the code
specified in the YAML definition file of each security analysis pipeline. The SecureApps@CI
implementation uses Docker as the container runtime plus agent nodes for launching the
security analysis pipelines, and not container orchestration such as Kubernetes or Docker
Swarm worker nodes. Worker nodes are used by container orchestration platforms whose
sole purpose is to execute containers and do not participate in the distributed state or make
scheduling decisions.

A GitLab Runner is an open-source application written in Go. There are three ways to
install it, more precisely in a container, downloading a binary manually or using rpm/deb

packages from a repository. It is officially supported on the Linux, Windows, macOS and
FreeBSD operating systems and on x86, AMD64, ARM64, ARM and s390x architectures.
In GitLab, there are three types of runners, based on the type of access required. Shared
runners are available for all groups and projects inside a GitLab instance. Group runners are
only available to projects and subgroups in a group, and specific runners are associated with
specific projects.

When we register a runner, we must choose an executor. An executor determines the
environment each job runs in. Different executors are available and can be chosen, like SSH,
shell, VirtualBox, Parallels, Docker, and Kubernetes. We evaluated two alternatives for
executors: Docker executor and Kubernetes executor. Our CI/CD system implements several

11https://about.gitlab.com/devops-tools/jenkins-vs-gitlab/decision-kit/
12https://docs.gitlab.com/charts/charts/gitlab/gitaly/index.html
13https://github.com/bitnami/charts/tree/master/bitnami/postgresql
14https://github.com/bitnami/charts/tree/master/bitnami/redis
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executors that we can choose to run builds in different scenarios. It supports distinct platforms
and methodologies for building a project.

The Kubernetes executor has all features enabled according to the compatibility chart
of our CI/CD system15, but does not have an interactive web terminal for the gitlab-runner
helm chart. It allows the usage of an existing Kubernetes cluster for the builds. The executor
calls the Kubernetes cluster API and creates a new Pod16 to build and service containers for
each GitLab CI job. Pods are small deployable objects in Kubernetes representing a single
instance of a running process in your cluster. They can contain one or more containers, such
as Docker containers. If a Pod runs multiple containers, Kubernetes manage them as a single
entity and share the Pod’s resources. The biggest drawback is that teams and organizations
will need a functional Kubernetes cluster to perform safety analysis pipelines.

The Docker executor allows a clean build environment, with dependency management
(all dependencies for building a project are inside a unique Docker image), and has all our
required features enabled, including the interactive web terminal, unlike Kubernetes. It has
the advantage that it is exceptionally straightforward to have Docker engine running on a
developer laptop or agent nodes, as opposed to Kubernetes. We want to ensure maximum
flexibility and independence from additional layers to perform our PoC. After reviewing the
pros and cons of these alternatives, our choice was the Docker executor for our PoC.

Analysis results

The SecureApps@CI results of security analysis pipelines will be available through the API
or a web interface. A Boolean output and a detailed report will be visible to both. For the
presentation of the results, SecureApps@CI allows defining the amount and type of errors and
saves or hides errors. There is a sort of cache for old errors detected that gives the possibility
of showing only new errors (hiding previous ones), hiding errors equal to the earlier errors
found, showing a small warning to count the number of prior errors hidden and view hidden
errors while keeping context. The information regarding the errors must have a simple and
easy-to-read format, preferably an output format for both machines or services and humans,
like JSON. Other options can be a table or text output, in case JSON is unavailable. The
components of the message to display are 3: precise location of the error in the code (folder,
file, line, commit hash), a short description of the error or vulnerability, and a URL with
information regarding the vulnerability, if any available.

5.2 Analysis specification

The definition of the security analysis’ parameters is made in a YAML file17. The YAML
definition can describe the decisions to apply when specific conditions are met. It can establish

15https://docs.gitlab.com/runner/executors/
16https://kubernetes.io/docs/concepts/workloads/pods/
17Security-Analysis.gitlab-ci.yml
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prerequisites or requirements and set precedences in stages. For example, when a stage
succeeds or fails if the security analysis will move to the next stage. It can also specify
actions to be executed before or after a specific stage. For example, install dependencies before
evaluating an application or sending a notification via email/slack after. Parameters, conditions,
and policies can be set, defined as setting different environments, Quality Assurance (QA),
development, staging, or production, and defining types of checks like detection of secrets,
static or dynamic analysis. We can also define the structure, what to execute, the order
of stages, or jobs. There are other possibilities, like skipping stages and white-list checks
according to organization security policies (for example, setting a vulnerability has accepted
in the development environment). The parameter setting of the SecureApps@CI was based
on the “GitLab CI pipeline configuration reference”18 (Community Edition).

## Global variables. These variables can be accessed in any job.
variables:

ENV: "qa"

## stages definition
stages:

- stage1
- stage2

## jobs definition
job1:

variables:
JOB_NAME: static_analysis

stage: stage1
script:

- make $JOB_NAME
only:

- qa
allow_failure: false

job2:
stage: stage2
script:

- make clean
allow_failure: true

Code Snippet 1: gitlab-ci.yml sample

With sample configuration in Code Snippet 1, we will briefly introduce the GitLab CI
configuration reference. There are three key components, variables, stages and jobs. Variables
can be defined as global in the top of YAML definition or attached to specific jobs. Stages
determine the phases or steps of a CI/CD pipeline and its ordinance determines the sequence
of execution. Jobs sequentially in the order specified in stages. In this case 1, job1 from
stage1 will run first, and job2 of stage2 will run after. All jobs inside the same stage run
in parallel. It is also possible to establish dependencies between jobs with needs keyword and
execute jobs in multiple stages concurrently.

18https://docs.gitlab.com/ce/ci/yaml/README.html
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Next, in Code Snippet 2, we present a security analysis template sample including two stages
(secret_detection, static_analysis). The secrets job is part of secret_detection

stage will run first, and afterward the job sast from static_analysis stage will be executed.
Job secrets can only run on dev and staging environments, which produce artifacts and do
not allow failure. The sast job depends on secrets job and will be executed only if secrets

job passes on success. This job allows failures, meaning that if the job fails, the pipeline
continues to the next stages and correspondent jobs if they exist. The analysis can also have
a .pre or .post stage that will run before and after all stages, respectively. The stages can
be added or removed according to the analysis requirements with the following example of a
configuration.

# Global variables. These variables can be accessed in any job.
variables:

APP_NAME: "app2"
# name of the "unit/division/section/department/team/workgroup/work_project"
GROUP_NAME: "qa-team"
GIT_URL: "git@<git server URL>:<port>/<project/user key>/<repository slug>.git"
BRANCH_NAME: "feature-yz"
GIT_DEPTH: '1'
ENV: "qa"

stages:
- secret_detection
- static_analysis

secrets:
stage: secret_detection
script:

- TESTS="detection" make run # run secret detection tool(s)
only:

- dev
- staging

artifacts:
paths: ["${SECRETS_RESULTS}"]
when: always

allow_failure: false

sast:
stage: static_analysis
needs: ["secrets"]
script:

- TESTS="static" make run # run static app-sec tool(s)
only:

- dev
- staging

artifacts:
paths: ["${SAST_RESULTS}"]
when: always

allow_failure: true

Code Snippet 2: Security Analysis template

A generic CI definition file called .gitlab-ci.yml was also added to the analysis repository
by our SecureApps@CI PoC. The generic CI definition shown in Code Snippet 3 is a pipeline
as code file with a key including the security analysis and variables related to each analysis.
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We can use these variables to identify the analysis later on, like the analysis id, path, project,
repository, and workgroup. Notice that the project is the slug of the source code repository.
The analysis id is a base64 encoded string generated from a 48-byte random stream. The
existence of a file called .gitlab-ci.yml is mandatory since the Auto DevOps capability
is only possible with it. If this file changes, it will trigger new security analysis pipelines
achievable using GitLab server and consequently running jobs on correspondent runners.

include:
- local: Security-Analysis.gitlab-ci.yml
variables:

# base64 encoded string generated from a random 48-bytes long stream
ANALYSIS_ID: Sample+Value/zJhwYgiwtySWJX+zO3Yo9YIFuv4/d56TcS6ZeXGBL0q3CC1lYL5
ANALYSIS_PATH: ./_analysis/app2
ANALYSIS_PROJECT: qa-team-app2
ANALYSIS_REPO: git@lab.example.com:analysis/qa-team-app2.git
ANALYSIS_WORKGROUP: analysis

Code Snippet 3: Generic GitLab-CI definition

5.3 Solution orchestration

This section will approach the details and specifics of the SecureApps@CI API, more
concretely its orchestration API. Our goal is to analyze containerized applications in isolated
environments. On each CI/CD pipeline for applications where there is a security definition
file in YAML format, it will perform a security analysis pipeline. For each job or task (secret
detection, SAST, DAST or others) of the security analysis, there is a Docker image of a
security tool that will run inside a container.

The orchestration is based on an orchestrator and agents, namely, a GitLab server and
runners. It is a push model, so the runners send back the results to the GitLab server. To
orchestrate the SecureApps@CI solution, several pieces need to interconnect and communicate
with each other. All components will run inside containers. The main components are the
API server, backend, GitLab-CI, runners and container engine. In our context, GitLab-CI will
work as orchestrator and visualizer. Orchestrators19 are tools to manage, scale, and maintain
containerized applications. A container engine20 is a piece of software that accepts user
requests, including command-line options, pulls images, and from the end user’s perspective,
runs the container.

19https://docs.docker.com/get-started/orchestration/
20https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
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Figure 5.1: API orchestration

As shown in figure 5.1 the API server receives requests from clients or CI/CD pipeline,
sends these requests to API backend that filter, lint and verify its contents. After this, the
GitLab-CI sends requests (with actions) to its runners. Runners communicate with Docker
executor that launches security analysis jobs. These jobs include security tools that run
inside the agents, in our case Docker containers. These tools can also run on other types of
agents, like Amazon EC2 instances, Google Compute instances, or even VMs can be applied
if SecureApps@CI is adapted accordingly.

All security tools will run inside a security analysis pipeline, produce results, and send
them back to clients (developer) or make it available within CI/CD pipeline. API server and
backend have the same color since they will work as the same entity and run on the same
container. The GitLab and Runners also have the same color because they are part of the
same entity.

For flow and execution conditions, there are: jobs performed if a failure exists, some
applicable in specific environments and others never executed in particular contexts. Next,
we present examples of different types of conditions:

– when:on_failure, defines a job performed if a failure exists
– only:staging defines a job only applied in staging environments, for example.
– except:master defines job that are never executed in the master branch
– needs:secret-detection defines a job that only runs if job secret detection finishes
successfully

– artifacts:true defines a list of files and directories to attach to a job on success.
For notification, the SecureApps@CI solution will have distinct return status 0, 1, and 2;

0 for success, 1 for fail, and 2 for errors that CI/CD systems receive and afterward return
errors and send alerts.
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5.4 CI/CD pipeline versus security analysis
pipeline

A security analysis pipeline is distinct from a CI/CD pipeline of an application, even if
it can run on the same system. Figure 5.2 shows how a security analysis pipeline analysis
fits into a CI/CD pipeline of an application that is intended to be sanitized and cleaned. In
a typical CI/CD pipeline with three stages, build, test, and deploy, there will be a job that
calls the SecureApps@CI API during the test stage. Upon this call, a new security analysis is
triggered and a distinct security tool will run tests A, B, and C. These tests will run also in
a pipeline on a CI/CD system called GitLab CI, so this means we have a security analysis
pipeline inside a CI/CD pipeline.

Figure 5.2: Security analysis pipeline in a CI/CD application pipeline

Our purpose is to trigger a new security analysis pipeline cycle with a source code change
on the master or specific branches if needed. GitLab CI triggers21 can be used to force a
pipeline rerun of a particular reference (branch or tag) with an API call. Although triggering
pipelines with GitLab API is possible, we follow a typical CI/CD pipeline’s principles. When
code changes are pushed to a repository, a new application pipeline starts. In our PoC, after
Auto DevOps is enabled, new security analysis pipelines will run every time the source code
changes in the Git repository of applications in the desired branch. This behavior is similar to
a typical CI/CD pipeline of an application that will also react to code changes and trigger new
pipeline cycles. Auto DevOps is the default CI/CD model, allowing GitLab to automatically
detect, compile, test, deploy and monitor applications. Auto DevOps22 intends to simplify the
setup and execution of a mature and modern SDLC.

