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Abstract

The linear canonical transform plays an important role in engineering and many
applied fields, as it is the case of optics and signal processing. In this paper, a new
convolution for the linear canonical transform is proposed and a corresponding product
theorem is deduced. It is also proved a generalized Young’s inequality for the introduced
convolution operator. Moreover, necessary and sufficient conditions are obtained for the
solvability of a class of convolution type integral equations associated with the linear
canonical transform. Finally, the obtained results are implemented in multiplicative
filters design, through the product in both the linear canonical transform domain and
the time domain, where specific computations and comparisons are exposed.
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1 Introduction

The linear canonical transform (LCT) (Healy et al., 2015, Moshinsky and Quesne, 1971) is
a four-parameter family of linear integral transformations. The flexibility of choice on those
parameters has several consequences and, in particular, allows us to recognize that many
integral transforms are just special cases of the LCT. It is the case of the Fourier transform
(FT), the fractional Fourier transform (FrFT), the Fresnel transform (FnT), and many other
linear integral transforms used in signal processing and optics (Goel and Singh, 2016, Pei
and Ding, 2001, Sharma and Joshi, 2006, Zhang, 2016a,b). Therefore, the study of the LCT,
its properties, and associated operators are of great importance in view to obtain a unified
analysis of the above-mentioned transforms.
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The LCT was first introduced in the 1970s (Moshinsky and Quesne, 1971, Collins, 1970),
where its significance in optics was recognized. Later, the interest in the fractional Fourier
transform, during the 1990s, led to the emergence of a new interest in the LCT from new
perspectives.

The four parameters in the LCT give extra degrees of freedom, which makes this trans-
formation a very flexible one, and a powerful tool in the fields of signal processing, filter
design, radar system analysis, pattern recognition, optics, solvability of integral and differ-
ential equations, as well as in many other areas of applied sciences (Anh et al., 2017, 2019,
Barshan et al., 1997, Deng et al., 2006, Goel and Singh, 2013, 2016, Goel et al., 2016, Sharma
and Joshi, 2006, Shi et al., 2012, 2014, Zhang, 2016a,b). Many properties of the LCT are
currently well known (Sharma and Joshi, 2006, Xu and Li, 2013). In particular, this trans-
form is unitary, invertible, and additive. The last property allows the LCT to be decomposed
into series of simpler transforms. Some approaches to define discrete LCT (DLCT) have been
proposed with several algorithms for its computation and a number of possible discretizations
of LCT with different desirable properties (Pei and Ding, 2000, Healy et al., 2015, Koc et al.,
2008, Koç et al., 2019, Pei and Lai, 2011, Hennelly and Sheridan, 2005). Those DLCTs are
applied in the simulation of optical systems and in pure digital signal processing (Pei and
Ding, 2000, Hennelly and Sheridan, 2005).

Convolutions and the so-called “convolution type operators” (Bogveradze and Castro,
2008, Castro and Saitoh, 2012, Castro and Speck, 2000, Castro et al., 2020) are very important
mathematical objects which are used in the modeling of a great diversity of applied problems.
As it is well known, the classical convolution operator “∗” (Bracewell and Bracewell, 1986)
is given by:

(f ∗ g)(t) =
1√
2π

∫ ∞
−∞

f(τ)g(t− τ)dτ . (1.1)

Its convolution theorem states that the Fourier transform of the convolution of two functions
(in the appropriate spaces) is equal to the pointwise product of their Fourier transforms:

F(f ∗ g)(u) = (Ff)(u) (Fg)(u). (1.2)

In the last years, many classical results in the Fourier transform domain have been ex-
tended to the LCT domain. By defining different forms of convolution operators, a variety of
convolution theorems for LCT have been derived (Deng et al., 2006, Wei et al., 2009, 2012,
Zhang, 2016a,b, Shi et al., 2014, Goel et al., 2016, Huo, 2019). Those convolutions, with ap-
plications in many theoretical and practical problems, can be considered as some extensions
of the classical convolution operator for the LCT.

In this paper, we propose a new convolution operator associated with LCT, the corre-
sponding convolution theorem, and we derive a Young’s generalized inequality. Furthermore,
we discuss the solvability of a class of convolution integral equations associated with the new
convolution operator here introduced, and we present multiplicative filters design in the LCT
and in the time domain.

