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Palavras Chave redes sociais, informação de saúde, processamento de linguagem natural, aprendi-
zagem automática.

Resumo As redes sociais são um excelente recurso para conectar pessoas, criando assim
uma comunidade paralela em que fluem informações acerca de eventos globais
bem como sobre os seus utilizadores. Toda esta informação pode ser trabalhada
com o intuito de monitorizar o bem estar da sua comunidade. De forma a en-
contrar evidência médica nas redes sociais, começámos por analisar e identificar
posts de mães em risco de depressão pós-parto no Reddit. Participámos num con-
curso online, eRisk 2020, com o intuito de continuar a participação da equipa Bi-
oInfo@UAVR, em que prevemos utilizadores que estão em risco de se automutilarem
através da análise das suas publicações no Reddit. Construímos um algoritmo com
base em métodos de Processamento de Linguagem Natural capaz de pré-processar
os dados de texto e vectorizá-los. Fazendo uso de características linguísticas basea-
das na frequência de conjuntos de palavras, e outros modelos usados globalmente,
capazes de representar documentos com vetores, como o Tf-Idf e o Doc2Vec. Os
vetores e a sua respetiva classificação são depois disponibilizados a algoritmos de
Aprendizagem Automática, para serem treinados e encontrar padrões entre eles.
Utilizamos vários classificadores, de forma a encontrar o que se comporta melhor
com os dados. Com base nos padrões que encontrou, os classificadores prevêm
a classificação de utilizadores ainda por avaliar. De forma a tirar o máximo pro-
veito do algoritmo, é desempenhada uma otimização em que as stop words são
removidas e paralelizamos os algoritmos de vectorização de texto e o classificador.
Incorporamos uma análise da importância dos atributos do modelo e a otimiza-
ção dos híper parâmetros de forma a obter um resultado melhor. Os resultados
são discutidos e apresentados em múltiplos plots, e incluem a comparação entre
diferentes estratégias de optimização e observamos a relação entre os parâmetros
e a sua performance. Concluimos que a escolha dos parâmetros é essencial para
conseguir melhores resultados e que para os encontrar, existem estratégias mais
eficientes que o habitual Grid Search, como o Random Search e a Bayesian Opti-
mization. Comparamos também várias abordagens para formar uma classificação
incremental que tem em conta a cronologia dos posts. Concluimos que é possível
ter uma perceção cronológica de traços dos utilizadores do Reddit, nomeadamente
avaliar o risco de automutilação, com um F1 Score de 0,73.





Keywords social media, health information, natural language processing, machine learning.

Abstract Social media has been proven to be an excellent resource for connecting people
and creating a parallel community. Turning it into a suitable source for extracting
real world events information and information about its users as well. All of this
information can be carefully re-arranged for social monitoring purposes and for the
good of its community. For extracting health evidence in the social media, we
started by analyzing and identifying postpartum depression in social media posts.
We participated in an online challenge, eRisk 2020, continuing the previous partici-
pation of BioInfo@UAVR, predicting self-harm users based on their publications on
Reddit. We built an algorithm based on methods of Natural Language Processing
capable of pre-processing text data and vectorizing it. We make use of linguistic
features based on the frequency of specific sets of words, and other models widely
used that represent whole documents with vectors, such as Tf-Idf and Doc2Vec.
The vectors and the correspondent label are then passed to a Machine Learning
classifier in order to train it. Based on the patterns it found, the model predicts
a classification for unlabeled users. We use multiple classifiers, to find the one
that behaves the best with the data. With the goal of getting the most out of
the model, an optimization step is performed in which we remove stop words and
set the text vectorization algorithms and classifier to be ran in parallel. An anal-
ysis of the feature importance is integrated and a validation step is performed.
The results are discussed and presented in various plots, and include a comparison
between different tuning strategies and the relation between the parameters and
the score. We conclude that the choice of parameters is essential for achieving a
better score and for finding them, there are other strategies more efficient then the
widely used Grid Search. Finally, we compare several approaches for building an
incremental classification based on the post timeline of the users. And conclude
that it is possible to have a chronological perception of certain traits of Reddit
users, specifically evaluating the risk of self-harm with a F1 Score of 0.73.
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CHAPTER 1
Introduction

This chapter overviews the motivation and objectives of this thesis. We introduce the
scenario under which it was developed and outline its main contributions.

1.1 Motivation

Social media has been progressing to the point of being capable of replacing face to
face communication. Millions of people are in touch through social media, where they
can have conversations, expose their thoughts, share media, search the news, and even
purchase items. Nowadays, there are over 3.5 billion users worldwide, and it is expected
that this number will go up to 4.5 billion by 20251.

All this data gave birth to the new area, Social Media Analytics, where vast amounts
of data flow that go through the social network are analyzed so that valuable information
is extracted. Data in the form of text represents a sizeable portion of all this data, and
there are research areas that benefit from social media text analysis, such as healthcare.
The advances in Machine Learning (ML) for Natural Language Processing (NLP) made
this analysis possible in conjunction with computer performance growth. Nowadays,
there is the possibility of processing whole datasets of text in a matter of seconds and
providing them to a machine learning algorithm capable of finding hidden patterns
within the dataset and build predictions based on the knowledge obtained. The Figure
1.1 shows the evolution across the years of processor performance. However, processor
performance is only part of the equation. With Deep Learning (DL), came the need to
parallelize operations and the Graphics Processing Unit (GPU) is perfect for this job.
More recently, cloud computing, relies on a distributed network of servers that work
together to achieve a more efficient and scalable training of a DL model.

1https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
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Figure 1.1: Growth in processor performance since the late 1970s. The chart plots the
performance relative to the vax 11/780.[1]

Twitter2 is usually a subject of use for analysis of social media because of its
simplicity, public Application Programming Interface (API), and popularity. Even
though it is only the 15th most used social network3 over five hundred thousand tweets
are posted every minute, originating the possibility of several studies. Ranging from
extracting multidimensional data cubes for Online Analytical Processing (OLAP), as
investigated by Mansmann, Rehman, Weiler, et al. in [2], to detecting health conditions
such as flu, depression, pregnancy and eating disorders, as explored by Prieto, Matos,
Alvarez, et al.[3].

Mental illness is a risk that everyone can be exposed to. World Health Organization
reports that one in four people in the world will be affected by mental or neurological
disorders at some point in their lives. There are several studies made that associate
Social Media with mental health. One of the first studies that were made in this
area analyzes how a higher use of the Internet can lead to social problems and even
increase depression and loneliness. It is called the "Internet Paradox", [4] even though
the Internet is a platform where communication is facilitated. This facilitation can
also cause problems in social involvement and well-being. Perhaps with the ease of
communication through the Internet, one could lose the motivation for face to face
communication. Internet facilitated the emergence of Social Media, where millions of
people expose their day-to-day lives. Facebook was founded in 2004 and since then
has been evolving to the point of containing over 2500 million users worldwide, and
this is just one of them. Twitter, Instagram, and Reddit are some other examples that
also have billions of users. Since 1998, more studies came out to prove the point of the

2https://twitter.com/
3https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
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article. For example, Pantic, Damjanovic, Todorovic, et al.[5] found a link between
social networking and depression. More recently, in "The Social Dilemma"4, people that
worked in these big companies, Google, Facebook, and Twitter, claim that they are
using manipulative strategies that have an impact on billions of people and are carefully
designed to keep the user engaged and addicted.

The disrupt of one’s well-being can lead to self-harm. In some cases, even to suicide,
independently of being caused by social media or not. More than ever, we have the
possibility of perceiving someone’s mental state by only analyzing their online activity.

1.2 Conference and Labs of the Evaluation Forum

Conference and Labs of the Evaluation Forum (CLEF) contributes to the systematic
evaluation of information access systems, primarily through experimentation on shared
tasks5. Some of the challenges proposed by CLEF are CheckThat!6, in which the goal is
to identify and verify claims on Social Media automatically. lifeCLEF and imageCLEF
are other challenges, in which the goal is to automatically identify plants and classify
images and annotate image data, respectively. Early Risk Prediction on the Internet7 is
the challenge that we will investigating and explores the evaluation method, effectiveness
metrics, and practical applications (particularly those related to health and safety) of
early risk detection on the Internet. In the previous three years, eRisk organized tasks
that comprised processing sequentially texts written in Social Media and predicting
different mental illnesses. This year, eRisk published two tasks.

• Task 1: Early Detection of Signs of Self-Harm
• Task 2: Measuring the severity of the signs of depression

The first task consists of sequentially processing evidence and detecting early traces of
self-harm as soon as possible. Texts should be processed in the order they were created.
In this way, systems that effectively perform this task could be applied to sequentially
monitor user interactions in blogs, social networks, or other types of online media. In
«A test collection for research on depression and language use», Losada and Crestani
argues that tweets provide a little context about the tweet writer and that only a small
portion of the writer’s history of tweets can be retrieved. These authors choose Reddit8

to create the textual collection for depression. The social network ranks 11th as the
most used social network and usually is more of a forum, meaning posts should have
more content to be explored.

4https://www.netflix.com/pt-en/title/81254224
5https://clef2020.clef-initiative.eu/index.php
6https://sites.google.com/view/clef2020-checkthat/
7http://early.irlab.org/
8www.reddit.com
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1.3 Objectives

This thesis aims at studying and developing algorithms of social monitoring capable of
extracting health-related outcomes. The practical scenario was the participation in a
shared benchmark task for the early detection of online risk. In last year, BioInfo@UAVR
took part in eRisk 2019, and the results are described in [7]. The dissertation focuses
on improving these algorithms and targets a participation in eRisk 2020. The algorithm
for the first task of this year’s challenge, "Early Detection of Signs of Self-Harm" will
be the main subject of study. This challenge is a binary classification problem, as
there are only two labels. However, we should process texts in order so that we can
emulate a better simulation of social networking. Metrics capable of valuing the speed of
prediction are necessary so that the earlier a positive result yields, the better the score.
In the next chapter, these will be presented. Before building the algorithm for Task 1, a
preparatory project was built to get the background knowledge on the different explored
areas necessary for the contest. This project also consists of a binary problem and
aims at classifying postpartum depression. Both datasets are from Reddit. However,
task 1 dataset is composed of all posts from users, and the dataset for Postpartum
depression (PPD) is simply a collection of posts. Consequently, the prediction for Task
1 is more tricky, as some posts from a self-harm user might not be related at all to
self-harm. The methodologies from last year will be studied and applied. Furthermore,
new emerging practices in NLP and ML will be analyzed and compared.

1.4 Thesis Structure

This thesis, besides the current chapter, is composed of four more chapters:
• Background, chapter 2, describes the various topics necessary to have a basis

on the matter, gives an overview of NLP, and enumerates the methodologies
currently used. It also presents the big theme of machine learning to describe
some of the most relevant algorithms and techniques.

• In chapter 3, Methods, we report the steps took to build two different projects on
the matter of the thesis and present the results for each of them.

• Results, chapter 4, further offline experiments and analyses were made to achieve
a better performance in terms of score and optimization, including optimization,
tuning, and feature importance.

• Conclusion, chapter 5, discussion of the work done, suggestions for future work.