21https://docs.gitlab.com/ce/ci/triggers/README.html
22https://docs.gitlab.com/ce/topics/autodevops/
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5.5 API specification

The reason behind writing an API Definition23 is that an OpenAPI Specification (OAS)
provides a contract that describes what responses look like when someone calls the API.
This definition can help the internal developers understand the API, agree on its attributes,
and help external developers learn the API and what it can do. In addition to generating
documentation, OAS accelerates development by creating implementation code and SDKs.
Other advantages are creating tests, monitoring24, and bringing the API live. With tools
like API Contract Security Audit25, it is feasible to get a detailed analysis of the possible
vulnerabilities and other API contract issues by providing the API contract in JSON format.
Developers can write different kinds of tests like functional tests, load tests, and run security
scans with ReadyAPI26.

5.5.1 API definition

For a functional API definition, it is necessary to declare items like API server and base URL,
paths, operations, parameters, requests, responses, data models (schemas), authentication
methods, and optional examples. In OpenAPI27 terms, paths are endpoints (resources),
such as /users or /reports/summary, that the API exposes, and operations are the HTTP
methods used to manipulate these paths, such as GET, POST, or DELETE. The RESTful28

API was developed with Swagger29, a tool ecosystem for developing APIs with OAS. The
final SecureApps@CI API is available online at SwaggerHub30. During its development, we
used API auto-mocking integration31. This integration creates and maintains a mock of
APIs based on the responses and examples described in OAS. API Auto Mocking enables
development, iteration, and testing requests and responses against the mock API backend.
This helps during the design phase and building client applications even before the real API
backend is ready.

Just as an example, a simple CLI tool called curl32 can call the health status method on
API Auto Mocking33 endpoint, like the following example:

23https://swagger.io/blog/api-development/why-you-should-create-an-api-definition/
24https://support.smartbear.com/alertsite/docs/monitors/api/soapui/create.html
25https://apisecurity.io/tools/audit/
26https://support.smartbear.com/readyapi/docs/projects/create/swagger.html
27http://spec.openapis.org/oas/v3.0.3
28https://www.redhat.com/en/topics/api/what-is-a-rest-api
29https://swagger.io/tools/open-source/getting-started/
30https://app.swaggerhub.com/apis/ema.rainho/secureapps-ci/v1
31https://app.swaggerhub.com/help/integrations/apiautomocking
32https://curl.se
33https://circleci.com/blog/how-to-test-software-part-i-mocking-stubbing-and-contract-testing/
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$ curl -X GET https://virtserver.swaggerhub.com/ema.rainho/secureapps-ci/v1/health
{

"api_status" : "up"
}

Code Snippet 4: Sample API call with curl

5.5.2 API methods

There are three groups of methods 5.3 for calling the SecureApps@CI solution: generic,
tools, and analysis. The generic methods are health and version. The tools meth-
ods are: create, list and details. Finally, the analysis methods are: create, abort,
progress, jobs and results.

All API methods are described in detail in section 7.1. The generic methods of health

and version are informative. Although they seem unnecessary and harmless, they can bring
precious value. Knowing whether the API is available is essential for both clients and CI/CD
pipelines. Knowing the exact version of the API helps to avoid mistakes or unexpected results.
It helps to maintain consistency in the CI/CD pipelines that include our security analyses,
keeping them as deterministic and effective as possible.

Figure 5.3: API methods

Before calling an API, the first approach is to check health status; this way clients ensure
that it is available online and can reach it. After this verification, clients may start to do
other requests and operations on the API. The health status of the API can be retrieved by
a developer or a CI/CD pipeline using a GET HTTP method to query the API endpoint
/analysis/health (see figure 5.4). The orchestrator will query the container engine, which
in turn will check if the API node is running and has the path available. The API node
returns an exit status to the container engine. If API node is up, returns an exit code of zero
(0); if down, the exit code is one (1). Otherwise, in case of errors, the exit code is two (2).
After receiving the output code, the orchestrator builds a JSON response with a key called
api_status and values up or down. Notice that if the output of container engine is two (2),
it means an error occurred, and the api_status value will be down.
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Figure 5.4: API - health method

After the first approach to check the API health status, clients need to verify the versions
available to read the documentation, determine the desired methods and query the API
accordingly. After this verification, clients may start to do other requests and operations on
the API. The version of the API can be retrieved by a developer or a CI/CD pipeline using a
GET HTTP method to query the API endpoint /analysis/version (see Figure 5.5). The
orchestrator will query the container engine, which in turn will check the API node versions
available. The API node returns an exit code of zero(0), and a version number if succeeded or
returns an exit code of two(2) in case of error. After receiving the exit status, the orchestrator
builds a JSON response with a key called api_version and a value v1 for example. Notice
that if the output of the container engine is two (2), it means an error occurred, and the
api_version value will be an empty string.
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Figure 5.5: API - version method

We can create a golden image of security tools to ensure consistency across an analysis, avoid
errors, and reduce the security analysis time. In SecureApps@CI the golden image is achieved
by building a Docker image with a security tool installed and properly configured. With this
approach, developer and CI/CD pipelines take less time to have security analysis results since
the golden image of security tools has been built and referenced in the analysis definition
form. Three helpful methods can improve security analysis quality and speed, although they
are not mandatory. They are the tool_create, tool_list and tool_details methods. The
creation of a new security tool, more specifically the tool_create (see Figure 5.6), can be
requested by a developer or a CI/CD pipeline using a POST HTTP method to send a request
to the API endpoint /tools/create. This request includes a Dockerfile that contains the
settings to build the intended security tool. The orchestrator parses the Dockerfile and triggers
a lint tool in the container engine to ensure the Dockerfile is valid. In case this Dockerfile
is accepted, the exit code is zero(0), and one(1) otherwise. After receiving the exit status
from container engine, the orchestrator builds a JSON response containing the keys tool_id,
tool_name and accepted. If a new tool is created, this process ends; else, we can do a new
request. In the creation of a new tool, the tool_id includes an image-name and a tag like
image-name:tag (for example nginx:alpine) and tool_name will be the container name.
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Figure 5.6: API - method to create a new analysis tool

Upon creating a security tool with the tool_create method, a developer may want or
need to check and evaluate the tool definition’s contents. This can be achieved by having
access to the Dockerfile regarding the security tool to evaluate. To achieve this goal, we
create a method called tool_details that will super seed this need. The details of a specific
security tool can be retrieved by a developer or a CI/CD pipeline using a GET HTTP method
to query the API endpoint /tool/toolId/details (see Figure 5.7). The orchestrator will
query the container engine to find the security tool details and collects them. If any details
are collected, the exit code is zero (0) and one (1) otherwise. After receiving the exit status
from the container engine the orchestrator builds a JSON response containing the definition of
security tool with keys tool_id, tool_name, dockerfile_id and dockerfile_dump. If the
details are retrieved, this process ends, else a new request can be made.
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Figure 5.7: API - method to fetch the details of existing analysis tools

Since we already have a method to add a new security tool to our security analysis
pipelines and another method to retrieve the definition of an existing tool, it makes sense to
have a method to list all existing tools: tools_list (see Figure 5.8), where a developer or a
CI/CD pipeline can request it by using a GET HTTP method to query the API endpoint
/tools/list. The orchestrator will find available security tools after container engine collects
their images. If any security tools are collected, the exit code is zero (0), and one (1) otherwise.
After receiving the exit status from container engine, the orchestrator builds a JSON response
containing a list of security tools with keys ["tool1": "xyz","tool2": "ijk", "tool3":

"uvw", "..."]. If the list is retrieved this process ends, else a new request can be done.
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Figure 5.8: API - method to list all existing analysis tools

With the purpose of determining if applications have security issues and sanitizing them
before they are released, we established specific methods to manage security analysis pipelines:
create, abort, progress, jobs and results. We start by defining the analysis_create method
that enables a developer or a CI/CD pipeline to create a new security analysis pipeline (see
Figure 5.9). A YAML definition in a source code repository of a certain application (App1 or
App2) is uploaded via a POST request to the API node. The orchestrator parses the YAML
definition file. A container will run a lint tool returning zero (0) to accepted requests and
one (1) otherwise. After this, the orchestrator builds a JSON response with keys analysis_id,
analysis_name and accepted; accepted can have values true or false. If the analysis is
accepted, the flow ends. If not, a new create request can be executed if needed.
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Figure 5.9: API - method to create a new security analysis pipeline

After creating a security analysis pipeline, the developer or a CI/CD pipeline may need to
abort it. For instance, because they realized that there is an issue. Also, if an application’s
new feature or functionality is added to a branch, merged to master, if that application’s
CI/CD pipeline is still running, the team may want to cancel it, including the security analysis
pipeline, before the new feature is added. These two cases show it is useful and valuable
to abort a current analysis pipeline to reduce time, decrease costs, and avoid incorrect or
inconsistent reports. To solve this need, we created a new method called analysis_abort

that will abort a security analysis (see Figure 5.10). It can be requested by a developer
or a CI/CD pipeline using a GET HTTP method to query the API node on the endpoint
/analysis/analysisId/abort. The orchestrator will query the container engine to find
security tools related to the analysis referenced by analysisId. The container engine stops
the security tools of the analysis; if they stop correctly, the exit code is zero (0), one (1) if
they did not stop, and two (2) in case of any errors. After receiving the exit status from
the container engine, the orchestrator builds a JSON response containing keys analysis_id,
abort_status. The abort_status can have two values, success or fail, if it is success

this process ends, else a new request can be done.
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Figure 5.10: API - method to abort an existing security analysis pipeline

Developers or a CI/CD pipelines may need to verify the evolution of an analysis pipeline to
determine its current state and how long it may take to finish. This is useful, when a developer
calls the API for analyzing an application and the analysis is running longer than expected,
for instance, on an otherwise short test, already performed in isolation. In these cases, it is
important to consult the progress and status of the analysis pipeline. For this, we created a
new method, called analysis_progress to monitor the progress of a security analysis (see
Figure 5.11). Such progress can be retrieved by a developer or a CI/CD pipeline using a GET
HTTP method to query the API endpoint /analysis/progress. The orchestrator will query
the container engine to find security tools related with analysis referenced by analysisId.
The container engine checks security tools progress related with the analysisId, if all of them
are finished, the exit code is zero (0), one (1) if they did not finish and two (2) in case of any
errors. After receiving the exit status from container engine, the orchestrator builds a JSON
response containing keys analysis_id and progress. The progress can have three values
accepted, ongoing or completed. If it is completed this process ends, if it is accepted or
ongoing new requests are done until the analysis completes.
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Figure 5.11: API - method to verify the progress of an analysis pipeline

In the sequence of method analysis_progress, that monitors the progress and evolution
of a security analysis pipeline, developers or CI/CD pipelines may need to access the jobs
belonging to each stage of that pipeline. Having this information is more comfortable and
strait-forward to determine the current state and have a better view of how long it will take
to finish the whole security analysis pipeline. It is beneficial, for example, if a team is testing
a new application, without having any idea of a particular test of a security tool, and needs
to check beforehand if that specific test has already run or not. The jobs for a stage in an
analysis pipeline can be retrieved by a developer or a CI/CD pipeline using a GET HTTP
method to query the API endpoint /analysis/analysisId/stageId/jobs (see Figure 5.12).
The orchestrator will query the container engine to find security tools from stage stageId

within an analysis AnalysisId. The container engine queries security tools’ jobs related with
stageId, if there are jobs, the exit code is zero (0), if no job is found the code is one (1) and
in case of any errors, two (2). After receiving the exit status from the container engine, the
orchestrator builds a JSON response containing keys stage_id, stage_name and job_list.
If jobs_list is empty, it means the analysis pipeline already completed and all process ends,
else a new request can be done until the analysis reaches the end.
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Figure 5.12: API - method to query the jobs running in a given stage of active analysis pipeline

The latest and crucial part of an security analysis pipeline is their result, namely, if it
passed or failed. Furthermore, in the event of failure, have a detailed report of why it happened.
To do this, we need to determine the type of security test that failed, visualize the reason for
the failure, analyze the type of error and act accordingly. This method, analysis_results, is
fundamental to SecureApps@CI solution since without it, the solution is useless, the developer
and CI/CD pipeline had no feedback of results, and the solution did not fulfill its purpose.
The results of an security analysis can be requested by a developer or a CI/CD pipeline
as described in Figure 5.13. The orchestrator will query the container engine to find the
security tools related with analysis referenced by analysisId. The container engine queries
the security tools responses related with the analysisId. If there are no security issues the
exit code is zero (0), and one (1) if one or more security tools found security issues and two (2)
in case of any errors. After receiving the exit status from the container engine the orchestrator
builds a JSON response containing keys analysis_id, analysis_status, report_id and
report_results. If no security issues were found, the application code (App2 Code) will
pass, and a pull request or push is accepted. If any security issue was found, App1 Code will
not be pushed, and App2 Code on the CI/CD pipeline will fail.
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Figure 5.13: API - method to get the results security analysis pipeline