We would like to stress that the convolution derived in this work differs from those
obtained by (Pei and Ding, 2001, Deng et al., 2006, Shi et al., 2014, Wei et al., 2009, 2011,
2012, Zhang, 2016a,b, Huo, 2019). Although the convolution theorem proposed by Pei and
Ding (Pei and Ding, 2001) is similar to the classical one, that convolution is more complicated
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than our, since it is defined by a triple integral. Additionally, Deng et al. (2006) obtained
convolution operators and convolution theorems in the LCT and the time domains. Similarly
to them, we cannot eliminate the chirp multiplier in the factorizations. However, with our
convolution, we are able to derive a Young’s type inequality and to study the solvability of
a convolution type integral equation.

The convolution (and its associated theorem) proposed by Shi et al. (2014) has also a
significant degree of complexity and, consequently, is not so useful in filter design. Wei et al.
(2009, 2012) proposed a convolution theorem that differs from our, since it is based on a
generalized translation. Huo (2019) introduced a convolution theorem which is a generalized
version of Anh et al. (2017). Although the factorization property in those works is somehow
similar to the one proposed in here, the structure of their operator is more complicated than
ours, even when rewriting the operators using the help of the classical convolution. Due to
this circumstance, there are also corresponding differences in the solvability of associated
classes of integral equations.

In this paper, we also propose an equation with a weight function. Making use of the
classical convolution, within the process of solving the integral equation, we are able to take
profit of the use of the Fourier transform–which is easier to implement in concrete examples.
Moreover, we can apply the obtained results in filter design in the LCT and in the time
domains. The operator here introduced follows, in some sense, the method used by Zhang
(2016a,b). Similarly to that one, our convolution theorem has a pertinent degree of simplicity,
in both time and LCT domains, and it is easy to implement in the design of multiplicative
filters. However, the disadvantage is the chirp multiplier. Although, theoretically, the chirp
function seems to give some freedom to make adjustments, it may impose difficulties in
real applications, given the difficulty in generating a chirp signal accurately in practical
engineering.

Besides the present section, we organize the paper by having a Sect. 2 where the definition
and some basic properties of the LCT are included. The new convolution operator and its
associated convolution theorem are proposed in Sect. 3. In Sect. 4, it is derived a Young’s
type inequality and it is proposed the solvability of a class of convolution integral equations.
Finally, Sect. 5 is devoted to a even more applied situation and analyzes filtering in the LCT
and in the time domain, where concrete cases are exposed.

2 The linear canonical transform

The linear canonical transform (LCT) with a set of real parameters A = (a, b, c, d) of a signal
f(t) is defined as (Moshinsky and Quesne, 1971):

FA(u) = LA[f(t)](u)

=

{ ∫ +∞
−∞ f(t)hA(t, u)dt b 6= 0√

dej
cd
2
u2f(du) b = 0

(2.3)

where

hA(t, u) =

√
1

j2πb
e
j
2b

[at2−2tu+du2],
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j is the imaginary unit and ad − bc = 1. The case b = 0 is the limit of the integral in
(2.3) for the case b 6= 0 and |b| → 0. Without loss of generality, we assume b 6= 0 in
the remaining part of the paper. The LCT includes many linear integral transforms as
special cases. For instance, if A = (0, 1,−1, 0), then LCT reduces to the Fourier transform;
if A = (cos θ, sin θ,− sin θ, cos θ), then LCT becomes the fractional Fourier transform; if
A = (1, b, 0, 1)), the LCT becomes the Fresnel transform.

The inverse of the LCT with a set of parameters A = (a, b, c, d) is given by an LCT with
a set of parameters A−1 = (d,−b,−c, a):

f(t) = LA−1 [FA(u)](t)

=

∫ ∞
−∞

FA(u)hA−1(u, t)du. (2.4)

The LCT has many properties. In what follows, we recall the space shift and phase shift
properties of LCT (Sharma and Joshi, 2006), which can also be directly verified using the
definition (2.3):

(1) The space shift property:

LA[f(t− τ)](u) = FA(u− aτ)e−j
acτ2

2
+jcτu. (2.5)

(2) The phase shift property:

LA[f(t)ejvt](u) = FA(u− bv)e−j
bdv2

2
+jdvu. (2.6)

(3) The space shift and phase shift properties:

LA[f(t− τ)ejvt](u) = FA(u− aτ − bv)e
−j
(
acτ2+bdv2

2
−(cτ+dv)u+bcτv

)
. (2.7)

In this paper, we define the Fourier transform of a signal f(t) in the form

(Ff)(u) =
1√
2π

∫ ∞
−∞

f(t)e−jutdt , u ∈ R, (2.8)

and its inverse as:

f(t) =
1√
2π

∫ ∞
−∞

(Ff)(u)ejutdu, t ∈ R.

