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Recent research on water demand short-term forecasting has shown that models using univariate time
series based on historical data are useful and can be combined with other prediction methods to reduce
errors. The behavior of water demands in drinking water distribution networks focuses on their repetitive
nature and, under meteorological conditions and similar consumers, allows the development of a heuris-
tic forecast model that, in turn, combined with other autoregressive models, can provide reliable fore-
casts. In this study, a parallel adaptive weighting strategy of water consumption forecast for the next
24–48 h, using univariate time series of potable water consumption, is proposed. Two Portuguese potable
water distribution networks are used as case studies where the only input data are the consumption of
water and the national calendar. For the development of the strategy, the Autoregressive Integrated
Moving Average (ARIMA) method and a short-term forecast heuristic algorithm are used. Simulations
with the model showed that, when using a parallel adaptive weighting strategy, the prediction error
can be reduced by 15.96% and the average error by 9.20%. This reduction is important in the control
and management of water supply systems. The proposed methodology can be extended to other forecast
methods, especially when it comes to the availability of multiple forecast models.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

The main objective in the management of drinking water distri-
bution systems is to satisfy the demand of the consumers satis-
ficing the continuous conditions of quality, flow, and adequate
pressure thus ensuring a reliable distribution system. Efficiently
managing and operating a potable water supply systems requires
short-term forecasts of the water demand demanded by con-
sumers (Adamowski et al., 2012; Coelho, 2016). The estimation
of the future demand of water is fundamental for the planning of
a regional system of water supply, since it will allow the reduction
of costs (Zhou et al., 2002). These water demands are highly vari-
able and fluctuate according to the type and size of the consumer,
the time of day, the day of the week, the season of the year, the
weather and even with the days of celebrations, extraordinary
events and cost of supply of this service. Specific consumption pat-
terns for each distribution network can be handled and interpreted
skillfully by operators with large accumulated experience and used
for operational control of the network. However, the use of these
patterns is done in many cases manually, compromising efficiency
and functioning of the network costs.

In the literature, it is possible to find numerous models devel-
oped by statistical methods, typically multiple regression and time
series, to predict urban water consumption. For the daily operation
of treatment plants and pumping stations, a short-term forecast
model is needed for the next 24 h (Bakker et al., 2013a).

Many water demand forecasts models used in the literature use
a one-hour step to study time series (Jowitt and Chengchao, 1992,
Shvartser et al., 1993; Homwongs et al., 1994; Alvisi et al., 2007;
Santos and Filho, 2014). These works show that it is possible to
generate fairly accurate forecasts using as single input the histori-
cal demand (Msiza et al., 2008). Other forecast models include
meteorological information as additional input. The model pro-
posed by Zhou et al. (2002) uses the daily rainfall, the maximum
temperature of the day, the number of days since the last rainfall
and the effect of evaporation. The artificial neural networks (ANNs)
model of Ghiassi et al. (2008) uses hourly temperature values and
the ANNs model of Herrera et al. (2010) uses daily values of tem-
perature, wind speed, atmospheric pressure, and rain.

Babel and Shinde (2011) evaluated the effect of weather
variables as ANN inputs for daily and monthly water demand
forecast in the city of Bangkok (Thailand). In the daily forecasts,
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no significant differences were found in the forecast accuracy
when including weather variables (rainfall, average temperature,
and relative humidity) in their models. In the work of Tabesh
and Dini (2009), the best results were obtained with the ANNmod-
els and neural-fuzzy approaches considering only past water
demand variables as input.

The quality and reliability of the input data for the analysis of a
time series are crucial since it is the only information used to
determine the future values. Critical Infrastructure Systems (CIS),
including water distribution network systems, are large in size
and occupy a large geographic space. These systems require a mon-
itoring and control system in real time to ensure the maintenance
of the variables in acceptable conditions for as long as necessary
(Quevedo et al., 2010). Eventually, these variables suffer apprecia-
ble deviations due to failures (e.g. sensor and/or actuator and/or
malfunctioning of pipelines) (Schütze et al., 2004). In the CIS, the
telecontrol system has the function of acquiring, storing and vali-
date data collected from different types of sensors in each time
sample and thus monitoring in real time the whole system. Several
problems can occur during the acquisition of process data, such as
for example, those related to communication failure between sen-
sors and the telecontrol system itself. These problems cause lost or
damaged data. In that case, the missing data must be replaced by a
set of estimated data, which should be representative of the data
that was lost (Quevedo et al., 2010).

There are a large number of papers detailing various method-
ologies for short-term forecasts using different time scales:
15-min intervals (Bakker et al., 2013b); per hour (eg Shvartser
et al., 1993; Zhou et al., 2002; Alvisi et al., 2007) as well as
daily/monthly time scales (Maidment and Parzen, 1984a;
Franklin and Maidment, 1986; Smith, 1998; Miaou, 1990). In all
these documents, recurrent patterns and the periodicities that
exist in the data of water demand, at different levels of temporal
aggregation, were recognized.

