
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Technology

Barbara Wilson Soto

Video Face Swapping
Bachelor's Thesis (12 ECTS)

Curriculum Science and Technology

Supervisor(s):

Professor, PhD Gholamreza Anbarjafari

Data Scientist, M.A. Doğuş Karabulu

Tartu 2020

2

3

Video Face Swapping

Abstract:

Face swapping is the challenge of replacing one or multiple faces in a target image with a

face from a source image, the source image conditions need to be transformed in order to

match the conditions in the target image (lighting and pose). A code for Image Face Swap-

ping (IFS) was refactored and used to perform face swapping in videos. The basic logic

behind Video Face Swapping (VFS) is the same as the one used for IFS since a video is just

a sequence of images (frames) stitched together to imitate movement. In order to achieve

VFS, the face(s) in an input image are detected, their facial landmarks key points are calcu-

lated and assigned to their corresponding (X,Y) coordinates, subsequently the faces are

aligned using a procrustes analysis, next a mask is created for each image in order to deter-

mine what parts of the source and target image need to be shown in the output, then the

source image shape has to warp onto the shape of the target image and for the output to look

as natural as possible, color correction is performed. Finally, the two masks are blended to

generate a new image output showing the face swap. The results were analysed and obstacles

of the VFS code were identified and optimization of the code was conducted.

Keywords:

Computer vision, Video Face Swapping, Face Detection, Digital Image Processing

CERCS: T111 Imaging, T120 computer technology, P170 Computer science

Pealkiri eesti keeles (title in Estonian)

Lühikokkuvõte:

Selles mallis kirjeldatakse ingliskeelse lõputöö mall, stiilid lehekülgede formaati. Dokumen-

dis on kohatäitja igaks lõputöö osaks ja on lühikirjeldused, mis peab olema kirjas igas töö

osas.

Näovahetusena mõistetakse käesolevalt lähtekujutiselt saadud ühe või mitme näo

asendamist sihtpildil. Lähtekujutise tingimusi peab transformeerima, et nad ühtiksid

sihtpildiga (valgus, asend).

Pildi näovahetus (IFS, Image Face Swapping) koodi refaktoreeriti ja kasutati video

näovahetuseks.

4

Video näovahetuse (Video Face Swapping, VFS) põhiline loogika on sama kui IFSi puhul,

kuna video on olemuselt ühendatud kujutiste järjestus, mis imiteerib liikumist. VFSi

saavutamiseks tuvastatakse nägu (näod) sisendkujutisel, arvutatakse näotuvastusalgoritmi

abil näojoonte koordinaadid, pärast mida joondatakse näod Procrustese meetodiga.

Järgnevalt luuakse igale kujutisele image-mask, määratlemaks, milliseid lähte- ja

sihtkujutise osi on vaja näidata väljundina; seejärel ühitatakse lähte- ja sihtkujutise kujud ja

võimalikult loomuliku tulemuse jaoks viiakse läbi värvikorrektsioon. Lõpuks hajutatakse

kaks maski uueks väljundkujutiseks, millel on näha näovahetuse tulemus.

Tulemusi analüüsiti ja tuvastati VFS koodi takistused ning seejärel optimeeriti koodi.

Võtmesõnad:

Arvuti nägemine, Video näovahetus, Näotuvastus, digitaalne pilditöötlus
CERCS: T111 Pilditehnika, T120 arvutitehnoloogia, P170 Arvutiteadus

5

TABLE	OF	CONTENTS	
TERMS, ABBREVIATIONS AND NOTATIONS .. 10

INTRODUCTION ... 11

1 LITERATURE REVIEW .. 13

1.1 Research Background .. 13

1.1.1 Digital Image Processing (DIP) ... 13

1.1.2 Computer Vision .. 15

1.1.3 Face Detection ... 16

1.1.4 DLib ... 20

1.1.5 The Bias/Variance Trade-off (BVT) .. 20

1.1.6 Regression Trees .. 22

1.1.7 Support Vector Machines (SVM) .. 23

1.1.8 Histogram of Oriented Gradients (HOG) .. 24

1.1.9 Face Alignment .. 25

1.1.10 Euclidean Distance (ED) ... 26

1.1.11 Homography (Computer Vision) ... 27

1.1.12 Ordinary Procrustes Analysis (OPA) ... 28

2 THE AIMS OF THE THESIS ... 29

3 EXPERIMENTAL PART ... 30

3.1 MATERIALS AND METHODS .. 30

3.1.1 Materials .. 30

Computer ... 30

Operating system ... 30

Anaconda ... 30

Spyder .. 31

Programming Language ... 31

Python .. 31

6

Libraries ... 31

OpenCV ... 32

Numpy ... 32

DLib ... 32

DLib Face Detector .. 32

DLib Model ... 32

SciPy .. 33

Time ... 33

Date time .. 33

Line Profiler ... 33

Inputs for the faces ... 34

3.1.2 Methods ... 34

3.1.2.1 Face Detection and Facial Landmarks Detection .. 35

3.1.2.2 Image Transformation .. 35

3.1.2.3 Colour Correction .. 36

3.1.2.4 Image Blending .. 37

3.2 RESULTS .. 38

3.2.1 First result .. 38

3.2.2 Second result .. 38

3.2.3 Third result ... 38

3.2.4 Fourth result ... 41

3.2.5 Fifth result .. 41

3.3 DISCUSSION .. 43

SUMMARY ... 49

REFERENCES .. 51

NON-EXCLUSIVE LICENCE TO REPRODUCE THESIS AND MAKE THESIS PUBLIC

 ... 56

7

List of Figures

Figure 1 - (a) Original image and (b) grayscale version of the same image (International