We may observe that:√
1

j2πb

∫ ∞
−∞
e
j
2b

(at2−2tu+du2)f(t)dt =

√
1

jb
e
j
2b
du2

√
1

2π

∫ ∞
−∞
e−jt

u
b · ej

at2

2b f(t)dt ,

which allows us to recognize that the LCT of a signal f(t) can be reduced to the standard
Fourier transform. Namely, the LCT with a set of parameters A = (a, b, c, d) of a signal f(t)
can be reduced to the Fourier transform (2.8) in the following way:

LA[f(t)](u) =
1√
jb
e
j
2b
du2F [f(t)]

(u
b

)
,

where f(t) = ej
at2

2b f(t).
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3 New convolution and product theorem

In this section, we introduce a new convolution operator, and then, we study the correspond-
ing convolution theorem associated with the LCT (based on its definition and properties).
In addition, we will compare the proposed convolution theorem with the literature in terms of
variable dependability, FT conversion, and hardware complexity (number of chirp functions).

3.1 Proposed convolution theorem

Let W be the subspace of all integrable functions with the property that f(t) ∈ W if and
only if LA[f(t)] is also in W .

Definition 1. For any functions f, g ∈ W , we define a new convolution operator f ⊗ g for
the LCT as follows:

(f ⊗ g)(t) =

√
1

j8πb

∫
R
f(τ)g(t− τ)ej

a
4b(−t2+2τ2−2tτ)dτ . (3.9)

Theorem 1. Assume that h(t) = (f ⊗ g)(t) and that HA(u) denotes the LCT of h(t), with
a set of parameters A = (a, b, c, d), and let FÃ(u), FA(u), GÃ(u) and GA(u) be the LCT of

f(t) and g(t), respectively, with sets of parameters Ã = (a, 2b, c/2, d) and A = (a/2, b, c, 2d).
Thus, the following identities hold:

HA(u) = e−
j
2b

3du2FÃ(2u)GÃ(2u) (3.10)

and

HA(u) =
1

2
e−

j
2b

3du2FA(u)GA(u). (3.11)

Proof. Let us first observe that:

FÃ(2u) =

√
1

j4πb

∫
R
e
j
4b

(aτ2−4tu+4du2)f(τ)dτ . (3.12)

From identities (2.3) and (2.7), we have that LA[f(t)](u) and LA[f(t− τ)ejvτ ](u) depend
on the same parameter if we choose τ and v such that aτ + bv = 0. Thus, we get:

v = −a
b
τ, (3.13)

and by substituting (3.13) into (2.7), we obtain:

LA
[
g(t− τ)e−j

aτ
b
t
]

(u) = GA(u)e
−j
(
acτ2

2
+ da2τ2

2b
−cτu+adτ

b
u−acτ2

)
= GA(u)e−j(a(

ad−bc
2b )τ2+ad−bc

b
τu).

From the LCT definition, ad− bc = 1. Thus:

LA
[
g(t− τ)e−j

aτ
b
t
]

(u) = GA(u)e−j(
a
2b
τ2+ τu

b ).
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Considering now Ã instead of A and, consequently, substituting b by 2b, we get:

LÃ
[
g(t− τ)e−j

aτ
2b
t
]

(u) = GÃ(u)e−j(
a
4b
τ2+ τu

2b ),

and thus:

LÃ
[
g(t− τ)e−j

aτ
2b
t
]

(2u) = GÃ(2u)e−j
aτ2

4b
+j τ

b
u. (3.14)

Using the definition of LCT with a set of parameters Ã, the LCT of h(t) can be expressed
as:

HA(u) =

√
1

j2πb

∫
R
e
j
2b

(at2−2tu+du2)

·
(√

1

j8πb

∫
R
f(τ)g(t− τ)ej

a
4b(−t2+2τ2−2tτ)dτ

)
dt

=

(√
1

j4πb

)2 ∫
R

∫
R
e
j
4b

(at2+2aτ2−4tu+2du2−2atτ)f(τ)g(t− τ)dτ dt .

