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a b s t r a c t

We are developing a process to produce biohydrogen from palm oil mill effluent. Part of

this process will involve photohydrogen production from volatile fatty acids under low

light conditions. We sought to isolate suitable bacteria for this purpose from Songkhla Lake

in Southern Thailand. Enrichment for phototrophic bacteria from 34 samples was con-

ducted providing acetate as a major carbon source and applying culturing conditions of

anaerobic-low light (3000 lux) at 30 �C. Among the independent isolates from these

enrichments 19 evolved hydrogen with productivities between 4 and 326 ml l�1 d�1. Isolate

TN1 was the most efficient producer at a rate of 1.85 mol H2 mol acetate�1 with a light

conversion efficiency of 1.07%. The maximum hydrogen production rate for TN1 was

determined to be 43 ml l�1 h�1. Environmentally desirable features of photohydrogen

production by TN1 included the absence of pH change in the cultures and no detectable

residual CO2.

ª 2009 Published by Elsevier Ltd on behalf of International Association for Hydrogen

Energy.
1. Introduction potentially support the bioproduction of hydrogen. The main
As oil prices rise and concerns regarding the environmental

problems accompanying the use of fossil fuels escalate, there

is an increasing demand for reliable and effective energy

alternatives [1–3]. Hydrogen is regarded as a clean fuel since

its complete combustion only emits water (H2O). Furthermore,

the technology is already available that makes it useable as

a fossil fuel alternative [4–9]. However, using hydrogen as

a fuel source will only be an acceptable alternative provided

its production is environmentally sound [10,11].

A major industry in southern Thailand is the extraction of

palm oil. The waste effluent from this process, POME (Palm Oil

Mill Effluent), is rich in organic material and could therefore
fax: þ66 74212 889.
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biological hydrogen production systems already in use are

based on dark-fermentation and phototrophic metabolisms

[12–17]. A thermophilic hydrogen-producing anaerobic

bacterium that was isolated from the high temperature POME

(70–80 �C) has been shown to be well-suited for dark-

fermentation hydrogen production [18–21]. But the products

of its fermentative growth are VFAs (Volatile Fatty Acids) and

CO2, which means that (i) hydrogen bioconversion of the

organic material is incomplete and (ii) the process is gener-

ating an environmentally adverse greenhouse gas. A particu-

larly promising addition to the dark-fermentation process is

a second stage in which anoxygenic photosynthetic bacteria

(PSB) would further metabolize the VFAs [4,5,22–25],
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producing additional hydrogen, while also consuming CO2

evolved during both stages [26,27].

We have previously isolated and characterized a variety of

PSB [28]. However, none of these are useful in the second stage

of biohydrogen production from POME; they grow poorly in

the presence of VFAs, they have low hydrogen production, or

they are inefficient at hydrogen production in the low trans-

parency of the effluent (unpublished results). Towards engi-

neering a 2-staged system, we identified and characterized

a new natural isolate of PSB from Songkhla Lake that has

a high-hydrogen production capacity in low light using

acetate. While Songkhla Lake is the largest lake in Thailand

and the second largest in Southeast Asia [29], to our knowl-

edge, there are no previous descriptions of PSB isolated from

this lake.
2. Materials and methods

2.1. Isolation of non-sulfur photosynthetic bacteria
(PSB) from Songkhla Lake

A total of 34 water and lake bed samples were collected from

Songkhla Lake in the Phatthalung and Songkhla Provinces of

Thailand. Non-sulfur photosynthetic bacteria were enriched

for by inoculating with the samples 50 ml serum vials that had

been completely filled with GA medium, which is basal

medium [23] modified by the addition of 5 mM glutamate as

a major nitrogen source and 20 mM acetate as a major carbon

source. Anaerobic conditions were established by flushing the

sealed vials with argon gas. The vials were incubated at room

temperature (30� 2 �C) in low light (3000 lux). After 10 days of
H2ð%Þ ¼
Amount of H2 produced ðmolÞ=Amount of acetate consumed ðmolÞ

Theoretical amount of H2 produced ðmolÞ=Amount of acetate consumed ðmolÞ � 100 (1)
incubation, the cultures varied in color, and included dark red,

pink, brown and yellow. Bacteria from each culture were

streak-purified on GA agar plates that were then incubated in

anaerobic jars with a CO2 generator (AnaerocultA system,

Merck, Germany) placed in front of a tungsten lamp. One

isolated colony from each plate was cultured in GA agar and

permanent stocks were prepared from samples of these

cultures.
2.2. Culturing of natural isolates of non-sulfur
photosynthetic bacteria