4



CHAPTER 2
Background

This chapter aims to give background knowledge on the topics relevant to this work. It
overviews some of the methods currently being used both in NLP and ML. Essentially,
to process natural language, we usually have three central units. The pre-processing
unit is responsible for transforming text into more relevant data to be processed by an
algorithm. After obtaining this more digestible form of text, usually called tokens, the
next step is feature engineering. Valuable information can be extracted and derived
from and then fed to our machine learning model in the form of vectors. This model
must learn from these vectors and their respective labels so that later it can predict
unseen vectors. These predictions are then used for evaluating the model’s performance
by comparing the predicted values to a golden truth. Of course, this is a very abstract
and brief summary of the flows commonly used, and we will enter into detail in this
chapter. The flow is exhibited in Figure 2.1.

Pre-Processing
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Stemming

Stop Word Removal

Text

Feature Extraction

BoW
TFIDF

Word2Vec
Doc2Vec

GloVe

Tokens
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Parameter Tuning
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Figure 2.1: Common flow for processing and analyzing natural language processing.
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2.1 Natural Language Processing

NLP is a subfield of artificial intelligence and is concerned with the processing and
analyzing natural language. It started by having a set of hand-coded rules, which are
still useful today if we are working with specific use cases. For example, suppose we
were to do a sentiment analysis classifying each writing as positive or negative. In that
case, we could set a rule to count the words "like" and "dislike" and obtain knowledge
about the writing. Statistical NLP eventually came up and is currently the mainstream
approach. It relies on large amounts of input data converted into a set of features
and serves as input to what is usually covered by ML models. This strategy has the
advantage of not being as specific and being adaptable and flexible. We can also use
a combination of both strategies. For example, it is often the case that a rule-based
system gathers the data for a supervised model. The Turing Test [8] is one of the
first studies in NLP. In the paper, Turing describes a new way of testing a machine’s
intelligence, or at least the ability of pretending to be a human. Therefore human
intelligence might be a more suitable term. Turing named it "The Imitation Game" and
consists of three players: the machine, a human, and an interrogator whose job is to
determine which of the players is the machine by asking them any question he wants.
In the real world, the interrogators usually do not have such a wide field of possibilities
as the imitation game, making differentiation much harder.

Chatbots are replacing humans more and more. These usually do not have such
an abstract playground as the Turing test. The questions and answers typically focus
solely on the entity the chatbot is representing. Take as an example, an airline company
that wants to provide quick feedback to its clients for their repetitive questions, booking
management, and other features. The machine could easily set a rule to understand a
human trying to book a flight by analyzing the words that come after "from" and "to".
This is a straightforward example, and the bot should be prepared to receive booking
information in other words.

Nevertheless, we can perceive that this is achievable and is currently being worked
on, for example by mindsay1. It should be noticed that when this happens, it is the
machine doing the whole translation between human and machine language. What
usually is done for booking a flight is, we go to the airline site and click on some buttons,
enter locations of departure/arrival, choose the payment method. In this case, we are
doing part of the translation. In the past and some cases of the present, a human agent
is involved.

Now let us imagine the game from a different perspective, consisting of the machine,
a doctor, and an interrogator who is also a doctor but pretends to be a patient. Let us

1https://www.mindsay.com/chatbot/airline
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also suppose that this game’s goal is to perceive the patient’s disease and prescribe a
treatment. Would the interrogator not distinguish between the players, then we could
imagine switching the whole medical system that we know as of today. The machine
already has a boosting start, which is the ability to process a patient’s history in terms
of diseases/genetics or even Social Media in seconds and compare them to other patients.
eRisk is already proposing mental disease detection in the Social Media. One could
imagine a feature in which a system, given the user’s writing on Social Media, would
detect with a certain confidence level diseases of the user in question. In NLP, there will
be constraints because not all users write on Social Media, and even those who do might
not expose their true selves through their posts. If we get out of the box that NLP is,
various things can come to mind. A simple like, purchase, follow, a subscription can
convey meaning to the classification. In this section, different ways of pre-processing
text will be described, and various feature extraction techniques.

2.1.1 Tokenization

Tokenization is the process of segmenting text into words/tokens. There are several
ways to do it. For example, splitting into white spaces would turn the string "He
is writing" into "he", "is", "writing". Some sentences do not have a unique way of
segmenting the words, should we preserve the hyphens and apostrophes? What happens
to punctuation, and what about abbreviations and emojis? It makes sense to preserve
hyphens and apostrophes since they can transpose into different meanings by removing
them. Abbreviations and emojis can also convey meaning to a sentence, therefore in some
cases, they should not be removed. Punctuation can have a role in understanding the
emphasis of the phrase, tokens are often lower cased. The catch is that no tokenization
method fits best in all algorithms, and to get the best results out of segmentation,
several approaches should be attempted.

Stop Word removal refers to the process of removing words that are not needed for
the analysis. In this way, we can save up space and time, which can be valuable for the
project. However, these words can also remove meaning from the text. As an example,
people with depression will tend to focus on themselves. Therefore, higher usage of "I",
"me", "myself", usually considered stop words, might be present in a depressed person’s
text. This is valuable information and should not be removed if the system’s goal is to
predict depressive users.

A regular expression is a sequence of characters that define a search pattern that
later can be passed to an algorithm capable of finding these patterns and, if needed
replacing it. There is a built-in package for these operations in python, re2. It has
multiple functions such as findall(), search(), split() and sub(). For tokenization

2https://docs.python.org/3/library/re.html
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purposes, we are interested in re.split(pattern, string), which splits the string on
the occurrences of the pattern and re.findall(pattern, string), which returns all the
pattern matches within the string.

split()
• reg1 - ’ ’
• reg2 - [\s]+
• reg3 - \W+
findall()
• reg4 - \w+|\S\w*
• reg5 - \w+(?:[-']\w+)*|'|[-.(]+|\S\w*
A simple way to build a tokenizer would be to split into spaces, and we could

represent the regular expression simply as ’ ’, we call this reg1. However, the regular
expression does not include tabs or multiple spaces, so we define reg2 with the help of
\s, we can match any whitespace character, and with + multiple white space characters
can be handled. Furthermore, instead of only splitting on white spaces, we could also
split on every character that is not a word character, for that, we can use \Wand call it
reg3. Alternatively, we could also use the function findall to do the opposite, find every
character that is a word character, which is represented as w.Notice that if we match
words (findall), a wider range of cases can be included more easily. Reg4 represents a
regular expression that preserves punctuation. For example, in "We’ll" we might want to
preserve the apostrophe so that "ll" does not lose meaning. Reg5 permits word-internal
hyphens and apostrophes. The next list has multiple regular expressions that can be
used for a tokenizer, and the table 2.1 specifies the output for each of them.

"We’ll be testing a string-searching algorithm, re."
reg1 reg2 reg3 reg4 reg5
’ ’ "We’ll" ’We’ ’We’ "We’ll"

"We’ll" ’be’ ’ll’ "’ll" ’be’
’be’ ’testing’ ’be’ ’be’ ’testing’

’testing’ ’a’ ’testing’ ’testing’ ’a’
’a’ ’string-searching’ ’a’ ’a’ ’string-searching’

’string-searching’ ’algorithm,’ ’string’ ’string’ ’algorithm’
’algorithm,’ ’re.’ ’searching’ ’-searching’ ’,’

’ ’ — ’algorithm’ ’algorithm’ ’re’
’re.’ — ’re’ ’,’ ’.’
’—’ — ” ’re’ —
’—’ — — ’.’ —

Table 2.1: Different approaches to tokenization.
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2.1.2 Stemming and Lemmatization

There are multiple forms of a word. For example, in the phrase "he is writing", the
essence that should be captured is the act of writing in the sentence "he is writing",
rather than who or when it happened. So it makes sense, sometimes, to represent all
the words in the example the same way for feeding the algorithm. Stemming’s job is to
reduce the inflected word to the word’s stem, and this stem does not need to be the
morphological root of the word. The word ’writ’ does not exist, and this could have an
impact on processing. Lemmatization aims at returning to the base form of a word, the
word’s lemma. So, instead of reducing a word like "were" to "wer", a word that does
not exist, the lemmatizer knows that "were" belongs to the lemma "be". Wordnet3 is a
lexical database of English and can be used for the purpose of lemmatization. Several
options are made available by nltk, such as one of the first stemmers created and still
one of today’s most used, the Porter stemmer4. Snowball5, also known as Porter 2, is
considered to be an improvement over the first one. Lancaster stemmer6 takes a more
aggressive approach, which can significantly reduce the memory necessary to store the
tokens but will turn many of the tokens incomprehensible and reduce the distinction
even more. The next table 2.2 aims at observing the differences between the different
Text Normalization algorithms.

[’writes’,’writing’,’wrote’,’were’,’am’,’better’,’corpora’]
snowball porter lancaster lemmatizer
write write writ writes
write write writ write
wrote wrote wrot write
were were wer be
am am am be
better better bet well
corpora corpora corpor corpus

Table 2.2: Different approaches to text normalization.

2.1.3 Feature Extraction / Text Vectorization

One way we can analyze text is by transforming it into meaningful vectors. There
are varied ways this can be achieved; some of the major ones will be described. Bag
of Words (BoW) is the simplest one and used to be the chosen one some years ago,
but can also be the most expensive one in terms of memory if we are not careful. It
represents the occurrence of the words in a given document. Term Frequency–Inverse

3https://www.nltk.org/_modules/nltk/stem/wordnet.html
4https://www.nltk.org/_modules/nltk/stem/porter.html
5https://www.nltk.org/_modules/nltk/stem/snowball.html
6https://www.nltk.org/_modules/nltk/stem/lancaster.html
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Document Frequency (TF-IDF) is usually a better strategy. Term-Frequency (TF) of a
given term(t) in a given document(d) and Inverse Document Frequency (IDF) of a given
term(t), multiplied they form TF-IDF. In this way, instead of only counting words,
TF-IDF gives insight on how vital the token is. For example BoW will have high values
for frequent words and can shadow less frequent words. TF-IDF, on the other hand,
will re-weight these words so that less frequent words no longer have a handicap. A
significant limitation in both BoW and TF-IDF is that they do not consider the order
of the words.

tf-idf(t, d) = tf(t, d)× idf(t) (2.1)

There are a few options for the formula of TF and IDF, one that is widely used is to
consider Term-Frequency only as of the raw count of the term in the document, in order
to value words that appear more times in the same document. For Inverse Document
Frequency the following equation, in which n represents the number of documents in
the collection and df(t) the document frequency of the term(the number of documents
in which the term is present). The job of IDF is to value words that appear in fewer
documents.

idf(t) = log 1 + n

1 + df(t) + 1 (2.2)

Furthermore, we can apply a normalization step using the Euclidian norm described
below to the TF-IDF vectors.

vnorm = v

‖v‖2
= v√

v2
1 + v2

2 + · · ·+ v2
n

(2.3)

Word2Vec

Word2Vec[9] learns word associations from a large text corpus and produces a vector
for each word in its vocabulary(word embedding). Unlike the previous ones, this model
behaves in a way such that the vectors inferred from the model are positioned in the
space so that words that share a similar meaning or have a relation between them are
close to each other. There are two available methods and they are shown in Figure 2.2.

• On one hand, the method Common Bag Of Words (CBOW) tries to predict a
word by its context (surrounding words)

• On the other hand, Skip-Gram uses one word to predict its neighbors.
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Figure 2.2: Comparison between word2vec models, predicting words with their surrounding
words CBOW and predicting surrounding words with a word skip-gram.

Figure 2.3 contains the vectors of countries and their capital cities by a skip-gram
model and shows the model’s ability to learn relations and organize them. The vectors
were projected into a two-dimensional space with the help of a dimensionality reduction
technique, Principal Component Analysis (PCA)[10].