Conference on Computer and Communication Technologies et al., 2016). 14

Figure 2 - Colour filter of an image which is split into three channels (International

Conference on Computer and Communication Technologies et al., 2016) 15

Figure 3 - To a computer, the car’s side mirror is just a grid of numbers (Bradski and

Kaehler, 2011) ... 15

Figure 4 - Elements of DLib-ml. Arrows show dependencies between components (King,

n.d.) .. 20

Figure 5 - A schematic illustration of generalization accuracy as a function of model

complexity, illustrating the bias-variance trade-off. (Note: model complexity here is

schematic and differs from the measure used in subsequent graphs.) (Briscoe and Feldman,

20111) .. 22

Figure 6 - A selected prediction result on the 300-W dataset using cGPRT. The shape

estimate is initialized and iteratively updated through a cascade of regression trees: (a) initial

shape estimate, (b)–(f) shape estimates at different stages of cGPRT (Lee et al., n.d.). 22

Figure 7 - An example of a separable problem in a 2-dimensional space. The support vectors,

marked with grey squares, define the margin of largest separation between the two classes.

(Cortes and Vapnik, 1995). .. 24

Figure 8 - An overview of our feature extraction and object detection chain. The detector

window is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient

feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-

object classification. The detection window is scanned across the image at all positions and

scales, and conventional non-maximum suppression is run on the output pyramid to detect

object instances, but this paper concentrates on the feature extraction process. (Dalal and

Triggs, 2005) .. 24

Figure 9 - Landmark estimates at different levels of the cascade initialized with the mean

shape centred as the output of a basic Viola & Jones face detector. After the first level of the

cascade, the error is already greatly reduced. (Kazemi and Sullivan, 2014) 26

Figure 10 - The homography matrix is a 3x3 matrix (“OpenCV: Basic concepts of the

homography explained with code,” n.d.) ... 27

8

Figure 11 - Procrustes superimposition. The figure shows the three transformation steps of

an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both

configurations to the same size; (b) Transposition to the same position of the centre o of

gravity; (c) Rotation to the orientation that provides the minimum sum of squared distances

between corresponding landmarks. (Klingenberg, 2015) ... 28

Figure 12 - The 68 points mark-up used for our annotations (“i·bug - re-sources - Facial

point annotations,” n.d.) ... 33

Figure 13 - Total time the Python script took calculating VFS for all 250 frames, the code

was tested 10 times to avoid errors in the measurements. ... 39

Figure 14 - The total execution time of each function, VFS was calculated for all 250 frames,

the code was tested 10 times to avoid errors in the measurements. 40

Figure 15 - The number of times a function was called from start to end in the Python code,

VFS was calculated for all 250 frames, the code was tested 10 times to avoid errors in the

measurements. ... 40

Figure 16 - Total time the Python script took calculating VFS for all 250 frames when the

source image landmarks were calculated once at the begging of the code, the code was tested

10 times to avoid errors in the measurements. ... 41

Figure 17 - Total time the Python script took calculating VFS for half the frames, the code

was test-ed 10 times to avoid errors in the measurements. .. 42

Figure 18 - Total time the Python script took calculating VFS for a third of the frames, the

code was tested 10 times to avoid errors in the measurements. .. 42

Figure 19 - Distortions in output video, highlighted in red, the source image mask is out of

boundaries while the face is turned to the sides, highlighted in green are the blurring kernel

size problem. .. 45

Figure 20 - Current facial landmarks key points for the 68 points model while the face is

turned to the sides. ... 47

Figure 21 - Difference in distance between the jaw key points and the eyes, nose and mouth

key points when the face is turned to the side and when is turned toward the camera. 48

List of Tables

Table 1 - Categorization of Methods for Face Detection in a Single Image (Sung and Poggio,

1998) .. 18

9

Table 2 - Summary of results ... 49

10

TERMS,	ABBREVIATIONS	AND	NOTATIONS	

Video Face Swapping (VSF) – a process in which a face from a target image is swapped
with the face from a source image, the target image are frames from a video and after the
process is done, the output images will be stitched together to form a new video.

Image Face Swapping (IFS) - a process in which a face from a target image is swapped with
the face from a source image.

Artificial Intelligence (AI) – refers to the field and technology that simulates human intelli-
gences in computers with the goal to get those computer to act and behave like humans
would.

Machine Learning (ML) – a branch of AI focusing in allowing system to learn from experi-
ence automatically without having all the known or unknow parameters be programmed into
the system.

Digital Image Processing (DIP) – processing digital images through algorithms in comput-
ers.

Bias/Variance Tradeoff (BVT) – then a prediction model has lower bias it will possess high
variance and vie versa. This trade off happens when trying to minimize both the bias and
variance of a prediction model to work beyond its original training set.

Support Vector Machines (SVM) – SVM models used in supervised learning to analyze data
and helps with data regression and classification.

Histogram of Oriented Gradients (HOG) – an object detection feature descriptor employed
in computer vision.