Making use of (3.12) and (3.14), we obtain:

HA(u) =

√
1

j4πb

∫
R
e
j
4b

(aτ2−2du2)f(τ)

·
(
e
jaτ2

4b

√
1

j4πb

∫
R
g(t− τ)e−j

aτ
2b
t · e

j
4b

(at2−4tu+4du2)dt

)
dτ

=

√
1

j4πb

∫
R
e
j
4b

(aτ2−2du2)f(τ) ·GÃ(2u)e−j
τ
b
udτ

= e−
j
4b

6du2 ·
√

1

j4πb

∫
R
e
j
4b

(aτ2−4tu+4du2)f(τ)dτ ·GÃ(2u)

= e−
j
2b

3du2FÃ(2u)GÃ(2u),

and the proof of (3.10) is achieved.
Let us now observe that:

FÃ(2u) =

√
1

j4πb

∫
R
e
j
4b

(aτ2−4tu+4du2)f(τ)dτ

=

√
1

j4πb

∫
R
e
j
2b

(a
2
τ2−2tu+2du2)f(τ)dτ

=
1√
2

√
1

j2πb

∫
R
e
j
2b

(a
2
τ2−2tu+2du2)f(τ)dτ

=
1√
2
FA(u),

where A =
(
a
2
, b, c, 2d

)
. In the same way, GÃ(2u) = 1√

2
GA(u), Thus, we obtain the factoriza-

tion (3.11) and the proof of the theorem is complete.
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If we consider the Fractional Fourier Transform (FrFT) as a special case of LCT, when
(a, b, c, d) = (cos θ, sin θ,−sin θ, cos θ), the identity (3.11) becomes:

H(cos θ,sin θ,−sin θ,cos θ) (u) =
1

2
e−

j 3×cot θ×u2
2 F( cos θ2

,sin θ,−sin θ,2×cos θ)(u)

·G( cos θ2
,sin θ,−sin θ,2×cos θ)(u), (3.15)

where θ = ãπ/2 . Similarly, considering the Fourier Transform (FT) as a special case of LCT,
when (a, b, c, d) = (0, 1,−1, 0), we realize that the identity (3.11) becomes:

H(0,1,−1,0) (u) =
1

2
F(0,1,−1,0)(u)G(0,1,−1,0)(u). (3.16)

Formulas (3.15) and (3.16) are special cases of factorizations for the LCT.
Let Lp(R+), 1 ≤ p < ∞, be the space of all (Lebesgue) measurable complex-valued

functions f : R→ C with the finite norm:

‖f‖p :=

(∫ ∞
0

|f(u)|pdu
) 1

p

.

Theorem 2. If f and g ∈ L1(R), then f ⊗ g ∈ L1(R).

Proof. Let f and g ∈ L1(R). By the definition of ⊗ convolution, taking s = t− τ , we obtain

‖f ⊗ g‖1 =

∫ ∞
−∞
|(f ⊗ g)(t)|dt

≤ 1

2
√
|b|

∫ +∞

−∞

∫ +∞

−∞
|f(τ)g(t− τ)|dτ dt

=
1

2
√
|b|

∫ +∞

−∞
|f(τ)|dτ

∫ +∞

−∞
|g(s)|ds

=
1

2
√
|b|
‖f‖1‖g‖1 <∞,

and the proof is completed.

The new proposed convolution can be rewritten into a different form according to the
classical convolution operator ∗ (cf. (1.1)). For instance:

(f ⊗ g)(t) =

√
1

j8πb

∫
R
f(τ)g(t− τ)ej

a
4b(−t2+2τ2−2tτ)dτ

=

√
1

j8πb
e−j

at2

2b

∫
R
ej

aτ2

4b f(τ) · ej
a(t−τ)2

4b g(t− τ)dτ

=

√
1

j4b
e−j

at2

2b

((
ej

as2

4b f(s)
)
∗
(
ej

as2

4b g(s)
))

(t).