5.6 Software structure

Our complete system uses three distinct APIs, specifically by SecureApps@CI API, GitLab
CI API and Docker engine API. The first was implemented according to the API specification
in section 5.5. The other two APIs to tackle security analysis requests and fulfill its purpose.
The software structure of our system is composed of various packages and classes that define
the various blocks of architecture. The components implemented were the API server and
backends. The two main packages involved were the swagger_server to the API server
code and api_backend referent to the backends code. The API server receives requests
from clients, backends process them and communicates with GitLab CI API and Docker
engine APIs to provide the required actions to the security analysis pipeline. The API server
definition contract is encapsulated in a swagger.yaml file, that contains all endpoints, methods,
controllers, models, authorization, actions and responses related to the API server of our PoC.
The written code for SecureApps@CI, namely the API server and backends, is Python and
are available at GitLab34. For the GitLab CI API35 interaction, we used the Python package
python-gitlab36. For the Docker engine API37 interaction, we use the Python SDK, more
specifically a Python library docker-py38. The API server implementation uses connexion39,
that is, a Python framework built on top of Flask, which handles HTTP requests defined
using OpenAPI (aka Swagger). In all cases, we used version 3 of the specification. We start
by defining the classes, their attributes, and methods needed to fulfill the requirements of

34https://gitlab.com/secureapps-ci/api_server
35https://docs.gitlab.com/ce/api/README.html
36https://github.com/python-gitlab/python-gitlab
37https://docs.docker.com/engine/api/v1.40/
38https://docker-py.readthedocs.io/
39https://github.com/zalando/connexion
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our system. From the classes diagram of Figure 5.14 we can observe the relations between
the different classes involved. The main classes used are APIActions, GitLabConnector,
Analysis, Results, DockerActions and SecTool. The DockerActions class is optional,
dedicated to reducing errors, improving the consistency and increasing performance.

Figure 5.14: SecureApps@CI classes’ diagram

The class APIActions takes care of the main operations requested through the Se-
cureApps@CI API, specifically create or abort security analysis, check their progress or
results and execute repository operations. The class GitLabConnector is encharged of GitLab
CI API operations, like verify the definition form file, create a workgroup plus a project, and
enabling the Auto DevOps. Next, we have a class called Analysis to hold security analysis.
The Analysis has the following main attributes: id, name, stages, jobs, and respective artifacts
of each security analysis pipeline. For each pipeline run cycle, another class called Results

includes id, name, repository, timestamp, a binary output as simplified results, artifacts of
the jobs, and a detailed report of the security tools that ran in that pipeline. There is an
additional class called DockerActions, used to create or view details of a specific security
tool from a list of existent Docker images with already built tools. A correspondent class is
the security tool that has an id, name, tag of Docker images of tools.

All components from Figure 5.14 were encapsulated as a single Python Application delivered
to customers. This Application is defined in a Docker image file called Dockerfile, available
online at GitLab40. This Dockerfile41 is a text document containing all commands a user
needs to call to assemble an image in a CLI. The Docker image, based on a python:3.7-alpine

image, has all OS packages, and all Python dependencies included. The Dockerfile is a
multi-stage image. On the first part of the image, certain operations like installing packages
in the alpine OS are done to run as root, but the remaining operations run as a custom user.
The final image has a custom user with the number 9999 that runs the Python Application.

40https://gitlab.com/secureapps-ci/api_server/-/blob/master/Dockerfile
41https://docs.docker.com/engine/reference/builder/
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Another important aspect is that the image runs safety42, that examines the built dependencies
for known security vulnerabilities using the open Python vulnerability database, called Safety
DB. With this inspection, we assure that the Docker image will not have any known security
vulnerability at the moment a SecureApps@CI instance is deployed.

On the application Docker image, we also have a health check inside the container of
the API node to verify the status of the API service at a specific interval and timeout. The
HEALTHCHECK statement tells Docker how to test a container to ensure that it is still operating
as expected. Health tests can identify events such as web servers trapped in an endless loop
and cannot accommodate new connections, even if the server process is still working.43 The
example in Code Snippet 5 shows health check inside a Docker file. In our case, we use wget

instead of curl, because it is already built in on Alpine Linux Docker image, and it is used
by its package manager apk despite the official Docker documentation showing an example
with curl 6.
$ cat Dockerfile
HEALTHCHECK --interval=5s --timeout=3s CMD \

wget -nv -t1 --spider https://localhost:5555/health || exit 1

Code Snippet 5: Dockerfile - health check with wget

$ cat Dockerfile
HEALTHCHECK --interval=5s --timeout=3s CMD \

curl -f https://localhost:5555/health || exit 1

Code Snippet 6: Dockerfile - health check with curl

42https://github.com/pyupio/safety/
43https://docs.docker.com/engine/reference/builder/#healthcheck
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chapter 6
Evaluation and Results

In the current chapter we present the proof of concept scenarios, analyze if we fulfill
the defined requirements, and summarize our solution’s potentialities and results. The

main goal of SecureApps@CI is ensuring that containerized applications have no dangerous
components, providing a sanitizing process to ensure that these applications will run free
of known vulnerabilities at the moment of their deployment. We will perform an intrinsic
analysis of the application and not extrinsic, being the application’s execution environment
excluded from the analysis. We did not test the integration with commercial or enterprise
security tools related to compliance or improving existing security policies. Nevertheless, it
should be possible to integrate them if they have CLI or API capabilities. The tests chosen for
our PoC include relevant open-source tools related to secret detection, dependency scanning,
static and dynamic analysis and container’s image scanning.

This chapter has three main sections, the first presents the evaluation scenarios, which
initially show how safety evaluation tools behave locally in an isolated environment. Then
we show the same safety tool running within SecureApps@CI, the respective definition of
the analysis, and the analysis results. In the following section, we list and discuss how we
fulfill the requirements defined in the architecture. In the final section, we summarize the
potentialities and results accomplished with our solution.

6.1 PoC evaluation

SecureApps@CI was conceived to integrate various types of security evaluation tools to
detect known security problems within the applications before dropping and launching them
into production. To avoid the same issue repeatedly, it is also possible to create white lists or
ignore specific tests’ phases if approved by the organizations’ business or security policies. To
prove the solution’s effectiveness, we will show the results from security tools running locally,
and afterward, the exact same security tools integrated into our solution, where they pop up
the same results. To incorporate various tools inside a security analysis pipeline, we program
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a series of tests inside the security analysis definition form used by SecureApps@CI. Moreover,
there is the possibility of passing to a second security tool test if the other chosen tool passes
their test.

To evaluate our PoC implementation, we established five different scenarios using four
different security tools. These security tools have distinct purposes: detecting secrets in the
source code, static analysis of the application code, dynamic analysis of a running application
and external analysis of source code. This section will demonstrate the different scenarios
where a security tool runs isolated, presents its results, or runs inside a security analysis
pipeline, managed by SecureApps@CI returning the same result. To increase the readability
of this chapter, all file samples and results of the execution of security tools are presented in
Code Snippets in Appendix 7.1.

6.1.1 Secret detection scenario

In this scenario, the objective is to demonstrate our system’s effectiveness in detecting
secrets. We refer to secrets as hard-coded or embedded credentials such as passwords,
authentication tokens, and private keys. Given a sample code of an application with embedded
credentials and a secret detection tool, we expect to find credentials with the tool alone and
exact the same credentials with that tool running inside the SecureApps@CI system.

We start the secret detection scenario PoC, by using a secret detection tool, first isolated
and afterwards running as part of a security analysis pipeline. The secret detection tool chosen
is truffleHog1 by @dxa4481 and the target application is a subset of the repo-supervisor

repository by Auth02.

Secret detection tool - running isolated

First, we run the secret detection tool alone at localhost, and observe the output. The
target application includes sub-directories containing files with sample hard-coded secrets
inside as we can observe in the file authentication.urls.json (see Code Snippet 12). It
has an Uniform Resource Locators (URLs) with authentication parameters including user and
password for FTP, HTTP, and HTTPS schemas. After running truffleHog locally as shown
in Code Snippet 13, this tool detects credentials inside the file pointing out a Password in

URL warning. It also tells us other useful information like branch, commit message, commit
hash, date, difference from previous commits, path of the target file and strings found in the
contents.

Secret detection tool - within SecureApps@CI

Next, we defined a security analysis pipeline using truffleHog and ran it in our system
to verify that we get the exact same results from the secret detection tool used. For that, we

1https://github.com/dxa4481/truffleHog
2https://auth0.com
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defined a security analysis form in the Code Snippet 7, add it to the repository, commit and
push the YAML Ain’t Markup Language (YAML) definition file, and afterward, the security
analysis pipeline will be triggered if Auto-DevOps is enabled.

variables:
APP_NAME: "repo-supervisor"
GROUP_NAME: "frontend-team"
GIT_URL: "https://github.com/auth0/repo-supervisor"
BRANCH_NAME: "master"
GIT_DEPTH: '4'
ENV: "dev"

stages:
- secret_detection

secrets:
stage: secret_detection
variables:

SECRETS_RESULTS: 'secrets.json'
script:

- trufflehog ${CI_PROJECT_DIR}/ \
--json \
--regex \
--cleanup \
--entropy=False | tee ${CI_PROJECT_DIR}/${SECRETS_RESULTS} | jq -C

artifacts:
paths: ["${SECRETS_RESULTS}"]
when: always

allow_failure: false

Code Snippet 7: Secret detection - security analysis pipeline form

If Auto DevOps is disabled, a call from an HTTP client is enough to trigger a new security
analysis pipeline and obtain the results as illustrated by the example with curl in the Code
Snippet 14. Its POST3 request needs three HTTP headers: Content-Type (indicates the media
type of the resource), Accept (informs the server about the types of data that he can send
back) and X-API-KEY (a token required for authorization). Other option was to use the
SecureApps@CI API within a web browser.

After requesting a security analysis with a security tool for secret detection, the GitLab web
interface can show the pipeline stages, each stage’s progress, and possible dependencies among
them. It also shows the different jobs’ status, details, and artifacts of security tools related to
each job. Code Snippet 15 shows a general overview of a secret detection inside a security
analysis pipeline. Here we can see that after having the docker+machine executor, preparing
the environment, and getting the source code from the Git repository, the step_script starts.
In this job, first the packages jq and git are installed, then truffleHog is also installed.
Finally, truffleHog runs and finds exactly the same we saw before.

This way, we can conclude that our solution can successfully spawn the truffleHog

analysis. Another important factor is that the pipeline fails with error (ERROR: Job failed:

exit code 1) and the appropriate Boolean output, that is, one (1), since the secret detection
3https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
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tool found a credential hard-coded.

6.1.2 Static analysis scenario

In this scenario, the objective is to prove our system’s effectiveness in performing a static
analysis of the application source code. Given a sample of a deliberately vulnerable application
and a SAST tool, we expect to discover vulnerabilities with the tool alone and exact the same
vulnerabilities with that same tool running inside the SecureApps@CI system.

We start the PoC of the static analysis scenario, by using a SAST tool, first isolated and
afterwards running as part as the security analysis pipeline. The tool chosen was Scan (skæn)4

by ShiftLeft5. and the target application is deliberately vulnerable Django6 application called
django.nV 7 provided by nVisium8. The target application has an outdated version of Django,
as we can observe in the example file called requirements.txt (see Code Snippet 16).

SAST tool - running isolated

First we execute Scan (skæn) (see Code Snippet 17), which shows that it detects Django
version 1.8.3, an outdated version with several well - known vulnerabilities, described in CVE
entries. Among them, one has a critical severity and severity score of 9.8 (out of 10), namely,
the CVE-2019-198449. It also shows a security scan summary where we can observe other
useful information, like Python dependency scan, Python source analyzer, and Python security
analysis of the target application.

SAST tool - within SecureApps@CI

First, we defined a security analysis pipeline and ran it in our system to verify that we
get the same results from the tool Scan (skæn). For that, we established a security analysis
form in Security-Analysis.gitlab-ci.yml (see Code Snippet 8), add it to the repository,
commit and push the YAML definition, and later, the security analysis pipeline will be
triggered if Auto-DevOps is enabled. If Auto-DevOps is disabled, a call from an HTTP client
is sufficient to unleash a new security analysis pipeline and obtain the results.