Figure 2.3: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of
countries and their capital cities.[9]

In order to use Word2vec on documents, a strategy has to be defined so that we
take into account the different words present in the document. This can be done by
summing the vectors, averaging them, or even other weighting strategies where each
word contributes differently to the document’s final vector, such as TF-IDF.
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Doc2Vec

Based on doc2vec[11], Le and Mikolov developed a new way of representing sentences
and documents, which is very similar to Word2vec in the strategy used. However,
instead of representing word embedding, it can represent whole documents of different
sizes with an extra vector, the Paragraph ID, which is document unique. Besides
describing the algorithm, the paper also presents sentiment analysis and information
retrieval proving to be a better alternative than the BoW and TF-IDF models. Is has
the following methods available:

• Distributed Memory (DM) Similarly to the CBOW is used to predict the context
of missing words but instead of using just the surrounding words to predict a
word has an extra paragraph vector that represents the document.

Figure 2.4: DM model.

• Distributed Bag of Words (DBOW) Similar to skip-gram model of Word2Vec,
works by predicting words knowing the Paragraph id.

Figure 2.5: DBOW model.

Finally, the output of both models can be concatenated to form a better representa-
tion of the paragraph and yield more consistent results overall.
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GloVe

After word2vec came out, other methods started being studied that could be an
improvement. Pennington, Socher, and Manning argue that a problem with window-
based methods, such as word2vec is that they fail at capturing the global context.
Global Vectors for Word Representation (GloVe)[12] does not only rely on local context
information, but also incorporates global statistics using word-word co-occurrence
probabilities that have the potential of encoding some meaning. Take as an example
Figure 2.6.

Figure 2.6: Co-occurrence probabilities for target words ice and steam with selected context
words from a 6 billion token corpus.

The basis of GloVe is that the relationship between two words can be studied by
finding the ratio of the co-occurrence probabilities with other words, k. On the one
hand, for words k = solid, the probability of ice is higher than steam, and its ratio will
be large. On the other hand, for words that are more related to steam, k=gas, the
ratio is small. Words that are related to both or neither should be close to one. The
objective is to minimize the difference between the dot product and the logarithm of
the words probability of co-occurrence. In this way, it associates the ratios with vector
differences in the word vector space. In this way, GloVe performs well on the word
analogy tasks presented by word2vec. For example king + woman - man = queen.

fastText

Fasttext, is another way of representing word embeddings developed by Facebook’s AI
Research lab[13]. It is characterized as being fast and efficient. Moreover, it provides
a solution to a problem that both word2vec and GloVe fail to address, unknown
words. Bojanowski, Grave, Joulin, et al. propose a new approach that focuses on the
morphology of words. Representing each word as a bag of character n-grams. In which,
each character n-gram has a vector associated, and the sum of its n-grams represents a
word, so the order does not matter and the vector for unknown words can be calculated
as well. Which can then be passed to a skip-gram model in order to predict words.

BERT

Unlike the previous strategies, in which the word representations are context-free, a
single vector for each word, Bidirectional Encoder Representations from Transformers
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(BERT)[14] is contextual. Which means that the word representation depends on the
context it appears. Therefore, it can tackle the polysemy problem, words that are
equal but have a different context no longer need to have the same representation. It
is bidirectional because both its left and right context is used to predict the masked
words. It is not efficient and can take a long time to train, so a pre-trained model is
usually imported that can then be fine-tuned for a specific task.

2.2 Machine Learning

One of the most significant areas in computer science today with a prominent future
is machine learning. It is a subfield of Artificial Intelligence, which is one of the key
emerging technologies, Figure 2.7 shows the results from a survey on the top emerging
technologies in customer experience by Gartner in 20197. It is currently being used by
big technology companies such as Google, Facebook, and Spotify to provide a more
personalized experience to the user through searches, advertisements, songs, videos, and
even friendship recommendations. Other areas include image recognition, spam filtering,
and traffic predictions. NLP and machine learning are usually tied together. We can use
a classifier to classify the vectors calculated in the previous section. Machine learning
is usually separated on base of their learning style, either supervised or unsupervised.
The difference between them will be explained in conjunction with some algorithms
and how they work.

7https://www.gartner.com/en/documents/3956088/5-key-emerging-technologies-and-their-
impact-on-customer
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Figure 2.7: Emerging Technologies expected to have the biggest impact on Customer Expe-
rience Projects in the next three years according to a Gartner survey made in
2019.

2.2.1 Supervised Learning

Supervised learning refers to the machine learning methods that learn a function that
maps the input/features to output/labels using the training set. The function’s goal
is to predict the correct label for the new input, the testing set. Hold-out is a fast
and straightforward technique in which the dataset is split into a training set that
is fed to the algorithm for training purposes and a testing set so the model can be
evaluated. K-cross-validation is an elegant alternative. With this method, the model
will have k training sets to be trained on and k testing sets. The advantage of using
k-cross-validation is that a more accurate result of how the model behaves is calculated.
Supervised learning can be divided into two categories.

• Classification is the job of taking the input value and assigning it to a class.
Binary classification is an example of only two classes.

• Regression is where the output is a continuous number such as a score
Many models have been developed across the years, capable of solving these two problems
in machine learning. Artificial Neural Network (ANN) is based on a collection of united
nodes, called neurons to resemble a human brain. Boosting algorithms take advantage
of multiple weak learners with a weight-related to the algorithm’s performance to build
a strong one. Examples of such are the famous AdaBoostFreund1999ASI proposed
by Freund1999ASI and the more recent and very fast XGBoost8. The Task 1 of eRisk
challenge contains labels for classifying the users, which means that it is a supervised

8https://github.com/dmlc/xgboost
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problem. Therefore, in this section we will be mainly focusing on describing algorithms
that are used for supervised learning after presenting a different approach to learning,
that does not require any label for the data.

2.2.2 Unsupervised Learning

Unlike supervised learning, there is no labeled data given to the algorithm. The aim
here is to find structures or relations between the data. There could be an argument
whether to classify Word2vec and Doc2vec as supervised or unsupervised. On the one
hand, it can be argued that they do not need any labels to learn from new data. On
the other hand, one could argue that it forms its labels using surrounding words, so a
more accurate term would be self-supervised learning. A common type of unsupervised
learning is clustering, and the aim is to find similar entities and group them. Different
ways of grouping algorithms exist; for example, the connectivity-based clustering core
idea is that entities are close to related entities and distant from not so related entities.

2.2.3 Models

We will dedicate this subsection to describing the main algorithms used in Machine
Learning to solve supervised learning problems.

Linear Regression

Linear regression is the linear approach to estimating real values based on a continuous
variable or multiple variables(multiple linear regression). We can simply define it as:

y = mx+ b (2.4)

Where:
• y is the dependent variable
• m is the slope
• x is the independent variable
• b is the intercept

With this, we can represent our data model into a single line and, according to the
dependent variables, predict the independent ones. To calculate the slope and intercept
that best fit the data, we have to minimize the error between the data points and the
predicted value by the linear regression, one way of doing this is with Mean Squared
Error. It is one way of calculating the error by taking the sum of the square error
difference of every data point divided by the total number of points.

MSE = 1
n

n∑
i=1

(
Yi − Ŷi

)2
(2.5)
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Logistic Regression

Logistic regression is used to model the probability of a binary event, each assigned
a probability between 0 and 1 with the sum of them being one. Logistic regression,
contrary to linear regression is used for classification problems in which the output is
discrete and in order to turn the equation of linear regression into a binary problem we
can use the sigmoid function, in which z corresponds to the input of the function, for
example the equation 2.4.

S(z) = 1
1 + e−z

(2.6)

Support Vector Machines

Support Vector Machine represents data points in space and divides them into separate
categories with a hyperplane that should have the largest margin between two classes.
Figure 2.8 demonstrates an example of how the model separates the data points. It can
happen that the two sets are not linearly separable, and for that case, the inputs can
be mapped into a higher dimensional space using the kernel’s trick.

Figure 2.8: Hyperplanes that separate the two classes of a trained SVM model9.

K-nearest-neighbor

The points are stored and mapped into space, and k closest neighbors will be chosen
measured by a distance function, such as the Euclidian distance, that takes the line
segment’s length between two points or the Manhattan distance, to vote for the class
to be predicted. In Figure 2.9, we can see an example, depending on the k chosen, the
prediction differs. So it is key to choose the right value to achieve better results. Tuning
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would be a way to do it, but a simple solution is to use k = sqrt(n), in which n is the
total number of subjects.

Figure 2.9: Example of k-NN classification. The test sample (green dot) should be classified
either as blue squares or as red triangles. If k = 3, it is assigned red. However,
if k = 5, the sample is classified as a blue square10.

Artificial Neural Network

Artificial neural networks are based on a collection of united nodes, called neurons that
resemble the human brain. It’s genesis dates back to 1986 when Palm formulated the
first artificial neuron[15]. Currently, we define an ANN as a collection of neurons, each
connected with a link that has a weight that determines the influence of one node on
another. The neurons’ output is produced by an activation function that receives the
weighted sum of its inputs (weighted by the weight of the connections) plus a bias
of one. The neurons are usually organized into layers. One of the first ANN that is
still used currently was single-layer and only used for binary classification, it was first
published by Rosenblatt, and he called it the Perceptron [16]. Later was found that
using two or more layers would be the key to have more significant processing and
have the capability to learn non-linear patterns. Deep learning refers to more extensive
networks that contain multiple layers between the input and the output layer.

Decision Tree

A decision tree is also a widespread type of model for its intuitive, easiness, and
visualization properties. They were used long before machine learning started to be a
thing. As the name suggests, they have a tree’s shape and has a hierarchy structure

9https://en.wikipedia.org/wiki/Support_vector_machine
10https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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that represents the importance of the features. The algorithm works by splitting on
decisions until the leaves are reached. The output can represent the labels in the case
of a classification tree or continuous values in a regression tree case. Random Forest
classifier is based on multiple decision trees (bagging), and each tree has a role in voting
for a consensus prediction, which will be explained in subsection 2.2.3.

Ensemble Algorithms

Ensemble algorithms take advantage of multiple learning algorithms to achieve better
performance than it could have been with any of its constituent algorithms alone.
However, it will be necessary more computational power and is advised to use fast
algorithms such as decision trees, which Random Forest [17] does. It is a very popular
ML algorithm known for its high accuracy and uses bootstrap aggregating, also known
as bagging, to combine the predictions from multiple algorithms. Creates many samples
of the data and trains a model on each sample, then given a new dataset, we would
take the most frequent class or the average if the output is a continuous value. Another
technique being used for all sorts of contests is Boosting[18]. The model is incrementally
built by adding weak learners that compensate for the misclassified instances. It
does this by giving a higher weight to misclassified data and lower weight to correct
predictions so that future weak learners can focus on the previous wrong predictions.

2.2.4 Hyperparameter Optimization

Depending on the classifier used, different hyper-parameters are available. One way of
performing hyperparameter optimization is with grid search11. This method performs
an exhaustive search over a specified set of parameters. This strategy to tune the
parameters might not be the best in every case. It analyzes the parameters with a brute
force technique analyzing every combination of parameters sequentially. Random Search
[19] is an alternative to grid-search, and its goal is to be more efficient. Grid-search
analyses each combination of hyperparameters available sequentially and therefore
explores unpromising regions of the hyperparameter space. Random Search randomly
picks a combination to try and, in this way, do a better job at exploring the search
space available, reducing the amount of processing necessary to achieve a good result in
a sparse hyperspace in a manually defined number of iterations. However, the random
search does not consider the scores achieved already to pick a better combination of
parameters. Bayesian Optimization [20], on the other hand, in each iteration, picks a
sample from the search space based on the optimization of the acquisition function.