Therefore, using the notation:

f̃(s) = ej
as2

4b f(s), g̃(s) = ej
as2

4b g(s), (3.17)

we conclude that:

(f ⊗ g)(t) =

√
1

j4b
e−j

at2

2b

(
f̃ ∗ g̃

)
(t). (3.18)
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Table 1: Comparative analysis of different convolution theorems for the LCT

Parameter

Deng

et. al

2006

Wei

et. al

2009

Wei

et. al

2011

Wei

et. al

2012

Goel

et. al

2013

Zhang

et. al

2016a, b

Huo

2019
Proposed

Variable

Dependability
Yes No No Yes Yes Yes Yes Yes

FT

Conversion
Yes Yes Yes Yes Yes Yes Yes Yes

Number

of chirp

multiplications

LHS RHS LHS RHS LHS RHS LHS RHS LHS RHS LHS RHS LHS RHS LHS RHS

3 7 7 6 2 5 2 10 2 7 3 6 4 7 3 5

3.2 Comparative analysis

A comparative analysis of the proposed convolution theorem with some of the other relevant
ones in the literature is given in Table 1. Variable dependability means that the left-hand side
(LHS) and the right-hand side (RHS) of the convolution theorem are expressed in terms of
their respective domain variables only. ‘YES’, in Table 1, means that the variable dependabil-
ity is satisfied. The satisfaction of variable dependability is necessary for chip-level realization.
FT conversion means LCT as a generalization of FT; the derived convolution theorem should
converge to the classical convolution theorem for the FT when (a, b, c, d) = (0, 1,−1, 0). For
hardware complexity, in terms of chirp multiplications, LHS represents the chirp multiplica-
tions in the time domain, whereas RHS represents the chirp multiplications in the transform
domain. The proposed convolution theorem in the time domain contains three chirp multi-
plications, and in the transform domain, it contains seven chirp multiplications; hence, the
total chirp multiplications are eight. The convolution theorem given by (Wei et al., 2011)
has seven chirp multiplications in total that is less than the proposed convolution theorem
and, at the same time, it does not satisfy the variable dependability parameter which makes
this method practically unrealisable.

4 Applications of the new convolution operator

4.1 Generalized Young’s inequality

In this subsection, we introduce a generalized Young’s inequality for the new convolution
operator ⊗. Let us recall the classical Young’s inequality (Stein and Weiss, 2016):

Theorem 3. Let f ∈ Lp(R), g ∈ Lq(R), 1
p

+ 1
q

= 1 + 1
r
, 1
r

+ 1
r′

= 1. Then:

‖f ∗ g‖r ≤ ApAqAr′‖f‖p‖g‖q,

where Ap =
(
p1/p

p′1/p′

)1/2
, 1
p

+ 1
p′

= 1.

Making use of the classical Young’s inequality, the next theorem states that the introduced
convolution operator ⊗ also satisfies the Young’s inequality.
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Theorem 4. Let f ∈ Lp(R), g ∈ Lq(R), 1
p

+ 1
q

= 1 + 1
r
, 1
r

+ 1
r′

= 1. Then:

‖f ⊗ g‖r ≤
1

2
√
|b|
ApAqAr′‖f‖p‖g‖q,

where Ap =
(
p1/p

p′1/p′

)1/2
, 1
p

+ 1
p′

= 1.

Proof. Having into consideration the relation (3.18), we have that:

‖f ⊗ g‖r =

(∫
R

∣∣∣∣√ 1

j8πb
e−j

at2

2b

((
ej

as2

4b f(s)
)
∗
(
ej

as2

4b g(s)
))

(t)

∣∣∣∣r dt

)1/r

=
1

2
√
|b|

(∫
R

∣∣∣((ej as24b f(s)
)
∗
(
ej

as2

4b g(s)
))

(t)
∣∣∣r dt

)1/r

=
1

2
√
|b|
‖
((

ej
a(·)2
4b f(·)

)
∗
(
ej

a(·)2
4b g(·)

))
(t)‖r

=
1

2
√
|b|
‖f̃ ∗ g̃‖r,

with f̃ and g̃ as defined in (3.17). Since f̃ ∈ Lp(R) and f̃ ∈ Lq(R), we can apply Young’s

inequality for the functions f̃ and g̃ and obtain:

‖f̃ ∗ g̃‖r ≤ ApAqAr′‖f̃‖p‖g̃‖q.

Finally, since ‖f̃‖p = ‖f‖p and ‖g̃‖q = ‖g‖q, we have:

‖f ⊗ g‖r ≤
1

2
√
|b|
ApAqAr′‖f̃‖p‖g̃‖q

=
1

2
√
|b|
ApAqAr′‖f‖p‖g‖q,

and the proof is completed.