Most models of prediction of water demand have a limited
number of demand patterns. Jowitt and Chengchao (1992) and
Homwongs et al. (1994) used three different water consumption
patterns for the development of their model: one for weekdays,
one for Saturdays and one for Sundays. The model described by
Zhou et al. (2002) uses only two different patterns: working days
and another for national holidays and weekends. Alvisi et al.
(2007) propose the identification of the patterns implicit in the
time series of the water demand of the Castelfranco Emilia munic-
ipality, Italy. The study was conducted for daily water demand for a
whole year, finding that the demands increase during the summer
period and during the week from Sunday to Saturday. In the same
way, the demands of water per hour show a variable behavior dur-
ing the day, with different patterns depending on if it is a weekday
or weekend. According to their analysis, the daily and hourly series
observed present a pattern of demand during the holidays very
similar to the one observed during the weekends.

Recently, Bakker et al. (2013b) proposed a model that uses a rel-
atively greater number of demand patterns, discern not only the
demand patterns for the seven days of the week, but also for a ser-
ies of day types that deviate from the common days of the week,
such as primary school vacation periods and private day events
related to multiple activities for the Netherlands. In this study,
national holidays are treated as Sundays.

The developed heuristic model predicts water demand for the
next 48 h with 15-min steps. The model determines water demand
in three main phases: in the first phase, the average water demand
is forecasted for the next 48 h. In the second phase, normal water
demands are anticipated for individual steps of 15 min. In the third
phase, if necessary, additional water demands are anticipated for
reasons of increasing the ambient temperature (summer) for the
individual 15-min stages.
The work of Bakker et al. (2013b) focuses on the repetitive nat-
ure of the behavior of water demands in distribution networks. For
the development of an adaptive heuristic forecast model, he used a
large amount of historical data from the water distribution net-
works for conditions and type of similar consumers, allowing
him to determine particular parameters of daily behavior for his
forecast model. For the calculation of these parameters, the model
requires many days of historical information, which represents a
disadvantage if consumption undergoes shorter periodic variations
in its behavior and there is a large amount of continuous historical
information validated.

Winkler and Makridakis (1983) affirm that the combination of
forecasts improves accuracy and using simple averages, in the
combination of forecasts, also reduces the variability of the errors
in the forecast and, therefore, the risk associated with the choice
of forecasting method. Recent research on short-term demand
forecasting has shown that models using univariate time series
based on historical data are useful and can be combined with other
prediction methods to reduce errors. Therefore, the forecasts can
be combined by using simple and optimal weights.

Stock and Watson (1999) proposed several pooling procedures
that differ by the amount of weight placed on the model as a func-
tion of the currently best performance. These procedures include
the equally weighting of all the forecast, the weighting inversely
proportional to their current mean squared error (MSE), using
average forecast, and placing all weight on the forecasting method
that currently has the lowest simulated real-time MSE. The final
pooling procedure is simulated using real-time model selection.

The methodology used in Caiado (2010) was to weight the fore-
casts of three models with the inverse of the mean squares errors
(MSE) of each of the individual methods. The average error differ-
ence when using individual prediction methods to predict a single
day was 8.33% greater than combining forecasting methods. In the
prediction of 2 and 3 days, combined forecasts can reduce error by
12.77% and 10.64%, respectively (Caiado, 2010).

In this study, a parallel adaptive weighting model of water con-
sumption forecast for the next 24–48 h, using univariate time ser-
ies of drinking water consumption, is proposed. For the
development of the model, it is used a seasonally integrated
autoregressive integrated mobile averages (ARIMA) and a short-
term forecasting heuristic method (Bakker et al., 2013a,b), which
takes into account the multiple daily water consumption patterns.
This last method classifies the historical information of the water
demands of the working days and the typical days and then makes
the forecasts. A third method is developed from the classification
made previously and the use of the ARIMA methodology. Adaptive
weighting parameters are calculated for each one of the 24–48-h
parallel forecasts methods according to the minimum mean abso-
lute percentage error (MAPE) obtained for the day previous. The
model was validated using Portuguese networks as case studies.

This forecasting strategy that uses a combination of optimal
weights allows the proposed model to be adaptive, simple to
implement and scalable for the incorporation of a larger number
of forecast algorithms.
2. Water demand forecasting

2.1. Time series analysis

The temporal series are generally analyzed from a deterministic
point of view. However, nowadays, time series are also studied
from a stochastic point of view, using more complex methods
and their application requires larger data. Statistical models for
time series were developed by Box and Jenkins (1976) that con-
sider the dependence between the data. The analyses are based
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on an explicit model. The models are known by the generic name
of ARIMA (Autoregressive Integrated Moving Average), describing
a value as a linear function of previous data and random errors
and may include a cyclical or seasonal component.