11https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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2.2.5 Evaluation

In the case of binary classification, which is the task we will tackle, several metrics can
be defined to perceive how the model behaves on the testing set.

• True Positive (TP) Prediction correctly identifies the label as positive
• True Negative (TN) Prediction correctly identifies the label as negative
• False Positive (FP) Prediction incorrectly identifies the label as positive
• False Negative (FN) Prediction incorrectly identifies the label as negative

• Precision : ratio of correctly predicted positive samples to all predicted positive
samples

P = TP

TP + FP
(2.7)

• Recall : ratio of correctly predicted positive samples to all positive samples

R = TP

TP + FN
(2.8)

• F1 : harmonic mean of precision and recall

F1 = 2
P−1 +R−1 (2.9)

When we are interested in an early classification, such as the case of eRisk
challenge, we need to take into account the time frame took to process the
decision. ERDE was proposed by Losada and Crestani in [21] and is a metric that
aims at evaluating models that take in a series of writings valuing earlier positive
predictions and is currently being used as a metric for the eRisk contest task 1.

ERDEo(d, k) =



cfp if d = 1 AND label = 0 (FP)
cfn if d = 0 AND label = 1 (FN)
lco(k) · ctp if d = 1 AND label = 1 (TP)
0 if d = 0 AND label = 0 (TN)

(2.10)

Setting the parameters depends on the type of application, what can be done in
cases where there are a lot of negative cases is setting cfn to 1 and cfp to the
proportion of positive cases. lco comes to value speed in the prediction and each
true positive is assigned a penalty described in the next equation controlled by
the parameter o

lco(k) = 1− 1
1 + ek−o

(2.11)

ERDE has some drawbacks, such as manually set parameters and not being
easily interpretable and a new metric was proposed in «Measuring the Latency
of Depression Detection in Social Media» [22] called latency-weighted F1 or F1-
latency. They define latency of a system as being the median number of posts that
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it observes before predicting a user as depressed. And define a penalty defined by
the model’s time to predict the user. The penalty is 0 if the prediction is made
right after the first post and approaches 1 as the number of posts increase. The
variable u, represents the number of rounds needed to make a positive prediction
for the subject, sys. And p is set to 0.0119. Because we have to adjust p, so that
the penalty is 0.5 for the median of posts, which is 93 for the testing set of eRisk.

Platency (u, sys) = −1 + 2
1 + e−p·(time(u,sys)−1) (2.12)

In the plot 2.10 we display the penalty along the Y-axis according to the number
of rounds needed to predict a positive value in the X-axis.

Figure 2.10: Penalty given in an early detection system depending on how many rounds
were needed to detect a positive case.

The final metric takes the product of the median of a set of penalties defined
before and the model’s F1 metric.

Flatency (U, sys) = F1(U, sys) ·
(
1−medianu∈U∧ref(u)=+ Platency (u, sys)

)
(2.13)

2.3 Tool Kits

When dealing with machine learning, some libraries deliver different features. Here are
some of the most relevant ones available for Python12:

• NLTK13 is a handy, simple, and good for educational purposes tool kit which has
a whole book on the matter14. Several pre-processing units are described in the

12https://www.python.org/
13nltk.org
14nltk.org/book
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book and aggregating it gives a basis on NLP. It includes multiple tokenizers,
namely tweet, which might also be useful for Reddit posts. Also contains options
for stemming, including Porter, Snowball, and Lancaster. Lemmatization is also
available.

• scikit-learn15 is a high-level library that contains numerous examples and provides
good documentation. It has a wide variety of methods available, ranging from
dataset transformations, classifiers, both supervised and unsupervised, which can
easily be implemented as well as model selection techniques. It does not offer the
possibility of setting the GPU for computation. An exciting feature is Pipeline,
which can include several steps, usually a list of transformers and a final estimator.

• TensorFlow16 is a Low-level and flexible library used to build deep learning models,
allows GPU usage by installing the CUDA software17. Keras18 is a library built
on top of TensorFlow, which enables a more user-friendly experience.

• gensim19 is a library that includes implementations of word2vec, fasttext, and
doc2vec in python

• NumPy20 offers multiple mathematical usages for dealing with matrix and vectors.

2.4 Social Monitoring

Social monitoring focuses on analyzing social media to learn about its users and what
is happening worldwide. Examples of social monitoring cover a wide range of areas,
including political sentiment [23], in which they analyze public opinion, and find a
correlation to sentiment measured from Twitter messages. Twitter was also successfully
used to predict elections in [24]. Another example is the financial market. In [25],
Bollen, Mao, and Zeng study the hypothesis of public mood derived from large-scale
Twitter feeds affecting the stock performance of some of the largest companies. If we
take a step back and focus on individuals, there have been plenty of studies conducted
using Social Media. In [26], Park, Schwartz, Eichstaedt, et al. collected data from
thousands of Facebook users and built a predictive model for their personality based on
their language. Looking closer to the thesis’s context and generating health evidence
from social data, we find numerous studies on diverse topics. Most disease surveillance
systems were developed for influenza before the COVID-19 virus. Back in 2006, a
first study introduced the term infodemiology, in which Internet data is used to derive
health-related information. In the research, they purchased Google advertisements for

15https://scikit-learn.org/stable/
16https://www.tensorflow.org/
17https://developer.nvidia.com/cuda-zone
18https://keras.io/
19https://radimrehurek.com/gensim/
20https://numpy.org/

22



specific queries, such as "flu," obtained statistics about the traffic, and demonstrated
how these could be useful to predict epidemics. Eventually, new studies explored the
potential of utilizing social media and extract behavioral traits, such as emotion and
language, to identify disorders in users, such as depression [28]. Twitter [29], Reddit
[30] and Facebook [31] were all used to conduct research on the area. Other similar
mental illnesses have also been explored during the years. Choudhury et al. studied
emotion and behavior changes in new mothers, both in Twitter [32] and Facebook [33].
Similarly, Trifan et al. also released research on the topic, intending to identify mothers
at risk of postpartum depression [34], which we will further analyze in the next chapter.
Depression affects more than 264 million people worldwide and is on the rise[35], it
can lead to suicide. [36] addresses this severe topic and shows how social media can
influence suicidal behavior and evaluates the risk. Later in 2013, Won, Myung, Song,
et al. showed that social media might have valuable information for forecasting and
preventing suicide. And then, Braithwaite, Giraud-Carrier, West, et al. [38] used Twitter
to show that machine learning classifiers can identify users at a high risk of suicide.
Nowadays, we face the Covid-19 virus, and some research has proved social media to
be useful in obtaining insights related to the virus. In [39], Drias and Drias perform
sentiment analysis and discover patterns related to the virus.

This year’s first task CLEF eRisk21, "Early Detection of Signs of Self-Harm" was
already introduced in 2019. The challenge consists of processing posts sequentially and
detecting early traces of self-harm as soon as possible so that the system could be used
to social monitor users in a social network, for example. The effort of last year by
BioInfo@UAVR combined standard machine learning algorithms with psycholinguistics
and behavioral patterns [40]. They used as text vectorization tools BoW and TF-IDF
and passed the vectors obtained to a linear Support Vector Machine. Other methods
were used, for example, some of the best scores were achieved by Universidad Nacional
de San Luis (UNSL)[41]. They opted to use a new model SS322 in every task, which
can value the relationship between words and categories based on word frequencies.
They incrementally build the vector for the subjects using addition, reducing the time
to predict the answer as no repeated calculation is required at each iteration.

The same task was proposed for this year and several approaches were submitted.
One of the best performing teams, iLab[42], took a modern solution for the problem
and trained BERT-based classifiers trained specifically for each task. Another approach
was followed by EFE[43], consisting of using Word2Vec representations to build an
ensemble of SVM and deep neural networks that take into account both post and user
level scores.

21https://early.irlab.org/
22http://tworld.io/ss3/
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2.5 Summary

This chapter intended to give a background on areas useful for extracting, classifying
and evaluating health evidence. Starting with pre-processing stages for processing text
data, we learn to use regular expressions for turning text into tokens and after apply
normalization procedures to produce a less redundant and more uniform vocabulary,
stemming and lemmatization. We take a look at how we can represent these tokens or
sets of tokens with a set of features, ranging from bags of words based on the importance
of the words within the document, to vectors that capture in the space meaningful
relationships between them. We focus on learning different supervised learning models,
and how we can optimize and use different metrics to evaluate them. Based on the
experience and search through out this work, we give an overview on some of the
used tool kits in the area, and also explore past works on social monitoring, including
approaches took by other teams to solve eRisk tasks.
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CHAPTER 3
Methods

In this chapter we try to put in practice what we learned while exploring the previous
chapter and pick up several toolkits to help us build a flow capable of processing and
analyzing language. Recalling the Figure from previous chapter 2.1, there are usually
three stages, Pre-Processing, Feature Extraction and Modeling. But first we will need
a data source, so instead of re-inventing the wheel and crawl some websites for content,
we will search for challenges that provide us with datasets. The datasets can be in all
sort of formats and we have to be prepared to handle them. Python is the language we
will use and it has built in functions for reading multiple formats, from text to XML
and JSON. After extracting the text from the original source a number of steps is
usually applied for Text Normalization. After the text is normalized, we will need some
feature extraction type of model to organize and represent the information in the shape
of vectors. Now that we have a vector representing each entity and also a label, the
modeling phase arrives. In which, a machine learning model is trained to find which
features are associated with which label and make predictions based on the patterns it
found.

3.1 Challenges

In order to deploy the methods, we will attempt at solving some challenges. The
challenges were carefully chosen to go into the encounter of the aim of this thesis. Both
challenges consist of analyzing text data from social media and extract information
that can lead to the detection. In the first challenge we are interested in detecting
postpartum depression, and in the second, the detection of users in risk of self-harm.
The first one is an initial project to prepare for the second, and all the analysis was
made offline with the intent of solving the problem described in «Social Media Mining
for Postpartum Depression Prediction»[34]. The second was an effort to continue the
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previous year’s participation of the BioInfo@UAVR team in the eRisk challenge. It
constitutes online participation in which we had to interact with a server to receive an
input and respond with output as detailed in the next section. Our methods used will
be described in this chapter.

3.2 Datasets

Reddit1 was the social network chosen to build the datasets for both challenges. For
the first one they searched subreddits containing discussions of a given topic, making
it suitable to extract data. Using the Reddit API2, they scraped subreddits such as
r/postpartumdepression and ended up with 491 positive posts after cleaning. For the
control posts, they used a parenting subreddit r/beyondthebump so that the posts’
context was similar. Each post is associated with a text file.

For the second challenge, the dataset has the same structure as described by Losada
and Crestani[6], consisting of an XML file per subject/user. Each file contains the posts
or comments in chronological order. This year’s task provides a training dataset, and
its characteristics are displayed in Table 3.1.

Self-harm Control
#subjects 41 299

#submissions 6 927 163 506
avg #posts/subject 169.0 546.8
avg #words/post 24.8 18.8

Table 3.1: Task1 training dataset.

In order to evaluate the testing set we had to interact with a server in a timely
manner. The server sends a post for each user and we have to send back an answer,
alert or no alert. For the ranking evaluation, we also had to send a score associated
with the user’s risk of self-harm.