Each permanent stock was used to inoculate three 50 ml

serum vials completely filled with GA and closed with a silicon

stopper. The vials were incubated under anaerobic-low light

conditions at 30 �C for 2 days in a water bath to cut off infrared

light from the lamp. Because nitrogenase, a hydrogen-

producing enzyme, is inhibited by ammonium [30,31], the GA

medium was modified by substituting Na2MoO4 for

(NH4)6Mo7O24 at a concentration of 0.75 mg l�1.
2.3. Analytical methods

Cell densities were monitored by measuring light scattering at

660 nm with a Zenyth 200 microplate reader (Anthos Labtec.,

UK). Dry weights (DCW) were calculated from a standard

curve that was generated for each of the different isolates by

the method of Sasaki et al. [32].

The biogas production in each culture vial was measured

by a syringe technique described by Owen et al. [21]. Hydrogen

content of the biogas was determined using an Oldham MX

2100 gas detector (Cambridge Sensotec Ltd., England).

Acetate utilization was determined by measuring free fatty

acid concentrations in samples of the cultures using an HP 6850

Gas Chromatogram equipped with a frame ionization detector

(Hewlett Packard, USA) and a 30 m� 0.25 mm� 0.25 mm

capillary packed with nitroterephthalic acid-modified poly-

ethleneglycol (DB-FFAP, Agilent J&W GC columns, USA). The

samples were first centrifuged at 10,502 g for 5 min, acidified by

using 0.2 N oxalic acid, and then passed through a 0.2 mm nylon

membrane. The operational temperatures at the injection port

and detector were 230 and 250 �C, respectively. The oven was

programmed as follows: (i) hold at 70 �C for 3 min, (ii) ramp for

5 min at 20 �C min�1 to a final temperature of 180 �C, (iii) hold at

180 �C for 3 min. Helium was used as carrier gas with a flow rate

of 1.2 ml min�1.
2.4. Calculation of hydrogen yield and production efficiency

Hydrogen yields (Y ) were expressed as the total hydrogen gas

produced ( p) per gram of dry cells (x).

The efficiency of hydrogen production from acetate was

defined as indicated in Eq. (1) [25]:
2.5. Kinetic analysis

A modified Gompertz equation (Eq. (2)) [33] was used to fit the

cumulative hydrogen production data for TN1 cultures to

obtain P, Rmax, and l:

H ¼ P exp

�
� exp

�
Rmaxe

p
ðl� tÞ þ 1

��
(2)

H: cumulative H2 production (ml l�1), P: maximum cumulative

H2 production (ml l�1), Rmax: maximum H2 production rate

(ml l�1 h�1), l: lag time (h), t: culture time (h), and e: irrational

constant (2.718).

The kinetic parameters were determined by best-fitting the

hydrogenproduction data forEq. (2) usingSigmaPlotversion 9.0.
2.6. Light conversion efficiency

Light conversion efficiency (h) is defined as the efficiency by

which the light energy can be transformed into H2 [34]. The h

value was calculated using the following equations:
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hð%Þ ¼ H2 energy content�H2 output
light energy input

� 100 ½34� (3)

¼
241:83

�
kJ mol�1

�
2
�

gH2
mol�1

�
r
�

gl�1
�

VðlÞ

I
�
Js�1 m�2

	
tðhÞ3600

�
sh�1

�
Aðm2Þ

� 100

¼
33:6rH2

VH2

ItA
� 100 (4)

where rH2
is the density of H2 production (g l�1), VH2

is the

volume of H2 production (l), I is the light intensity in W m�2

(1 lux¼ 0.0161028 W m�2), t is the duration time of H2

production (h), A is the irradiated area (m2). A¼ p�H�D,

where the H is the height of culture broth and D is the diam-

eter of the serum vial. The enthalpy of water formation in the

gas phase is 241.83 kJ mol�1 [35].
3. Results and discussion

3.1. Isolation of, and hydrogen production by newly
isolated photosynthetic non-sulfur bacteria

It has been reported that photosynthetic non-sulfur bacteria

can produce hydrogen from metabolizing volatile fatty acids

such as acetate that are generated from fermentations by

anaerobic bacteria [12,14,35]. Using modified GA medium that

contains 20 mM sodium acetate as a major carbon source,

photosynthetic non-sulfur bacteria were isolated from 34

individual samples of Songkhla Lake waters and lake bed

sediments. Among the independent PSB isolates obtained

from these samples, 19 could produce hydrogen with a range

of 4–326 ml l�1 d�1 (Table 1). The top six hydrogen-producing

isolates, designated SL2, SL3, SL8, SL15, SL24, and TN1 had

production rates of 326, 305, 308, 157 and 301 ml l�1 d�1,
Table 1 – Hydrogen production by new PSB isolates in 20 mM
(3000 lux) at 30 8C.