Non-seasonal ARIMA models are usually called ARIMA (p, d, q)
where p, d and q are non-negative integers. p is the order (number
of delays) of the autoregressive model, d is the degree of differenc-
ing (the number of times the data have had past values subtracted),
and q is the order of the moving average model. The ARIMA sea-
sonal models are written as ARIMA (P, D, Q) m, where m refers to
the number of seasonal periods and the capital letters P, D, Q refers,
likewise, autoregression, differentiation, and terms of the moving
average for the seasonal part. A simple approach to a seasonal
ARIMA model is to model the regular and seasonal dependency
separately, and then build the model incorporating these parts in
a multiplicative way. Thus, a seasonal ARIMA model has the form:

UPðBSÞ/pðBÞrD
s rdzt ¼ hqðBÞHQ ðBSÞat ; ð1Þ

where zt is the original value of the time series,

UPðBSÞ ¼ 1�U1B
S � . . .�UPB

sP
� �

is the seasonal autoregression

operator of order P, /p ¼ 1� /1B� . . .� /PB
pð Þ is the regular

autoregression operator of order p, rD
s ¼ ð1� BsÞD represent the

seasonal differences, rd ¼ ð1� BÞd is the regular differences;
hqðBÞ ¼ ð1� h1B� . . .� hqB

qÞ represent the regular moving average

operator of order q, HQ ðBSÞ ¼ 1�H1B
S � . . .�HQB

sQ
� �

is the sea-

sonal moving average operator of order Q and at is a random error
or white noise process.

2.2. Heuristic forecasting model

The heuristic model determines the demand patterns and fac-
tors related to the day type and demand of the day using the water
consumption according to a pre-established number of historical
data (Bakker et al., 2013a,b). While it is being executed, the model
constantly renews these patterns and factors. In this way, the
model automatically adapts to the characteristics of water demand
to generate forecasts every 48 h. This functionality allows using the
model throughout the year, and not using different configurations
for each season. The model not only distinguishes demand patterns
for the seven days of the week, but also for national holidays. These
national holidays are treated as Sundays (Bakker et al., 2013a,b).

The model forecasts the water demand for the subsequent 48 h
with a time step of one hour. However, the calculation is done
every day at 00:00 h, updating the 0–24 h forecasts and calculating
the new 24–48 h forecasts. These forecasts are stored together
with the historical data.

The heuristic model predicts the demand for water in two
stages: in the first stage, the average flow of water is forecasted
for the next 48 h; in the second stage, the typical water flows are
determined for each hour according to the day to forecast
(Bakker et al., 2013a,b).

The forecast of the average flow of water for the subsequent 48
h is done using the water demand measured in the previous 48 h.
To correct the influence of the day of the week, the water demand
measured for each hour ðWDtÞ is divided by a typical factor that
corresponds to the day of the week ðf dw;iÞ. The corrected water
demand ðWDcorr;tÞ is calculated through

WDcorr;t ¼ WDt

f dw;i
ð2Þ

The typical factors of the day of the week ðf dw;iÞ for each type of
day ti are calculated in a time window of m previous observations
of water demand, given as
f dw;i ¼
1
m

Pi¼m
i¼1 WDavg;dw;i

1
7m

Pi¼7m
i¼1 WDavg;all;i

; ð3Þ

where WDavg;dw;i is water demand average for equal day type and
WDavg;all;i is the water demand day for the window observation. By
default, m ¼ 10 (Bakker et al., 2013a,b). For example, to determine
the Sunday typical day factor, the average consumption of the pre-
vious ten Sundays is calculated and divided by the average of all the
daily consumptions of the last seventy days.

In order to determine the average predicted water demand
ðWDforc;avgÞ during the next 48 h, the water demand for the previous
48 h is weighted according to equation following (first day:
t = �23,0; second day: t = �24,�48 h):

WDforc;avg ¼ C1
1
24

Xt¼0

t¼�23

WDcorr;t

 !
þ C2

1
24

Xt¼�24

t¼�48

WDcorr;t

 !
ð4Þ

The constants C1 and C2 are set by default at 0.85 and 0.15
respectively (Bakker et al., 2013a,b). According to the criterion of
Bakker et al. (2013a,b), the most recent water measurements have
greater weight than the older demands. Given a change in the con-
sumption pattern or the value of demand, a rapid adjustment of
forecast water demand would be obtained.

The hourly demand factor is calculated through the averages of
the hourly water demands of the last 5 typical days (Bakker et al.,
2013a,b). The hourly factor ðf hour;iÞ is determined by the ratio of
water consumption for each hour between the average consump-
tion obtained during the day:

f hour;i ¼
WDt;i

1
24

Pi¼0
i¼�23WDt;i

: ð5Þ

In step two, the future water demands ðWDforc;tÞ are calculated
for the next 48 h. This is achieved by multiplying forecasts average
demand ðWDforc;avgÞ for the typical factor of the day of the week
ðf dw;iÞ and the typical factor hourly for to forecast day ðf hour;iÞ:
WDforc;t ¼ WDforc;avg f dw;i f hour;i: ð6Þ
3. Drinking water demand forecasts: Parallel adaptive
weighting strategy (PAWS)

The ARIMA and ANN models have gained wide acceptance as
successfully predictive models in linear or nonlinear domains.
However, no model is universally suitable for all time series. The
idea of combining models to generate forecasts is to use the best
features of each model to capture the different patterns in the data.
Both theoretical and empirical data suggest that the combination
of methods can be an effective and efficient way to improve predic-
tions (Zhang, 2003). The heuristic models have been developed for
specific applications, since they present peculiarities of the studied
system, such as the empirical model developed for drinking water
consumption forecasts by Bakker et al. (2013b).