Euclidean distance (ED) – the ED is the distance among two points in Euclidean space.

Ordinary Procrustes Analysis (OPA) – the Procrustes matching between a minimum of two
observations using.

11

INTRODUCTION	

In current times, our relationship with technology is quite complex, constant communication

and sharing of information have become the norm. At the same time our privacy has never

been more important, there are photos or videos of almost everyone alive somewhere on the

internet (Mahajan et al., 2017). Our sense of security and privacy are changing and with it

our concepts of reality are changing as well. The phrase “one image is worth a thousand

words” alludes to a past illusion that images were irrefutable evidence towards whatever

statement one was trying to prove. This concept started changing in the 1980 when the first

photo editing computer programs were released. Before these software programs existed,

manipulating images was an extremely risky process and only few professionals were

capable of doing it (Rossner and Yamada, 2004). As time passed, photo editing softwares

kept improving and digital photo manipulations became more mainstream (Story, n.d.). A

similar situation happened with videos, but the process was still too expensive, therefore

these technologies were mainly used by entertainment companies, like movie/TV studios or

big companies (Microsoft, Apple) which had enough capital to cover the costs. Thus, the

belief that a photo or a video was a reliable source of information was still alive and well

during these times.

The idea of who could use technology and how accessible it was, changed on the 9th of

January 2007, the first time the iPhone was shown to anyone outside of Apple (Hjorth, 2012).

While the original iPhone was a game changer, it’s content was extremely limited since it

only came with 16 pre-installed apps, this limited the end user experience and considering

that back then the original iPhone was behind in many technical specs in contrast with its

competitors, Apple needed to go the extra mile to keep their momentum going. In the original

release one of the 16 apps pre-installed was Google maps, which was the best iteration of

the program in any platform Google maps had at the time. Not only was the app able to fully

use all the new functionalities of the iPhone, it made sense to the users to use the program

on the go, rather than the desktop version. This hinted at a necessity that previously handheld

devices weren’t even able to diagnose. This necessity was fulfilled when a year later Apple

released iOS2, this update introduced the App store and opened the gates for third party

applications to be created and shared in a marketplace, this allowed users to personalize their

phones and transformed the way people interacted with their handheld devices. Users had a

computer in the palm of their hands and as long as the use was within the hardware

12

capabilities, end users were only limited by the creativity of third party developers, who in

turn created the apps available for iPhone, is not a wonder that Android followed with its

own marketplace for third party apps for its phones later on.

This environment permitted the rise of social media “tech companies” like Facebook, this in

turn, started competition of which company was capable of not only retaining the most users

but also having them use the App for as long as possible. This resulted in an incredible period

of digital image processing and computer vision innovations due to the basic component of

social media, which is sharing content (images and videos) between it’s users. Among these

innovations, face swap became a hit with mobile users around 2016. MSQRD was a

company that launched its app for iOS and Android that allowed it’s end users to add filters

to the faces as well as swapping faces with their friends to create “video selfies”. This

company made headlines because three months after it was launched Facebook bought it to

gain an edge over its competitor Snapchat, the actual figure is unknown but the figure is

estimated to be in the millions of USD. Only a year later, most social media had integrated

similar versions of such face filters and face swaps functions. Then, in 2017 synthetic media

like Deepfakes (deepfakes, 2020) became mainstream knowledge when it swapped porn

stars faces with celebrities and the public started to ask if their identities could be falsified

through similar technology as well. Thanks to the help of powerful AI and machine learning

techniques, fake content capable of fooling the human eye became a reality (Kietzmann et

al., 2020).

Regardless if the intent is to create new algorithms or improved old ones, in order to develop

new ways for users to interact with their apps and phones or do further research in order to

better understand the dangers of face swapping and how to prevent them. Face swapping

technology will keep improving as companies and institutions race to create better and faster

face swapping algorithms and programs, while simultaneously investing millions of USD in

this technology. Current face swapping programs involve different AI and Machine Learning

(ML) techniques and methods (Dale et al., 2011)(Korshunova et al., 2017)(Chen et al.,

2019), in this thesis VFS will be performed without employing memory expensive AI or ML

techniques. In this thesis, an Image Face Swapping (IFS) code will be refactored to work

with videos, afterwards the result will be analyzed and obstacles of VFS will be identified,

finally the code will be optimized to improve the VFS results.

13

1 LITERATURE	REVIEW	

In the next section the approaches and theory relevant to this thesis will be covered. It will

cover the research background i.e. technologies and approaches used to comprehend, explore

and interpret the problems as well as how to solve them.

1.1 Research	Background	

VFS involves a wide variety of research topics and technologies. To comprehend what VFS

is and how it works let’s start from the basis for VFS, which is computer vision and digital

image processing, which are used for face and facial landmarks key points detection, assess-

ment of lighting conditions and skin colour (Adouani et al., 2019) and saving them as data.

Afterwards moving to the algorithms used for transforming the data into the desired state

and then optimizing said results to look as realistic and smooth as possible after VFS

(Garrido et al., 2014).