Then, we do an API call to SecureApps@CI with HTTP client curl with the command
shown in Code Snippet 18. This POST request needs three HTTP headers: Content-Type (in-
dicates the media type of the resource), Accept (informs the server about the types of data
that he can send back) and X-API-KEY (a token required for authorization). API keys10 are
sent by the clients of our solution as a request header to make API calls. Notice that the

4https://slscan.io
5https://www.shiftleft.io
6https://www.djangoproject.com
7https://github.com/nVisium/django.nV
8https://www.nvisium.com
9https://nvd.nist.gov/vuln/detail/CVE-2019-19844

10https://swagger.io/docs/specification/authentication/api-keys/
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variables:
APP_NAME: "djangonv"
GROUP_NAME: "frontend-team"
GIT_URL: "https://github.com/nVisium/django.nV.git"
BRANCH_NAME: "master"
GIT_DEPTH: '1'
ENV: "dev"

stages:
- static_analysis

sast:
stage: static_analysis
image:

name: shiftleft/sast-scan
script:

- scan --src ${CI_PROJECT_DIR} \
--type depscan,python \
--out_dir ${CI_PROJECT_DIR}/reports

rules:
- when: always

artifacts:
name: "$CI_JOB_NAME-$CI_COMMIT_REF_NAME"
paths:

- $CI_PROJECT_DIR/reports/
when: always

allow_failure: false

Code Snippet 8: SAST - security analysis pipeline form

api_key is read as an environment variable, to prevent someone with access to the terminal
history acquires the key in plain text.

Following a security analysis request, including a SAST security tool, the GitLab web
interface can show the pipeline stages and each stage’s progress. It also shows the different
job statuses, details, and artifacts of security tools related to each job.

Finally, we show a general overview of Scan (skæn) (see Code Snippet 19) running inside
a security analysis pipeline and the detection of the same problems previously identified.

6.1.3 Dynamic analysis scenario

In this scenario, the objective is to demonstrate our system’s effectiveness in performing
a dynamic analysis of a running application. Given a sample of a deliberately vulnerable
application and a DAST tool, we expect to discover vulnerabilities with the tool alone and
exact the same vulnerabilities with that same tool running inside the SecureApps@CI system.

We start the PoC of the dynamic analysis scenario, by using a DAST tool, first isolated
and afterward running as part as the security analysis pipeline. The tool chosen was Zed

Attack Proxy (ZAP)11 by OWASP12 and the target application was the deliberately insecure
11https://www.zaproxy.org/
12https://owasp.org/
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web application webgoat13, maintained by OWASP.

DAST tool - running isolated

First, we create a Bash script called zap-quick-scan.sh (see Code Snippet 20) that
will run the ZAP with the required parameters and options to initiate the scan without user
interaction. The zap-cli14 is CLI tool for controlling ZAP. Essentially, the script will run a
series of scans of a target URL. To run without user interaction, we need to disable the ZAP
api_key. We define the high filter option as the minimum alert level. The options applied to
run the self-contained scan were: spider, ajax spider and recursive scan. The scan includes
sqli, xss, xss_reflected and xss_persistent tests.

After creating the zap-quick-scan.sh script, we ran a testing environment with ZAP

against WebGoat as described in the Compose file15 called docker-compose.yml (see Code
Snippet 21). We define the deployment with Compose16, a tool for specifying and spinning
various programs within containers using a YAML file to define the application’s services.
Then, with a single command docker-compose up -d we create and start all services as
shown in Code Snippet 22).

DAST tool - within SecureApps@CI

First, we defined a security analysis pipeline and ran it in our system to verify that we
get the exact same results from the tool ZAP running isolated. For that, we established a
security analysis form in Security-Analysis.gitlab-ci.yml (see Code Snippet 9). Then
we add the security analysis form to the repository, commit and push the YAML definition
file, and afterward, the security analysis pipeline will be triggered if Auto-DevOps is enabled.
If Auto-DevOps is disabled, an HTTP client call is sufficient to unlock a new security analysis
pipeline and obtain the results. Notice that the service docker:dind is mandatory since we
will run three containers within Docker and the GitLab runner that requests this job needs
access to Docker daemon to launch them.

Next, we do an API call to SecureApps@CI with HTTP client curl with the command
shown in Code Snippet 23. This POST request needs three HTTP headers: Content-Type (in-
dicates the media type of the resource), Accept (informs the server about the types of data
that he can send back) and X-API-KEY (a token required for authorization). API keys17 are
sent by the clients of our solution as a request header to make API calls. Notice that the
api_key is read as an environment variable to prevent someone with access to the terminal
history acquires the key in plain text.

Following a security analysis request, including a DAST security tool, the GitLab web
interface can show the pipeline stages and each stage’s progress. It also shows the different

13https://github.com/WebGoat/WebGoat
14https://github.com/Grunny/zap-cli
15https://docs.docker.com/compose/compose-file/
16https://docs.docker.com/compose/
17https://swagger.io/docs/specification/authentication/api-keys/
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variables:
APP_NAME: "zap-webgoat"
GROUP_NAME: "samples"
GIT_URL: "https://gitlab.com/secureapps-ci/samples/zap-webgoat"
BRANCH_NAME: "master"
GIT_DEPTH: '5'
ENV: "dev"

image: tmaier/docker-compose:17.03
services:

- docker:dind

stages:
- test

test:
stage: test
variables:

ENV: dev
TEST_TARGET: "http://webgoat:8080/WebGoat"
DAST_REPORT_FILE: "dast_report.txt"

script:
- echo $PWD
- docker-compose up -d webgoat webwolf
- docker-compose run -d -e ENV=dev \

-e REPORT_FILE="$DAST_REPORT_FILE" \
-e TARGET="$TEST_TARGET" zap2docker

- docker logs zapwebgoat_zap2docker_run_1 -f
rules:

- when: always
artifacts:

paths:
- $DAST_REPORT_FILE

when: always
allow_failure: false

Code Snippet 9: DAST - security analysis pipeline form

job status, details, and artifacts of security tools related to each job.
Finally, we show a general overview of ZAP (see Code Snippet 24) running inside a security

analysis pipeline and the detection of the same problems previously identified.

6.1.4 External analysis scenario

In this scenario, the objective is to prove our system’s effectiveness in performing an
application’s external analysis. Given a sample of a deliberately vulnerable application and a
tool to request external SAST analysis, we expect to discover vulnerabilities requesting the
external analysis isolated and exact the same vulnerabilities requesting that analysis inside
the SecureApps@CI system.

The external analysis scenario uses an external tool to analyze code quality and security, first
isolated and afterward running as part as the security analysis pipeline. The external analysis
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tool chosen is SonarCloud18 by SonarSource19 and the target application is a deliberately
insecure web application HelloShiftLeft20 maintained by ShiftLeft21.

External tool - running isolated

In this scenario we will request an external analysis tool in a local machine. First, we create
a property file called sonar-project.properties 25 that will define project sources, pro-
gramming language type, language version, and location of the binaries. In this concrete case,
the project key is secureapps-ci_hello-shiftleft, the organization is secureapps-ci, the
project name is hello-shiftleft, sonar sources are located at src/main/java, programming
language is java, language version is 1.8 and binaries located at target/classes. With this
file, the sonar scanner CLI is able to determine all properties of our project and proceed with
a proper and adequate analysis. We also need to update our pom.xml file with some properties
like java.version, projectKey, and organization 26. After running sonar scanner22 as
shown in this example 28, we can observe in sonarcloud.io23 that the application has six
security hotspots related with Insecure configuration. The remediation suggestion is to
make sure that the debug feature is deactivated before delivering the code in production.

External tool - within SecureApps@CI

First, we will define a security analysis pipeline and run it in security solution to prove
that it does not change the output results of the external analysis tool SonarCloud. For that,
we establish a security analysis form called Security-Analysis.gitlab-ci.yml 10, add it
to the repository, commit and push the YAML definition, and later, the security analysis
pipeline will be triggered if Auto-DevOps is enabled. If Auto-DevOps is disabled, a call from
an HTTP client is sufficient to unlock a new security analysis pipeline and obtain the results.

After having the form defined, we do an API call to SecureApps@CI with HTTP client
curl with the command shown in Code Snippet 29. This POST request needs three HTTP
headers: Content-Type (indicates the media type of the resource), Accept (informs the
server about the types of data that he can send back) and X-API-KEY (a token required for
authorization). API keys24 are sent by the clients of our solution as a request header to make
API calls. Notice that the api_key is read as an environment variable to prevent someone
with access to the terminal history acquires the key in plain text.

Following a security analysis request, including external analysis tool SonarCloud, the
GitLab web interface can show the pipeline stages and each stage’s progress. It also shows
the different job status, details, and artifacts of security tools related to each job.

18https://sonarcloud.io
19https://www.sonarsource.com
20https://github.com/ShiftLeftSecurity/HelloShiftLeft
21https://www.shiftleft.io
22https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/
23https://sonarcloud.io/project/security_hotspots?id=secureapps-ci_hello-shiftleft
24https://swagger.io/docs/specification/authentication/api-keys/
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variables:
APP_NAME: "HelloShiftLeft"
GROUP_NAME: "samples"
GIT_URL: "https://github.com/ShiftLeftSecurity/HelloShiftLeft.git"
BRANCH_NAME: "master"
GIT_DEPTH: '2'
ENV: "qa"

stages:
- build
- external_analysis

build-app:
stage: build
image:

name: maven:3-jdk-11
entrypoint: [""]

script:
- mvn clean package

artifacts:
paths:

- target/

sonarcloud-check:
stage: external_analysis
needs: ["build-app", "secrets"]
image:

name: sonarsource/sonar-scanner-cli:latest
entrypoint: [""]

variables:
SONAR_USER_HOME: "${CI_PROJECT_DIR}/.sonar"
GIT_DEPTH: "0"

cache:
key: "${CI_JOB_NAME}"
paths:

- .sonar/cache
script:

- sonar-scanner
only:

- merge_requests
- master
- develop

dependencies:
- build-app

Code Snippet 10: External analysis - security analysis pipeline form

Finally, we show a general overview of SonarCloud (see Code Snippets 30, 31) running
inside a security analysis pipeline and the detection of the same problems previously identified.
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6.1.5 Integration analysis scenario

In this scenario, the objective is to demonstrate our system’s flexibility and adaptability by
integrating various security assessment tools given an analysis definition form. We will select
a set of analysis tools (secret detection, SAST and external analysis), run them in dedicated
CI/CD pipeline, and, finally, collect their results. The secret detection tool is truffleHog, the
static analysis tool is Scan (skæn) and external analysis is provided by SonarCloud. Given
a sample of a deliberately vulnerable application and various security assessment tools, we
expect to see the flow and sequence of analysis tools in the SecureApps@CI system precisely
as defined in the analysis definition form.

We start by making an API call to SecureApps@CI API within an HTTP client called
curl in the command line as shown below 32. This POST request just needs three HTTP
headers, namely, Content-Type, Accept, and X-API-KEY. The Content-Type indicates the
media type of the resource, Accept informs the server about the types of data that he can
send back, and X-API-KEY is a token required for authorization.

We can define an orchestration flow, integrate different security tools, pass dependencies
between jobs of different stages, and ensure that external analysis only happens if there is no
private or sensitive information inside the source code. The GitLab web interface can show
the pipeline stages, each stage’s progress, and possible dependencies between them. It also
shows the different job statuses, details, and artifacts of security tools related to each job.

We established a security analysis form called Security-Analysis.gitlab-ci.yml 11
and added it to the repository. This form has secret detection, SAST and external anal-
ysis inside. The Pipeline has four stages build, secret_detection, static_analysis,
and external_analysis. The static_analysis and is allowed to fail since we have
a second SAST done by external_analysis. The external_analysis depends on the
secret_detection job called secrets as we can observe by the key and value needs:

["secrets"]. This dependency aims to ensure that we only execute an external analysis if
we do not find any secrets or sensitive information inside the source code.

This application used is the same as in the external analysis scenario. Its called
HelloShiftLeft and provided by ShiftLeftSecurity25. On top of the demo application,
we added the files needed for running the security analysis pipeline and external analysis by
SonarCloud. The code of this application is available here26. The pipelines can be observed
at gitlab.com27. The external analysis of the application can be viewed at sonarcloud.io28.