In this work, we propose a Parallel Adaptive Weighting Strategy
(PAWS) to the forecasting of drinking water demand. To validate
this strategy, both the ARIMA model and a heuristic model based
on historical consumption are used. The motivation of the PAWS
model is based on the fact that it is often difficult to determine
in practice if a time series presents a linear or nonlinear behavior
and, in general, if a particular method is more efficient than
another. It is very difficult for forecasters to choose the correct
technique for their cases studies. In a real-time case, since it is dif-
ficult to analyse the characteristics of the data, forecasting using
different models (ARIMA, heuristics, etc.) and a weighting strategy
can be a good practical approach. Zhang (2003) developed a hybrid
model combining ARIMA and ANNmodels, using the ARIMAmodel
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to analyze the linear part of the time series and the neural network
model to capture the residues of the ARIMA model. It may be rea-
sonable then to consider a time series composed of a linear auto-
correlation and a structure with a nonlinear component.

The proposed strategy, PAWS, combines different models used
in the determination of water demand forecasts, assigning them
a weight according to their degree of particular deviation with
respect to the actual value of demand. For this study, we worked
with three methods: a heuristic and two ARIMA methods (with
and without classification of the typical days). That is,

dWDPAWS;t ¼
Xn
i¼1

WDMi ;tki with
Xn
i¼1

ki ¼ 1 and t ¼ 1; . . . ;nsteps; ð7Þ

where dWDPAWS;t denotes the predicted value of water demand
for time t, WDMi ;t the water demand found by each model, n is
the number of forecasting models used in the parallel strategy
and nsteps are the number of time steps used. The parameters
ki are the weighting coefficients whose values vary between 0
and 1. These parameters must be found in such a way as to min-
imize the error between the observed data series and the pre-
dicted values. Independently of the metrics of the errors used
(R2, MAPE, MAE, etc.), errors and predicted value are calculated
for each model forecast using the historical data of the demands
during a given period. In this work, the weighting parameters
are obtained according to the historical success of each model
used, particularly according to recent historical success. This
paper proposes, as a first strategy, a methodology for the identi-
fication of atypical values and the validation of raw data of
water consumption. Then, the classification of typical days of
the week and holidays as a preliminary step for the calculations
of two forecasting algorithms is made: a heuristic model and
another autoregressive model. Finally, the determination of the
weighting parameters for the weighted calculation of the fore-
cast and then be used to generate the definitive 24–48 h forecast
of the water demand. The weights k that minimize the MAPE
error function are determined solving an optimization problem
using the calculated errors for every hour of the last day before
the forecast. That is,

Find ki, i = 1,. . ., n, in order to

minimize f ðkiÞ ¼ 1
24

Xt¼24

t¼1

MAPEt ¼
Xt¼24

t¼1

100
24

Xn
i¼1

yt �WDMi ;tki
yt

;

subject to 0 6 ki 6 1; and
Xi¼n

i¼1

ki ¼ 1:

ð8Þ

In Fig. 1, a scheme of the Parallel Adaptive Weighting Strategy
model is presented.
Fig. 1. Scheme of the Parallel Adaptive Weighting model for water demand
forecast.
3.1. PAWS model using ARIMA and a heuristic model

For the development of the ARIMA model, the methodology
proposed by Box-Jenkins is used. This approach provides the tools
to identify suitable time series models by comparing the behavior
of the time series data with the autocorrelation function (ACF) and
Partial autocorrelation function (PACF). This methodology is
applied to stationary time series, that is, its mean and variance
are constant or fluctuate little in the time interval analyzed. Other-
wise, it is necessary to make the pertinent modifications and
adjustments (differentiation) of the data to achieve stationarity.
If the original values of the time series are non-stationary and sea-
sonal, the most complex differentiation transformations are neces-
sary. Once the ARIMA model is identified, the characteristic
parameters (p, d, q) or (p, d, q)(P, D, Q)m are determined for the sea-
sonal or non-seasonal model, respectively. The Akaike information
criterion (AIC) is used to check and select the forecasting model.
The aim of this criterion is to find the simplest model possible
and prevent over-fitting (Bennett et al., 2013). To evaluate the pre-
dictive performance of the different models, each data set is
divided into two samples: one for training and other for evaluation
or testing. The training data set is used to generate the model and
then the remaining sample of data is used to evaluate the estab-
lished model. The set of historical data was classified according
to the types of days of the week and national holidays, generating
two batches of potential data: a batch of data divided by clusters
and another batch of unclassified data. Each of them was used as
input for two autoregressive ARIMA models and, therefore, to gen-
erate a forecast for each batch of data.

The development of the forecast heuristic model is based on the
model proposed by Bakker et al. (2013b). The heuristic model pro-
posed in this work is developed from the information provided by
two Portuguese potable water distribution networks that simulta-
neously serve the residential, industrial and agricultural sectors.