1.1.1 Digital	Image	Processing	(DIP)	

Image processing is any mathematical operation perform on an image, for example some

operations can be if one wants to zoom in or out an image, transform a black a white image

into a colour image or take some information from the image (International Conference on

Computer and Communication Technologies et al., 2016). Image processing is a type of

multidimensional signal processing that contains different approaches to enhance, modify,

extract information, compress and transform images. Images can be treated as spatial or 2D

signals, which is why images can be subjected to signal processing techniques like filtering,

attenuating, etc. (International Conference on Computer and Communication Technologies

et al., 2016). Since vision is the most developed among our senses, image processing is

among the fastest growing technologies. Image processing is employed in order to enhance

human analysis capabilities of pictographic attributes (International Conference on

Computer and Communication Technologies et al., 2016), therefore it can be used from bi-

ology to engineering to computer science. Image processing can be summarized as having

an input image, then analysing and manipulating said image and finally understanding the

output, which can be an altered image or image analysis (Young et al., 1998).

This thesis is focused on digital image processing, which is manipulation of digital images

by using computers. DIP can also be used for videos, since videos consist of multiple images

14

(frames) put together to form video. A digital image is a quantized depiction of an analogue

image, specifically a digital image is a two-dimensional function 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are

the spatial (plane) coordinates, therefore an image can be represented as a matrix. The am-

plitude of "𝑓" at any pair of coordinates (𝑥, 𝑦) is the intensity of an image (Young et al.,

1998). If 𝑥, 𝑦 and the amplitude values of "𝑓"	are finite and discrete quantities, the image is

a digital image, i.e. a digital image is composed of a finite number of elements called pixels,

each of which has a particular location and value. The pixels surrounding a certain pixel are

its neighbourhood, thus various neighbourhoods arranged in a significant order results in an

image. A neighbourhood is defined by its shape the same way a matrix is (Young et al.,

1998). Digital images can be defined as either Binary, Grayscale and Colour Images. Binary

images have two different possible intensity values for every pixel, they are displayed as

black and white images, with the numerical values of 0 for black and 1 or 255 for white, as

a result of this, for a binary image only one bit per pixel is needed.

Greyscale images (Fig.1b) are achromatic, or without colour, therefore in a greyscale image,

every pixel has an intensity of grey, between the lower strength side of 0 (black) to the

stronger side of 255 (white). Every pixel value is a description of its brightness capacity.

The ranges of pixel values imply that each pixel can be represented by 8 bits or 1 byte. The

8-bit format is one of the most popular image formats out there. It has 28=256 shades of

colour in it, ranging between 0-255, where 127 is grey. As explained before an image is a

2D function, which can be represented by a 2D matrix or array, in the case of a grayscale

image, its 2D matrix would have values between 0 and 255. This is not the case with colour

images.

Figure 1 - (a) Original image and (b) grayscale version of the same image (International

Conference on Computer and Communication Technologies et al., 2016).

15

Under regular illumination conditions the human eye perceives more colour than brightness

in images (International Conference on Computer and Communication Technologies et al.,

2016). Colour can be conveyed as the mixture of three factors of red, green, blue (RGB). A

colour is determined by the amount of Red, Green, and Blue in each pixel. In one pixel the

factors have a range 0-255 each, this makes 2563=16,777,216 different colour possibilities.

A Colour image (Fig.2) with this format has three matrices “behind it”, meaning that each

pixel has 3 values (Red, Green, Blue).

1.1.2 Computer	Vision	

The science and technology field that works on allowing computers to see and comprehend

the real world is Computer Vision, i.e. words, computer vision is a scientific discipline that

encompasses methods to collect, process, evaluate and interpret images from the real world

with the goal to produce information that can be grasped by a computer. Just like how hu-

mans can use their eyes and brains to comprehend the world around us, computer vision

aims to reproduce the same process in order for computers to perceive and comprehend one

or multiple images and act as appropriate in a given situation.

Figure 2 - Colour filter of an image which is split into three channels (International Con-

ference on Computer and Communication Technologies et al., 2016)

Figure 3 - To a computer, the car’s side mirror is just a grid of numbers (Bradski and Kaehler,

2011)

16

It's difficult to get a computer to see, process and understand an image. The steps of how

computer vision is achieved can be summarized as image acquisition, image processing and

analysis of the image. In image acquisition, the computer takes the real world environment

and turns it into data (Fig. 3), this data is now a digital image (Bradski and Kaehler, 2011).

For humans this process can be something as easy as taking a picture with our phone camera

or a digital camera. Now that the computer has the data it can move forward and process it.

As explained above in the DIP section, a digital image goes through mathematical operations

in order to achieve the desired output. Image analysis is the final step, this involves reviewing

the output from the previous steps and discuss it contents. Before the face swapping process

is initiated, the computer needs to be able to recognize a human face and save it as data in

order to manipulate it afterwards, computer vision is vital to achieve this objective. Thank-

fully, computer vision has become one of the most promising research fields in recent years,

mainly due to its high demand in everyday life, from unlocking your phone, tagging people

in a picture, to detecting and identifying people through Closed Circuit Television CCTV

cameras. This demand has resulted in increased development of computer vision tools and

technologies. This is also true for one of the most popular obstacles/puzzles in computer

vision, face detection (Boyko et al., 2018).