3.3 Postpartum depression prediction

For this challenge we developed a pipeline3 capable of turning the text data into vectors
and classifying them. For transforming into vectors, we use a TF-IDF implementation
of Scikit-Learn, TFIDFVectorizer4. The final step of the pipeline is a classifier. In this
case, SGDClassifier5 was chosen.

1http://reddit.com/
2https://www.reddit.com/dev/api/
3https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
4https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
5https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
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After reading the dataset, we end up with two lists of posts, one corresponds to the
training posts, and the second one corresponds to the testing posts, with a split ratio of
80/20, 80 percent of the dataset is used for training stage and 20 percent for the testing
stage. And also, two lists containing the golden truth of each post. The next step is
fitting the training posts so that the classifier can learn and subsequently predict the
unlabeled observations, so that we end up with the predictions from our pipeline.

Scikit-learn offers the possibility of evaluating our predictions using multiple metrics,
such as f1, precision, and recall.

When we defined the pipeline we simply used the default parameters for TFidfVec-
torizer and SGDClassifier. However, using other parameters can yield better results.
To tune the parameters of the pipeline, we use Grid Search, where we can define a set
of parameters to be cross-validated and choose a metric to get the set of parameters
that behaved best on the cross-validation according to the metric. By looking at the
documentation of the steps in the pipeline6,7, we can see that, for example, TF-IDF
has the possibility of defining the n-grams to be analyzed and not only unigrams as set
by default. SGD also has multiple definable parameters, such as the learning rate and
the loss function.

Now we can see which set of parameters achieved the best score and choose these
parameters to predict the testing set. GridSearchCV will automatically use the best-
found parameters if the parameter refit is true. Grid-search has a downside; it is not
efficient. It searches through every combination of parameters exhaustively. So, for
the example above in which we choose four parameters to be tuned and three options
for each parameter, the total number of possible combinations is 3*3*3*3 = 81, which
means that the full time to find the best set of parameters could take almost 81 times
more than using only the default parameters or a combination of our choice. The final
scores for our pipeline tuned and not tuned are presented in Table 3.2.

Algorithm Acc P R F1
Pipeline not tuned 0.741 .658 .762 .740
Pipeline tuned 0.832 .755 .720 .794

Best results in the paper[34] .93 .90 .89 .90

Table 3.2: Evaluation on the testing set.

Even though the results are still lower than the results in the paper, there is a clear
advantage of performing hyper-parameter optimization. We were able to increase the
score in most of the metrics for the testing set.

6https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
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3.4 Early Classification

3.4.1 Word2Vec

Mikolov, Sutskever, Chen, et al. demonstrated Word2Vec’s[9] perception of words by
plotting vectors of countries and their respective capital and observing that the model
can distinguish between countries and capitals and learn the relations between them,
without any supervised information. Now we attempt at doing a similar experiment
on the matter of the thesis. We train a Word2Vec (W2V) model with the full dataset
of the eRisk 2020 challenge tokenized and stemmed and extract the vectors for some
keywords related to the challenge. Now we want to perceive how the model is behaving,
and by doing a PCA8 on the processed data, we can reduce its dimension to only two
and project it into a 2d plot. In Figure 3.1 and 3.2 we show the plot for a CBOW and
skip-gram models, respectively.

Figure 3.1: Two-dimensional PCA
projection of the 100-
dimensional CBOW vectors
of key words.

Figure 3.2: Two-dimensional PCA
projection of the 100-
dimensional Skip-Gram
vectors of key words.

Both models seem to organize concepts such that related words are close to each
other. Doctor and healthy do not share a similar meaning. However, they are closely
coupled together in natural language. Anxiety and depression are close to each other as
expected, and interestingly, "self" is also out there, probably due to the tokenizer used
separating "self-harm".

3.4.2 Brief Description

Or BioInfo@UAVR approach to the eRisk 2020 problem by Trifan, Salgado, and Oliveira
in BioInfo@UAVR at eRisk 2020: on the use of psycholinguistics features and machine
learning for the classification and quantification of mental diseases[44]. We describe the
methods used for Task 1 and Task 2 and present the results obtained. Focusing on the
first task, our team BioInfo@UAVR, developed 3 runs to run for the challenge. For all

8https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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3 runs, we followed a number of common steps in the preprocessing phase. The posts
were lowercased and tokenized. Stop words are filtered, based on the stop words list
of the Natural Language Toolkit9. For the first run we considered BoW and TF-IDF
based feature weighting with linear Support Vector Machine with Stochastic Gradient
Descent and Passive Aggressive classifiers, the third one is a joint effort in which both
the first run and second run were used to make the predictions. Our second run for the
challenge was based on a mixture of machine learning and psycholinguistic features.
The methodology is composed of five different feature extraction algorithms. The first
two algorithms compute features within the data by measuring specific characters’
frequencies or words. The first one acts before any processing takes place, and its
purpose is to find emojis and punctuation symbols on the given text. The second one
receives as argument a list of self-harm related keywords. We extract synonyms and
antonyms for every keyword using NLTK’s10 wordnet [45]. Moreover, it also has a
collection of sets of words. Some of the sets are absolutist words [46], first-person words,
and symptoms. Each set of words is then searched on the data to find its frequency.
The third algorithm is a TF-IDF vectorizer, which turns the text into a TF-IDF matrix.
The fourth and fifth algorithm use paragraph vectors based on gensim11 Doc2vec, with
two different models, Distributed Memory and Distributed Bag of Words. The output
of these five algorithms is concatenated, and the best features are extracted using the
transformer SelectKBest12 from Scikit-learn. These features are then passed to the
Adaboost classifier, which led to better results in the validation stage among different
classifiers that we trained.

3.4.3 System Architecture

Usually, the strategy to build an algorithm capable of classifying text has three main
stages. This concept is generalized in Figure 3.3. The first unit is usually called the
pre-processing and is responsible for transforming raw text into a more digestible form
to be processed by a machine, the tokens. Now that we have the tokens, we need
a strategy to turn the tokens into a vector/features to be interpreted by a machine
learning model. This step is called feature extraction, and there are multiple ways this
can be achieved. In order to capitalize on various feature extraction techniques, the
output of each model is concatenated and fed to a machine learning classifier.

9nltk.org
10nltk.org
11https://radimrehurek.com/gensim/auto_examples/index.html
12https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

29



Figure 3.3: Architecture of the system.

3.4.4 Pre-Processing

To have the flexibility of choosing between tokenizers, we built our own class, that has
the option for choosing between different tokenization processes. Different options are
made available, from NLTK 13,14. Such as a white space tokenizer, which splits simply
on spaces, tabs, and newlines. And other more complex ones, with the help of regular
expressions, also described in the book. With regular expressions, we specify a set of
strings to match and split on them. For example, if we wanted to define the white
space tokenizer, which splits on spaces, tabs, and newlines with regular expressions
and split() we could do it in this way re.split(’[\t\n]+’). Other regular expressions can
be defined that take into account different rules, such as handling hyphenation and
punctuation, described in section 2.1.1.

Another essential part of pre-processing that we’ve discussed earlier is reducing
the form of words, and there are also multiple options to choose from here. Such as
stemmers, namely Snowball, Porter and Lancaster. And we also set a lemmatizer, that
differently from stemmers, aims at returning to the dictionary form of the word, the
lemma. We create a class that supports the flexibility of choosing between these various
text normalization strategies.

13https://www.nltk.org/book/ch03.html
14https://www.nltk.org/api/nltk.tokenize.html

30



3.4.5 Feature Extraction

For the feature extraction, there are already multiple options already discussed in the
Background, chapter 2. Besides those algorithms, we also took some inspiration from
[47] and built custom components based on a set of psycholinguistic features present in
the user writings. These are measured, taking into account the frequency in which they
appear in the given text.

Before any pre-processing takes place, we built one model to analyze text, taking
into account the different emojis and dividing them into happy emojis, laughing emojis,
sad emojis, and surprising emojis, and also the punctuation present in the text, we
call this TextStatsPre. This class returns a dictionary in which each entry corresponds
to the different emojis. To turn it into a vector, we added DictVectorizer15, we also
added a scaler to remove the mean, so that the data can behave better when fed to a
machine learning algorithm16. The flow for this model is displayed in Figure 3.4, text
data is turned into an array of features that represent the frequency of certain emojis
or punctuation.

Figure 3.4: Architecture of our first feature extraction model TextStatsPre, the features for
emojis and punctuation are measured by the frequency of the times they appear
in the total length of the post.

Another class was developed to analyze the text after it has been pre-processed
and therefore considering only the tokens extracted, called TextStatsPos. It contains
some features from [47], such as antidepressants, first-person pronouns, negative words,
capitalized words, and absolutist words, displayed in Table 3.3. All the features and
their respective sources are listed in Table 3.4.

15https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
16https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Table 3.3: Absolutist words validated by Al-Mosaiwi et al. [46].

absolutely all always complete completely
constant constantly definitely entire ever
every everyone everything full must
never nothing total whole

The flow for the model TextStatsPos is displayed in Figure 3.5. In it we can observe
the process that the tokens go through, in order to be turned into an array that
represents features.

Figure 3.5: Architecture of our first feature extraction model TextStatsPos, the features for
the sets of words are measured by the frequency of the times they appear in the
total number of tokens.

There is also an extra characteristic of this class, which is taking as argument a
list of words and searching for its synonyms and antonyms in wordnet17 and defining
them as features as well. These features will be turned into frequencies by dividing
their occurrence by the number of tokens. The pipeline for this algorithm contains
pre-processing steps, a DictVectorizer as TextStatsPos returns a dictionary as well. We
also use VarianceThreshold18 to remove features that have no variance.

To feed TextStatsPos with the right words for its features, we used Javascript. By
looking at the website’s source code, we can build a snippet of code capable of returning
the info needed in an array.

17https://www.nltk.org/howto/wordnet.html
18https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
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Table 3.4: Linguistic features and source lexica.

Feature Source
Negative words https://www.enchantedlearning.com/wordlist/

negativewords.shtml
Positive words https://www.enchantedlearning.com/wordlist/

positivewords.shtml
Symptoms https://www.valleybehavioral.com/disorders/self-

harm/signs-symptoms-causes/
Related diseases https://www.valleybehavioral.com/disorders/self-

harm/signs-symptoms-causes/
harm lexicon https://www.thesaurus.com/browse/harm

depression lexicon https://www.thesaurus.com/browse/depression
anxiety lexicon https://www.thesaurus.com/browse/anxiety
Antidepressants https://www.webmd.com/depression/guide/depression-

medications-antidepressants
Drugs https://www.drugabuse.gov/drug-topics/commonly-used-

drugs-chartsandothers

Furthermore, we implement TF-IDF, the previous year strategy of BioInfo@UAVR
with the use of Scikit-learn implementation TfidfVectorizer19 but using our own defined
algorithms for pre-processing instead of the default tokenizer used. The process of using
already tokenized text in TFidfVectorizer is explained here20, and consists of using an
auxiliary method that simply returns what it receives for the tokenizer and preprocessor
options of TfidfVectorizer.

We also implement two versions of doc2vec in order to replicate the Paragraph
Vector, DM and DBOW. These will add knowledge to algorithm because the previous
feature extraction algorithms did not consider the order of words, but rather only the
presence of words. Gensim[48] provides these in python and also facilitates our job
by further providing a Scikit-learn interface for Doc2Vec following their conventions,
D2VTransformer21 this means that we can also integrate these in our environment.

