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Video Face Swapping 

Abstract: 

Face swapping is the challenge of replacing one or multiple faces in a target image with a 

face from a source image, the source image conditions need to be transformed in order to 

match the conditions in the target image (lighting and pose). A code for Image Face Swap-

ping (IFS) was refactored and used to perform face swapping in videos. The basic logic 

behind Video Face Swapping (VFS) is the same as the one used for IFS since a video is just 

a sequence of images (frames) stitched together to imitate movement. In order to achieve 

VFS, the face(s) in an input image are detected, their facial landmarks key points are calcu-

lated and assigned to their corresponding (X,Y) coordinates, subsequently the faces are 

aligned using a procrustes analysis, next a mask is created for each image in order to deter-

mine what parts of the source and target image need to be shown in the output, then the 

source image shape has to warp onto the shape of the target image and for the output to look 

as natural as possible, color correction is performed. Finally, the two masks are blended to 

generate a new image output showing the face swap. The results were analysed and obstacles 

of the VFS code were identified and optimization of the code was conducted. 

Keywords: 

Computer vision, Video Face Swapping, Face Detection, Digital Image Processing 

CERCS: T111 Imaging, T120 computer technology, P170 Computer science 

 

Pealkiri eesti keeles (title in Estonian) 

Lühikokkuvõte: 

Selles mallis kirjeldatakse ingliskeelse lõputöö mall, stiilid lehekülgede formaati. Dokumen-

dis on kohatäitja igaks lõputöö osaks ja on lühikirjeldused, mis peab olema kirjas igas töö 

osas.  

Näovahetusena mõistetakse käesolevalt lähtekujutiselt saadud ühe või mitme näo 

asendamist sihtpildil. Lähtekujutise tingimusi peab transformeerima, et nad ühtiksid 

sihtpildiga (valgus, asend).  

Pildi näovahetus (IFS, Image Face Swapping) koodi refaktoreeriti ja kasutati video 

näovahetuseks.  
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Video näovahetuse (Video Face Swapping, VFS) põhiline loogika on sama kui IFSi puhul, 

kuna video on olemuselt ühendatud kujutiste järjestus, mis imiteerib liikumist. VFSi 

saavutamiseks tuvastatakse nägu (näod) sisendkujutisel, arvutatakse näotuvastusalgoritmi 

abil näojoonte koordinaadid, pärast mida joondatakse näod Procrustese meetodiga. 

Järgnevalt luuakse igale kujutisele image-mask, määratlemaks, milliseid lähte- ja 

sihtkujutise osi on vaja näidata väljundina; seejärel ühitatakse lähte- ja sihtkujutise kujud ja 

võimalikult loomuliku tulemuse jaoks viiakse läbi värvikorrektsioon. Lõpuks hajutatakse 

kaks maski uueks väljundkujutiseks, millel on näha näovahetuse tulemus.  

Tulemusi analüüsiti ja tuvastati VFS koodi takistused ning seejärel optimeeriti koodi. 

Võtmesõnad: 

Arvuti nägemine, Video näovahetus, Näotuvastus, digitaalne pilditöötlus 
CERCS: T111 Pilditehnika, T120 arvutitehnoloogia, P170 Arvutiteadus 
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TERMS,	ABBREVIATIONS	AND	NOTATIONS	

Video Face Swapping (VSF) – a process in which a face from a target image is swapped 
with the face from a source image, the target image are frames from a video and after the 
process is done, the output images will be stitched together to form a new video. 

Image Face Swapping (IFS) - a process in which a face from a target image is swapped with 
the face from a source image. 

Artificial Intelligence (AI) – refers to the field and technology that simulates human intelli-
gences in computers with the goal to get those computer to act and behave like humans 
would.  

Machine Learning (ML) – a branch of AI focusing in allowing system to learn from experi-
ence automatically without having all the known or unknow parameters be programmed into 
the system. 

Digital Image Processing (DIP) – processing digital images through algorithms in comput-
ers. 

Bias/Variance Tradeoff (BVT) – then a prediction model has lower bias it will possess high 
variance and vie versa. This trade off happens when trying to minimize both the bias and 
variance of a prediction model to work beyond its original training set. 

Support Vector Machines (SVM) – SVM models used in supervised learning to analyze data 
and helps with data regression and classification.  

Histogram of Oriented Gradients (HOG) – an object detection feature descriptor employed 
in computer vision.  

Euclidean distance (ED) – the ED is the distance among two points in Euclidean space.  

Ordinary Procrustes Analysis (OPA) – the Procrustes matching between a minimum of two 
observations using.  
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INTRODUCTION	

In current times, our relationship with technology is quite complex, constant communication 

and sharing of information have become the norm. At the same time our privacy has never 

been more important, there are photos or videos of almost everyone alive somewhere on the 

internet (Mahajan et al., 2017). Our sense of security and privacy are changing and with it 

our concepts of reality are changing as well. The phrase “one image is worth a thousand 

words” alludes to a past illusion that images were irrefutable evidence towards whatever 

statement one was trying to prove. This concept started changing in the 1980 when the first 

photo editing computer programs were released. Before these software programs existed, 

manipulating images was an extremely risky process and only few professionals were 

capable of doing it (Rossner and Yamada, 2004). As time passed, photo editing softwares 

kept improving and digital photo manipulations became more mainstream (Story, n.d.). A 

similar situation happened with videos, but the process was still too expensive, therefore 

these technologies were mainly used by entertainment companies, like movie/TV studios or 

big companies (Microsoft, Apple) which had enough capital to cover the costs. Thus, the 

belief that a photo or a video was a reliable source of information was still alive and well 

during these times.  

 

The idea of who could use technology and how accessible it was, changed on the 9th of 

January 2007, the first time the iPhone was shown to anyone outside of Apple (Hjorth, 2012). 

While the original iPhone was a game changer, it’s content was extremely limited since it 

only came with 16 pre-installed apps, this limited the end user experience and considering 

that back then the original iPhone was behind in many technical specs in contrast with its 

competitors, Apple needed to go the extra mile to keep their momentum going. In the original 

release one of the 16 apps pre-installed was Google maps, which was the best iteration of 

the program in any platform Google maps had at the time. Not only was the app able to fully 

use all the new functionalities of the iPhone, it made sense to the users to use the program 

on the go, rather than the desktop version. This hinted at a necessity that previously handheld 

devices weren’t even able to diagnose. This necessity was fulfilled when a year later Apple 

released iOS2, this update introduced the App store and opened the gates for third party 

applications to be created and shared in a marketplace, this allowed users to personalize their 

phones and transformed the way people interacted with their handheld devices. Users had a 

computer in the palm of their hands and as long as the use was within the hardware 
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capabilities, end users were only limited by the creativity of third party developers, who in 

turn created the apps available for iPhone, is not a wonder that Android followed with its 

own marketplace for third party apps for its phones later on. 

 

This environment permitted the rise of social media “tech companies” like Facebook, this in 

turn, started competition of which company was capable of not only retaining the most users 

but also having them use the App for as long as possible. This resulted in an incredible period 

of digital image processing and computer vision innovations due to the basic component of 

social media, which is sharing content (images and videos) between it’s users. Among these 

innovations, face swap became a hit with mobile users around 2016. MSQRD was a 

company that launched its app for iOS and Android that allowed it’s end users to add filters 

to the faces as well as swapping faces with their friends to create “video selfies”. This 

company made  headlines because three months after it was launched Facebook bought it to 

gain an edge over its competitor Snapchat, the actual figure is unknown but the figure is 

estimated to be in the millions of USD. Only a year later, most social media had integrated 

similar versions of such face filters and face swaps functions. Then, in 2017 synthetic media 

like Deepfakes (deepfakes, 2020) became mainstream knowledge when it swapped porn 

stars faces with celebrities and the public started to ask if their identities could be falsified 

through similar technology as well. Thanks to the help of powerful AI and machine learning 

techniques, fake content capable of fooling the human eye became a reality (Kietzmann et 

al., 2020).  