The case studies used in this document correspond to multi-
municipal water supply subsystems of the central-north region
of the country. The systems are responsible for supplying flows

ranging from 0.2 to 240 Mm3

day . The information provided consists of

water consumption data measured at time intervals of one hour.
Therefore, the constructed model uses this sampling time.

The effect of combining large numbers of consumers generates
a behavior profile that is reflected in well-defined patterns (Zhou,
2002). Figs. 2 and 3 shows a pattern of daily drinking water con-
sumption for a subsector of water supply systems of central of Por-
tugal, serving a population of 15,972 inhabitants.

In general, water consumption patterns show a mild random
component for a similar daily pattern during the days of the week
and one for Sundays and Saturdays. It is also possible to appreciate
the change in pattern and consumption values for the hot and cold
months.
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Fig. 2. Average daily profile water consumption for a water supply system of
central of Portugal area (based on available hourly data of the cold months of 2016).
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Fig. 3. Average daily profile water consumption for a water supply system of
central of Portugal (based on available hourly data of the warm months of 2016).
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3.2. Setup of the model

For the implementation of the model, the measured water
demands and the calendar data were used as the only inputs of
data to organize and classify different types of the day of the week,
as well as national holidays. The model does not require any
weather information. Although the relationship between water
demand and the atmospheric conditions seems obvious, the model
does not use the climatic variables. However, gradual climate
changes (summer-winter) are observed and are manifested in the
pattern of seasonal consumption where it is captured through
the historical data record and are then used to generate consump-
tion forecasts.

The validation of the proposed model initially determines three
forecasts according to the calculation scheme adopted: two fore-
casts are calculated using the ARIMA model, one with the unclassi-
fied data set and another with the classified ones. The third
forecast is calculated according to a heuristic model that determi-
nes the demand pattern and factors related to the day type and
demand of the day, using the water consumption according to a
pre-established number of historical data. While running, at every
24 h, the heuristic model constantly renews these patterns and fac-
tors with the incorporation of new historical demand data. In this
way, the model automatically adapts to the characteristics of water
demand to generate 48 h forecasts every 24 h. This functionality
allows using the model throughout the year, and not using differ-
ent configurations for each season. The model not only distin-
guishes demand patterns for the seven days of the week, but also
for national holidays. These national holidays are treated as
Sundays.

This paper also proposes a methodology based on the recon-
struction and validation of raw data based on statistical concepts
(Coefficient of Variance, Standard Deviation, and Normal Distribu-
tion) and the methodology of validation proposed by Quevedo,
et al. (2010).

All the forecasting models described in the PAWS model formu-
lation were implemented in the Python programming language in
its version 3.6.

3.3. Forecasting error metrics

The determination of errors in forecasting is crucial for the
selection of the model parameters as well as for monitoring the
accuracy and reliability of the forecasts generated. Many research-
ers have proposed several measures, but the most widely adopted
in the forecasting of water demand is the mean absolute percent-
age error (MAPE) (Hyndman and Athanasopoulos, 2013; Bakker
et al., 2013b; Sampathirao et al., 2014; Bai et al., 2015; Coelho,
2016; Candelieri, 2017), expressed as:
MAPE ¼ 100
n

Xt¼n

t¼1

yt �WDM;t

yt

���� ����; ð9Þ

where yt is the demand of water observed at time t, WDM;t is the
forecast water demand of model at time t and n is the length of
the evaluated times series. In many research studies where time
series forecasts are calculated, the R2 coefficient and the RMSE is
also usually evaluated (Bennett et al., 2013).
4. Benchmark

It is a good practice for each new forecasting method or strategy
to be compared with a confirmed study using known benchmarks
to check its strengths, potentialities and possible limitations. For
univariate time series methods, it is advisable to make compar-
isons at least with a standard method such as the ARIMA model.
The first benchmark, described in Appendix A, is a time series gen-
erated by sine functions in order to obtain a cyclical behavior to
represent the demand for drinking water daily, weekly and annual
patterns. Noise was added to the time series using a random vari-
able. The dataset generated, shown in Fig. 4, contains 17,544 values
in one-hour intervals.

The second benchmark is an air quality dataset. The dataset
contains 9358 instances of hourly averaged responses from an
array of 5 metal oxide chemical sensors embedded in an Air Qual-
ity Chemical Multisensor Device (Vito et al., 2008). For this study,
only one variable was selected: Total Nitrogen Oxides (NOx).
Fig. 5 shows the concentration of NOx for one week.

The benchmarks were used to evaluate the proposed PAWS
strategy and were compared with the simple Mean weights strat-
egy and the Mean Square Error (MSE) Weights strategy proposed
by Stock and Watson (1999). In the mean weighting scheme, equal
contribution was considered for each forecast model. The MSE
weights strategy corresponds to Bates and Grangers (1969) sugges-
tion, where the weights are inverse to the mean square error
(MSE).