Strain Color appearance in
anaerobic-light

Dry cell
weight (g l�1)

To
(m

SL1 Red–pink 0.78

SL2 Red–pink 0.30

SL3 Pink 0.27

SL6 Pink 0.30

SL7 Pink 0.28

SL8 Orange–pink 0.28

SL10 Red–pink 0.24

SL14 Orange–pink 0.67

SL15 Pink 0.24

SL19 Orange–pink 0.52

SL21 Red–pink 0.78

SL24 Orange–pink 0.27

TN1 Orange–pink 0.33

TN3 Orange–pink 0.81

TN4 Orange–pink 0.74

TN5 Red 0.57

TN6 Red 0.82

TN7 Brown 0.74

TN8 Brown 0.87
respectively, with hydrogen yields of 543, 564, 424, 209, and

456 ml g DCW�1, respectively. Cultures of isolate SL8 were not

consistent with respect to hydrogen production, and so this

isolate was not examined further. The remaining five were

chosen for further studies.
3.2. Growth, acetate consumption, and hydrogen
production of high-hydrogen-producing natural isolates
of PSB

To be useful in our two-staged biohydrogen production

process, the PSB should grow well in low light and in media

with acetate, and hydrogen production should be dependent

upon acetate availability. The top five hydrogen producers

were evaluated with respect to these parameters (Fig. 1 and

Table 2). Measurements were performed on triplicate cultures

of each isolate over the entire duration of logarithmic growth,

a period of 72 h.

The specific growth rates of the five high-hydrogen

producers were variable. The lowest rate was 0.0269 h�1 for

isolate SL15 and the highest rate was 0.0475 h�1 for isolate

SL24. For all of the high-hydrogen producers, acetate was

depleted within 48 h (Fig. 1) with a concomitant accumula-

tion of hydrogen. The efficiency of hydrogen production

from acetate was determined by comparing the theoretical

yield to the measured amount of hydrogen produced by

these isolates (Table 2). Isolate TN1 had a production effi-

ciency of 46.31%, which was the highest of the five isolates.

The corresponding light conversion efficiencies calculated

from the amount of hydrogen produced during 72 h ranged

from <0.01 to 1.07% (Table 2). Thus, we found that while

SL24 had the highest specific growth rate, it had the lowest

hydrogen production efficiency from acetate. By contrast,

TN1 had a high specific growth rate and also the highest

production efficiency.
sodium acetate under anaerobic-low light conditions

tal biogas
l l�1 d�1)

Total H2

(ml l�1 d�1)
% H2 Y p/x

(ml g DCW�1)

24 22 91.67 14.10

350 326 93.14 543.33

337 305 90.50 564.81

22 20 90.91 33.33

22 19 86.36 33.33

183 167 91.26 303.64

131 96 73.28 200.00

38 28 73.68 20.90

215 208 96.74 424.49

104 92 88.46 88.46

22 4 18.18 2.56

190 157 82.63 290.74

341 301 90.27 456.06

38 36 94.74 22.22

30 20 66.67 13.51

131 96 73.28 84.21

22 20 90.91 12.20

36 34 94.44 22.97

23 20 86.96 11.49
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Fig. 1 – Time course of photohydrogen production by new natural isolates under anaerobic-low light conditions (3000 lux) at

30 8C; cell growth (a), pH change (b), hydrogen accumulation (c), and acetate utilization (d). In each panel, symbols are Cfor

SL2, B for SL3, ; for SL15, 6 for SL24, and - for TN1.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 4 ( 2 0 0 9 ) 7 5 2 3 – 7 5 2 97526
3.3. pH of the cultures

A negative impact of elevated pH on hydrogen production

has been reported for various PSB [31,36]. It may be that

these high pHs are suboptimal for hydrogen-producing

nitrogenase, for uptake hydrogenase, or for both. We

measured the change in pH of the culture with time for the

five high-hydrogen-producing isolates (Fig. 1) and found that

there was a close correspondence between pH changes of

the culture (Fig. 1) and hydrogen productivity (Table 2). Thus,

the greatest pH change occurred in cultures of SL15 and

SL24, and these also had the lowest efficiencies of hydrogen
Table 2 – Characteristics of the top five H2-producing PSB new

Strains Specific
growth

rate (h�1)

H2 production
(mol H2 mol
acetate�1)a pr

SL2 0.0300 1.37

SL3 0.0298 1.09

SL15 0.0269 0.56

SL24 0.0475 0.09

TN1 0.0328 1.85

a After 72 h cultivation.
production, while the pH changed by less than 0.1 unit in the

cultures of TN1, which had the highest efficiencies of

hydrogen production. Perhaps the lack of pH change

observed for the TN1 cultures reflects a particularly high

capacity of this isolate to minimize pH change through the

use of alternate electron sinks for reductants, in particular,

poly-3-hydroxybutyrate (PHB) [37,38].