1.1.3 Face	Detection	

For humans, face detection comes naturally, its effortless to differentiate between the face

of a human being and something that resembles a human face but isn't, for computers it’s

the opposite. Through face detection the computer or system can determine the coordinates

and magnitude of any human face, if there's any, in an input image. Face detection is an

intriguing challenge due to the human face being a natural structured object with an intricate

detailed pattern disparity (Sung and Poggio, 1998). A working face detection system can

contribute helpful insight in how to proceed with detection issues with other similar facial

characteristics. Face detection can be a relatively complex task due to a high variability in

face patterns. The variability is a result of human diversity in skin colour, facial expressions,

aesthetic presentation (ex. Make-up, face tattoos, beard, moustaches, etc.). Further variabil-

ity can arise from accessories (glasses, scarfs, face masks, etc.). Since human faces fall under

the category of 3D objects, shifts in conditions such as lighting can improve or diminish

certain facial characteristics (Sung and Poggio, 1998). As a consequence of such complica-

tions using pre-established object classification techniques, that have performed fine with

17

firm and pronounce objects, behave badly with human face detection (Sung and Poggio,

1998).

Face detection is an algorithm that establishes the (𝑥, 𝑦) coordinates and size of every human

face (if any) in an input image. Face detection is a compelling technique since it's the first

step of more advanced computer vision systems, for example face recognition (Annan Li et

al., 2012) and human mood detectors (Zenonos et al., 2016) systems. From a scholarly point

of view, face detection is a compelling task due to how complex and diverse a human face

can be. A strong face detection system can produce helpful information on how to further

address similar issues (Sung and Poggio, 1998).

The main concerns connected to face detection are; variations in pose, change the angle of

the face in relation to the camera (frontal, 45-degree, profile, upside down) and this results

in some facial features, like eyes or nose, to disappear from the image. Different people may

or may not have features such as beards, moustaches, and glasses and those features may

differ in colour, shape and size. Facial features can change due to a person's facial expres-

sion, a person can look different depending if they are happy or sad. Some parts of the face

may be blocked by other objects. Image orientation, a face in an image might become un-

recognisable to a computer if it's upside down. Non-human factors like lighting and camera

sensors/lens quality can change the appearance of a face (Ming-Hsuan Yang et al., 2002).

Face detection methods and approaches can be divided into four categories (Sung and

Poggio, 1998) that may overlap with one another (Table 1):

Approach Representative Works Reference

Knowledge-based
Multiresolution Rule-based Method (Yang and Huang, 1994)

Feature Invariant Facial Features (Leung et al., 1995)

(Yow and Cipolla, 1996)

Texture (Dai and Nakano, 1996)

18

Skin colour

(Jie Yang and Waibel, 1996)

(Mckenna et al., 1998)

Multiple Features (Kjeldsen and Kender, 1996)

Template Matching Predefined Face Templates (Craw et al., 1992)

Deformable Templates (Lanitis et al., 1995)

Appearance-based

Method

Eigenface (Turk and Pentland, 1991)

Distribution-based (Sung and Poggio, 1998)

Neural Network (Rowley et al., 1998)

Support Vector Machine (SVM) (Osuna et al., 1997)

Naive Bayes Classifier

(Schneiderman and Kanade,

1998)

Hidden Markov Model (HMM) (Leung et al., 1995)

Information-Theoretical Approach (Lew, 1996)

Table 1 - Categorization of Methods for Face Detection in a Single Image (Sung and

Poggio, 1998)

1. Knowledge-based methods, these methods write in code human knowledge of what

composes a “common” human face, they also include connection between facial fea-

tures.

2. Featuring invariant approaches, these approaches aim to find the face using the core

facial features that can be found in all face images while disregarding variations like

lighting, pose, rotation or viewpoint. This approach includes image-invariant meth-

ods (Sung and Poggio, 1998), which presumes that there’s an universal common con-

nection among all face patterns, even when the conditions of the image vary. To be

able to detect faces, a classifier needs to be created from a set of image invariants to

19

scan the target image for places where they happen, an example of this approach

would be a scheme based on observed brightness invariants between different parts

of the human face. The importance of this approach is that when a classifier is made,

it has to be able to take into account variations among the input patterns. Meaning

that the transformation does not affect the class or object that needs to be de-

tected/identified, a rotated image of a face is still a face even if its upside. This ability

is not difficult for humans, but it's extremely difficult for a computer classifier.

3. Temple matching methods, a template can be pre-established patterns that are saved

and then used to “explain” what a face is or what are the separate features that form

a face to the computer. In order to detect a face, the correlation between the template

and the input image are calculated. Templates can be further divided into; correlation

templates (Sung and Poggio, 1998), this method uses predetermined face templates

to discover the faces by matching the face template with the image. Since the human

face is too diverse, an indefinite number of templates are needed to detect the basic

human face features (eyes, eyebrows, nose, mouth, etc.). And deformable templates,

this method differs with correlation templates in that it can deal with nonrigid facial

features. Templates can be rigid (fixed), like eyes, eyebrows, nose and mouth, or can

be nonrigid like the variations in the face between the eyes, eyebrows, nose and

mouth. In other words, most humans possess eyes, eyebrows, nose and a mouth but

every human possesses different proportions between these features. With deforma-

ble templates there is a global template frame to which configured curves and sur-

faces are fixed to, this fixture is elastic to permit for small deviations between facial

features.

4. Appearance-based methods, in opposition to temple matching this method focus on

using sets of images to teach a model all the variabilities of what a face looks like,

subsequently the models are used for face detection.