 

Regardless if the intent is to create new algorithms or improved old ones, in order to develop 

new ways for users to interact with their apps and phones or do further research in order to 

better understand the dangers of face swapping and how to prevent them. Face swapping 

technology will keep improving as companies and institutions race to create better and faster 

face swapping algorithms and programs, while simultaneously investing millions of USD in 

this technology. Current face swapping programs involve different AI and Machine Learning 

(ML) techniques and methods (Dale et al., 2011)(Korshunova et al., 2017)(Chen et al., 

2019), in this thesis VFS will be performed without employing memory expensive AI or ML 

techniques. In this thesis, an Image Face Swapping (IFS) code will be refactored to work 

with videos, afterwards the result will be analyzed and obstacles of VFS will be identified, 

finally the code will be optimized to improve the VFS results. 
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1 LITERATURE	REVIEW	

In the next section the approaches and theory relevant to this thesis will be covered. It will 

cover the research background i.e. technologies and approaches used to comprehend, explore 

and interpret the problems as well as how to solve them.  

1.1 Research	Background	

VFS involves a wide variety of research topics and technologies. To comprehend what VFS 

is and how it works let’s start from the basis for VFS, which is computer vision and digital 

image processing, which are used for face and facial landmarks key points detection, assess-

ment of lighting conditions and skin colour (Adouani et al., 2019) and saving them as data. 

Afterwards moving to the algorithms used for transforming the data into the desired state 

and then optimizing said results to look as realistic and smooth as possible after VFS 

(Garrido et al., 2014). 

1.1.1 Digital	Image	Processing	(DIP)	

Image processing is any mathematical operation perform on an image, for example some 

operations can be if one wants to zoom in or out an image, transform a black a white image 

into a colour image or take some information from the image (International Conference on 

Computer and Communication Technologies et al., 2016). Image processing is a type of 

multidimensional signal processing that contains different approaches to enhance, modify, 

extract information, compress and transform images. Images can be treated as spatial or 2D 

signals, which is why images can be subjected to signal processing techniques like filtering, 

attenuating, etc. (International Conference on Computer and Communication Technologies 

et al., 2016). Since vision is the most developed among our senses, image processing is 

among the fastest growing technologies. Image processing is employed in order to enhance 

human analysis capabilities of pictographic attributes (International Conference on 

Computer and Communication Technologies et al., 2016), therefore it can be used from bi-

ology to engineering to computer science. Image processing can be summarized as having 

an input image, then analysing and manipulating said image and finally understanding the 

output, which can be an altered image or image analysis (Young et al., 1998). 

 

This thesis is focused on digital image processing, which is manipulation of digital images 

by using computers. DIP can also be used for videos, since videos consist of multiple images 
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(frames) put together to form video. A digital image is a quantized depiction of an analogue 

image, specifically a digital image is a two-dimensional function 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are 

the spatial (plane) coordinates, therefore an image can be represented as a matrix. The am-

plitude of "𝑓" at any pair of coordinates (𝑥, 𝑦) is the intensity of an image (Young et al., 

1998). If 𝑥, 𝑦 and the amplitude values of "𝑓"	are finite and discrete quantities, the image is 

a digital image, i.e. a digital image is composed of a finite number of elements called pixels, 

each of which has a particular location and value. The pixels surrounding a certain pixel are 

its neighbourhood, thus various neighbourhoods arranged in a significant order results in an 

image. A neighbourhood is defined by its shape the same way a matrix is (Young et al., 

1998). Digital images can be defined as either Binary, Grayscale and Colour Images. Binary 

images have two different possible intensity values for every pixel, they are displayed as 

black and white images, with the numerical values of 0 for black and 1 or 255 for white, as 

a result of this, for a binary image only one bit per pixel is needed.  

Greyscale images (Fig.1b) are achromatic, or without colour, therefore in a greyscale image, 

every pixel has an intensity of grey, between the lower strength side of 0  (black) to the 

stronger side of 255  (white). Every pixel value is a description of its brightness capacity. 

The ranges of pixel values imply that each pixel can be represented by 8 bits or 1 byte. The 

8-bit format is one of the most popular image formats out there. It has 28=256 shades of 

colour in it, ranging between 0-255, where 127 is grey. As explained before an image is a 

2D function, which can be represented by a 2D matrix or array, in the case of a grayscale 

image, its 2D matrix would have values between 0 and 255. This is not the case with colour 

images.  

 

Figure 1 - (a) Original image and (b) grayscale version of the same image (International 

Conference on Computer and Communication Technologies et al., 2016). 
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Under regular illumination conditions the human eye perceives more colour than brightness 

in images (International Conference on Computer and Communication Technologies et al., 

2016). Colour can be conveyed as the mixture of three factors of red, green, blue (RGB). A 

colour is determined by the amount of Red, Green, and Blue in each pixel. In one pixel the 

factors have a range 0-255 each, this makes 2563=16,777,216 different colour possibilities. 

A Colour image (Fig.2) with this format has three matrices “behind it”, meaning that each 

pixel has 3 values (Red, Green, Blue).  

1.1.2 Computer	Vision	

The science and technology field that works on allowing computers to see and comprehend 

the real world is Computer Vision, i.e. words, computer vision is a scientific discipline that 

encompasses methods to collect, process, evaluate and interpret images from the real world 

with the goal to produce information that can be grasped by a computer. Just like how hu-

mans can use their eyes and brains to comprehend the world around us, computer vision 

aims to reproduce the same process in order for computers to perceive and comprehend one 

or multiple images and act as appropriate in a given situation.  

Figure 2 - Colour filter of an image which is split into three channels (International Con-

ference on Computer and Communication Technologies et al., 2016) 

Figure 3 - To a computer, the car’s side mirror is just a grid of numbers  (Bradski and Kaehler, 

2011) 
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It's difficult to get a computer to see, process and understand an image. The steps of how 

computer vision is achieved can be summarized as image acquisition, image processing and 

analysis of the image. In image acquisition, the computer takes the real world environment 

and turns it into data  (Fig. 3), this data is now a digital image (Bradski and Kaehler, 2011). 

For humans this process can be something as easy as taking a picture with our phone camera 

or a digital camera. Now that the computer has the data it can move forward and process it. 

As explained above in the DIP section, a digital image goes through mathematical operations 

in order to achieve the desired output. Image analysis is the final step, this involves reviewing 

the output from the previous steps and discuss it contents. Before the face swapping process 

is initiated, the computer needs to be able to recognize a human face and save it as data in 

order to manipulate it afterwards, computer vision is vital to achieve this objective. Thank-

fully, computer vision has become one of the most promising research fields in recent years, 

mainly due to its high demand in everyday life, from unlocking your phone, tagging people 

in a picture, to detecting and identifying people through Closed Circuit Television CCTV 

cameras. This demand has resulted in increased development of computer vision tools and 

technologies. This is also true for one of the most popular obstacles/puzzles in computer 

vision, face detection (Boyko et al., 2018).  

1.1.3 Face	Detection	

For humans, face detection comes naturally, its effortless to differentiate between the face 

of a human being and something that resembles a human face but isn't, for computers it’s 

the opposite. Through face detection the computer or system can determine the coordinates 

and magnitude of any human face, if there's any, in an input image. Face detection is an 

intriguing challenge due to the human face being a natural structured object with an intricate 

detailed pattern disparity (Sung and Poggio, 1998). A working face detection system can 

contribute helpful insight in how to proceed with detection issues with other similar facial 

characteristics. Face detection can be a relatively complex task due to a high variability in 

face patterns. The variability is a result of human diversity in skin colour, facial expressions, 

aesthetic presentation (ex. Make-up, face tattoos, beard, moustaches, etc.). Further variabil-

ity can arise from accessories (glasses, scarfs, face masks, etc.). Since human faces fall under 

the category of 3D objects, shifts in conditions such as lighting can improve or diminish 

certain facial characteristics (Sung and Poggio, 1998). As a consequence of such complica-

tions using pre-established object classification techniques, that have performed fine with 
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firm and pronounce objects, behave badly with human face detection (Sung and Poggio, 

1998).   