3.4. Kinetic analysis of hydrogen production by TN1

Among the five high-hydrogen producers, isolate TN1

generated the most hydrogen per mol of acetate, and so had
natural isolates.

Efficiency
of H2

oduction (%)a

Light conversion
efficiency (%)a

Final pHa

34.17 0.63 8.06

27.34 0.33 7.39

13.91 0.10 9.22

2.23 <0.01 9.48

46.31 1.07 7.05
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the highest light conversion efficiency. It was therefore

regarded as the best candidate for our two-staged bio-

hydrogen production system from POME. In order to further

investigate its suitability, we examined its kinetics of

hydrogen production using a modified Gompertz equation

[33,39,40], as described in the Materials and methods. TN1

was again cultured in triplicate under anaerobic-low light

(3000 lux) conditions in modified GA medium and measure-

ments of growth, acetate utilization, hydrogen production,

and pH were taken every six hours over the course of two

days. The inverse correlation between the amount of acetate

available and the amount of hydrogen produced was

observed again, as was a lack of change in pH of the cultures,

which remained at pH 7.0 throughout. As shown in Fig. 2 by

the solid line, there was a good fit of the hydrogen production

data to the modified Gompertz equation, with an R2 of 0.995.

The Rmax defined by the equation was 43 ml l�1 h�1. It will be

important to perform similar kinetic analyses when the

bacteria are cultured in media that more closely approxi-

mates the VFA composition of the effluent after the anaer-

obic-dark-fermentation stage.

3.5. Performance assessment of photohydrogen
production from acetate by isolate TN1

From our analyses, TN1 possesses the following attributes

with respect to photohydrogen production from acetate:

� Isolate TN1 produces high amounts of hydrogen from

acetate at an efficiency of 46.31%. A recent survey of the

ability to use cultures to generate hydrogen for electricity

found the best rate for photo-fermentation among PSB was

0.16 mmol l�1 h�1 [6]. TN1 compares favorably with a rate of

1.73 mmol l�1 h�1 (converted from the Rmax value using

a factor of 24.8 ml mmol�1 at 30 �C and 1 atm pressure [7]).

� The pH of TN1 cultures remains near neutral. Not only does

this seem to be important in terms of hydrogen production,

since we found that the pH change in cultures of our isolates

correlated with a lower hydrogen production, but this is also

desirable in terms of environmental impact or other

downstream applications.
� When cultured in modified GA medium (20 mM acetate),

there was no detectable CO2 in the biogas when all of the

acetate had been utilized (results not shown). Therefore the

hydrogen content of the biogas is very high. This could

simplify the downstream purification step to obtain

hydrogen suitable for fuel cell use in generating electricity

[9,41].
4. Conclusions

Songkhla Lake harbors PSB that have a high capacity to use

acetate in photohydrogen production with rates of 157–326 ml

of H2 l�1 d�1. While species identification was not part of this

investigation, we found that the color of cultures of the top

five high-hydrogen producers we isolated differed. We also

determined that these isolates differed with respect to their

growth rates, rates of hydrogen production, relative light

conversion efficiencies, and the change in culture pH versus

time. Collectively these observations and measurements

argue that the isolates may represent considerable genetic

diversity.

Among our new natural isolates, we were able to identify

a good candidate for our two-staged biohydrogen production

process from POME. TN1 grows well in acetate in low light

conditions and produces hydrogen with the high efficiency.

The calculated light conversion efficiency for TN1 was 1.07%.

We have attempted to compare the light conversion efficiency

for TN1 to reports in the literature for other PSB. However, the

experimental conditions are not equivalent, and so the values

could not be compared.

Since there was no measurable CO2 when all acetate had

been consumed in cultures of TN1, the capacity of this

bacterium to fix carbon had apparently not been exceeded.

This promising result suggests the PSB could also reduce or

perhaps even eliminate CO2 produced from the anaerobic-

dark-fermentation of POME. Optimization of the two-staged

process will involve examining TN1 biohydrogen production

from VFAs other than acetate, as well as the actual mixed

products of the first stage of the process.
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