20

1.1.4 DLib	

Amongst the tools developed to work with face detection, DLib is a cross-platform open

source software library containing machine learning algorithms (Korshunova et al., 2017),

image processing, data mining (Junior et al., 2019) and many other tasks (Sharma et al.,

2016) and is used by the public and private sector to solve problems in a wide range of

domains (Fig. 4) (King, n.d.). Even though DLib is principally a C++ toolkit, it has easy-to-

use python bindings (“dlib C++ Library,” n.d.).

DLib has major features that explain why it is one of the most popular libraries used for

computer vision. Contrary to other open source libraries, DLib offers thorough documenta-

tion for each of its classes and functions. When its debugging mode is used it will pick up

most of the bugs caused by incorrectly calling functions or incorrectly using objects. Ac-

cording to the creator of DLib, Davis E. King, the documentation is astonishing because it

provides many example programs and if any user finds anything that isn't in the documenta-

tion, is unclear, or is out of date you can contact him, and he’ll fix it. Between the vast ML

Algorithms, DLib possesses structural Support Vector Machines (SVM) tools aimed at ob-

ject detection (Wan et al., 2017). This algorithm is used in combination with Histogram of

Oriented Gradients (HOG) algorithms to create a powerful and robust frontal face detector

(Xu and Kakadiaris, 2017).

1.1.5 The Bias/Variance Trade-off (BVT)

Before venturing into what a Support Vector Machine is, Let's become familiar with a fairly

common pitfall of machine learning, the Bias/Variance Trade-off (BVT) (Annan Li et al.,

2012). Briefly, the BVT shows that as the complexity of a model grows the bias decreases

and variance increases, resulting in a U-shaped test error curve. A fundamental part of every

single learning model is, how successful is it at making generalizations from training data?

The success is evaluated by taking data from the same source and accurately classifying it.

Figure 4 - Elements of DLib-ml. Arrows show dependencies between components (King, n.d.)

21

Following this logic, one would assume that if the model used for training data is almost

perfectly adapted to the data set, this will in turn, increase the model accuracy. Nevertheless,

this is not the reality, an extremely adapted or fitted model will perform poorly with future

data sets, because it will be unable to take into account the random noises found in future

data sets, this phenomenon is called overfitting. At the same time, if the model does not fit

the training set properly it will miss most of the trends as well as noises, this is called un-

derfitting.

When a model does not have the flexibility to accurately fit the training data set, this model

is unable to properly capture the true relationship between the parameters that made up the

training set. This inability to capture the true relationship is called Bias in ML. A model that

cannot properly capture the true relationship between the parameters has a relatively large

amount of bias. On the other hand, if a model fits the relationship between parameters in the

training set extremely well, this model then has little bias due to its great flexibility. In this

case, if the model perfectly captures the relationship within the training set, when it needs to

be ran through the testing set, the model won't be able to properly capture the trend and won’t

fit over the new set, in ML the difference in fits between data sets, testing and training is

called Variance.

The dilemma becomes clear, a model can show low bias (its flexible and adapts to the rela-

tionship curve between the parameters) but it will also show high variability (it results in

different sums of squares for different data sets), as a result it’s hard to know how well this

model will perform with future data sets. It may do extremely well, or it may be completely

wrong. On the other hand, if a model has relatively high bias (it cannot capture the curve of

the relationship between the parameters) but it has relatively low variance (the sum of

squares are similar for different data sets), this model more often than not, will have consist-

ently good predictions. This dilemma, or trade-off, is referred to as the Bias/Variance trade-

off, this trade-off appears under a vast variety of conditions, as it displays the fundamental

nature of generalizing any data that entail a mix of common and random elements (Briscoe

and Feldman, 2011). This dilemma can be better visualized by plotting how complex a model

is (model complexity) against its accuracy (Fig.5), one can observe that accuracy rises to a

certain degree, after it hits a threshold the accuracy of the model starts decreasing the more

complex the model is.

22

1.1.6 Regression Trees

An essential part of face swapping is face alignment, which has improved greatly due to its

shape regression framework. This process is a chain of facial landmarks coordinates, re-

peated and updated many times over with a cascade of regression trees (Fig.6), taking the

current shape estimation and a new shape increment are calculated in each tree until a final

shape estimation is reached (Lee et al., n.d.).

The concept of what a regression tree is and why it is such an accurate, robust and effi-

cient framework is better understood if it’s broken down to its basic parts. In a decision tree

each stage asks a “question” and then based on the answer, the data is classified into catego-

ries or numbers, usually the “question” can be answered with a true or false statement. The

top of the tree is called the root node and the subsequent nodes are the internal nodes, at the

bottom there’re leaf nodes.

Figure 5 - A schematic illustration of generalization accuracy as a function of model com-

plexity, illustrating the bias-variance trade-off. (Note: model complexity here is schematic

and differs from the measure used in subsequent graphs.) (Briscoe and Feldman, 20111)

Figure 6 - A selected prediction result on the 300-W dataset using cGPRT. The shape estimate is

initialized and iteratively updated through a cascade of regression trees: (a) initial shape estimate,

(b)–(f) shape estimates at different stages of cGPRT (Lee et al., n.d.).