Within the dataset, the time of the post is also given. Hence, it can be used to
classify the user, considering that positive users tend to write more at late night hours.
But what should be the strategy to encode time as a feature? We could take into
account only the hours of the post and feed them to the algorithm. However, it wouldn’t
be a good representation. For example, the discrepancy between writing a post at 1
o’clock and 23 o’clock would be enormous for the algorithm even though they only
differ in two hours and should have a similar representation. Ian defines a strategy to

19https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
20http://www.davidsbatista.net/blog/2018/02/28/TfidfVectorizer/
21https://radimrehurek.com/gensim/sklearn_api/d2vmodel.html
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encode cyclical continuous features22, by using two features deriving a sin transform
and a cos transform from the seconds past midnight of the post’s timestamp. This
turns the features into an interval between -1 and 1. And together they can form a
cyclical encoding of time as shown in Figure 3.6.

sin_time = sin(2 ∗ π ∗ total_seconds/seconds_in_day)

cos_time = cos(2 ∗ π ∗ total_seconds/seconds_in_day)

Figure 3.6: Cyclical encoding of time features.

3.4.6 Additional steps

The output from the five algorithms is concatenated, either using NumPy to join
the vectors or using Feature Union23 which applies a list of transformers in parallel
to the input data and doing so, we can combine several feature extraction algorithm
mechanisms into a single transformer. The concatenation will result in a large number of
features. Dimensionality reduction refers to the process of transforming high-dimensional
data into low-dimensional data, keeping meaningful properties of the original data.
We can apply this to our vast amount of features and use SelectkBest24, which selects
features according to their score on a given function. We opted for f_classif 25. It
computes the ANOVA F-value, which examines if, when we group the numerical feature
by the target vector, the means for each group are significantly different for the provided

22https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/
23https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
24https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
25https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
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samples. Measuring in this way the variance of the different features and selecting the
ones with higher variance.

3.4.7 Classifiers

Now that we have the vectors, we need to implement a machine learning algorithm that
can learn from the inferred vectors and their respective golden truth to predict new
vectors without the respective label. Scikit-learn offers the possibility to implement
multiple classifiers; Adaboost was the final choice for the online challenge, which seemed
to yield the best results; other classifiers tried were Random Forrest and Support Vector
Classification (SVC) which is an implementation of SVM.

3.4.8 Validation

As detailed in Subsection 2.2.4, we can perform hyperparameter tuning to achieve
better results than we would with the default hyperparameters. To tune them, we will
be using Grid Search. With the help of the Parfit library26, we can parallelize the fit
and automatically visualize the results. We define a set of parameters to be tuned for
each classifier and pass the training dataset. Then each combination of parameters is
cross-validated with k = 5, and the scores are plotted over the parameter grid with a
color associated that corresponds to the score obtained. In Table 3.5, we show the best
score achieved by each classifier with the respective best parameters. This validation
section refers to the validation done before running for the challenge. Later in Section
4, we will be doing a more exhaustive tuning that was made after the challenge.

Classifier Best Parameters F1 score
Random Forest max_features: 0.5, min_samples_leaf: 1,

n_estimators: 200
0.64

AdaBoost learning_rate: 0.01, n_estimators: 1000 0.69
Support Vector Classification C: 100, gamma: 0.001, kernel: linear 0.68

Table 3.5: Best F1 score of different classifiers with a 5-cross-validation strategy on the
training set.

Random Forest did a good job in the validation stage and got an F1 score of 0.64.
As we can see in Figure 3.7, the middle plot seems to have yielded the best results
(dark red) with maximum features of 0.5, which means that each time the algorithm
tries to find the best split, it considers half of the total number of features. The best
minimum number of leaves is one, which means that the final tree splits if the number
of samples in each leaf is not zero. Surprisingly, the best number of trees was 200. We
expected the bigger the number, the better the results.

26https://github.com/jmcarpenter2/parfit
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Figure 3.7: Validation for Random Forest using 5-cross-validation.

Adaboost behaved the best in the validation stage, getting the best score with a
learning rate of 0.01 and the number of estimators 1000. In this case, a more significant
number of estimators seem to do better, as plotted in Figure 3.8. Therefore, this was
the configuration chosen to run for the challenge.

Figure 3.8: Validation for AdaBoost Classifier using 5-cross-validation.

SVC was a close second, the linear kernel did best and was overall more consistent,
the best C is 100, meaning we consider a high error for controlling the margin. However,
low values of C did ok too. Gamma is not used in a linear kernel, but for the rbf kernel,
lower values of gamma seem to be best. The scores are plotted in Figure 3.9.
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Figure 3.9: Validation for svc using 5-cross-validation.

3.4.9 Testing stage

For the testing stage, we need to interact with a server for a limited period. The server
sends us writings, and we have to respond with an answer, 0 or 1, considering that a
user is classified as positive can no longer be classified as negative. The following Table
3.6 shows the results of the team BioInfo@UAVR in the first task, "Early Detection
of Signs of Self-Harm". Our submission corresponds to run two and achieved the best
score in some metrics among our team. And other top results, such as the fourth-best
latency-weighted F1 run in fifty-six runs, which is the event’s primary metric. The
algorithm had some troubles during the live test and had stopped processing posts
a quarter way before the end. We will be re-doing the challenge offline with further
investigations in the next chapter.

P R F1 ERDE5 ERDE50 latency speed latency-
weighted
F1

Run 1 .609 .375 .464 .260 .178 14 .949 .441
Run 2 .591 .654 .621 .273 .120 11 .961 .597
Run 3 .629 .375 .470 .259 .177 13 .953 .448

Table 3.6: Evaluation of BioInfo@UAVR’s submission in Task 1.

3.5 Summary

This chapter reviewed two NLP challenges. We were successful in constructing al-
gorithms to analyze text and extract information from there. We started to extract
linguistic features on text by extracting frequencies of certain words. And then passed
to more general methods, TF-IDF and D2V which helped formulating a more knowl-
edgeable prediction. We also tuned the parameters, so that we could achieve the best
result possible with the algorithms we have chosen. Multiple plots are displayed that
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show the relationship between parameters and score. And we present results for the
testing stage, in which we had to interact with a server in a timely manner way, these
include standard metrics such as Precision and F1 score, but also metrics that measure
early risk detection, ERDE and latency-weighted F1.
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CHAPTER 4
Results

This chapter details some offline techniques performed on the eRisk dataset to better
analyze our algorithm and build a better version. The model built in the previous
chapter performed well on the challenge. There are some time constraints to it, and
it can be fully tuned to achieve a better score. The optimization section refers to the
experiments done to reduce the processing time and its results. We will also test the
different algorithms that compose the main algorithm in Architecture Analysis. Hyper-
parameter tuning is done with Grid Search, Random Search and Bayesian Optimization,
and we compare them. We will also take a look at the components of some algorithms
to analyze feature importance.

4.1 Architecture Analysis

We can take a more in-depth look at the architecture and evaluate each component
of the algorithm to understand better how they will behave individually. Both time
metrics, measured in seconds, and score metrics are extracted and showed in Table 4.1.

Time(s) P R F1
Pre-Features 4 0.344 0.194 0.22
Pos-Features 403 0.516 0.417 0.442

Tf-idf 174 0.905 0.558 0.678
d2v-dm 123 0.783 0.486 0.581
d2v-dbow 105 0.887 0.461 0.598

Table 4.1: Comparison between the different feature extraction algorithms that compose
our final model, classified by AdaBoost. The time refers to the time in seconds
took to vectorize the training data in seconds by each model.

Looking at the Table, we see that Pre-Features has a low score and will not help a
lot in the final classification. Nevertheless, it is speedy, and we might want to keep it
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for the future if we want to maximize the score while keeping a short processing time.
Pos-Features achieved an okay score, and is a bit behind state-of-the-art algorithms for
feature extraction. It is slow, and we should remove it from our final algorithm or apply
dimensionality reduction and diminish the features searched by Pos-Features. TF-IDF
did best, achieving very high precision. Furthermore, both doc2vec models did well too.
Next, we will look at how we can join these algorithms and take advantage of each of
them for our final classifier.

4.1.1 Feature Importance

Some classifiers from scikit-learn have included the method feature importance, it is
the case of Random Forest and AdaBoost. It is computed as the total reduction of the
criterion brought by a feature, also known as Gini importance, and returns a ndarray,
specifying each feature and its importance. The sum of these feature importances is equal
to one. We build a pipeline that includes a TfidfVectorizer1 and a AdaBoostClassifier2,
and we pass it the full eRisk 2020 dataset. Then we extract the most important features
from AdaBoost(ada.feature_importances_) to understand which features are the most
relevant ones for classifying the data into positive and negative. We present the top 10
features obtained in Figure 4.1.

Figure 4.1: Top 10 features from a Feature importance on an AdaBoost classifier that was
passed TF-IDF features.

Surprisingly, "kinda" is the top contributing feature. This can be evidence that
uncertainty is usually present in self-harm users. Other more obvious words are there,

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
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such as "cut","scars" and "skin". As expected, words referring to the individual are
present as well, "ve", which before tokenized could be "I’ve". Other top features include
"feel","really","run" and "don".

On the other hand, we can analyze feature importance to perceive better how much
each model contributes to the final classification. In this case, we feed the AdaBoost
classifier, the output from Pos-Features, TFIDF, and both models of doc2vec. The
results are displayed in a bar plot in Figure 4.2

Figure 4.2: Algorithm importance.

The distributed memory model seems to be doing almost half of the work here,
while Pos-Features has very little influence on the prediction.

4.2 Optimization

Some steps of the model can be optimized to process data more efficiently, removing
unnecessary operations. Our model contains five different algorithms, and the output
can be concatenated, making use of the method concatenate from NumPy and is what
we call NPconcat. If we can set the algorithms to work in parallel, we could reduce
the time up to the time of the slowest algorithm. Feature Union3 offers the possibility
of applying a list of transformer objects in parallel to the input data, FUNP. In FUP

3https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
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besides using feature union, we also set n_jobs to one to use all the processors in our
computer. Furthermore, we can provide the same normalized tokens to every algorithm
and remove pre-features, which has no influence in the prediction as we can see in the
Figure of the previous section 4.2, this is called FUPO. If we opt to use stop words,
time and memory will also reduce a lot, FUPOSW. We also added one version that
contains Pre-Features, FUPOSWPre and one that does not contain Pre-Features
neither Pos-Features, FUPOSW+.The time took to vectorize the training data is
exposed in Table 4.2. The cross validation scores are also exposed to have a term of
comparison.

• NPconcat - numpy concatenation
• FUNP - feature union not parallelized
• FUP - feature union parallelized
• FUPO - feature union parallelized and optimized
• FUPOSWPre - feature union parallelized and optimized removing stop words,

includes Pre-Features
• FUPOSW - feature union parallelied removing stop words, does not include

Pre-Features
• FUPOSW+ - feature union parallelied removing stop words, does not include

Pre-Features neither Pos-Features

Model Time(s) P R F1
NPconcat 920 0.971 0.533 0.680
FUNP 912 0.860 0.633 0.720
FUP 543 0.933 0.656 0.768
FUPO 497 0.916 0.606 0.720

FUPOSWPre 377 0.905 0.658 0.761
FUPOSW 329 0.906 0.681 0.773
FUPOSW+ 263 0.903 0.653 0.740

Table 4.2: Evaluation of different feature union methodologies, the time is the time took
to vectorize the training data in seconds, the cross validation score for precision,
recall and F1 is also presented.