 

Face detection is an algorithm that establishes the (𝑥, 𝑦) coordinates and size of every human 

face (if any) in an input image. Face detection is a compelling technique since it's the first 

step of more advanced computer vision systems, for example face recognition (Annan Li et 

al., 2012)  and human mood detectors (Zenonos et al., 2016) systems. From a scholarly point 

of view, face detection is a compelling task due to how complex and diverse a human face 

can be. A strong face detection system can produce helpful information on how to further 

address similar issues (Sung and Poggio, 1998).  

 

The main concerns connected to face detection are; variations in pose, change the angle of 

the face in relation to the camera (frontal, 45-degree, profile, upside down) and this results 

in some facial features, like eyes or nose, to disappear from the image. Different people may 

or may not have features such as beards, moustaches, and glasses and those features may 

differ in colour, shape and size. Facial features can change due to a person's facial expres-

sion, a person can look different depending if they are happy or sad. Some parts of the face 

may be blocked by other objects. Image orientation, a face in an image might become un-

recognisable to a computer if it's upside down. Non-human factors like lighting and camera 

sensors/lens quality can change the appearance of a face (Ming-Hsuan Yang et al., 2002). 

Face detection methods and approaches can be divided into four categories (Sung and 

Poggio, 1998) that may overlap with one another (Table 1): 

Approach Representative Works Reference 

Knowledge-based 
Multiresolution Rule-based Method (Yang and Huang, 1994)  

Feature Invariant Facial Features (Leung et al., 1995) 

(Yow and Cipolla, 1996) 
 

Texture (Dai and Nakano, 1996)  
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Skin colour 

(Jie Yang and Waibel, 1996) 

(Mckenna et al., 1998) 
 

Multiple Features (Kjeldsen and Kender, 1996)  

Template Matching Predefined Face Templates (Craw et al., 1992)  

Deformable Templates (Lanitis et al., 1995)  

Appearance-based 

Method 

Eigenface (Turk and Pentland, 1991)  

Distribution-based (Sung and Poggio, 1998)  

Neural Network (Rowley et al., 1998)  

Support Vector Machine (SVM) (Osuna et al., 1997)  

Naive Bayes Classifier 

(Schneiderman and Kanade, 

1998) 
 

Hidden Markov Model (HMM) (Leung et al., 1995)  

Information-Theoretical Approach (Lew, 1996)  

Table 1 - Categorization of Methods for Face Detection in a Single Image (Sung and 

Poggio, 1998) 

1. Knowledge-based methods, these methods write in code human knowledge of what 

composes a “common” human face, they also include connection between facial fea-

tures.  

2. Featuring invariant approaches, these approaches aim to find the face using the core 

facial features that can be found in all face images while disregarding variations like 

lighting, pose, rotation or viewpoint. This approach includes image-invariant meth-

ods (Sung and Poggio, 1998), which presumes that there’s an universal common con-

nection among all face patterns, even when the conditions of the image vary. To be 

able to detect faces, a classifier needs to be created from a set of image invariants to 
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scan the target image for places where they happen, an example of this approach 

would be a scheme based on observed brightness invariants between different parts 

of the human face. The importance of this approach is that when a classifier is made, 

it has to be able to take into account variations among the input patterns. Meaning 

that the transformation does not affect the class or object that needs to be de-

tected/identified, a rotated image of a face is still a face even if its upside. This ability 

is not difficult for humans, but it's extremely difficult for a computer classifier.  

3. Temple matching methods, a template can be pre-established patterns that are saved 

and then used to “explain” what a face is or what are the separate features that form 

a face to the computer. In order to detect a face, the correlation between the template 

and the input image are calculated. Templates can be further divided into; correlation 

templates (Sung and Poggio, 1998), this method uses predetermined face templates 

to discover the faces by matching the face template with the image. Since the human 

face is too diverse, an indefinite number of templates are needed to detect the basic 

human face features (eyes, eyebrows, nose, mouth, etc.). And deformable templates, 

this method differs with correlation templates in that it can deal with nonrigid facial 

features. Templates can be rigid (fixed), like eyes, eyebrows, nose and mouth, or can 

be nonrigid like the variations in the face between the eyes, eyebrows, nose and 

mouth. In other words, most humans possess eyes, eyebrows, nose and a mouth but 

every human possesses different proportions between these features. With deforma-

ble templates there is a global template frame to which configured curves and sur-

faces are fixed to, this fixture is elastic to permit for small deviations between facial 

features. 

4. Appearance-based methods, in opposition to temple matching this method focus on 

using sets of images to teach a model all the variabilities of what a face looks like, 

subsequently the models are used for face detection.  
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1.1.4 DLib	

Amongst the tools developed to work with face detection, DLib is a cross-platform open 

source software library containing machine learning algorithms (Korshunova et al., 2017), 

image processing, data mining (Junior et al., 2019) and many other tasks (Sharma et al., 

2016) and is used by the public and private sector to solve problems in a wide range of 

domains (Fig. 4) (King, n.d.). Even though DLib is principally a C++ toolkit, it has easy-to-

use python bindings (“dlib C++ Library,” n.d.).  

DLib has major features that explain why it is one of the most popular libraries used for 

computer vision. Contrary to other open source libraries, DLib offers thorough documenta-

tion for each of its classes and functions. When its debugging mode is used it will pick up 

most of the bugs caused by incorrectly calling functions or incorrectly using objects. Ac-

cording to the creator of DLib, Davis E. King, the documentation is astonishing because it 

provides many example programs and if any user finds anything that isn't in the documenta-

tion, is unclear, or is out of date you can contact him, and he’ll fix it. Between the vast ML 

Algorithms, DLib possesses structural Support Vector Machines (SVM) tools aimed at ob-

ject detection (Wan et al., 2017). This algorithm is used in combination with Histogram of 

Oriented Gradients  (HOG) algorithms to create a powerful and robust frontal face detector 

(Xu and Kakadiaris, 2017).  

1.1.5 The Bias/Variance Trade-off (BVT) 

Before venturing into what a Support Vector Machine is, Let's become familiar with a fairly 

common pitfall of machine learning, the Bias/Variance Trade-off  (BVT) (Annan Li et al., 

2012). Briefly, the BVT shows that as the complexity of a model grows the bias decreases 

and variance increases, resulting in a U-shaped test error curve. A fundamental part of every 

single learning model is, how successful is it at making generalizations from training data? 

The success is evaluated by taking data from the same source and accurately classifying it. 

Figure 4 - Elements of DLib-ml. Arrows show dependencies between components (King, n.d.) 
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Following this logic, one would assume that if the model used for training data is almost 

perfectly adapted to the data set, this will in turn, increase the model accuracy. Nevertheless, 

this is not the reality, an extremely adapted or fitted model will perform poorly with future 

data sets, because it will be unable to take into account the random noises found in future 

data sets, this phenomenon is called overfitting. At the same time, if the model does not fit 

the training set properly it will miss most of the trends as well as noises, this is called un-

derfitting.  

 

When a model does not have the flexibility to accurately fit the training data set, this model 

is unable to properly capture the true relationship between the parameters that made up the 

training set. This inability to capture the true relationship is called Bias in ML. A model that 

cannot properly capture the true relationship between the parameters has a relatively large 

amount of bias. On the other hand, if a model fits the relationship between parameters in the 

training set extremely well, this model then has little bias due to its great flexibility. In this 

case, if the model perfectly captures the relationship within the training set, when it needs to 

be ran through the testing set, the model won't be able to properly capture the trend and won’t 

fit over the new set, in ML the difference in fits between data sets, testing and training is 

called Variance.  