23

Regression trees and classifications are ML approaches for building prediction models from

data. The model is acquired by recurrently separating data and fitting a straightforward pre-

diction model within each separation. Consequently, a decision tree can be used to visually

represent the separation. With regression trees, variables are dependent, can take continuous

or ordered discrete values and prediction error can be calculated by using the difference

between predicted and observed values squared (Loh, 2011).

1.1.7 Support Vector Machines (SVM)

Given a data set, when a threshold is used and it gives the largest margin to make classifica-

tions, a maximal margin classifier (MMC) is employed. MMC can be extremely useful, but

what if our data set is not consistent, MMC are super sensitive to outliers in the training data

set, thus they have their limitations. In order to make a threshold that is not so sensitive to

outliers, misclassifications must be allowed. When misclassifications are allowed the dis-

tance between the observations and the threshold is called a soft margin. To improve upon

the soft margin cross-validation is used to determine how many missed classifications and

observations to allow inside of the soft margin to get the best classification. When a soft

margin is utilized to determine the location of a threshold, then a soft margin classifier AKA

a Support Vector Classifier is applied to classify observations, the name Support Vector

classifier comes from the fact that the observations on the edge and within the soft margin

are called support vectors.

Support Vector Machines show a remarkable performance when it comes to inadequate,

sparse and tumultuous data (Cortes and Vapnik, 1995). If a SVM is applied for classification,

they are capable of separating labelled training data sets with a hyperplane that is as distant

from the data as possible. They can also work with cases where nonlinear separation is re-

quired, as they use kernels that systematically recognize a non-linear charting to a feature

space, then the SVM calculates the new hyperplane to create a non-linear border (Furey et

al., 2000). For SVM to properly work, the fact that some features space will be large needs

to be highlighted, since the hyperplane requires the ability to generalize data points well and

not every hyperplane will be able to generalize well. The concept of optimal hyperplanes

addresses this issue, an optimal hyperplane is a linear decision function with maximal mar-

gin between the vectors of the two classes (Fig.7) (Cortes and Vapnik, 1995).

24

Figure 7 - An example of a separable problem in a 2-dimensional space. The support vectors,

marked with grey squares, define the margin of largest separation between the two classes.

(Cortes and Vapnik, 1995).

1.1.8 Histogram of Oriented Gradients (HOG)

The HOG technique is used for detecting semi-rigid objects within an image, it depends on

the concept that the angle or directions of the edges and the intensity of the gradients holds

really important information. With this information a program would be able to estimate the

structure and aspect of an object within an image (Dalal and Triggs, 2005). This method,

summarized in (Fig.8), allows a group of histograms to be calculated quickly from the im-

age, the histograms are the magnitudes of the gradients in accordance with the direction of

the gradients in a block of the image (Dalal and Triggs, 2005).

It makes it possible to generate a feature for each key point, and its neighbouring area, a

division of small blocks occurs and for each pixel inside the block a local histogram of gra-

dient directions is calculated. The final result from all of the histogram is the descriptor.

Additionally, for each block the gradient feature vectors are calculated, these vectors are

compounded to obtain the feature vector for a single image (frame), then, once all vectors

from different images are chained to form one long vector, this vector is the HOG feature

vector, later this vector will be applied as an input for the SVM classifier (Dalal and Triggs,

Figure 8 - An overview of our feature extraction and object detection chain. The detector window

is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient feature vectors

are extracted. The combined vectors are fed to a linear SVM for object/non-object classification.

The detection window is scanned across the image at all positions and scales, and conventional

non-maximum suppression is run on the output pyramid to detect object instances, but this paper

concentrates on the feature extraction process. (Dalal and Triggs, 2005)

25

2005). In a previous face detection research, while comparing different frontal face detection

approaches in video sequences (Adouani et al., 2019), they learnt that the HOG with SVM

is the approach with the highest accuracy and it displayed the best performance. It finds

14.45% more faces than the next detector, the HAAR like cascade and 32.31% more faces

than in the Linear Binary Pattern cascade (LBP). Furthermore, it also reached the highest

detection rate at 92.68%. The HOG method also decreases false positive by at least an order

of magnitude when compared to the HAAR detector (Dalal and Triggs, 2005).

1.1.9 Face Alignment

In digital images, the geometric shape of human faces can be determined thanks to face

alignment technology. As previously mentioned, the most efficient way to detect a face is to

know which are the facial features the programs needs to look for and consequently detect

their coordinates in order to assess if there's one or more faces in the image. These facial

features become the regions of interest (ROI) or landmarks of the face. Subsequently, the

facial key points can be found within this ROI, they include the centres and edges of the

eyes, eyebrow, nose, mouth and jaw (Longpre and Sohmshetty, n.d.). In the 2014 Kazemi

and Sullivan paper (Kazemi and Sullivan, 2014) a new algorithm was introduced that was

able to do face alignment in milliseconds with higher or competitive accuracy when com-

pared to cutting edge methods on common data sets of the time. The speed improvement

comes from their understanding of previous face alignment algorithms, finding their vital

points and assembling them in a simplified design and then into a cascade with superior

regression functions power, that are learnt via gradient boosting. In other words, they show

that face alignment can be done quickly using a cascade of regression functions. Each re-

gression function is capable of assessing the shape from an initial assessment and the level

of a thin set of pixels listed in relation to the initial assessment.