In the security analysis pipeline definition form 11 we orchestrate three different se-
curity tools in an automated way by using SecureApps@CI. This analysis is similar to
the previous external analysis scenario 6.1.4, since it has the same first and last stages
build and external_analysis. It differs in the middle stages secret_detection and
static_analysis. At these stages, for secret detection, we use truffleHog and for static

25https://www.shiftleft.io/
26https://gitlab.com/secureapps-ci/samples/hello-shiftleft
27https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/pipelines
28https://sonarcloud.io/dashboard?id=secureapps-ci_hello-shiftleft
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application security testing Scan (skæn).
Finally, the security analysis pipeline will be triggered if Auto-DevOps is enabled. If

Auto-DevOps is disabled, a call from an HTTP client as shown here 32, is sufficient to unlock
a new analysis and acquire the results. Observing the security analysis pipeline results of
these security tools is possible with GitLab web interface 6.1.

We can see that it has four stages, build, secret detection, static, and external analysis.
All stages passed successfully and have a green checkmark except the static analysis that
has an exclamation mark with brown color. The static analysis stage is allowed to fail, so
the pipeline continues with the external analysis. Static analysis fails due to dependency is-
sues with the package com.fasterxml.jackson.core:jackson-databind, entity leaks in the
file AccountController.java:[lines 21-71],29 and the use of a non-recommended cryp-
tographic hash function called API MD5 (MDX) in file CustomerController.java:[lines

73-388]30. Furthermore, since the secret detection did not find any secrets or private informa-
tion, the stage passes successfully, and the external analysis executes. If the secret detection
job fails, GitLab CI skips the external analysis job.

Figure 6.1: PoC - all security tools integration scenario

29https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/blob/master/src/main/java/io/
shiftleft/controller/AccountController.java

30https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/blob/master/src/main/java/io/
shiftleft/controller/CustomerController.java

79

https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/blob/master/src/main/java/io/shiftleft/controller/AccountController.java
https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/blob/master/src/main/java/io/shiftleft/controller/AccountController.java
https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/blob/master/src/main/java/io/shiftleft/controller/CustomerController.java
https://gitlab.com/secureapps-ci/samples/hello-shiftleft/-/blob/master/src/main/java/io/shiftleft/controller/CustomerController.java


80 chapter 6. evaluation and results

variables:
APP_NAME: "HelloShiftLeft"
GROUP_NAME: "samples"
GIT_URL: "https://github.com/ShiftLeftSecurity/HelloShiftLeft.git"
BRANCH_NAME: "master"
GIT_DEPTH: "0"
ENV: "dev"

stages:
- build
- secret_detection
- static_analysis
- external_analysis

build-app:
stage: build
image:

name: maven:3-jdk-11
script:

- mvn clean package
artifacts:

paths:
- target/

secrets:
stage: secret_detection
image:

name: python:3-alpine
script:

- apk add jq git
- python -m pip install --upgrade truffleHog
- trufflehog --json --regex --cleanup file:///${CI_PROJECT_DIR}/ \

--entropy=False | tee ${CI_PROJECT_DIR}/${SECRETS_RESULTS} | jq -C
allow_failure: false

sast:
stage: static_analysis
image:

name: shiftleft/sast-scan
script:

- scan --src ${CI_PROJECT_DIR} \
--type depscan,python --out_dir ${CI_PROJECT_DIR}/reports

allow_failure: true

sonarcloud-check:
stage: external_analysis
needs: ["build-app", "secrets"]
image:

name: sonarsource/sonar-scanner-cli:latest
script:

- sonar-scanner
dependencies:

- build-app

Code Snippet 11: Diversity of tools - security analysis pipeline definition form
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6.2 Achieved requirements

The main goal of our system was to facilitate the detection of vulnerabilities in con-
tainerized CI/CD applications prior to their deployment. In an SDLC process, applications
developed and disseminated from a CI/CD usually do not have quality processes focusing the
detection of elements that may cause potential security threats. Our SecureApps@CI system
was meant to be a functional solution with flexible and integration capabilities, capable of
running various security tools arbitrarily to achieve this goal. We start by evaluating the
requirements proposed and how they were achieved. The requirements were analysis definition,
components, deployment, architecture, availability, results and report, web interface, version
control system, and client requirements.

Analysis definition

For achieving the analysis definition requirement, a security analysis pipeline is declared
in a form describing the desired security analysis and sent over to our system as a file. The
only file format allowed is YAML format, readable by both computers and humans. As we
have shown in the different scenarios of PoC evaluation section, we may use and adapt the
analysis definition form to run various security tools arbitrarily. In this form, we must declare
the application to be analyzed and correspondent details: the branch, environment, source
code repository and team. It is possible to add more parameters to determine how, when,
and where each tool will run, as well as special conditions such as outbuildings or white lists.

Components

To reach the components requirement, we implemented our system with open-source
software. We used Python31 as programming language, Docker32 for deployment, and
GitLab community edition33 for CI/CD and security analysis pipelines. For testing and
implementating PoC scenarios, all security tools included in security analysis pipelines
were constructed using open-source container images from Docker Hub34. Docker uses an
open-source tool, called BuildKit35, which takes instructions from a Dockerfile and constructs
a Docker image. The security tools used were truffleHog, scan and ZAP. The API contract
was developed and defined with Swagger, a tooling ecosystem for developing APIs with OAS36).

31https://python.org/
32https://www.docker.com/
33https://about.gitlab.com/install/ce-or-ee
34https://hub.docker.com
35https://github.com/moby/buildkit
36https://www.openapis.org/faq
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Deployment

To meet the deployment requirement, our system uses a container engine for launching
active components, namely, Docker engine. The construction of active components employs
minimal container images, including just applications and dependencies. The usage of
Dockerfile37 allows the declaration of the build instructions to produce the final image. A
Dockerfile is a text file that describes how to assemble a private filesystem for a container,
and contains metadata describing how to run a container based on this image.

We went even further by using the Multistage38 build functionality, which allowed us to
create images of smaller containers with improved caching and a reduced security footprint.
As shown in Code Snippet 33, Multistage allows building and installing all dependencies
in the first stage, and in the second stage uses only the needed binaries and libraries al-
ready produced in the first stage. The final version of the Dockerfile can be observed at
gitlab.com/secureapps-ci39.

We used the pip package manager to install and manage additional libraries or dependen-
cies not distributed in the standard Python library. All libraries and dependencies are listed
in a requirements.txt file that can be observed in gitlab.com/secureapps-ci40. The pip
packages are pinned to ensure that our Python application and correspondent dependencies
for production are built in a predictable and deterministic fashion. Before each application
runs inside a container, a static analysis is performed to ensure we do not run any vulnerable
dependencies. After a successful build of the components, a container engine, in our case
Docker engine, executes their deployment.

Architecture

The architecture is modular and extensible. Each block has focused functionality, consistent
interfaces, and contains one or more components that fulfill this requirement. The blocks
that have boundaries with others provide a service exposed through an API. We also assure
that blocks interacting and communicating with others can do it consistently. The exceptions
are the block that shows the results (Visualizer) and the agent nodes that run the security
analysis pieces. Our system is interoperable and flexible to attach or detach new components
inside each block, if needed. This flexibility is possible since we follow the principles of a
microservices architecture, by designing each system component as software application suites
of independently deployable, loosely coupled, collaborating services.

Our system has four major blocks, as referred in Figure 4.4, they are Receiver, Nucleus,
Orchestrator, Visualizer. These blocks became API server, backends, GitLab CI, runners,
and Docker executor in the implementation phase as shown in Figure 5.1. In our context,
GitLab-CI plays the roles of orchestrator and visualizer. Both API server and backends

37https://docs.docker.com/engine/reference/builder
38https://docs.docker.com/develop/develop-images/multistage-build
39https://gitlab.com/secureapps-ci/api_server/-/blob/master/Dockerfile
40https://gitlab.com/secureapps-ci/api_server/-/blob/master/requirements.txt
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were developed in Python and are deployed on the same container. The various components
need to be connected and communicate for the system to work, and they all run inside
containers. Our system uses three distinct APIs, specifically the SecureApps@CI API, Git-
Lab CI and Docker engine API. The SecureApps@CI API was implemented according to OAS.

Availability

SecureApps@CI is available for CI/CD pipelines or developers without plugins or additional
packages. It has an API that works both for developers or CI/CD pipelines. Making requests
with one HTTP client from a source code repository can create a new security analysis on a
target application. We developed the API using Swagger tools to help generate and maintain
the API documentation, ensuring that up-to-date as the API contract evolves. The API
definition is in YAML and has all schemas, endpoints, requests, responses, and correspondent
variables.

Results and report

The analysis results need to include a Boolean output and a detailed report. To accomplish
this requirement, the analysis results provided by an analysis pipeline have a pass or fail

generic outcome and a detailed report for each security tool used. The report format depends
on the security tools’ output. We give preference to formats simple to read by humans
and easy to analyze by machines such as JSON or, when it is not possible, tables or text formats.

Web interface

The provided analysis results - the Boolean output and a report - are visible through a
web interface. Our CI/CD system (GitLab) includes a web interface that makes it possible
to view the binary output and a detailed security analysis report to meet this requirement.
On pipelines with stages that depend on other stages (thus implementing a series analysis),
GitLab generates a dependency graph visible in the User Interface (UI). It is possible to view
if an analysis pipeline passed or failed, and the detailed report output of each security tool
has Figure 6.2 highlights.

The running pipelines have a blue color and the ones that passed with errors are brown.
The gray pipelines are the ones canceled and the green pipelines are the ones that passed
successfully. Finally, in red, we have the pipelines that failed. We have a pizza circle with the
progress for the pipelines that passed. When the pipelines pass with errors, the symbol is
an exclamation mark and a backslash symbol for the canceled pipelines. If the pipelines fail,
there will be a cross symbol. It is also possible to view the list of jobs plus their execution
details, and the list of failed jobs plus the correspondent details. It is also possible to view
the list of jobs plus their execution details and the list of failed jobs plus the correspondent
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details.

Figure 6.2: Achieved requirement - web interface

Version control system

The Distributed Version Control System used was Git. Its usage is a strict requirement,
given the context of our system and the organizations’ environment in our analysis context.
Consequently, CI/CD Pipelines employ Git as the only version control system. This require-
ment was attained by having the source code of applications subject to security analysis on
Git repository. Furthermore, GitLab CI has a native support of Git, and the security analysis
pipelines depend on it.

Client requirements

Clients of the SecureApps@CI must have an HTTP client. Developers’ machines or au-
tonomous services need an HTTP client installed to manage security analysis pipelines. Clients
also need Git (that derives from the previous requirement). We improved the compatibility
and consequently fostered the adoption of our system by reducing the client requirements to
a bare minimum. The potential clients that we have tested were CLI clients curl41, wget42,

41https://curl.se/
42https://www.gnu.org/software/wget/
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httpie43, Python client SDK44, and Postman App45. In all these clients, it is possible to call
the API endpoints and receive the correspondent responses. The API also provides a UI
called Swagger UI46 to visualize and interact with the API resources from a Web Browser.
This UI presents visual documentation for client-side consumption and the ability to make
requests and receive responses from the API.

6.3 Final thoughts

We can state that our SecureApps@CI proposal can easily integrate several security
analysis tools. Security tools do not lose effectiveness inside our system, so if a tool works in
isolation, the same tool will work in our environment. Security tools can be open-source or
commercial, although we just ran tests with open-source tools. All open-source tools used had
a CLI or anAPI. The code of these tools was not modified, so we could probably integrate
commercial tools if they also had a CLI or an API. If it were a commercial tool with only a
web interface, it would be more complex and time-consuming. However, it would be possible
with Selenium47, that enables and supports web browser automation.

We tested several validations flows in the various scenarios presented. The more complex
flows had dependencies between the various stages of the analysis pipeline. The external
analysis scenario 6.1.4 and integration analysis scenario 6.1.5 demonstrated the system ability
to perform tasks or not according to the previous stages’ outcome. We could make an
orchestration that does not pass for the next test if any previous test had failed. The
orchestration process is valuable, since it allows a controlled execution according to several
dependencies. It also showed us that it is possible to use artifacts from a previous phase at a
later stage, useful if we need to build an application before running a specific analysis, like
the case of our external analysis scenario 6.1.4. These interactions and inter-dependencies are
crucial, since an organization usually intends to use an external analysis only if the secret
detection tests performed in a preliminary phase passes; otherwise, it skips that external
analysis.

43https://httpie.io/
44https://swagger.io/tools/swagger-codegen/
45https://www.postman.com/
46https://swagger.io/tools/swagger-ui/
47https://www.selenium.dev
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chapter 7
Conclusion

The rise of the DevOps movement is associated with major changes in software development.
DevOps created or drove the use of new technologies such as cloud, containers, serverless,

and open-source software in general. DevOps’ agility and speed bring new challenges, and
securing the DevOps process is vital. The innovative movement DevSecOps answers these
needs by including application security principles in a typical DevOps cycle, delivering security
best practices earlier in SDLC. Organizations need to secure DevOps’ workflows by enabling
vulnerability scanning early in CI/CD pipelines and considering application security from the
start.