 

The dilemma becomes clear, a model can show low bias  (its flexible and adapts to the rela-

tionship curve between the parameters) but it will also show high variability (it results in 

different sums of squares for different data sets), as a result it’s hard to know how well this 

model will perform with future data sets. It may do extremely well, or it may be completely 

wrong. On the other hand, if a model has relatively high bias  (it cannot capture the curve of 

the relationship between the parameters) but it has relatively low variance  (the sum of 

squares are similar for different data sets), this model more often than not, will have consist-

ently good predictions. This dilemma, or trade-off, is referred to as the Bias/Variance trade-

off, this trade-off appears under a vast variety of conditions, as it displays the fundamental 

nature of generalizing any data that entail a mix of common and random elements (Briscoe 

and Feldman, 2011). This dilemma can be better visualized by plotting how complex a model 

is (model complexity) against its accuracy (Fig.5), one can observe that accuracy rises to a 

certain degree, after it hits a threshold the accuracy of the model starts decreasing the more 

complex the model is.  
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1.1.6 Regression Trees 

An essential part of face swapping is face alignment, which has improved greatly due to its 

shape regression framework. This process is a chain of facial landmarks coordinates, re-

peated and updated many times over with a cascade of  regression trees  (Fig.6), taking the 

current shape estimation and a new shape increment are calculated in each tree until a final 

shape estimation is reached (Lee et al., n.d.). 

The concept of what a regression tree is and why it is such an accurate, robust and effi-

cient framework is better understood if it’s broken down to its basic parts. In a decision tree 

each stage asks a “question” and then based on the answer, the data is classified into catego-

ries or numbers, usually the “question” can be answered with a true or false statement. The 

top of the tree is called the root node and the subsequent nodes are the internal nodes, at the 

bottom there’re leaf nodes. 

 

Figure 5 - A schematic illustration of generalization accuracy as a function of model com-

plexity, illustrating the bias-variance trade-off. (Note: model complexity here is schematic 

and differs from the measure used in subsequent graphs.) (Briscoe and Feldman, 20111) 

Figure 6 - A selected prediction result on the 300-W dataset using cGPRT. The shape estimate is 

initialized and iteratively updated through a cascade of regression trees: (a) initial shape estimate, 

(b)–(f) shape estimates at different stages of cGPRT (Lee et al., n.d.). 
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Regression trees and classifications are ML approaches for building prediction models from 

data. The model is acquired by recurrently separating data and fitting a straightforward pre-

diction model within each separation. Consequently, a decision tree can be used to visually 

represent the separation. With regression trees, variables are dependent, can take continuous 

or ordered discrete values and prediction error can be calculated by using the difference 

between predicted and observed values squared (Loh, 2011). 

1.1.7 Support Vector Machines (SVM) 

Given a data set, when a threshold is used and it gives the largest margin to make classifica-

tions, a maximal margin classifier (MMC) is employed. MMC can be extremely useful, but 

what if our data set is not consistent, MMC are super sensitive to outliers in the training data 

set, thus they have their limitations. In order to make a threshold that is not so sensitive to 

outliers, misclassifications must be allowed. When misclassifications are allowed the dis-

tance between the observations and the threshold is called a soft margin. To improve upon 

the soft margin cross-validation is used to determine how many missed classifications and 

observations to allow inside of the soft margin to get the best classification. When a soft 

margin is utilized to determine the location of a threshold, then a soft margin classifier AKA 

a Support Vector Classifier is applied to classify observations, the name Support Vector 

classifier comes from the fact that the observations on the edge and within the soft margin 

are called support vectors. 

 

Support Vector Machines show a remarkable performance when it comes to inadequate, 

sparse and tumultuous data (Cortes and Vapnik, 1995). If a SVM is applied for classification, 

they are capable of separating labelled training data sets with a hyperplane that is as distant 

from the data as possible. They can also work with cases where nonlinear separation is re-

quired, as they use kernels that systematically recognize a non-linear charting to a feature 

space, then the SVM calculates the new hyperplane to create a non-linear border (Furey et 

al., 2000). For SVM to properly work, the fact that some features space will be large needs 

to be highlighted, since the hyperplane requires the ability to generalize data points well and 

not every hyperplane will be able to generalize well. The concept of optimal hyperplanes 

addresses this issue, an optimal hyperplane is a linear decision function with maximal mar-

gin between the vectors of the two classes (Fig.7) (Cortes and Vapnik, 1995).  
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Figure 7 - An example of a separable problem in a 2-dimensional space. The support vectors, 

marked with grey squares, define the margin of largest separation between the two classes. 

(Cortes and Vapnik, 1995). 

1.1.8 Histogram of Oriented Gradients (HOG) 

The HOG technique is used for detecting semi-rigid objects within an image, it depends on 

the concept that the angle or directions of the edges and the intensity of the gradients holds 

really important information. With this information a program would be able to estimate the 

structure and aspect of an object within an image (Dalal and Triggs, 2005). This method, 

summarized in  (Fig.8), allows a group of histograms to be calculated quickly from the im-

age, the histograms are the magnitudes of the gradients in accordance with the direction of 

the gradients in a block of the image (Dalal and Triggs, 2005).  

 

It makes it possible to generate a feature for each key point, and its neighbouring area, a 

division of small blocks occurs and for each pixel inside the block a local histogram of gra-

dient directions is calculated. The final result from all of the histogram is the descriptor. 

Additionally, for each block the gradient feature vectors are calculated, these vectors are 

compounded to obtain the feature vector for a single image (frame), then, once all vectors 

from different images are chained to form one long vector, this vector is the HOG feature 

vector, later this vector will be applied as an input for the SVM classifier (Dalal and Triggs, 

Figure 8 - An overview of our feature extraction and object detection chain. The detector window 

is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient feature vectors 

are extracted. The combined vectors are fed to a linear SVM for object/non-object classification. 

The detection window is scanned across the image at all positions and scales, and conventional 

non-maximum suppression is run on the output pyramid to detect object instances, but this paper 

concentrates on the feature extraction process. (Dalal and Triggs, 2005) 
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2005). In a previous face detection research, while comparing different frontal face detection 

approaches in video sequences (Adouani et al., 2019), they learnt that the HOG with SVM 

is the approach with the highest accuracy and it displayed the best performance. It finds 

14.45% more faces than the next detector, the HAAR like cascade and 32.31% more faces 

than in the Linear Binary Pattern cascade (LBP). Furthermore, it also reached the highest 

detection rate at 92.68%. The HOG method also decreases false positive by at least an order 

of magnitude when compared to the HAAR detector (Dalal and Triggs, 2005).  

1.1.9 Face Alignment 

In digital images, the geometric shape of human faces can be determined thanks to face 

alignment technology. As previously mentioned, the most efficient way to detect a face is to 

know which are the facial features the programs needs to look for and consequently detect 

their coordinates in order to assess if there's one or more faces in the image. These facial 

features become the regions of interest (ROI) or landmarks of the face. Subsequently, the 

facial key points can be found within this ROI, they include the centres and edges of the 

eyes, eyebrow, nose, mouth and jaw (Longpre and Sohmshetty, n.d.).  In the 2014 Kazemi 

and Sullivan paper (Kazemi and Sullivan, 2014) a new algorithm was introduced that was 

able to do face alignment in milliseconds with higher or competitive accuracy when com-

pared to cutting edge methods on common data sets of the time. The speed improvement 

comes from their understanding of previous face alignment algorithms, finding their vital 

points and assembling them in a simplified design and then into a cascade with superior 

regression functions power, that are learnt via gradient boosting. In other words, they show 

that face alignment can be done quickly using a cascade of regression functions. Each re-

gression function is capable of assessing the shape from an initial assessment and the level 

of a thin set of pixels listed in relation to the initial assessment. 

 

They addressed the elements that commonly exist among the most successful algorithms. 

One element is cataloguing the pixel intensities relative to the current assessment of the 

shape. The facial features that need to be extracted from an image can differ greatly from 

one another due to deformation and nuisance factors, like changes in lighting conditions. If 

one is to use these features, further shape estimations become highly complicated. The pre-

dicament involves the need for reliable features to be able to precisely predict the shape, 

while at the same time the algorithm needs precise shape estimates in order to extract reliable 
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features. The Kazemi and Sullivan research uses a repetitive approach to deal with the pre-

dicament, the cascade approach. Instead of taking the shape parameters from the overall 

system of the image, the parameters are taken from the local system in accordance with the 

current estimate of the shape, subsequently, an updated vector for the shape parameters is 

predicted from it. This approach is repeated until the predicted shape and the pixel intensities 

catalogue intersect (Fig. 9). 