In the first three models, nothing is changed in how the algorithm behaves. We
only changed the concatenation strategy and processors used. Therefore, the scores are
very similar, and the variance might only be due to the algorithms’ random factors. In
the fourth model, we opt to use the same normalized tokens for every algorithm, and
we were able to reduce the time. For the last three models, in which stop words are
removed, the score was also good and the best F1 score was even achieved by one of the
fastest model, FUPOSW which is almost three times faster than the original NumPy
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concatenation strategy. It seems that stop words are an excellent feature to have in our
final model for time and score purposes. The final pipeline for FUPOSW with all the
changes is listed in 4.1

Listing 4.1: Pipeline that receives as input text data, which is tokenized and stemmed. And
computes a vector of features obtained with four different feature extraction
models, TextStatsPos,Tf-Idf,Doc2Vec-DM,Doc2Vec-DBOW in parallel. The
vector is then passed on to the AdaBoost classifier either for training or prediction
purposes.

p i p e l i n e = P i p e l i n e ( [
( ' tok ' , t o k e n i z e r ( token ize r_name=' p a t t e r n 1 ' , s topwords=True ) ) ,
( ' stemmer ' , stemmer ( stemmer_name=' l a n c a s t e r ' ) ) ,
( ' un ion ' , Featu reUn ion (

t r a n s f o r m e r _ l i s t =[
( ' Pos−F e a t u r e s ' , P i p e l i n e ( [ ( ' p o s S t a t s ' , TextStat sPos ( keywords ) ) ,

( ' vec tPos ' , D i c t V e c t o r i z e r ( ) ) ,
( ' v a r i a n c e ' , V a r i a n c e T h r e s h o l d ( ) ) ,
( ' s c a l e r ' , S t a n d a r d S c a l e r ( with_mean=F a l s e ) ) ,
( ' s e l e c t ' , Se l e c tKBes t ( f _ c l a s s i f , k = 2 0 ) ) ] ) ) ,

( ' t f i d f ' , (
T f i d f V e c t o r i z e r ( a n a l y z e r=' word ' , t o k e n i z e r=dummy_fun ,

p r e p r o c e s s o r=dummy_fun , token_pat t e rn=None ,
max_features =300 , ngram_range =(1 , 2 ) , norm=' l 1 ' ) ) ) ,

( ' d2v_dm ' , D2VTransformer ( s i z e =300 , min_count =2, dm=1, i t e r =10,
a lpha =0.025)) ,
( ' d2v_dbow ' , D2VTransformer ( s i z e =100 , min_count =2, dm=0, i t e r =5,
a lpha =0.01)) ,

] , n_jobs=−1
) ) ,
( ' ada ' , A d a B o o s t C l a s s i f i e r ( n _ e s t i m a t o r s =500 , n_jobs=−1))

] )

4.3 Hyperparameter tuning

For doing the grid search, it is possible to use feature union as well. Using the best
scoring F1 optimization strategy described above, FUPOSW, in which we use the
same tokenizer and stemmer for the four algorithms, the parameters needed to be
searched reduce drastically for the pre-processing unit.

We separate the algorithm into three units for faster tuning. Notice that if we start
by tuning the first unit and use standard parameters on the others, then use the already
tuned parameters from the first unit, tune the second and leave standard parameters on
the third, we will eventually end up tuning the whole algorithm. With this approach,
we are reducing the possible combinations. If we assume that each unit has a similar
number of combinations of parameters, x, to be tuned, we would have x+ x+ x = 3x
combinations across all algorithms. Diversely, if all the units were tuned together, the
number of combinations would equal to x ∗ x ∗ x = x3. This approach, however, has
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some drawbacks. It assumes that the units are independent, which is not the case. A
pre-processing method such as the tokenizer is going to influence the feature extraction
output.

4.3.1 Pre-Processing

For the pre-processing unit, we set up a set of parameters for the tokenizer and the
stemmer to be searched. The plot showing both dimensions is represented in 4.3. The
strategy to divide the training set was 5-fold. We used the AdaBoost classifier, and the
metric used F1.

Figure 4.3: Comparison between the different tokenizer and stemmer/lemmatizer algorithms
along with F1 scores over training data.

The best tokenizer with more consistent results overall seems to be pattern1, defined
as \w+|\S\w*. It is able to tokenize on white spaces while preserving punctuation
marks between words. The best stemmer seems to be Lancaster, which takes the most
aggressive approach, reducing the words the most as explored in Section 2.1.2.

4.3.2 Feature Extraction

Let us now analyze each feature extraction algorithm. We can choose if the TF-IDF
vectorizer analyzes unigrams uniquely or defines the n-gram to consider and set a
maximum for the features to consider and which norm to use. Parameters for the
doc2vec model include the learning rate, size of the vectors. Each feature extraction
algorithm is tested separately from the others.

As we can see in the plot 4.4, the best score for TF-IDF, displayed in dark red, was
obtained by the combination of the following parameters: the maximum number of
features is 500, n-gram range is (1, 3). Meaning that having unigrams, bigrams, and
trigrams is best. Also, the norm is l1.
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Figure 4.4: Comparison between the different TF-IDF parameters along F1 scores over
training data.

The next tuning is going to be on the doc2vec algorithm both on DM and DBOW
and its results are presented in the figure 4.5 and 4.6

Figure 4.5: Comparison between the different D2V-DM parameters along F1 scores over
training data.

The best parameters for the distributed memory version of doc2vec is the number
of iterations equal to 10. Alpha equals 0.025 and the vector size 300.
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Figure 4.6: Comparison between the different D2V-DBOW parameters along F1 scores over
training data.

For the Distributed Bag of Words, the number of iterations is 5, alpha equal to
0.025, and the vector size is smaller for this one, 100.

4.3.3 Classifier

For the classifier tuning, we will be using multiple models to perceive how they behave.
A model that has received considerable attention lately in the machine learning world
is the Light Gradient Boosting Machine4 and is efficient, does not use much memory,
and is one of the top-performing models used in the Kaggle5 competitions. Still, to
fully take advantage of the model, the right parameters have to be chosen. Some other
popular models will be tried, such as Logistic Regression and AdaBoostClassifier.

Firstly we will tune LGBM, defining multiple parameters and their search space.
For example, the number of leaves we set the parameter space to be an integer between
3 and 100 with a step of 5. Now we set up three different strategies that differently
elect the set of parameters to be evaluated next. Grid search, but instead of using
the GridSearchCV from scikit-learn, we define our own that allows us to stop at n
iterations. Otherwise, it could take a long time if the parameter space is too large.
We also set up RandomizedSearchCV from scikit-learn and BayesianOptimizationCV
from scikit-optimize6, both have the number of iterations adjustable. The results are
plotted starting with LightGBM in 4.7, taking into account the F1 score of each tried
combination and its iteration. The cross-validation used was 5-fold, and we choose the

4https://lightgbm.readthedocs.io/
5https://www.kaggle.com/
6https://scikit-optimize.github.io/stable/
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limit to be 200 iterations. the red dots correspond to the scores obtained by grid-search,
the green dots are from randomized search and the blue are from bayesian optimization.

Figure 4.7: LightGBM tuning with 200
iterations

Figure 4.8: LR tuning with 50 itera-
tions.

We can observe in the LightGBM tuning that grid search and random search scored
the best results. However, bayes search seems to find acceptable parameters quickly and
then stabilizes, seemingly not making use of all the search space available and opting
to make small adjustments to the samples, resulting in small variances in the score.

In the Logistic Regression tuning in Figure 4.8, we can see the disadvantage of
using grid search. As it runs sequentially, it can try parameters that are not suitable.
Therefore it can take a long time to reach a good score. On the other hand, a random
search, only with a small number of iterations, is capable of achieving outstanding results.
However, it will try out uninteresting samples now and then as it is random. Bayes
optimization skips these uninteresting samples, and after learning which parameters are
suitable, it does not seem to try out dull samples, being more efficient in that aspect.
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Figure 4.9: DNN tuning with 50 itera-
tions.

Figure 4.10: SVC tuning with 50 itera-
tions.

Figure 4.11: Ada tuning with 50 itera-
tions.

We built a Deep Neural Network (DNN) using Keras7 on top of Tensorflow8 and set
parameters to be tuned, such as the number of neurons in each layer, the activation
function, and the number of epochs. The model is sequential, and the input is flattened
before entering the input layer. The output layer is of dimension one because the
problem in question is a binary one. The random search got the best score. However, it
seems that every strategy did well on this classifier.

For the SVC tuning, notice how the scores do not vary that much, this is because
some parameters that were tried were actually not used. We set up a linear and a
Radial Basis Function (RBF) for the kernel, in order to map the data points into a
different space, to be searched and different values for gamma and C, which controls

7https://keras.io/
8https://www.tensorflow.org/
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the error margin for the classifier, to be tuned. However, when the kernel is linear,
gamma is not used, and therefore the result will always be the same for the linear kernel
with different gamma values. In the case of the nonlinear kernel function, RBF[49], the
gamma controls the bias and variance of the models.

AdaBoost, in conjunction with LightGBM, achieved the best cross-validation score,
and similarly to LightGBM, random search was the strategy that found the parameters.
If the chosen strategy is grid search, then the parameters have to be carefully chosen to
reduce the time needed to find a decent result. If we are interested in reducing the time
necessary to find a good result, the better choice seems to be bayesian search or random
search. In order to find the best score, random search is the recommended choice.

Classifier Iteration Search F1 cross-val-score
LightGBM 46 random 0.805

Logistic Regression 35 bayes 0.708
DNN 20 random 0.746
SVC 14 grid 0.78

AdaBoost 28 random 0.805

Table 4.3: Best F1 score of different classifiers with a 5-cross-validation strategy on the
training set.

4.3.4 Parameter Analysis

To better understand the influence of each parameter for the final choice of parameters,
we can plot each value tried for each parameter and the score it obtained. The Figure
4.12 shows how each parameter influences the cross-validation score of LGBM. A linear
regression is plotted, and the star highlights the best score.

Figure 4.12: Plot parameters of LGBM vs F1 score.

Considering the left plot, we see a linear relationship between the number of
estimators used and the score obtained, meaning the more estimators, the higher the
score. However, the best number of estimators found was 45. LightGBM has the
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possibility of early stopping9, which means that we did not need to define a specific
number of estimators, the model trains until the validation score stops improving for
100 rounds. It is the relation between the parameters that is most important, and
we should not rely totally on these individual plots. Therefore, we opt to only show
the plots for Light Gradient Boosting Machine. But, we show below the best set of
hyper-parameters found for each classifier.

The best parameters found were:
• LightGBM - boosting_type: gbdt, objective: binary, num_leaves: 93, learn-

ing_rate: 0.18, min_child_samples: 110, is_unbalance: True, n_estimators:1000
• Logistic Regression - C:10.0, solver: saga
• DNN - optimizer: adam, neurons_l3: 105, neurons_l2: 405, neurons_l1: 205,

init: uniform, epochs: 50, batch_size: 35, activation: sigmoid
• SVC - C: 21, gamma: 0.001, kernel: rbf
• AdaBoost - n_estimators: 950, learning_rate: 0.63

4.4 Time-based solutions

Now we try to simulate the eRisk challenge, which is time-based and extract multiple
metrics, such as F1 score, F1-latency, and Normalized Discounted Cumulative Gain. For
this purpose, we need to define a strategy to handle the processing of posts sequentially.
A simple and straightforward strategy would be to process each post corresponding to
its iteration. In the first iteration, we would process the first post, and in the second
iteration, we would process the second post only. Assuming a time frame of one that
corresponds to the average post calculation, the time to process could be described by

n∑
n=1

1 = n (4.1)

We can also process every post by a given user so that the model can make a more
knowledgeable prediction. For example, in the second iteration, we would feed the
model the first and second posts. However the time would increase greatly, and can be
described as:

n∑
k=1

k = n(n+ 1)
2 (4.2)

We can obtain the latency speed up by dividing the latency of each architecture,
acknowledging that the execution workload is the same.