For the benchmarks datasets, each data set is divided into two
samples: (1) training and (2) evaluation or testing. The training
data set is used to generate the model and the remaining data is
used to evaluate the established model by the calculation of the
forecasting error. The proposed PAWS strategy used two models
based on the ARIMA model and a heuristic model to calculate
forecasts.

The Box-Jenkins methodology for the ARIMA model requires at
least 50 values. Multiple groups of 144 h (one week) are used as
training data set and the MAPE error is measured every hour in a
forecast of 48 h. The computational time used by the developed
algorithm was also measured.

According to a previous analysis made for the selected
benchmark sets, the training sample should be 336 h. For larger
samples, the error is substantially increased due to overtraining.
Fig. 6 shows the results obtained with the ARIMA model for
benchmark 1.

The forecast values were evaluated for the last two days of the
data set. The errors obtained for each benchmark are listed in
Table 1.

Table 1 shows a poor performance of the forecast models for
benchmark 2 due to the absence of temporary patterns and the
presence of outliers. However, the PAWS strategy yields better
results.
5. Case study results

For this work, two water supply companies from central and
northern Portugal are used as case studies. The data provided
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Table 1
Errors calculated for benchmarks.

Benchmark Forecasting Model R2 MAPE (%)

1 ARIMA 0.9997 1.961
ARIMA clustering 0.9986 1.853
Heuristic 0.9830 1.597
Mean weights 0.999 2.241
MSE Weights 0.999 1.318
PAWS 0.9997 0.856

2 ARIMA 0.4779 76.855
ARIMA clustering 0.3556 88.658
Heuristic �0.0765 68.133
Mean weights 0.571 191.300
MSE Weights �0.209 50.861
PAWS 0.4879 35.402
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includes water demands for continuous periods of 1-h intervals for
a period of approximately 1 year. The data corresponds to
sub-areas of the system where there are different types of
consumers: domestic, industrial and agricultural. In the case of
the northern network, WD2, WD4 and WD16 report for the
period of August 2012 to July 2013 (Coelho, 2016). For the central
network of Portugal, WDa, WDb and WDc report to the period of
2015 and 2016.

5.1. Input data analysis

The received raw data presented multiple acquisition errors.
With the analysis of the chronological charts of the raw data pro-
vided by water service companies (see Fig. 7), it was clear that,
in most cases, several failures occurred. The data was provided as
cumulative total volumes as a function of time, which were then
transformed into instantaneous flows or water demands.

Another typical problem in raw data is related to the absence of
information in certain periods. To solve this problem, the missing
values are estimated with historical data. For this work, a maxi-
mum time of 48 continuous hours is proposed. Fig. 8 shows a set
of water consumption data that were refined and reconstructed
using the proposed methodology.

The analysis method used in the Northern Portugal network
was based on the interquartile range of each data set. However,
all the data used was subjected to the mentioned analysis of vali-
dation and reconstruction. Although the identification of the miss-
ing and atypical data represented a small amount (smaller than
3%), the statistical analysis of the data reflects a significant varia-
tion particularly in the standard deviation of WDc, due to the max-
imum and minimum values replacement. In the case of time series,
specifically for the demands of drinking water, all values should be
positive, due to the constant water demand of the consumers and
the presence of leaks in the system. Table 2 shows the water



Fig. 7. Examples of raw data of the (a)-(b) accumulated water volumes and (c)-(d) instantaneous water demand calculated from accumulated volumes for the central
Portugal water network.

398 A. Sardinha-Lourenço et al. / Journal of Hydrology 558 (2018) 392–404
demands studied and the statistical information for each of the
case studies before and after of validation, respectively.

5.2. Clustering weekdays data

For the developed forecast calculation model it is necessary to
classify the consumption according to the calendar day and to its
pattern of hourly behavior and, consequently, to decide if it can
be considered as a predictor variable included in the model. After
analyzing the patterns revealed by the time series plots, it was ver-
ified that for different months, different patterns were presented,
as well as different days of the week and national holidays.

An analysis of the influence of the anthropic variables (month,
day and time of day) through the Pearson correlation index is a
method that helps to make a classification of the chronological
data set. Tables 3 show the results of the Pearson index for water
demands of each of the water supply systems studied (WDa with
shading and WD4 without shading).

It can be seen that the days of the week present a high correla-
tion between them, which allows classifying these days as com-
mon. Days Saturdays and Sundays present a high correlation
between them, but for classification purposes, it was decided to
keep them separated due to the uneven pattern in the morning.
The holidays show a correlation index lower than the others. This
indicates that it belongs to a different group of days. However, due
to the separation between the different dates of these days that
affect the consumption patterns of the warm and cold months, it
was decided to include it in the classification of the Saturdays
due to its high correlations. The results for the other time series
studied show similar results.

The behavior is similar in both the cold and warm months
although the daily patterns do present variations especially in
the early hours of the morning (Figs. 2 and 3). In the summer
months, the water consumption increases with respect to the
winter period. This behavior manifests itself in a gradual and slow
way, which can be captured through the historical information of
the demands and then used to generate short forecasts term.
Fig. 9 shows the daily consumption patterns for the month of
December and August 2015 for the WDa water demand and the
daily consumption pattern for the weekends and the Christmas
day holiday. This behaviour is very similar to the other time ser-
ies studied.