4.2 Solvability for a class of convolution integral equations

In this subsection, we will discuss the solvability of a class of convolution integral equations.
Namely, we will consider convolution equations of the form:

λφ(t) + ej
at2

4b (g ⊗ φ)(t) = f(t), (4.19)

where λ ∈ C, f, g ∈ L1(R) are given, and φ is the unknown function to be determined.
In what follows, we will use the notation:

H(u) := λ+ F [g̃(t)](u)

with g̃ as defined in (3.17).
The next proposition is an auxiliary result to obtain the main theorem.
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Proposition 5. (i) If λ 6= 0, H(u) 6= 0 for every |u| > C;

(ii) If H(u) 6= 0 for every u ∈ R, then 1
H(u)

is continuous and bounded on R.

Proof. (i) By the Riemann–Lebesgue lemma, the function H(u) is continuous on R and
lim|u|→∞H(u) = λ 6= 0. Thus, there exists an C > 0, such that H(u) 6= 0 for every
|u| > C.

(ii) SinceH(u) is continuous and lim|u|→∞H(u) = λ, there existR > 0 and ε1 > 0, such that
inf |u|>R |H(u)| > ε1. Because H(u) does not vanish on the compact set {u ∈ R : |u| ≤
R}, there exists ε2 > 0, such that inf |u|≤R |H(u)| > ε2. Thus, 1

|H(u)| ≤ max{ 1
ε1
, 1
ε2
} <∞,

which implies that 1
|H(u)| is continuous and bounded on R.

In the next theorem, using the previous auxiliary result, we obtain necessary and sufficient
conditions for the solvability of the integral equation (4.19).

Theorem 6. Let H(u) 6= 0 for all u ∈ R. Suppose that one of the following conditions holds:

(i) λ 6= 0 and F f̃ ∈ L1(R),

(ii) λ = 0 and F f̃
F g̃ ∈ L

1(R),

with f̃(t) and g̃(t) as defined in (3.17). Then, Eq. (4.19) has a solution in L1(R) if and only

if F−1
(
F f̃
H

)
∈ L1(R). Furthermore, the solution has the form:

φ(t) = ej
at2

4b F−1
(
F [f̃(t)](u)

H(u)

)
(t).

Proof. Let us consider the condition (i). Suppose that Eq. (4.19) has a solution φ ∈ L1(R).

Multiplying ej
at2

4b to both members of the equation, applying the Fourier transform to both
members, and using (3.18), we obtain:

H(u)F [φ̃(t)](u) = F [f̃(t)](u),

where φ̃(t) = ej
at2

4b φ(t). Since H(u) 6= 0, for every u ∈ R, we have:

F [φ̃(t)](u) =
F [f̃(t)](u)

H(u)
.

As 1
H is bounded and continuous on R and F f̃ ∈ L1(R), we have that F f̃H ∈ L

1(R). Applying
the inverse of Fourier transform, we obtained the solution as stated in the theorem.

Consider now the function φ(t) = ej
at2

4b F−1
(
F [f̃(t)](u)
H(u)

)
(t) ∈ L1(R). Hence:

F [φ̃(t)](u) =
F [f̃(t)](u)

H(u)
,

10



and consequently:
F [φ̃(t)](u)H(u) = F [f̃(t)](u).

Thus, it follows that:

F [λφ̃(t) + ej
at2

2b · e−j
at2

2b (g̃ ∗ φ̃)(t)](u)) = F [f̃(t)](u).

By the uniqueness theorem of the Fourier transform, we obtain that:

λej
at2

4b φ(t) + ej
at2

2b (g ⊗ φ)(t) = ej
at2

4b f(t),

which is equivalent to:

λφ(t) + ej
at2

4b (g ⊗ φ)(t) = f(t), t ∈ R.

Thus, φ fulfills Eq. (4.19).
Item (ii) can be proved similarly to that of item (i), and thus, the proof is concluded.

5 Filter design in the LCT and time domains

In this section, we discuss an application of the new convolution to the design of multiplicative
filters in the LCT domain and in the time domain.

5.1 Multiplicative filters through the product in the LCT domain

We consider an input signal rin(t) that comprises the desired chirp signal f(t) and the noise
n(t) such that:

rin (t) = f (t) + n (t) .