Slatency = L1

L2
= n(n+ 1)/2

n
= (n+ 1)/2 (4.3)

9https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.early_stopping.html
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For a collection of 200 hundred posts per user on average, the result is 100.5. The
speed up is 100, meaning the time to process every post could decrease up to 100 times
if we choose an incremental strategy. The following strategies are defined:

• Non-Incremental Strategy
– bruteforce - Computes the vector corresponding to every post(concatenation

of posts) read until the current iteration by a given user
• Incremental strategy - computes only the vector for a post at a given iteration

– individualprob - Takes the probability of the vector
– avgprob - Averages a list of the probabilities of each vector
– avgvecs - Takes the average of the vectors computed in each iteration
– sumvecs - Takes the sum of the vectors computed in each iteration

Now we try the defined strategies in the test set using the AdaBoost classifier, and the
F1 latency score is displayed along the number of posts analyzed(iterations) in Figure
4.13.

Figure 4.13: Comparison between time-based strategies.

The best results were mostly obtained with bruteforce which was also the strategy
used for the online challenge. Some of the incremental strategies also did well, sumvecs
being the best one, even better than averaging the vectors. Notice how the score for
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bruteforce quickly goes up almost 0.1 higher then sumvecs, but decreases as the
iteration passes. While the latter seems to stabilize, which indicates that it might be a
better strategy for future work. IndividualProb did well, having into account that the
prediction is based only in individual writings, without knowledge about other posts,
being the fastest out of the five models. Avgprob, on the other hand did very poorly,
so taking the average of the probabilities is not a good strategy to have.

4.5 Final Test

Now we re-do the challenge using the best parameters found from AdaBoost, LightGBM,
and SVC, which did best in the cross-validation score 4.3. Firstly we set each classifier to
predict each of the users using all of their posts, on the full dataset. The corresponding
scores are exhibited in Table 4.4.

name P R F1
SVC 0.74 0.63 0.68

LGBM 0.71 0.64 0.67
AdaBoost 0.81 0.66 0.73

Table 4.4: Scores on testing set using full dataset.

Now we perform a decision-based approach as described in the eRisk challenge,
that consists in processing the posts sequentially and sending an alert when a user is
classified as positive. The evaluation should therefore take into account the number
of posts needed to make the prediction. Latency-weighted-F1 or F1-latency[22] was
designed for this purpose and is an improvement over ERDE[21].

For the early prediction we will use a "bruteforce" strategy, which did best. To
fasten up the process, we set up a jump responsible for skipping posts, for example,
only analyzing multiples of 10. Which does not matter as we are using a "bruteforce"
technique, skipped posts will be evaluated later (processes every post). Notice that if
another strategy was used, skipping posts could be problematic. The starting post is
set to 10 and 100 on svc100 to boost the F1 measure.

The scores obtained by BioInfo@UAVR are displayed for a better comparison and
the run with the best F1 measure, iLab4, and F1-latency, iLab0 were also added to
the Tables 4.5 and 4.6. The strategy for the challenge by iLab used BERT-based
classifiers, which were then trained specifically for each task. The Table 4.5 shows the
decision-based evaluation, in which only the binary decision is taken into consideration.
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name P R F1 latency-TP speed latency-weighted-F1
SVC100 0.71 0.64 0.68 100 0.47 0.32
LGBM 0.51 0.76 0.61 20 0.89 0.54

AdaBoost 0.59 0.68 0.63 20 0.89 0.56
SVC 0.64 0.65 0.64 20 0.89 0.57

BioInfo 0 0.61 0.38 0.46 14 .94 .44
BioInfo 1 0.59 0.65 0.62 11 .96 .60
BioInfo 2 0.63 0.38 0.47 13 .95 .45
iLab 0 0.83 0.58 0.68 10 0.97 0.66
iLab 4 0.83 0.69 0.75 100 0.63 0.48

Table 4.5: Decision-based evaluation containing scores for precision, recall, F1 and also
metrics specific to early classification.

We see that the classifiers did not improve the latency-weighted-F1. But did well
and consistent on the metrics. Each classifier being able to reach 0.6 on the F1 metric.
LightGBM has a higher recall score, meaning it predicts (as positive) more positive
users. SVC does not fail as much in predicting positive users and has a higher precision
score.

Another way of evaluating the performance in the challenge is with a ranking-based
evaluation. Which takes into consideration a score that represents the user’s estimation
of risk. And there is a ranking on each writing, capable of handling continuous re-
ranking, simulating a real life application. Each ranking can be scored with standard
Information Retrieval metrics, such as P@ and NDCG@k, in which the relevance is
only binary. The Table 4.6, presents scores for P@10, NDCG@10 and NDCG@100 at 1,
100, 500 and 1000 writings.

1 Writing 100 Writings 500 Writings 1000 Writings
name P@10 NDGC@10 NDGC@100 P@10 NDGC@10 NDGC@100 P@10 NDGC@10 NDGC@100 P@10 NDGC@10 NDGC@100
lgb 0.8 0.67 0.33 0.8 0.69 0.68 0.8 0.68 0.68 0.8 0.68 0.68
ada 0.9 0.67 0.33 1 0.76 0.66 0.9 0.85 0.73 1 0.81 0.72
svc 0.6 0.54 0.31 0.8 0.75 0.65 0.8 0.77 0.67 0.9 0.78 0.67

BioInfo 0 0.6 0.62 0.33 0.6 0.62 0.31 0.6 0.62 0.31 - - -
BioInfo 1 0.6 0.62 0.33 0 0 0.07 0 0 0.04 - - -
BioInfo 2 0.6 0.62 0.33 0.6 0.62 0.31 0.6 0.62 0.31 - - -
iLab 0 0.8 0.88 0.63 1 1 0.82 1 1 0.83 - - -
iLab 4 0.8 0.88 0.63 1 1 0.82 1 1 0.68 - - -

Table 4.6: Ranking-based evaluation containing the scores for Precision at 10, Normalized
Discounted Cumulative Gain (NDCG) at 10 and at 100 for different number of
writings analyzed.

The results for the ranking-based evaluation were also good, surpassing the previous
online results by our team. We also show the evolution of some of the scores for our
four algorithms in the next figures. The precision and recall scores are displayed in
4.14,4.15.
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Figure 4.14: Precision score across iter-
ation of posts.

Figure 4.15: Recall score across itera-
tion of posts.

Notice how for SVC100 the precision is higher than SVC, but recall stays the same
almost. This is because, SVC100 makes more knowledgeable predictions, starting only
to predict at round 100. It will not recall any more true positives, however it will
diminish the false positives comparing to SVC. The scores for F1 and F1 latency are
displayed in the figures 4.16,4.17

Figure 4.16: F1 score across iteration of
posts.

Figure 4.17: F1 latency score across it-
eration of posts.

We were able to boost the F1 measure for SVC100, but F1 latency score decreased a
lot. AdaBoost seems to have performed the best, but is close to svc and lgb and in the
long run each of the model is able to capture the relations in the vectors to accurately
predict users in risk of self-harm in a time-based manner. The scores for the NDCG@k
for k=10 and =100 are displayed in 4.18 and 4.19.
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Figure 4.18: Normalized discounted cu-
mulative gain at 10 score
across iteration of posts.

Figure 4.19: Normalized discounted cu-
mulative gain at 100 la-
tency score across iteration
of posts.

Depending on the k chosen the score will differ, the higher the k, the less the score
is going to be. This metric is useful, for example we can present only the top 10 users
that are in risk to an expert if we want higher accuracy but present the top 100 if we
want to discover most of the cases.

4.6 Summary

The focus on this chapter was to analyze the algorithm we built and how we could
make it better and faster. With the Architecture Analysis we were able to perceive
which of our models were performing the best and how much time they took. Then
in Feature Importance we learned more about our algorithm and what is the basis for
making a prediction. Passing on to Optimization, we were able to keep the score of
the original algorithm or even better, and at the same time reduce its latency to one
third. On Hyperparameter Tuning we focus on tuning the classifiers as usually is done.
But also try to find the best parameters for the other components of our algorithm,
pre-processing and feature extraction. Used different tuning strategies other than Grid
Search which, as we saw can be limited. We also analyzed our algorithm’s behaviour in
the conditions of the challenge and how we can improve it.
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CHAPTER 5
Conclusion

At the beginning of this work we started by familiarizing ourselves with the tokenization
procedures and other text normalization techniques, that are standard tools in almost
every NLP project. Then we first approached the problem with a rule-based approach
and started finding specific words that were related to the topic and could convey
meaning to the classification. Reading the previous experiments in eRisk and some
state-of-the-art works on the area, we learn about ways of representing whole documents
with vectors that represent the importance of the words in it, BoW,TF-IDF. Word2Vec
is able to represent a word with a vector that has meaning and is related in the vector
space to other words. Soon, we realized that information about the appearance of
certain words is not enough and other methods widely used can handle this already.
Doc2Vec scales a level higher and is able to perceive a document’s relation to others.
Now that we have different ways of representing text, we succeed at taking advantage
of multiple models using Feature Union, to build our final representation of the vector
. Concluding that a classification that takes into account multiple feature extraction
techniques, can be a better alternative then using one alone. Learn different ways of
finding the best set of parameters for our models (validation) and how highly important
it is to achieve better results. We perceive that with adjustments on the pipeline, such
as Stop Word removal and Parallel Computing, there is the possibility of saving time
without compromising the score.

We conclude that crawling the social media is a useful method to learn about its
users, more concretely understand how they feel and detect mental illnesses with a good
accuracy. This information can be an improvement and assistance in the medical system,
if we can provide this information to experts. For example like the early prediction
challenge, in which we see the evolution of each user in a time-based manner. We
released an article[44], describing the approach took to run for the eRisk 2020 challenge,
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composed by Trifan, Salgado, and Oliveira.

5.1 Future Work

In the matter of the eRisk challenge, there is the possibility of building an ensemble
learning algorithm that takes into account every submitted run for a specific challenge,
could this algorithm achieve the best score recorded yet? Imagine a network of medical
systems that work together to build weighted predictions of the users.

In order to get the most out of the early classification challenge, a new strategy
should be defined that incrementally builds its classification, not having to rely on all
the posts at once do the prediction. Summing the vectors of each post should be a
strategy to consider, however it does not take into account that the closer the post is to
the evaluation, the more important it is. Future work should aim at trying other state
of the art models, GloVe measures co-occurrence of words in a global context instead
of the local window used by Word2Vec and Doc2Vec. BERT seems to be doing really
good and should probably be the focus, it builds a context-dependent, and therefore
instance-specific embedding. FastText takes a different approach from every model,
stepping in how each word is formed, and captures its meaning by joining the pieces
and comparing to other word’s pieces.

While working on this thesis, knowledge was obtained, principally around the scikit-
learn library. We should explore further other libraries, such as Tensorflow and Pytorch,
but keep scikit-learn in our pocket. Future work should also encompass trying new
challenges in and out of the scope of eRisk, Kaggle can be a platform to have in mind.
Other sources should be explored, other social networks and even platforms that do not
have necessarily to be a communication platform, music streaming can also be analyzed.
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