 

Figure 9 - Landmark estimates at different levels of the cascade initialized with the mean shape 

centred as the output of a basic Viola & Jones face detector. After the first level of the cascade, the 

error is already greatly reduced.  (Kazemi and Sullivan, 2014) 

To regress the position of the facial landmarks from a small subset of intensity values in an 

image, a group of regression trees can be used. This algorithm can manage partial or uncer-

tain labels, it already showed to be faster at decreasing the error when compared to other 

works.  

The DLib library includes an implementation of this trained model for facial alignment cre-

ated by Davis King and has been released into the public domain (King, 2020). Inside of the 

DLib library the pre-trained facial landmark detection model is used to find the location of 

68 (𝑥, 𝑦)coordinates, each of these 68 points maps onto a facial feature like the eyebrows, 

eyes, nose, mouth and jaw (Korshunov and Marcel, 2018) which is trained on in the ibug 

300-W dataset and it’s intended use is a alongside DLib’s HOG face detection. It assumes 

there will be bounding boxes from the face detector in order to do face alignment.  

1.1.10 Euclidean Distance (ED) 

A common obstacle in image recognition is how to establish the distance between images(Li-

wei Wang et al., 2005). In short the ED is the measurement of the distance between images 

and it’s line distance between two points and for that couple of points it demonstrates the 

square differences between their coordinates (Hazim et al., 2016). When working with con-

tinuous data, Euclidean distance will be used as a way to measure dissimilarity, since the 

higher the value of the Euclidean distance the more unlike the objects are. The Euclidean 
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distance can be used in as many dimensions as needed, to calculate the ED between two data 

points, the difference in each attribute value is calculated then it’s square, then sum for all 

values and take the square root of the total summation. After calculating the ED for multiple 

data points, a distance matrix can be created to observe how dissimilar the data points are, 

the points that are the most similar are the ones that are the closest to each other. For most 

object recognition algorithms, the first step is to represent images as points in an Euclidean 

space, making Euclidean distance a good candidate to determine the image metrics.   

1.1.11 Homography (Computer Vision) 

In computer vision, corresponding points are points that depict the same physical points in 

two images. A transformation that matches the physical points of one image to the corre-

sponding points in another image is called a Homography. The homography matrix  (H) is 

defined as a 3x3 matrix  (Fig.10) and H can only be defined up to scale (“OpenCV: Basic 

concepts of the homography explained with code,” n.d.). Image alignment is possible if all 

corresponding points are in the same plane in the real world, if not they won't be aligned by 

the homography. If there is more than one plane this means there is more than one homog-

raphy, one per plane. Due to its simplicity in computer vision tasks like obstacle detection, 

planes are used because the transformation among a real world plane and its corresponding 

image plane is a homography, these connections are also true for different perspective views 

of a plane in different images (Vincent and Laganiere, 2001). 

Figure 10 - The homography matrix is a 3x3 matrix  (“OpenCV: Basic concepts of the 

homography explained with code,” n.d.) 
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1.1.12 Ordinary Procrustes Analysis (OPA) 

Procrustes analysis is utilized when working with a set of shapes and there’s an interest in 

analysing their allocation and distribution. When the non-shape elements like size, position 

and orientation are eliminated to extract the shape variation, this is called procrustes super-

imposition (Klingenberg, 2015). There are two types of procrustes fit, let’s focus on the first 

type, Ordinary Procrustes Superimposition (OPS), where the movable configuration is su-

perimposed onto another target configuration. Under OPS (Fig.11), in a gradual process be-

tween the movable and the target configuration the variations in size, position and orientation 

are eliminated, by using the sum of squared distance between the landmarks points an opti-

mal fit is discovered. The dissimilarity of two shapes can be analysed after superimposing 

the two shapes by translating,  rotating and scaling them (Chikuse, 1999). 

 

Figure 11 -  Procrustes superimposition. The figure shows the three transformation steps of 

an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both configu-

rations to the same size; (b) Transposition to the same position of the centre o of gravity; (c) 

Rotation to the orientation that provides the minimum sum of squared distances between 

corresponding landmarks.  (Klingenberg, 2015) 
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2 THE	AIMS	OF	THE	THESIS	

Refactor an Image Face Swapping code, provided by supervisors, with the purpose of 

creating face swap code that works with videos, or a Video Face Swap, without utilizing 

RAM and CPU expensive Deep or Machine Learning techniques. 

1. Identify obstacles the VFS code can overcome in order to create faster and more 

realistic looking outputs. 

2. Optimize the code to overcome some of the obstacles identified after the results anal-

ysis were completed.  
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3 EXPERIMENTAL	PART		

3.1 MATERIALS	AND	METHODS	

3.1.1 Materials		

In this section the materials employed in the thesis as well as the working conditions set-up 

will be addressed. 

Computer	

The	computer	used	for	the	thesis	work	is	a	MacBook	Air	(13-inch,	2017),	which	has	a	

processor	Dual-Core	Intel	Core	i5	processor	with	a	processor	base	frequency	of	1.8	GHz	

with	 two	 independent	 cores	 that	 each	 has	 a	 256k	 level	 2	 cache	with	 an	 integrated	

memory	controller.	A	8	GB	1600	MHz	DDR3	of	memory		and	an	Intel	HD	Graphics	6000	

1536	MB	video	card.	

Operating	system	

Since a MacbookAir was employed for the totality of the thesis, the code was written in the 

native operative system of MacOS. The versions of the OS used were macOS Mojave 10.14 

to current (May 17, 2020) Catalina 10.15. When the OS X was released by Apple, it featured 

a fully operating Unix system, one of the most used command-line OS in the world. Other 

OS also had similar feautres like Linux or Ubuntu, but the difference being the OS X was a 

certified Unix OS (“The Register of UNIX® Certified Products,” n.d.). This is important 

because the Unix shell allows the user to run a program without employing a specific IDE 

in nearly any language and many tech companies utilize Unix based systems. 

Anaconda	

Is an open-source distribution of R and Python programming languages that facilitates 

management of packages and development stages for data science and machine learning. 

With the aim to fully deliver every need for Python data science, tasks it includes the package 

management system conda that is used for keeping versions of the packages updated.  

The importance of the conda package manager is the contrast to the usual pip package 

manager, when installing a package with pip it does so without verifying if there's a conflict 

with packages installed previously. Conda notifies if the installation cannot be done, it 

figures out how to install suitable dependencies and it examines if there's any version 

limitations in the current environment (including everything that is already installed). There 
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are multiple ways to install a package with anaconda. It can be done through the Anaconda 

repository, Anaconda Cloud, the user's own private repository or using the conda install 

command. There are available binaries for Windows 32/64 bit, Linux 64 bit and MacOS 64-

bit. Conda can keep track of anything installed in the environment by pip and itself. The 

Anaconda distribution also has a graphical user interface (GUI) for desktops called 

Anaconda Navigator, it allows Anaconda to manage packages, applications, environments 

and more without utilizing command-line commands.   

Spyder	

Spyder is a default application found in the Anaconda Navigator, it's an extremely powerful 

scientific integrated development environment (IDE) for Python, specially built by and for 

data analysts, engineers and scientists. It possesses powerful editing, testing, debugging and 

feedback tools as well as a numeric computing environment. The components of the Spyder 

IDE are what makes it so powerful. The editor works efficiently with a function/class 

browser, code review tools, code autocomplete, etc. the user can employ as many IPython 

consoles as necessary with the adaptability of a GUI interface.  

Programming	Language	

Just like how humans use languages to communicate, if a human wants to work with a 

computer it would need an interface to translate actions (clicks) or words (command lines) 

into the desired outputs. A programming language is a set of instructions that the computer 

can understand. Each programming language has its own syntax that are adapted to their 

respective domains.   

Python	

The base code was written in python and given that this is the programming language I 

manage the best and that it also has excellent computer vision, machine learning and data 

science bindings, packages and libraries that function as the foundation of this thesis, the 

adapted and updated version of the code is also written in python.  