5.3. Water demand forecasting

The validation of the PAWS model uses three short-term fore-
casts: two forecasts are calculated using the ARIMA model. One
of the unclassified data set and the other with the classification
according to the type of day. The third forecast is calculated
according to a heuristic model. The calculation of the final forecast-
ing is done with the determination of the weights of the k param-
eters that minimize the MAPE.

According to the Box-Jenkins methodology, it was verified that
the time series were stationary. The characteristic parameters



Fig. 8. Example of (a) a dataset of water consumption with data refined and reconstructed for the central Portugal water network sub-area. The dots indicate the values that
were validated. (b) A dataset of water consumption with data estimated for a period of 11–19 November 2016.

Table 2
Statistical information on water demands before and after validation of data for the two regions of the country.

Drinking water system of Portugal Northern Central

Water demand WD2 WD4 WD16 WDa WDb WDc

Before validation Total Observations 7536 7536 7536 8760 7320 8760
Mean (m3/h) 11.62 37.63 2.67 31.37 8.84 22.02
Standard Deviation (m3/h) 5.30 16.80 1.82 9.01 2.97 1219.64
Minimum (m3/h) 0.00 0.00 0.00 14.00 4.20 �92201.00
Maximum (m3/h) 34.67 97.71 14.42 106.00 27.60 240

After validation Mean (m3/h) 11.62 37.63 2.67 31.33 8.69 43.18
Standard Deviation (m3/h) 5.26 16.80 1.80 8.85 2.38 7.28
Minimum (m3/h) 0.12 1.29 0.04 14.00 4.20 21
Maximum (m3/h) 28.96 92.92 8.46 58.40 16.06 74
Outliers 23 10 21 71 218 238
% Outliers 0.31 0.13 0.28 0.81 2.49 2.72
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Table 3
Pearson correlation index for drinking water system of central Portugal (up-right side of the matrix, grey area) and northern Portugal
(down-left side).
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were determined using the AIC quality criterion. The best model
found was the seasonal ARIMA with the parameters (1, 0, 2) (2, 0,
2)24. Fig. 10 shows an example of the typical diagnostic diagrams
used for the ARIMA model.

Fig. 11 shows an abrupt decrease of the MAPE until reaching the
value of the 336 observations, as similar to the benchmark result.
Then, the errors gradually decrease due to the overtraining of the
model. However, the execution time increases proportionally with
the size of observations not justifying the use of larger observa-
tions. The execution time and CPU effort should also be considered
in choosing the forecasting model and its input data for the case of
real-time forecasts of large size water supply networks, where
more than a hundred points must be constantly forecasted. There-
fore, 336 h of observations were used for defining the ARIMA
model without day classification. In the model with day classifica-
tion, a sensitivity analysis was performed similar to the previous
one and a sample of 72 h (3 common days) was selected for train-
ing the model.

The heuristic forecasting model used allows the generation of
short-term forecasts using a set of historical data of 1680 h to
determine the average flow rate used in its calculations and 72 h
of the typical day to calculate the time factors that allow defining
the pattern of consumption in the forecast. This number of hours
corresponds to 3 typical days according to this classification (work-
ing days, weekends and holidays).

All datasets were divided into sub-datasets containing 336
training hours and the respective forecast computation for the next
48 h for validation.
To determine the parameters of adaptive weights k, a sensi-
tivity analysis was performed for different temporalities: from 1
to 56 days before the day of forecast. The parameters k were
calculated by minimizing the MAPE error function from the pre-
dicted and observed values of the water demand in the histor-
ical data. Once the parameters are obtained, these values are
used for the calculations of the forecast of the following 48 h.
It was found that the optimal time for the calculation of the
k parameters is one day. Fig. 12 shows the evolution of the
mean MAPE for several amounts of historical data for the cases
of WD2 and WDa.

Once the adaptive weights k were obtained, the forecasts of the
water demands and the MAPE have been calculated for a period of
48 h. This process was carried out for all time series studied
throughout the set of observations and corresponds to a year of
study. The results for the validation forecasts of 48 h (30–31 July
2013) and (29–30 December 2015) are shown in Figs. 13 and 14
for WD2 and WD4 water demands, respectively.

Table 4 provides the forecasting accuracy measurements of
all models used for each water demand data set. The values
shown are the averages obtained for the entire time interval
of each series.

It can be clearly seen in Table 4 that the PAWS model is the best
in all the time series studied. The Pearson correlation coefficients
show a high correlation between the observed values and the fore-
casts for all data sets, excepted for the WD16, where there are a
high variability and heterogeneity of consumption, making it diffi-
cult to capture the patterns by the models. This difficulty in



Fig. 10. Statistical diagrams for standardized waste for the statistical study with ARIMA for theWDa. a) Standardized residuals over time; b) histogram plus estimated density
of standardized residuals, along with a Normal(0,1) density plotted for reference; c) normal Q-Q plot, with Normal reference line; d) correlogram PAF.
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performing good forecasts is seen in the MAPE found for this series
presenting values close to 38% (ARIMA-WD16).