The purpose of this work was to reduce the impact of known security vulnerabilities in
microservices by examining the images and containers associated, in order to provide a safe
collection of microservices deployed by CI/CD pipelines. This way, the system we proposed,
SecureApps@CI, can integrate various security tools to ensure that applications are clean
and sanitized before releasing them in production environments, where they are available
worldwide to the organization’s customers.

We demonstrate that analysis tools’ execution results do not change when used in our
system. We validate that our system allows the definition and orchestration of several
interlinked analysis flows. SecureApps@CI is a flexible and adaptable system that selects a set
of analysis tools, runs them in dedicated CI/CD pipelines, and finally collects their results.
This system allows programming and orchestrating a series of security tests through a definition
form to select several security analysis tools and according to the defined dependencies.

The creation of the system SecureApps@CI gives the organizations a tool for performing
arbitrary security analysis of applications at the request of developers or CI/CD pipelines. The
creation of a REST API provides this capability to call SecureApps@CI as quickly as possible,
with a minimum of dependencies and reducing friction in SDLC by software developers or
CI/CD pipelines. Other advantages for organizations include open-source software; version
control hosted on-premises or in the cloud and adaptability to different CI/CD systems.
Our system also runs the various security assessment tools in isolated, encapsulated, or
containerized environments.
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7.1 Future work

In terms of possibilities for future work, we have identified four topics: the introduction of
OAuth1, implementation of a health status check for the API node, the addition of tags for
applications’ repositories, and whitelist annotations.

Secure security definition

The API accepts credentials (API keys) transported over the network. These credentials
are sent over the network on each API call repeatedly and are exposed to attack attempts to
retrieve the keys. Changing to a more secure security definition like OAuth 2.02 is a possible
remediation. OAuth is an open protocol to allow secure authorization. It uses access tokens
with limited lifetime and authorizations (scope) granted by the Resource Owner from an
authorization server. For determining security issues, online tools like API contract security
audit3 by 42Crunch4 can be used to obtain a detailed report of potential vulnerabilities and
other issues on the API contract.

Health status of API node

The API Node Dockerfile definition should have reliable and precise health checks
5. Usual health checks are available at endpoints like /api/v1/ping, /api/v2/status,
/api/v3/health give developers and Services the answer if APIs are available and healthy.
Several steps need to be implemented to have consistent health checks. At this moment, we
have a simple health check inside the container of the API node that verifies if a /health

endpoint is alive. Besides this, other checks are required to ensure that the backend processes
requests properly, the orchestrator can communicate with runners and the container engine
can launch security analysis tools. With all this, we actually verify that a Security Analysis
can actually run.

The number of replicas of the API Node should also be defined in a Docker Swarm service6

or in case of Kubernetes Deployment by defining ReplicaSets7 to ensure at least one replica of
an API Node is running. Additionally, a tiny pipeline template should be triggered within a
short time interval and the results collected. The tiny pipeline includes sample tools (in serial
and parallel tests). If the result status is "complete" the health status response should be
"up" otherwise the response is "down".

1https://oauth.net/2/
2https://oauth.net/articles/authentication
3https://apisecurity.io/tools/audit
4https://www.42crunch.com
5https://mesosphere.github.io/marathon/docs/health-checks.html
6https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
7https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
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Tags for application repositories

Like most VCSs, Git has the ability to tag specific points in a repository’s history as being
important. Typically, people use this functionality to mark release points (v1.0, v2.0, and
so on).8 Tags for application repositories are crucial, since developers and organizations rely
on this feature to trigger pipelines, deployment on specific environments, quality assurance
for certain versions, and to control the release of applications for clients. Here, the purpose
could be a concrete tag that would trigger the security analysis pipeline, let us say, a tag
vs-final activates a security analysis pipeline. A possible scenario could be to create this
tag in a staging environment before the application is launched into production or create
a tag weekend-dast in a repository where a security analysis pipeline will launch security
tools in the weekend. The idea will be to create a specific tag to schedule tasks to run in the
background at regular time intervals. Available options can be hourly, daily, weekly, monthly,
and other custom times, such as weekdays (excluding Saturday and Sunday) or weekends.

Whitelist annotations

When using security analysis’ tools, there are situations where there is a need to consider
existing vulnerabilities as acceptable, in case the business takes the risk of releasing a version of
a software product on the market, even knowing that it includes a security vulnerability. True
positives are an example of this case, where they are whitelist when accepted and validated
according to the organization policies for the true positives in question. Another possibility is
false positives, often the case with static analysis tools. For ignoring true or false positives
properly, it is essential to find appropriate ways to manage them and have the least possible
impact on software development lines. For this to happen, our system needs to avoid ignoring
a CI/CD pipeline job within a stage and write annotations in the security analysis form’s
definition (a YAML file). The pipeline job describes the security analysis tools chosen, error
labels, and a name to ignore when finding a specific error. Some security analysis tools can
ignore errors by adding comments before the code lines that originated the error in question.
In our case, the annotations would be described and defined in the security analysis form
itself.

8https://git-scm.com/book/en/v2/Git-Basics-Tagging
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Appendices
API documentation

In this document, the SecureApps@CI solution REST API is described in detail.

Usage
get /health

Returns the API health status

Parameter
No parameters

Response application/json
200 ok

{
" api_status ": "up/down"

}
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get /version
Returns the API version

Parameter
No parameters

Response application/json
200 ok

{
" api_version ": "v1"

}
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post /analysis/create
Create a new Analysis according to the uploaded definition

Parameter
No parameters

Body application/octet-stream

Example values are not available for application /octet - stream
media types.

Response application/json
400 The specified YAML definition is invalid (e.g. not a valid YAML)

401 API key is missing or invalid

404 The YAML definition for a new analysis was not found

200 ok

{
" analysis_id ": " string ",
" analysis_name ": " string ",
" accepted ": true

}

100 The Analysis request has been received and is processing, but no response is available

102 The Analysis is OK so far, client should continue the request or ignore the response
if the request already finished
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delete /analysis/{analysisId}/abort
remove a storage with id

Parameter
analysisId The ID of the Analysis to abort

Response application/json
200 ok

{
" analysis_id ": " string ",
" abort_status ": " string "

}
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get /analysis/{analysisId}/progress
The Progress of Analysis Stages 1,2,3 and tool jobs

Parameter
analysisId The ID of the Analysis to retrieve progress

Response application/json

200 ok

{
" analysis_id ": " string ",
" analysis_name ": " string ",
" progress ": " accepted ",
"stage1_id": 0,
"stage1 _status ": " string ",
"stage2_id": 0,
"stage2 _status ": " string ",
"stage3_id": 0,
"stage3 _status ": " string ",
" laststage_id ": 0,
" laststage_status ": " string "

}

400 The specified analysisId is invalid (e.g. not a number)

401 API key is missing or invalid

404 The analysis with the specified ID was not found
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get /analysis/{analysisId}/stage/{stageId}/jobs
Returns Jobs for a stageId

Parameter
analysisId The ID of the Analysis to retrieve Stages
stageId The ID of the Stage to return Jobs

Response application/json

200 ok

{
" stage_id ": 0,
" stage_name ": " string ",
" job_list ": [

{
" job_id ": 0,
" job_name ": " string ",
" job_type ": " string ",
" job_definition ": " string "

}
]

}

400 The specified analysisId or stageId is invalid (e.g. not a number)

401 API key is missing or invalid

404 The Analysis or Stage with the specified IDs was not found
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get /analysis/{analysisId}/results
Returns results status of Analysis (can include report if complete)

Parameter
analysisId The ID of the Analysis to retrieve results

Response application/json
200 ok

{
" analysis_id ": " string ",
" analysis_status ": " string ",
" report_id ": 0,
" report_results ": {}

}

400 The specified analysisId is invalid (e.g. not a number)

401 API key is missing or invalid

404 The analysis with the specified ID was not found
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post /tool/create
Create a new Tool according to the uploaded definition

Parameter
No parameters

Body application/octet-stream

Example values are not available for application /octet - stream
media types.

Response application/json
200 ok

{
" tool_id ": " string ",
" tool_name ": " string ",
" accepted ": true

}

400 The specified Dockerfile definition is invalid (e.g. not a valid Dockerfile)

401 API key is missing or invalid

404 The Dockerfile definition for a new Tool was not found
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delete /tool/{toolId}/remove
Remove the specified Security Tool

Parameter
toolId The ID of the Tool

Response application/json
200 ok

{
" tool_id ": " string ",
" tool_name ": " string ",
" remove_status ": " string "

}

400 The specified toolId is invalid (e.g. not a number)

401 API key is missing or invalid

404 The Tool with the specified ID was not found
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get /tool/{toolId}/details
Returns details of specific Security Tool

Parameter
toolId The ID of the Tool

Response application/json
200 ok

{
" tool_id ": " string ",
" tool_name ": " string ",
" tool_status ": " string ",
" dockerfile_id ": " string ",
" dockerfile_dump ": {}

}

400 The specified toolId is invalid (e.g. not a number)

401 API key is missing or invalid

404 The Tool with the specified ID was not found
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get /tools/list
Collect available Security Tools

Parameter
toolId The ID of the Tool

Response application/json
200 ok

[
{
" tool_id ": " truffleHog :v2",
" tool_name ": " truffleHog ",
" tool_type ": "secret - detection ",
" tool_definition ": " dockerfile "
},
{
" tool_id ": "sonar -scanner -cli:4.4",
" tool_name ": "sonar -scanner -cli",
" tool_type ": "sast",
" tool_definition ": "bash"
},
{
" tool_id ": "zap2docker -live: latest ",
" tool_name ": "zap2docker -live",
" tool_type ": "dast",
" tool_definition ": " dockerfile "
}

]

401 API key is missing or invalid

404 No Security Tools found!
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PoC - sample tests

This document shows more in detail the PoC evaluation results of SecureApps@CI. More
specifically, the various test scenarios, referring to distinct analyses and their outcomes.

Secret detection scenario - samples

Secret detection tool - running isolated

{
"urlsWithoutAuthParams": [

"http://www.google.com/",
"https://www.google.com/",
"ftp://localhost:21/",
"http://www.google.com/test:foobar@/abc"

],
"urlsWithAuthParams": [

"http://john:doe@www.google.com/",
"https://john:doe@www.google.com/",
"ftp://john:doe@localhost:21/",
"http://john:doe@www.google.com/test:foobar@/abc"

],
"urlsWithEmptyAuthParams": [

"http://:@www.google.com/",
"https://:@www.google.com/",
"ftp://:@localhost:21/",
"http://:@www.google.com/test:foobar@/abc"

]
}

Code Snippet 12: Secret detection - credentials inside a file

$ trufflehog file:///$PWD/ --json --regex --cleanup --entropy=False | jq -C
{

"branch": "origin/master",
"commit": "app2 - sample secrets from repo-supervisor code\n",
"commitHash": "351bad7199bb427d4aedcb37e33a4c71bd1ea28a",
"date": "2020-10-09 11:53:57",
"diff": "@@ -1,20 +0,0 @@\n-{\n- \"urlsWithoutAuthParams\": ...
\"ftp://localhost:21/\",\n- \"http://www.google.com/test:foobar@/abc\"\n- ],\n-
\"http://john:doe@www.google.com/\",\n- \"https://john:doe@www.google.com/\",\n-
\"http://john:doe@www.google.com/test:foobar@/abc\"\n- ],\n- \"urlsWithEmptyAuthParams\":
\"https://:@www.google.com/\",\n- \"ftp://:@localhost:21/\",\n- \"http://:@www...\n",
"path": "unit/src/filters/entropy.meter/pre.filters/authentication.urls.json",
"printDiff": "\u001b[93mhttp://john:doe@www.google.com/test:foobar@/abc\"\n\u001b[0m",
"reason": "Password in URL",
"stringsFound": [

"http://john:doe@www.google.com/\",\n",
"https://john:doe@www.google.com/\",\n",
"ftp://john:doe@localhost:21/\",\n",
"http://john:doe@www.google.com/test:foobar@/abc\"\n"

]
}

Code Snippet 13: Secret detection - running isolated
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Secret detection tool - inside solution

$ read -s api_key
read> ****************************************************************