Libraries	

To explain what programming libraries are let’s use the example of real world libraries. One 

goes to the library to gain access to previously existing knowledge, this way you don't need 

to start from zero. Software libraries use this logic to offer already existing logic to solve 

problems with functions built inside the libraries. 
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OpenCV	

This library was built to solve computer vision problems, starting from reading an image in 

the path folder and displaying it, to image transformation and operations like grayscaling, 

thresholding, blurrin, erosion, etc. this library is required for the multiple modifications that 

need to be applied to the images. 

Numpy	

Numpy is a library for research computing in Python it adds support for vectors and matrices. 

Consisting of higher mathematical functions to handle vectors and matrices its primary 

function is its  N-dimensional array data structure. As opposed to Python’s data structure the 

numpy arrays are uniformly typed, meaning that all elements of a single array must belong 

to the same type.  

DLib	

As explained in the literature review in more detail, DLib is a multi-purpose software library 

initially written in C++ but with excellent Python bindings. This library is mainly used in 

this thesis for its components with data structure, machine learning, image processing and 

face detection.  

DLib	Face	Detector	

DLib contains a face detector that finds the frontal faces of humans in images and creates a 

bounding box that is overlapped onto the face. The detector uses a Support Vector Machine 

(SVM) linear classifier and a Histogram of Oriented Gradients (HOG) to detect human faces. 

DLib	Model	

DLib’s facial detector has pre-trained models built by Davis King to estimate poses. The 

models are used to estimate poses. The model specifically built to find human faces was 

based in the famous Kazemi-Sullivan paper (Kazemi and Sullivan, 2014), which was trained 

with the ibug 300-W face landmark dataset  (“i·bug - resources - Facial point annotations,” 

n.d.). Dlib’s facial detector has a pre-trained model that estimates the shape of the face 

through mapping the facial features by location of 68 (𝑥, 𝑦) coordinates. The 68 coordinates 

index the location of the mouth, right eyebrow, left eyebrow, right eye, left eye, nose, jaw 

(shape_predictor_68_face_landmarks.dat) (Fig.12). 
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Figure 12 - The 68 points mark-up used for our annotations (“i·bug - re-sources - Facial 

point annotations,” n.d.) 

SciPy	

SciPy is a free and open source library. It is composed of algorithm and mathematical tools. 

Scipy has modules for Fourier Transform, optimization, special functions, linear algebra, 

signal and image processing. Scipy helps with the Euclidean distance function among two 

1-D arrays. 

Time	

Time is a Python module that can manage tasks related to “time” and represent it in code in 

different ways like objects, numbers and string. It can also be used to measure how efficient 

the code is and to name outputs based on the date and time they were created. 

Date	time		

In python, dates are not a data type, a module built to manage dates and times as data types 

need to be imported. By importing the module and executing datetime.datetime.now() 

command a new object will be created, containing the current year, month, day, hour, minute, 

second and microsecond of when the command was executed.  

Line	Profiler	

A module to profile the time each line in a python script takes to execute. Using a built in 

magic command in Spyder (%prun), the external package line_profiler is called (works just 

like the import command).  After the run command completes a txt file with the number of 
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calls of a line/function, the time it took for each line/function and the total time it took the 

code ro run from start to finish will be printed on the txt file.  

Inputs	for	the	faces	

To determine the source face, an image of president Donal Trump was used. The image is a 

JPEG color image, JPEG is a method of compression for digital images. For the target face 

a video file was used to to detect the target face. The main video “face2” is an MP4 file with 

250 frames, the MP4 format is a digital multimedia container format, it's called contained 

because it can compress a variety of data in its files. Due to its high compression power it 

permits its files to be smaller in size without decreasing the quality of the file when compared 

to other video formats, this is why MP4 is the most common video format for web content.   

3.1.2 Methods	

In this section the methods used for video face swapping will be explained. For the program 

to work properly the following elements need to be in the folder path where the code is; An 

image with a face in it, this image will become the source image, for the thesis a color image 

of president Donald Trump was used (“trump3.jpeg”) as the source image. A video file, its 

frames will be used as a target image, the video can be a pre-recorded video, if no video file 

is available the live feed of the web camera can be used as well. The pre-trained shape 

predictor model for 68 face landmarks (shape_predictor_68_face_landmarks.dat) also needs 

to be in the folder. 

 

Upon establishing the initial variables the face swapping process starts by calling the 

faceswap function and loading the source image and the target image into it.  

 

The process breaks down into five steps and each step includes one or more methods: 

1. Face Detection 

2. Facial Landmarks Detection 

3. Image Transformations 

4. Color Correction 

5. Image Blending 



35 

 

Inside the faceswap function, six other functions are called before returning the face 

swapping as an output, new variables are created to make the calculation easier to follow 

along. 

3.1.2.1 Face	Detection	and	Facial	Landmarks	Detection	

The Face Detection and Facial Landmarks Detection steps happen in the get_landmarks 

function. As explained before, DLib uses an implementation of the Kazemi-Sullivan 

algorithm (Kazemi and Sullivan, 2014) to identify the facial landmarks from a face bounding 

box. The application of this implementation is actually quite simple. Within the get 

landmarks function, an empty array is created to store the 68 (𝑥, 𝑦) landmarks coordinates 

from the source image and target image at the end of this function, resulting in two landmark 

matrices. Then using the face detector to locate and create a list of the rectangles that 

correspond to the face bounding boxes in an image. The bounding boxes are used in the 

feature extractor as an input for the Kazemi-Sullivan algorithm. This algorithm requires a 

the pre-trained shape predictor model for 68 face landmarks. 

3.1.2.2 Image	Transformation	

The Image Transformation step is where the majority of the calculations happen. The source 

image needs to be aligned and mapped onto the target image. Now that there’s two landmark 

matrices, each row within a matrix contains coordinates to an specific facial feature, the two 

faces can be aligned using procrustes analysis in the get_M function. Each coordinate is a 

point that needs to be rotated, translated and scaled to fit the landmark key points of the 

source image over the landmark points of the target image.  

 

First, the input matrices need to be turned into floats, then the centroid has to be subtracted 

from each point, subsequently each point needs to be divided by its standard deviation. This 

is done in order to remove the scaling component, next rotation needs to be calculated 

through Singular Value Decomposition (SVD) (Cao, n.d.). SVD is a data dimensionality 

reduction technique that breaks down a matrix into three matrices (U, S, V) to reduce noise 

and redundant information. U is the left singular vector and it contains important non 

redundant information about observations, S is the diagonal matrix and it contains the entire 

information about the decomposition process and V is the right singular vector and it 

contains important non redundant information about features. The result is an affine 

transformation matrix (Yan et al., 2007)(Yao et al., 2001) that can be used as the input for 
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the warping function. In an affine transformation matrix a combination of linear 

transformations, such as scaling and rotation with translations occurs. During affine 

transformation points, straight lines, planes, parallel lines, and the ratio of distance between 

the points that lay on the same straight line are preserved. What affine transformations do 

not preserve are the angles between the lines and the distance between the points, because 

they might not be in the same 2D plane they originally were from, therefore the angle and 

distance may differ due to the change in planes.  

 

Before getting to the warping function warp_img, the get_mask function is required in order 

to get the two masks needed for both images and their landmark matrices, as well as to 

establish what parts of both images are going to be used in the last step. An area with value 

1 (White) matches the sections where the source image should be displayed, and areas on 

black (Value 0) match the areas where the target image should be displayed. The area where 

the values fall between 0 and 1 are where the source and target image will be mixed. This is 

done by drawing two convex polygons (in white), one encircling the eyes and the other the 

mouth and nose. The edges of this mask are blurred towards the outside by 11 pixels, this is 

done to prevent the mask border from showing. This is done for both images in the warp_img 

function, the affine matrix that was obtained in the procrustes analysis function to align both 

images. 

3.1.2.3 Colour	Correction	

In the Colour Correction step the color difference between the two images is corrected. 