According to Theorem 1, the output signal of LCT can be obtained in the following way:

rout(t) = LA−1

{
1

2
e−

j
2b

3du2RA(u)GA(u)

}
(t), (5.20)

where RA(u) is the LCT of rin(t) with a set of parameters A = (a/2, b, c, 2d). Let us denote
by FA(u) and NA(u) the LCT components of desired signal and noise signal, respectively.
We admit that FA(u) and NA(u) have no overlapping or minimal overlapping, which will
permit that the desired signal can be recovered and the noise can be discarded using a
multiplicative filter in the LCT domain. The relationship between the LCT and the time–
frequency distribution depicts that there should be a greater overlap of the desired signal
and noise in time domain, whereas a lesser overlap in the LCT domain.

There are many possible types of canonical filters such as low pass, high pass, band pass,
and pass-stopband. The design method of GA (u) will decide the type of the filter. According
to (5.20), we can choose:

G(u) =
1

2
e−

j
2b

3du2GA(u). (5.21)
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as the transfer function of the multiplicative filter. Since we are interested in the frequency
spectrum of the LCT in the region [u1, u2] of the desired signal f(t), we can select a filter
impulse function g(t), such that the transfer function G(u) is constant over [u1, u2] and
zero or with a rapid decay outside that region. The simplest filter that can be used is the
pass–stopband filter with the transfer function given by:

G (u) =
∏

((u− u0)/B ) (5.22)

Pei and Ding (2001), that is

G (u) =

{
1 for u0 −B/2 < u < u0 +B/2

0 otherwise,
(5.23)

where the LCT parameters can be calculated as below (see Fig. 2):

a

b
=
u1
t1

and u0 = a(t2 + t1)/2, B = |a (t1 − t2) |.

Thus, we have:

rout(t) = LA−1 {RA(u)} (t), u ∈ [u0 −B/2, u0 +B/2] . (5.24)

The design model of multiplicative filter is shown in Fig. 1. Alternatively, we can also choose
GA(u) to be equal to a constant over [u0 −B/2, u0 +B/2] and zero outside that region. In
this case, we get:

rout(t) = LA−1

{
1

2
e−

j
2b

3du2RA(u)

}
(t), u ∈ [u0 −B/2, u0 +B/2] . (5.25)

         

  

Figure 1: Multiplicative Filter in LCT domain

To validate the proposed model of multiplicative filtering as shown in Figure 1, let us
consider one example in which the received signal consists of the desired signal with the
noise signals n1(t) and n2(t). The time–frequency distribution of the received signal is shown
in Fig. 2. The undesired signal can be filtered out completely from the received signal and
keeping the desired signal undisturbed through two consecutive multiplicative filters in the
LCT domain having different slopes; i.e., (a1/b1 = u1/t1, a2/b2 = u2/t2).

Hence, the noise can be discarded to a large extent and the signal-to-noise ratio (SNR) can
be increased through a multiplicative filter in the LCT domain when the LCT components
of the noise and the desired signal have no overlapping or minimal overlapping.
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Figure 2: Time–frequency distribution of the received signal

Let the original chirp signal f(t) be given by:

f (t) = 2 × exp

(
−(t− 1)2

18
− j1.9 t2

)
. (5.26)

The real part and imaginary part of the original chirp signal are shown in Fig. 3a. The time–
frequency representation of this signal is obtained by taking the Wigner Ville Distribution
(WVD) (Boashash and Black, 1987, Claasen and Mecklenbrauker, 1980) and is shown in Fig.
3b. The original signal is corrupted by Additive White Gaussian Noise (AWGN) of 6dB
SNR, as shown in Fig. 3c. The WVD of the corrupted signal is shown in Figure 3d. Finally,
as an operation of LCT domain filtering, a comparison of the real part and imaginary part
of the recovered signals and original signals are shown in Fig. 3e and Fig. 3f, respectively.

Following the procedure developed by Pei and Ding (2001), the optimal filtering domain
for the LCT domain filtering is found to be (a/2, b, c, 2d) = (0.3022, 1,−1, 0), as special cases
of the LCT; the optimal FrFT domain filtering is (a/2, b, c, 2d) = (0.5177, 0.8556,−0.8556, 0.5177)
and the optimal frequency domain filtering is (a/2, b, c, 2d) = (0, 1,−1, 0).