$ curl --location \
--header "X-API-KEY: $api_key" \
--header "Accept: application/json" \
--header "Content-Type: application/octet-stream" \
--request POST "https://localhost:5555/ema.rainho/secureapps-ci/v1/analysis/create" \
--data-binary "@repo-supervisor/Security-Analysis.gitlab-ci.yml" --insecure

Code Snippet 14: Secret detection - security analysis pipeline request

Running with gitlab-runner 13.6.0 (8fa89735)
on docker-auto-scale 0277ea0f

> Preparing the "docker+machine" executor
> Preparing environment
> Getting source from Git repository
> Executing "step_script" stage of the job script

$ apk add --no-cache jq git --update
(1/6) Installing git (2.26.2-r0)
(2/6) Installing jq (1.6-r1)
OK: 31 MiB in 42 packages

$ python -m pip install --upgrade truffleHog
Successfully installed GitPython-3.0.6 truffleHog-2.1.11 truffleHogRegexes-0.0.7

$ trufflehog file:///${PWD}/ --json --regex --entropy=False | tee ${SECRETS_RESULTS} | jq -C
{

"branch": "origin/master",
"commit": "app2 - sample secrets from repo-supervisor code\n",
"commitHash": "7a29bb736e9b206aabb1aa0f9c5a333a18dbb4e6",
"date": "2020-10-09 11:53:57",
"diff": "@@ -1,20 +0,0 @@\n-{\n- \"urlsWithoutAuthParams\": [\n- \"http://www.google.com/\",\n- \"https://www.google.com/\",\n- \"ftp://localhost:21/\",\n- \"http://www.google.com/test:foobar@/abc\"\n- ],\n- \"urlsWithAuthParams\": [\n- \"http://john:doe@www.google.com/\",\n- \"https://john:doe@www.google.com/\",\n- \"ftp://john:doe@localhost:21/\",\n- \"http://john:doe@www.google.com/test:foobar@/abc\"\n- ],\n- \"urlsWithEmptyAuthParams\": [\n- \"http://:@www.google.com/\",\n- \"https://:@www.google.com/\",\n- \"ftp://:@localhost:21/\",\n- \"http://:@www.google.com/test:foobar@/abc\"\n- ]\n-}\n\\ No newline at end of file\n",
"path": "unit/src/filters/entropy.meter/pre.filters/authentication.urls.json",
"printDiff": "\u001b[93mhttp://john:doe@www.google.com/test:foobar@/abc\"\n\u001b[0m",
"reason": "Password in URL",
"stringsFound": [

"http://john:doe@www.google.com/\",\n",
"https://john:doe@www.google.com/\",\n",
"ftp://john:doe@localhost:21/\",\n",
"http://john:doe@www.google.com/test:foobar@/abc\"\n"

]
}

> Uploading artifacts for failed job
secrets.json: found 1 matching files and directories
Uploading artifacts as "archive" to coordinator... ok

> Cleaning up file based variables
ERROR: Job failed: exit code 1

Code Snippet 15: Secret detection - inside solution
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Static analysis scenario - samples

SAST tool - running isolated

File: requirements.txt

1 Django==1.8.3

Code Snippet 16: SAST - requirements sample

$ docker run \
--rm \
-v "$PWD:/app" \
-e "WORKSPACE=$PWD" \
shiftleft/scan \
scan \
--src /app \
--type python,depscan

[...] INFO Scanning /app using plugins ['python', 'depscan']

Dependency Scan Results (python)

Id Package Used? Version Fix Severity Score
Version

CVE-2019-19844 django N/A <1.11.27 1.11.29 CRITICAL 9.8
CVE-2018-7536 django N/A >=1.8-<1.8.19 1.11.29 MEDIUM 5.3
CVE-2018-7537 django N/A >=1.8-<1.8.19 1.11.29 MEDIUM 5.3
CVE-2017-7233 django N/A 1.8.3 1.11.29 MEDIUM 6.1
CVE-2017-7234 django N/A 1.8.3 1.11.29 MEDIUM 6.1
CVE-2016-6186 django N/A <=1.8.13 1.11.29 MEDIUM 6.1
CVE-2016-7401 django N/A <=1.8.14 1.11.29 HIGH 7.5
CVE-2016-9013 django N/A 1.8.3 1.11.29 CRITICAL 9.8
CVE-2016-9014 django N/A 1.8.3 1.11.29 HIGH 8.1

Security Scan Summary

Tool Critical High Medium Low Status

Dependency Scan (python) 2 2 5 0 X
Python Source Analyzer 0 0 21 0 X
Python Security Analysis 6 20 34 4 X

Code Snippet 17: SAST - running isolated
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SAST tool - inside solution

$ read -s api_key
read> ****************************************************************
$ curl --location --header "Content-Type: application/octet-stream"

--header "X-API-KEY: $api_key" --header "Accept: application/json"
--request POST "https://localhost:5555/ema.rainho/secureapps-ci/v1/analysis/create" \
--data-binary "@djangonv/Security-Analysis.gitlab-ci.yml" --insecure

Code Snippet 18: SAST - security analysis pipeline request

Running with gitlab-runner 13.6.0 (8fa89735)
> Preparing the "docker+machine" executor
> Preparing environment
> Getting source from Git repository
> Executing "step_script" stage of the job script
$ git clone --depth "${GIT_DEPTH}" "${GIT_URL}" "${CI_PROJECT_DIR}/${APP_NAME}"
$ scan --src "${CI_PROJECT_DIR}/${APP_NAME}" --type credscan,depscan,python --out_dir "./reports"

[.] INFO Scanning /builds/secureapps-ci/samples/djangonv/django-nv using plugins ['depscan', 'python']

Dependency Scan Results (python)

Id Package Used? Version Fix Severity Score
Version

CVE-2019-19844 django N/A <1.11.27 1.11.29 CRITICAL 9.8
CVE-2018-7536 django N/A >=1.8-<1.8.19 1.11.29 MEDIUM 5.3
CVE-2018-7537 django N/A >=1.8-<1.8.19 1.11.29 MEDIUM 5.3
CVE-2017-7233 django N/A 1.8.3 1.11.29 MEDIUM 6.1
CVE-2017-7234 django N/A 1.8.3 1.11.29 MEDIUM 6.1
CVE-2016-6186 django N/A <=1.8.13 1.11.29 MEDIUM 6.1
CVE-2016-7401 django N/A <=1.8.14 1.11.29 HIGH 7.5
CVE-2016-9013 django N/A 1.8.3 1.11.29 CRITICAL 9.8
CVE-2016-9014 django N/A 1.8.3 1.11.29 HIGH 8.1

Security Scan Summary

Tool Critical High Medium Low Status

Dependency Scan (python) 2 2 5 0 X
Python Security Analysis 3 10 17 2 X

> Uploading artifacts for failed job
> Cleaning up file-based variables

ERROR: Job failed: exit code 1

Code Snippet 19: SAST - inside solution
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Dynamic analysis scenario - samples

DAST tool - running isolated

File: zap-quick-scan.sh

1 #!/usr/bin/env bash
2
3 target_url="${TARGET}"
4 results_file="${REPORT_FILE:-scan_result.txt}"
5
6 # run scanner
7 zap-cli \
8 --verbose \
9 quick-scan \

10 --self-contained \
11 --scanners all \
12 --spider \
13 --ajax-spider \
14 --recursive \
15 --start-options '-config api.disablekey=true' \
16 "${target_url}" \
17 -l High | tee "${results_file}"

Code Snippet 20: DAST - zap quick-scan script

File: docker-compose.yml

1 version: '3'
2
3 services:
4 webgoat:
5 image: webgoat/webgoat-8.0
6 ports:
7 - "8088:8080"
8 |
9 zap2docker:

10 image: owasp/zap2docker-weekly
11 environment:
12 REPORT_FILE: dast_report.txt
13 TARGET: http://webgoat:8080/WebGoat
14 depends_on:
15 - webgoat
16 volumes:
17 - ./:/zap/wrk/
18 - ./zap-quick-scan.sh:/zap/wrk/zap-quick-scan.sh
19 entrypoint: /zap/wrk/zap-quick-scan.sh

Code Snippet 21: DAST - webgoat and zap deployment
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$ hostname
laptop.local

$ git clone --depth=1 https://gitlab.com/secureapps-ci/samples/zap-webgoat.git
Cloning into 'zap-webgoat'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 7 (delta 0), reused 2 (delta 0), pack-reused 0
Receiving objects: 100% (7/7), done.

$ docker-compose up -d
Creating network "zap-webgoat_default" with the default driver
Creating zap-webgoat_webgoat_1 ... done
Creating zap-webgoat_zap2docker_1 ... done

$ docker logs zap-webgoat_zap2docker_1 -f
[INFO] Starting ZAP daemon
[DEBUG] Starting ZAP process with command:

...
/zap/zap.sh -daemon \

-port 8080 \
-config api.disablekey=true.

[DEBUG] Logging to /zap/zap.log
[DEBUG] ZAP started successfully.
[INFO] Running a quick scan for http://webgoat:8080/WebGoat
[DEBUG] Disabling all current scanners
[DEBUG] Enabling all scanners
[DEBUG] Spidering target http://webgoat:8080/WebGoat...
[DEBUG] Started spider with ID 0...
[DEBUG] Spider progress %: 0
[DEBUG] Spider #0 completed
[DEBUG] AJAX Spidering target http://webgoat:8080/WebGoat...
[DEBUG] AJAX Spider: running
[DEBUG] AJAX Spider completed
[DEBUG] Scanning target http://webgoat:8080/WebGoat...
[DEBUG] Started scan with ID 0...
[DEBUG] Scan progress %: 0
[DEBUG] Scan progress %: 60
[DEBUG] Scan progress %: 100
[DEBUG] Scan #0 completed
[INFO] Issues found: 4
+------------------------+------+--------+------------------------------------------+
| Alert | Risk | CWE ID | URL |
+==================================================+===============+==========+=====+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/register.mvc |
+------------------------+-----------+----------+-----------------------------------+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/login |
+--------------------------------------------------+---------------+----------+-----+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/login?error |
+--------------------------------------------------+---------------+----------+-----+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/registration |
+--------------------------------------------------+---------------+----------+-----+
[INFO] Shutting down ZAP daemon
[DEBUG] Shutting down ZAP.
[DEBUG] ZAP shutdown successfully.

Code Snippet 22: DAST - running isolated at localhost
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DAST tool - inside solution

$ read -s api_key
read> ****************************************************************

$ curl --location --header "Content-Type: application/octet-stream" \
--header "X-API-KEY: $api_key" --header "Accept: application/json" \
--request POST "https://localhost:5555/ema.rainho/secureapps-ci/v1/analysis/create" \
--data-binary "@zap-webgoat/Security-Analysis.gitlab-ci.yml" --insecure

Code Snippet 23: DAST - security analysis pipeline request

> Running with gitlab-runner 13.6.0 (8fa89735)
> Preparing the "docker+machine" executor
> Getting source from Git repository
> Executing "step_script" stage of the job script

$ docker-compose up -d webgoat webwolf
Creating zap-webgoat_webgoat_1

$ docker-compose run -d -e ENV=dev \
-e REPORT_FILE="$DAST_REPORT_FILE" \
-e TARGET="$TEST_TARGET" zap2docker

Pulling zap2docker (owasp/zap2docker-weekly:latest)...
zapwebgoat_zap2docker_run_1

$ docker logs zapwebgoat_zap2docker_run_1 -f
[DEBUG] Starting ZAP process with command:

/zap/zap.sh -daemon \
-port 8080 \
-config api.disablekey=true.