Because both images are not only from different people but were also taken under different 

conditions (skin color, light, facial hair, etc.), the source image conditions need to match the 

target image conditions, otherwise the result will create a disconnect in the borders of the 

superimposed area. This is done in the correct_color function by diving source image and a 

gaussian blur of the source image and multiplying the result by the gaussian blur of the target 

image, this is a mathematical color balancing method called scaling monitor R, G and B 

(Viggiano, 2004), but rather than having a single scale factor for all the image, localised 

scale factor is assigned to each pixel.  This method covers the differences in light conditions 

between the two images to a certain degree. A good example of this is how in the source 

picture (Donald Trump) the light is coming from cameras flashes or another light source in 

front of Donal Trump, while in the video that is the target image (my face), the light comes 

from the window in the back and a light on top of my face, the color correction fixes the 
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light condition in the source image so it also looks like the light is coming from behind and 

above so it matches the target image. For this method a suitable kernel size is key, if the size 

is too small the facial features from the target image will show up, even when they are 

underneath the source image features, too big and discoloration happens. 

3.1.2.4 Image	Blending	

In the final step, Image Blending, the two masks are combined by element-wise maximum 

in the mask_img function. This guarantees that the features of the target face are covered 

with the features of the source image. Then it applies alpha blending to overlay the 

foreground image (source image) mask, on top of the background image mask (target 

image). 

 

For analysis a line profiler already installed in Spyder was utilized to get the time it takes 

the code to run and how many times each function is called. 
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3.2 RESULTS	

The results are going to be divided in stages since the refactored code had to be tested with 

every new iteration of the code. 

3.2.1 First	result	

During the first stage of experiments, the newly refactored code was not returning any out-

puts, only errors. Meaning that the code couldn't run from start to end. After debugging line 

by line, the error was found to be that when the video frame didn't have a face (no person is 

present in the frame or the face is obstructed) the get_landmarks function returned a None 

type data when it was supposed to return a matrix with the (𝑥, 𝑦) coordinates of the facial 

landmarks key points. The None type output cannot be used in further functions since a None 

type data cannot be used for calculations. To fix this error a try-except loop was used inside 

the while loop in order to try run the faceswap function and if there was any problem to run 

the exception part of the code and print the exception to know what the problem was. Addi-

tionally, a pass command was used inside the get_landmarks functions so it returned an 

empty matrix instead of a None type data. 

3.2.2 Second	result	

In the second stage of experiments, the target image was a live feed from my laptop webcam 

and the output was shown using an imshow command to open up a new window to see the 

live results of the code. Using the webcam live feed as the target image was replaced with a 

pre-recorded MP4 video due to an error with Macs where the imshow window cannot be 

closed using keyboard commands, the code just freezes. For this particular error I tried many 

of the suggested solutions found in programming forums like Stack Overflow or Github but 

nothing worked, for the sake of simplicity and since I needed to record the outputs, the target 

image was changed to a pre-recorded video. 

3.2.3 Third	result	

In the third stage of experiments, satisfactory results were obtained. Video Face Swap was 

performed in all frames of an MP4 video. The problem now was that the code took between 
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7-11 minutes (Fig.13) to produce a 25 seconds face swap video from an original 8 sec video 

with 250 frames. The code was analysed with the aim to discover why the code took so long. 

After running a line profiler in Spyder to get the execution time for each function (Fig.14) 

and how many times each function was called (Fig.15), it was discovered that the landmarks 

for the source image were getting calculated all over again for each new video frame, this is 

counterproductive since only the video frames have different and new landmarks on each 

frame, while the Donald Trump image landmarks remains the same throughout the  process. 

The code was changed to ensure that the source image landmarks were calculated once at 

the beginning of the code and that these values are saved and used alongside each new target 

image (frame) landmarks. 

Figure 13 - Total time the Python script took calculating VFS for all 250 frames, the code 

was tested 10 times to avoid errors in the measurements. 
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Figure 14 - The total execution time of each function, VFS was calculated for all 250 frames, 

the code was tested 10 times to avoid errors in the measurements. 

 
Figure 15 - The number of times a function was called from start to end in the Python code, 

VFS was calculated for all 250 frames, the code was tested 10 times to avoid errors in the 

measurements. 
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3.2.4 Fourth	result	

After the code was optimize, the output was an identical video to the one obtained in stage 

3, however, the difference was that now it took between 3-6 minutes to calculate (Fig.16) 

face swap in all 250 video frames.  

 
Figure 16 - Total time the Python script took calculating VFS for all 250 frames when the 

source image landmarks were calculated once at the begging of the code, the code was tested 

10 times to avoid errors in the measurements. 

3.2.5 Fifth	result	

The next optimization was to reduce the time it took to create an output video. The strategy 

employed was to perform VFS every other frame instead of performing it in all frames in 

the video. First, this was tested by calculating VFS every 2 and 3 frames. When VFS was 

calculated every 2 frames, the code took 1-3 minutes to process half of the frames (Fig.17). 

While for every 3 frames, the code took between 1-2 minutes to calculate for a third of the 

frames. The frames where VFS was not calculated were discarded and not used to create the 

output video (Fig.18). This resulted in creating a 8 secs video as an output for VFS every 3 

frames, which matches the length of the original input video for the target image. 
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Figure 17 - Total time the Python script took calculating VFS for half the frames, the code 

was test-ed 10 times to avoid errors in the measurements. 

 
Figure 18 - Total time the Python script took calculating VFS for a third of the frames, the 

code was tested 10 times to avoid errors in the measurements. 
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3.3 DISCUSSION	

This section will be focused on discussing the background research, methodology and results 

involved with this thesis. While discussing the results the thesis questions are gonna be 

answered, obstacles and problems identified, and future research and work is proposed.  

 

Thesis Questions 

 

The following are the theis questions that are going to be answered. In order to do this, the 

research background and results will be analyzed. 

 

1. Is it possible to refactor the Image Face Swapping code to work on videos? What are 

the main differences between the codes? 

2. How does this VFS compare against other face swapping (Image and videos) 

approaches? 

 

Answering Q1: Video Face Swapping code 

 

As mentioned before, the original code for Image Face Swapping, can be broken down to 5 

steps; Face Detection, Facial Landmarks Detection, Image Transformation, Colour 

Correction and Image Blending. These steps have been explained in more detail in the 

methods section of the thesis. The whole process can be summarized as getting a mask from 

a source image that covers the Region Of Interest (ROI) of the face (eyebrows, eyes, nose, 

mouth and jaw), then that mask is aligned, scaled and translated onto the mask face region 

of the target image, finally color correction is performed such that the color condition of the 

source face matches the color of the target face and then two mask regions are blended 

together and a face swap is obtained. 

 

When a video is used as a target image, the core idea is to grab each video frame and treat it 

as a single image, then perform a similar process to the one used in Image Face Swapping. 

Then the process is repeated for every frame in the video, or as the results showed, if the 

input video is a MP4 video the VFS calculations can be done every 3 frames and still create 

realistic outputs while at the same time reducing the calculation time and length of the output 

video. 
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The approach in the VFS changes a bit different in comparison to the original Image Face 

Swapping code. The IFS iterates once, since it only calculates the facial landmarks once for 

each image, while for the calculation process for VFS code can be extended a lot depending 

on the quality and length of the input video, if the quality of the video is good, VFS 

calculations can be done every other frame and the output will still look realistic, if the 

quality of the video is poor, the output which is made by stitching together the face swapped 

images, it will be apparent that some frames are missing and the face swap illusion will be 

lost. Unfortunately, due to technical problems while testing VFS with live feed from the 

webcam, I do not have concrete numbers when it comes to the processing time using live 

videos.  

 

As shown in the results another key difference is that for every new video frame a new facial 

landmark matrix needs to be calculated, this is one of two key causes for delay in the 

processing time. The second key cause is the warping calculation, when the mask as well as 

the source image itself has to warp onto the shape of the target image using affine matrix 

transformation. This calculation has to be done twice for every frame where VFS is done, in 

other words if in 50 frames VFS is going to be dcalculate the warping function will be 

executed 100 times. However, it needs to be pointed out that even when the warping function 

is executed twice, the time it consumes is nothing when compared to the time used in the 

get_landmarks function. 