As a comparison of the LCT domain filtering, fractional domain filtering, and frequency
domain filtering, the values of the Mean Square Error (MSE) for different values of AWGN
SNR are tabulated in Table 2 and the comparison plot is shown in Fig. 4. The most relevant
difference takes account of how these transformations preserve the original support area of
the chirp signal. Basically, LCT preserves affine properties, but introduces some type of
deformation, while FrFT is spatially invariant. As result, the elliptical distribution of the

13
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Figure 3: Optimal filtering in the LCT domain: a real and imaginary parts of the original
signal; b WVD of the original signal; c corrupted signal (AWGN, SNR 6dB); d WVD of the
corrupted signal; e imaginary part of the recovered signal; f real part of the recovered signal.
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LCT is less eccentric than the FrFT distribution. Due to a less eccentric distribution of LCT,
as compared to the FrFT distribution, the noise overlapping area of the LCT distribution
is less and it also results in a minimal MSE as compared to FrFT. Moreover, the additional
exponential component (i.e., e−

j
2b

3du2) in the convolution result diminishes to 1 in case of the
LCT, when d = 0, whereas in the FrFT case, it has a certain value and results in a higher
MSE as compared to the LCT.

Table 2: Comparison plot of MSE against AWGN SNR (dB) for LCT domain filtering,
fractional domain filtering and frequency domain filtering

MSE at different values of AWGN SNR (dB)
Filtering
domain

1 6 11 16 21 26 31 36 41

LCT domain
filtering

0.0012
2.7754
× 10−4

1.1464
× 10−4

4.5626
× 10−5

2.4449
× 10−5

9.0857
× 10−6

4.0453
× 10−6

1.2764
× 10−6

1.1937
× 10−7

Fract. domain
filtering

0.0014
4.6116
× 10−4

2.7865
× 10−4

2.3033
× 10−4

2.0038
× 10−4

0.9483
× 10−4

6.8797
× 10−5

1.8620
× 10−5

0.8574
× 10−5

Freq. domain
filtering

0.0418 0.0161 0.0051 0.0022
8.0018
× 10−4

4.5203
× 10−4

8.3041
× 10−5

2.4809
× 10−5

1.0854
× 10−5
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SNR(dB)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ea

n
 S

q
u

ar
e 

E
rr

o
r

LCT Domain Filtering
FRFT Domain Filtering
Frequency Domain Filtering

1 6 11 16 21 26 31 36 41
SNR(dB)

0

0.5

1

1.5

M
ea

n
 S

q
u

ar
e 

E
rr

o
r

10-3

LCT Domain Filtering
FRFT Domain Filtering

Figure 4: Comparison plot of MSE against AWGN SNR (dB) for LCT domain filtering,
fractional domain filtering and frequency domain filtering
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Figure 5: Multiplicative filter in LCT domain with respect to the new convolution in the
time domain.

5.2 Designing of multiplicative filters in the time domain

In this subsection, using the introduced convolution theorem, we obtain a multiplicative
filter in the LCT domain with respect to the new convolution in the time domain. The
visualization of this multiplicative filter is shown in Fig. 5. According to (3.18) and (1.2):

(rin ⊗ g)(t) =

√
1

j4b
e−j

at2

2b F−1[F [r̃in(t)](u)F [g̃(t)](u)](t), (5.27)

where we recall that F and F−1 denote the Fourier transform and its inverse, r̃in(t) =

ej
at2

4b rin(t) and g̃(t) = ej
at2

4b g(t). This shows that the computational complexity of the multi-
plicative filter in the LCT domain, with respect to the new convolution in the time domain
as shown in Fig. 5, for N number of samples, is equivalent to the computational complexity
of the fast Fourier transform, i.e., O (N log 2N).

6 Conclusion

In this paper, we defined a new convolution operator and studied some of their consequences.
For this new operator, we derived a product theorem and a Young’s type inequality. More-
over, a relation between this convolution and the classical one was also presented. In addition,
we investigated and characterized the solvability of a class of convolution equations associated
with the introduced convolution operator.

Finally, as examples of possible applications of the results derived in this paper, a simula-
tion comparison of multiplicative filters in the LCT domain, fractional domain, and frequency
domain was carried out. In particular, it has been shown that the computational complexity
of multiplicative filter in the LCT domain with respect to the new convolution in the time
domain is equivalent to the computational complexity of the fast Fourier transform.
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