[DEBUG] ZAP started successfully.
[INFO] Running a quick scan for http://webgoat:8088/WebGoat
[DEBUG] Enabling all scanners
[DEBUG] Spider #0 completed
[DEBUG] AJAX Spider completed
[DEBUG] Scanning target http://webgoat:8088/WebGoat...
[DEBUG] Scan #0 completed
[INFO] Issues found: 4
+------------------------+------+--------+------------------------------------------+
| Alert | Risk | CWE ID | URL |
+========================+======+========+==========================================+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/register.mvc |
+------------------------+-----------+----------+-----------------------------------+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/login |
+--------------------------------------------------+---------------+----------+-----+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/login?error |
+--------------------------------------------------+---------------+----------+-----+
| Anti-CSRF Tokens Check | High | 352 | http://webgoat:8080/WebGoat/registration |
+--------------------------------------------------+---------------+----------+-----+

[DEBUG] ZAP shutdown successfully.
Uploading artifacts...
ERROR: Job failed: exit code 1

Code Snippet 24: DAST pipeline - inside solution
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External analysis scenario - samples

External tool - running isolated

File: sonar-project.properties

0 sonar.language=java
1 sonar.java.source=1.8
2 sonar.sources=src/main/java
3 sonar.java.binaries=target/classes
4 sonar.projectKey=secureapps-ci_hello-shiftleft
5 sonar.organization=secureapps-ci
6
7 # This is the name and version displayed in the SonarCloud UI.
8 sonar.projectName=hello-shiftleft
9 sonar.projectVersion=1.0

Code Snippet 25: External analysis - sonar-project.properties file

<properties>
<java.version>1.8</java.version>
<jackson.mapper.version>1.5.6</jackson.mapper.version>
<sonar.projectKey>secureapps-ci_hello-shiftleft</sonar.projectKey>
<sonar.organization>secureapps-ci</sonar.organization>

</properties>

Code Snippet 26: External analysis - pom.xml file

$ mvn clean package

[INFO] Scanning for projects...
[INFO] Building hello-shiftleft 0.0.1
[INFO] --- maven-clean-plugin:2.6.1:clean (default-clean) @ hello-shiftleft ...
[INFO] Deleting $HOME/secureapps-ci/samples/hello-shiftleft/target
[INFO] --- maven-compiler-plugin:3.6.1:compile (default-compile) @ hello-shiftleft ...
[INFO] Compiling source files to $HOME/secureapps-ci/samples/hello-shiftleft/target/classes ...
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @ hello-shiftleft ...
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory $HOME/secureapps-ci/samples/...
[INFO] --- maven-compiler-plugin:3.6.1:testCompile (default-testCompile)...
[INFO] No sources to compile
[INFO] --- maven-surefire-plugin:2.18.1:test (default-test) @ hello-shift...
[INFO] No tests to run.
[INFO] --- maven-jar-plugin:2.6:jar (default-jar) @ hello-shiftleft ...
[INFO] Building jar: $HOME/secureapps-ci/samples/hello-shiftleft/target/hello-shiftleft-0.0.1.jar
[INFO] --- spring-boot-maven-plugin:1.5.1.RELEASE:repackage (default) @ hello-shiftleft ...
[INFO] BUILD SUCCESS
[INFO] Total time: 6.356 s
[INFO] Finished at: 2020-12-27T18:38:41Z

Code Snippet 27: External analysis - running build locally
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$ read -s SONAR_TOKEN
read> ****************************************

$ read SONAR_HOST_URL
read> https://sonarcloud.io

$ sonar-scanner -Dsonar.login="$SONAR_TOKEN" -Dsonar.host.url="$SONAR_HOST_URL"

INFO: Scanner configuration file: /src/sonar-scanner/4.5.0.2216/libexec/conf/sonar-scanner.properties
INFO: SonarScanner 4.5.0.2216
INFO: Java 13.0.2 Oracle Corporation (64-bit)
INFO: Mac OS X 10.15.7 x86_64
INFO: Load global settings
INFO: Server id: 1BD809FA-AWHW8ct9-T_TB3XqouNu
INFO: Load/download plugins
INFO: Load project settings for component key: 'secureapps-ci_hello-shiftleft' (done) | time=112ms
INFO: Process project properties
INFO: Execute project builders
INFO: Project key: secureapps-ci_hello-shiftleft
INFO: Working dir: ~/secureapps-ci/samples/hello-shiftleft/.scannerwork
INFO: Read 78 type definitions
INFO: Reading UCFGs from: ~/secureapps-ci/samples/hello-shiftleft/.scannerwork/ucfg2/java
INFO: 19:03:19.431414 Building Runtime Type propagation graph
INFO: 19:03:19.441532 Running Tarjan on 161 nodes
INFO: 19:03:19.442918 Tarjan found 161 components
INFO: 19:03:19.44631 Variable type analysis: done
INFO: Analyzing 113 ucfgs to detect vulnerabilities.
INFO: All rules entrypoints : 0 Retained UCFGs : 0
INFO: Sensor JavaSecuritySensor [security] (done) | time=772ms
INFO: Reading type hierarchy from: ~/secureapps-ci/samples/hello-shiftleft/ucfg_cs2
INFO: ------------- Run sensors on project
INFO: Sensor Zero Coverage Sensor
INFO: Sensor Zero Coverage Sensor (done) | time=29ms
INFO: Sensor Java CPD Block Indexer
INFO: Sensor Java CPD Block Indexer (done) | time=260ms
INFO: CPD Executor 7 files had no CPD blocks
INFO: CPD Executor Calculating CPD for 14 files
INFO: CPD Executor CPD calculation finished (done) | time=33ms
INFO: Analysis report generated in 508ms, dir size=267 KB
INFO: Analysis report compressed in 355ms, zip size=93 KB
INFO: Analysis report uploaded in 1945ms
INFO: ANALYSIS SUCCESSFUL, ... results at:
https://sonarcloud.io/dashboard?id=secureapps-ci_hello-shiftleft
report processing at https://sonarcloud.io/api/ce/task?id=AXallXBM0CVG157Sg715
INFO: Analysis total time: 27.776 s
INFO: ------------------------------------------------------------------------
INFO: EXECUTION SUCCESS
INFO: ------------------------------------------------------------------------
INFO: Total time: 17:31.817s
INFO: Final Memory: 36M/134M
INFO: ------------------------------------------------------------------------

Code Snippet 28: External analysis - running sonar scanner locally
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External tool - inside solution

$ read -s api_key
read> ****************************************************************

$ curl --location --header "Content-Type: application/octet-stream" \
--header "Accept: application/json" --header "X-API-KEY: $api_key" \
--request POST "https://localhost:5555/ema.rainho/secureapps-ci/v1/analysis/create" \
--data-binary "@hello-shiftleft/Security-Analysis.gitlab-ci.yml" --insecure

Code Snippet 29: External tool - security analysis pipeline request

> Running with gitlab-runner 13.7.0-rc1 (98e2e32d)
> Resolving secrets
> Preparing the "docker+machine" executor
> Preparing environment
> Getting source from Git repository
> Executing "step_script" stage of the job script

$ mvn clean package
[INFO] Scanning for projects...
Downloading from central: \
https://repo.maven.apache.org/maven2/org/.../spring-boot-starter-parent-1.5.1.RELEASE.pom
Progress (1): 2.7/7.4 kB
Progress (1): 5.5/7.4 kB
Progress (1): 7.4 kB
...
[INFO] --- maven-clean-plugin:2.6.1:clean (default-clean) @ hello-shiftleft ---
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ hello-shiftleft ---
[INFO] --- maven-compiler-plugin:3.6.1:compile (default-compile) @ hello-shiftleft ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 21 source files to /builds/../../hello-shiftleft/target/classes
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @ hello-shiftleft ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] --- maven-jar-plugin:2.6:jar (default-jar) @ hello-shiftleft ---
[INFO] Building jar: /builds/../../hello-shiftleft/target/hello-shiftleft-0.0.1.jar
[INFO] --- spring-boot-maven-plugin:1.5.1.RELEASE:repackage (default) @ hello-shiftleft ---

> Uploading artifacts for successful job
Uploading artifacts...
target/: found 53 matching files and directories
Uploading artifacts as "archive" to coordinator... ok

> Cleaning up file based variables
> Job succeeded

Code Snippet 30: External tool pipeline - running build inside Solution
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> Running with gitlab-runner 13.7.0-rc1 (98e2e32d)
> Preparing the "docker+machine" executor
> Preparing environment
> Getting source from Git repository

$ sonar-scanner
INFO: Scanner configuration file: /opt/sonar-scanner/conf/sonar-scanner.properties
INFO: SonarScanner 4.5.0.2216
INFO: Java 11.0.6 AdoptOpenJDK (64-bit)
INFO: Linux 4.19.78-coreos amd64
INFO: Quality profile for java: Sonar way
INFO: ------------- Run sensors on module secureapps-ci_hello-shiftleft
INFO: Configured Java source version (sonar.java.source): 8
INFO: JavaClasspath initialization (done) | time=17ms
INFO: Java Main Files AST scan
INFO: Analyzing 113 ucfgs to detect vulnerabilities.
INFO: All rules entrypoints : 0 Retained UCFGs : 0
INFO: Sensor JavaSecuritySensor [security] (done) | time=981ms
INFO: Reading type hierarchy from: /builds/../../hello-shiftleft/ucfg_cs2
INFO: Analysis report uploaded in 435ms
INFO: ANALYSIS SUCCESSFUL, you can find the results at:
https://sonarcloud.io/dashboard?id=secureapps-ci_hello-shiftleft&branch=master
report processing at https://sonarcloud.io/api/ce/task?id=AXZ1XF1dIcbAprWxlP-B
INFO: Analysis total time: 20.323 s
INFO: ------------------------------------------------------------------------
INFO: EXECUTION SUCCESS
INFO: ------------------------------------------------------------------------
INFO: Total time: 37.614s
INFO: Final Memory: 35M/98M

> Cleaning up file-based variables
> Job succeeded

Code Snippet 31: External tool pipeline - running sonar scanner inside Solution

Integration analysis scenario - samples

Diversity of tools - inside solution

$ read -s api_key
read> ****************************************************************

$ curl --location \
--header "X-API-KEY: $api_key" \
--header "Accept: application/json" \
--header "Content-Type: application/octet-stream" \
--request POST "https://localhost:5555/ema.rainho/secureapps-ci/v1/analysis/create" \
--data-binary "@hello-shiftleft/Security-Analysis.gitlab-ci.yml" --insecure

Code Snippet 32: Diversity of tools - security analysis pipeline request
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Solution achieved requirements

Deployment

FROM python:3.9-alpine AS build-env
RUN mkdir -p /usr/src/app/ && \

addgroup --gid 9999 appgroup && \
adduser --uid 9999 -D -G appgroup -h /usr/src/app appuser && \
apk add --no-cache --update gcc musl-dev libffi-dev openssl-dev && \
chown appuser:appgroup -R /usr/src/app/ && \
python3 -m pip install --no-cache-dir --upgrade pip setuptools pip-autoremove

WORKDIR /usr/src/app
USER appuser
COPY requirements.txt /tmp
COPY ./swagger_server/ /usr/src/app/swagger_server/
RUN python3 -m pip install --user --no-cache-dir safety && \

python3 -m pip install --user --no-cache-dir --upgrade -r /tmp/requirements.txt && \
if ! python3 -m pip freeze | safety check --stdin; then exit; fi && \
pip-autoremove -y safety

FROM python:3.9-alpine
ENV PATH="/usr/src/app/.local/bin:$PATH"
HEALTHCHECK --interval=5m --timeout=3s \

CMD wget -nv -t1 --spider --no-check-certificate \
https://localhost:5555/ema.rainho/secureapps-ci/v1/health || exit 1

RUN apk -U upgrade && \
mkdir -p /usr/src/app/ && \
addgroup --gid 9999 appgroup && \
adduser --uid 9999 -D -G appgroup -h /usr/src/app appuser && \
python3 -m pip uninstall -y pip

COPY --chown=appuser:appgroup \
--from=build-env \
/usr/src/app/swagger_server /usr/src/app/swagger_server

COPY --chown=appuser:appgroup \
--from=build-env \
/usr/src/app/.local /usr/src/app/.local

WORKDIR /usr/src/app
USER appuser
EXPOSE 5555
ENTRYPOINT ["python3"]
CMD ["-m", "swagger_server"]

Code Snippet 33: Multistage Dockerfile sample
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Definition analysis

variables:
APP_NAME: "HelloShiftLeft"
GROUP_NAME: "vulnerable-apps"
GIT_URL: "https://github.com/ShiftLeftSecurity/HelloShiftLeft.git"
BRANCH_NAME: "master"
GIT_DEPTH: '1'
ENV: "dev"

stages:
- secret_detection
- static_analysis

secrets:
stage: secret_detection
variables:

SECRETS_RESULTS: 'secrets.json'
script:

- trufflehog ${CI_PROJECT_DIR}/ \
--json \
--regex \
--entropy=False \
| tee ${CI_PROJECT_DIR}/${SECRETS_RESULTS} | jq -C

artifacts:
paths: ["${SECRETS_RESULTS}"]
when: always

allow_failure: false

sast:
stage: static_analysis
needs: ["secrets"]
image:

name: shiftleft/sast-scan
script:

- scan --src ${CI_PROJECT_DIR} \
--type depscan,python \
--out_dir ${CI_PROJECT_DIR}/reports

rules:
- when: always

artifacts:
name: "$CI_JOB_NAME-$CI_COMMIT_REF_NAME"
paths:

- $CI_PROJECT_DIR/reports/
when: always

allow_failure: true

Code Snippet 34: Definition analysis form
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