 

More differences are discovered in the results of the VFS code, since it’s a dynamic process, 

some distortions occur that take away from the face swapping illusion. Examples are 

highlighted in the (Fig.19), where one can see some parts of the source image mask are out-

of-bounds front the target image mask region resulting in an eye or eyebrow to be floating 

outside the face boundary when the face turns to the sides. Another example is how the 

blurring has to be calculated carefully, if the kernel size is too small the facial features of the 

target image will show through the source image mask but if it's too big the facial features 

of the source image will stray outside of the face boundary. 
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Figure 19 - Distortions in output video, highlighted in red, the source image mask is out of 

boundaries while the face is turned to the sides, highlighted in green are the blurring kernel 

size problem. 

Conclusion: 

 

It's possible to refactor the IFS code to work with video as long as the necessary requirements 

are met. The first requirement would be to choose carefully the inputs for both the target and 

source image, it's better to employ a high resolution image with a high quality video. If the 

source image has a low resolution the output face might look pixelated due to beign stretched 

to fit over the target face. Next, make sure that the facial landmarks are calculated 

accordingly, once at the beginning of the code if the source image input is an image and one 

time for each new image if the target image is a video. This will greatly impact the overall 

performance of the program. Subsequently, the code was to work even when there are no 

faces in the video, or the face is obstructed by turning the face to the sides or blocking it with 

an object or hand. Finally, in order to find the best rate at which VFS calculations need to be 

done, multiple code runs need to be performed, this rate will change depending on the length 

and quality of the video.   

 

Answering Q2: Face Swapping Approaches Comparison  

 

Current face swapping programs can be separated into three categories (Chen et al., 2019); 

replacement-based, model-based and learning-based. The face swapping used and refactored 

in this thesis fall under the first category, replacement based. Under this method a face region 

(mask) in the target image is replaced with the face region of a source image and implement-

ing image processing approaches to mend any distortion or difference between the source 
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and target image. A disadvantage of this method is that it is unable to retain some facial 

characteristics from the target face since the idea is to overlay the mask of the source image 

on top of the mask region of the target face. On the other hand, some advantages are the 

streamline algorithms and functions as well as the initial set up being minimal after the re-

factoring was done. This code doesn't employ more advanced Machine or Deep learning, but 

it can still deliver realistic results. It relies on common transformations to scale, rotate and 

translate the two landmark matrices, and while these methods sound quite complex their 

implementation is straightforward when both the source and target are images. 

 

The second category, model-based face swapping a 2D or 3D model is made in order to 

stand in for a human face, the specifications and features of the model are adapted from the 

target image. Then a reconstruction based on the features of the source image is performed 

onto the model. Some example algorithms (Hong-Xia Wang et al., 2008) of this category 

require manual set up and a pre-made 3D model, which would require a certain amount of 

faces for model training, other algorithms (Lin et al., 2012) tried fixing these shortcomings 

by constructing 3D models based on frontal face images but the resulting 3D model does not 

truly reflect the original face parameters and calculations take too much time out of the entire 

process. 

 

In the final category, learning-based face swapping approaches use a target images to train 

a neural network that already has the information of the source image. This way a convolu-

tion neural network model can swap the face of the target image with the face from the 

source image while retaining the light conditions, facial expression and posture of the target 

image (Korshunova et al., 2017). Clear advantages of this methods are the realistic output 

created by the model, on the other hand the the model needs a lot of training and testing 

while using a lot of computational power, additionally the model will only work on a single 

target individual at a time.  

 

Conclusion: 

 

While other face swapping programs have no problem using a video as either a source or 

target, they mainly utilize machine learning and 3D modelling approaches to create realistic 
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outputs, and while the result might fool the human eye more than the replacement-based 

model I use in the thesis, they require a great deal of manual set up and computations to run 

the face swapping network in a single target individual, while the replacement-base methods 

can be tested multiple times with multiple target individuals and still get satisfactory results.  

 

Future Work 

 

This part will propose future works that could help solve the current obstacles and limitations 

of the code as well as other potential uses for the code.  

 

Perfil Face Detector     

  

One of the shortcoming of the code was that when the face was turned to the sides it either 

did not perform VFS or it showed the source mask out of bounds from the target image and 

it breaks the face swapping illusion for those brief moments. There can be multiple ways to 

possibly solve this problem. Regardless of which path one chooses to go, a good tool to have 

in any path forward is to train a facial landmarks keypoint model similar to the 68-points 

model used in the thesis. That model was trained with frontal faces and it shows problems 

assigning the coordinates when the face is turned to the sides (Fig.20). In order to create a 

perfil face detector and to assign the (𝑥, 𝑦) coordinates properly to the facial landmarks when 

the face is turned to the sides, DLib library offers the option to train your own object 

detection model, therefore it is possible to train a model for perfil faces using DLib’s library 

and Python.  

 
Figure 20 - Current facial landmarks key points for the 68 points model while the face is 

turned to the sides. 

Retaining Target Image Pose   
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Continuing the problem stated above, when the face is turned to the sides the source image 

mask is outside of the target face boundary. Considering the facial landmarks keypoint 

assignment are for (𝑥, 𝑦) coordinates the Z coordinates are missing, consequently the code 

is missing the information to know in which direction (front and back) the target moved and 

creating a 3D model from the 2D information is difficult. An approach to solve this could be 

to calculated the distance between the jaw keypoints and the eyes, nose and mouth keypoints, 

this is better illustrated in (Fig.21) where it shows that when the face is turned to the side the 

distance between the two sets of keypoints is smaller than when the face is looking toward 

the camera. With this information a new mask can be created to fit the face when it is turned 

to the sides. 

 
Figure 21 - Difference in distance between the jaw key points and the eyes, nose and 

mouth key points when the face is turned to the side and when is turned toward the camera. 

Face Swapping with Facial Expressions 

 

Since this face swapping approach is replacement-based, when the mask is overlaying the 

target face it becomes impossible to show any facial expression, like any mouth movements 

that the target face is making. A possible approach is to create a separate dedicated mask for 

each facial feature so it moves accordingly to the expression of the target, this might create 

a face swapping that looks like a picasso painting, but the information obtained in this 

approach can be helpful to further improve the results in the future.  

 



49 

 

SUMMARY	

In summary the aims of the thesis were achieved, the Image Face Swapping code was 

successfully refactored to work with videos and without utilizing ML approaches like 

Convolutional Neural Networks or Generative Adversarial Networks. After performing a 

satisfactory VFS, the results were analysed in order to find sections to improve within the 

code. The result and performance information are summarized in the following Table 2: 

 

Name of Code Total time 

(sec) 

(average 

of 10 

tests) 

Number 

of 

frames 

Length of 

video (Sec) 

Number of Calculations  

input output Frames 

per 

VFS 

Target 

image 

landmarks 

Source 

image 

landmarks 

vsf_main.py 557.7725 250 8 25 1 250 250 

vsf_main_updated.py 265.8103 250 8 25 1 250 1 

vsf_main_experiments.py 149.6364 250 8 13 2 250 1 

vsf_main_experiments.py 102.709 250 8 8 3 250 1 

Table 2 - Summary of results 

The problems and obstacles found in the code were: 

1. Source image facial landmarks were calculated 250 times. 

2. Calculating VFS for all frames was slowing the process to a degree that the time 

period for processing 250 frames was 69 times larger than the length of the input 

video. 

3. Some distortions appeared when the face was turned to the sides; some sections of 

the source image mask were outside the target image face boundary, at a certain angle 

when the face is turned it looks like the target person has two noses. 

4. The blur kernel size was too small and in certain frames the eye movement of the 

target image was visible. 

5. A computer with better memory capabilities will improve the performance of the 

code. 

 

Upon identifying these obstacles, the code was optimized through calculating the source 

image face landmarks once at the beginning of the code and saved to be used alongside each 
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new target image facial landmarks. Next VFS was performed for half and third of the video 

frames instead of calculating VFS in all frames of the video. Finally the blur kernel size was 

increased to prevent the target image eye movements to show through the source image 

mask.  
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