The mean average adaptive parameters obtained for the differ-
ent series show that the heuristic model presents the forecast clos-
est to the one observed, however, the weighting methodology
allows to improve even more the forecast. According to the simu-
lation results, it can be observed that the averages of the k-
weighting parameters vary from 0.074 to 0.542 and are adapted
according to the performance of each forecast model in its most
recent history.

The classification of the days performed to calculate the ARIMA
clustering model according to the typical day does not always yield
better results than the calculation made with the raw sets,
although the values are very similar.

It can be seen that the PAWS model improves the performance
in 4 of the 6 time series studied according to the MAPE, achieving
reductions of up to 15.96% (WDb) with respect to the value of the
closest forecast (MSE weights).

Figs. 15 and 16 show the forecasts of water demands for the two
time series WD4 and WDa for the last 48 h of each series. When
comparing the observed values with each of the models proposed
separately, it is evident that each one follows the trend of the cyclic
demand pattern, with the PAWS model having the most accurate
relationship.
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Fig. 14. Water demand forecasts for WDa for the month of November 2015 calculated at every 48 h.

Table 4
Forecasting accuracy measurements obtained for each set of ARIMA, ARIMA Clustering, Heuristic and PAWS models. The adaptive weight parameters k were found in order to
minimize the MAPE in the last 24 h.

Dataset Forecasting Model Adaptive weight parameters k R2 MAPE (%)

WD2 ARIMA 0.285 0.905 14.455
ARIMA clustering 0.136 0.907 16.002
Heuristic 0.579 0.927 12.764
Mean weights – 0.932 12.960
MSE Weights – 0.938 10.91
PAWS – 0.937 10.73

WD4 ARIMA 0.225 0.913 12.72
ARIMA clustering 0.374 0.947 11.18
Heuristic 0.401 0.947 10.82
Mean weights – 0.961 8.730
MSE Weights – 0.968 8.562
PAWS – 0.959 9.56

WD16 ARIMA 0.235 0.864 37.603
ARIMA clustering 0.273 0.869 36.542
Heuristic 0.492 0.885 31.898
Mean weights – 0.821 35.325
MSE Weights – 0.874 34.687
PAWS – 0.899 31.049

WDa ARIMA 0.318 0.897 8.824
ARIMA clustering 0.158 0.873 9.481
Heuristic 0.523 0.923 8.054
Mean weights – 0.838 9.578
MSE Weights – 0.839 7.334
PAWS – 0.932 6.915

WDb ARIMA 0.298 0.850 9.340
ARIMA clustering 0.021 0.687 9.678
Heuristic 0.681 0.902 7.847
Mean weights – 0.862 9.125
MSE Weights – 0.921 6.321
PAWS – 0.902 7.522

WDc ARIMA 0.502 0.752 6.931
ARIMA clustering 0.074 0.710 7.037
Heuristic 0.425 0.756 7.044
Mean weights – 0.801 7.155
MSE Weights – 0.799 7.233
PAWS – 0.782 6.614
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6. Conclusions

Using the historical drinking water consumption data and the
calendar days as the only data entry, the performance of the pro-
posed PAWS prediction model produced a MAPE that improves
the use of individual forecast models. The proposed model yields
acceptable prognostic values in relation to the random behavior
of the data used.

Individually, the best performing model is the heuristic model,
however, the parallel combination with other models and an effi-
cient weighting calculation methodology increase the overall per-
formance of the method.

In general, for the different sets of water demands, it was shown
that parallel adaptive weights found by optimization (in autore-
gressive models and the heuristic model) improved the individual
models by predicting the demand for drinking water for one day.

For the time series studied, it was shown that the parallel com-
bination of different forecasting models of water demand improves
overall performance, reducing the error 15.96%. This improvement
may be relevant when prediction accuracies are needed when
short-term forecasting is used for optimal control of drinking
water supply systems.
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Appendix A

The function used as benchmark simulates the consumption of
drinking water with a daily pattern that repeats infinitely. The
adopted pattern has a valley during the night, a peak in the morn-
ing and another in the evening. Additionally, weekly and monthly
seasonalities are added. The added random noise has the purpose
of generating different daily patterns. The function used in this
process is defined as

DðtÞ ¼ 50þ
P5

i¼1f iðtÞ
5

þ GAUSSIANð0;2Þ; ð9Þ

where

f iðtÞ ¼ aisin bi þ
2p
ci

t
� �

: ð10Þ

a ¼ f30; 30; 30; 20; 10g; b ¼ f3;�3; 10;�3; 0g; c ¼ f12; 24; 24;
168;744g and GAUSSIAN (0.2) represents a Gaussian noise with
mean 0 and standard deviation 2. The functions f 1; f 2 and f 3
simulate the daily behavior for periods of 12, 24 and 24 h, respec-
tively, and the functions f 4 and f 5 represent the weekly and
monthly patterns, defined by their periods of 168 and 744 h.
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