They addressed the elements that commonly exist among the most successful algorithms.

One element is cataloguing the pixel intensities relative to the current assessment of the

shape. The facial features that need to be extracted from an image can differ greatly from

one another due to deformation and nuisance factors, like changes in lighting conditions. If

one is to use these features, further shape estimations become highly complicated. The pre-

dicament involves the need for reliable features to be able to precisely predict the shape,

while at the same time the algorithm needs precise shape estimates in order to extract reliable

26

features. The Kazemi and Sullivan research uses a repetitive approach to deal with the pre-

dicament, the cascade approach. Instead of taking the shape parameters from the overall

system of the image, the parameters are taken from the local system in accordance with the

current estimate of the shape, subsequently, an updated vector for the shape parameters is

predicted from it. This approach is repeated until the predicted shape and the pixel intensities

catalogue intersect (Fig. 9).

Figure 9 - Landmark estimates at different levels of the cascade initialized with the mean shape

centred as the output of a basic Viola & Jones face detector. After the first level of the cascade, the

error is already greatly reduced. (Kazemi and Sullivan, 2014)

To regress the position of the facial landmarks from a small subset of intensity values in an

image, a group of regression trees can be used. This algorithm can manage partial or uncer-

tain labels, it already showed to be faster at decreasing the error when compared to other

works.

The DLib library includes an implementation of this trained model for facial alignment cre-

ated by Davis King and has been released into the public domain (King, 2020). Inside of the

DLib library the pre-trained facial landmark detection model is used to find the location of

68 (𝑥, 𝑦)coordinates, each of these 68 points maps onto a facial feature like the eyebrows,

eyes, nose, mouth and jaw (Korshunov and Marcel, 2018) which is trained on in the ibug

300-W dataset and it’s intended use is a alongside DLib’s HOG face detection. It assumes

there will be bounding boxes from the face detector in order to do face alignment.

1.1.10 Euclidean Distance (ED)

A common obstacle in image recognition is how to establish the distance between images(Li-

wei Wang et al., 2005). In short the ED is the measurement of the distance between images

and it’s line distance between two points and for that couple of points it demonstrates the

square differences between their coordinates (Hazim et al., 2016). When working with con-

tinuous data, Euclidean distance will be used as a way to measure dissimilarity, since the

higher the value of the Euclidean distance the more unlike the objects are. The Euclidean

27

distance can be used in as many dimensions as needed, to calculate the ED between two data

points, the difference in each attribute value is calculated then it’s square, then sum for all

values and take the square root of the total summation. After calculating the ED for multiple

data points, a distance matrix can be created to observe how dissimilar the data points are,

the points that are the most similar are the ones that are the closest to each other. For most

object recognition algorithms, the first step is to represent images as points in an Euclidean

space, making Euclidean distance a good candidate to determine the image metrics.

1.1.11 Homography (Computer Vision)

In computer vision, corresponding points are points that depict the same physical points in

two images. A transformation that matches the physical points of one image to the corre-

sponding points in another image is called a Homography. The homography matrix (H) is

defined as a 3x3 matrix (Fig.10) and H can only be defined up to scale (“OpenCV: Basic

concepts of the homography explained with code,” n.d.). Image alignment is possible if all

corresponding points are in the same plane in the real world, if not they won't be aligned by

the homography. If there is more than one plane this means there is more than one homog-

raphy, one per plane. Due to its simplicity in computer vision tasks like obstacle detection,

planes are used because the transformation among a real world plane and its corresponding

image plane is a homography, these connections are also true for different perspective views

of a plane in different images (Vincent and Laganiere, 2001).

Figure 10 - The homography matrix is a 3x3 matrix (“OpenCV: Basic concepts of the

homography explained with code,” n.d.)

28

1.1.12 Ordinary Procrustes Analysis (OPA)

Procrustes analysis is utilized when working with a set of shapes and there’s an interest in

analysing their allocation and distribution. When the non-shape elements like size, position

and orientation are eliminated to extract the shape variation, this is called procrustes super-

imposition (Klingenberg, 2015). There are two types of procrustes fit, let’s focus on the first

type, Ordinary Procrustes Superimposition (OPS), where the movable configuration is su-

perimposed onto another target configuration. Under OPS (Fig.11), in a gradual process be-

tween the movable and the target configuration the variations in size, position and orientation

are eliminated, by using the sum of squared distance between the landmarks points an opti-

mal fit is discovered. The dissimilarity of two shapes can be analysed after superimposing

the two shapes by translating, rotating and scaling them (Chikuse, 1999).

Figure 11 - Procrustes superimposition. The figure shows the three transformation steps of

an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both configu-

rations to the same size; (b) Transposition to the same position of the centre o of gravity; (c)

Rotation to the orientation that provides the minimum sum of squared distances between

corresponding landmarks. (Klingenberg, 2015)

29

2 THE	AIMS	OF	THE	THESIS	

Refactor an Image Face Swapping code, provided by supervisors, with the purpose of

creating face swap code that works with videos, or a Video Face Swap, without utilizing

RAM and CPU expensive Deep or Machine Learning techniques.

1. Identify obstacles the VFS code can overcome in order to create faster and more

realistic looking outputs.

2. Optimize the code to overcome some of the obstacles identified after the results anal-

ysis were completed.

30

3 EXPERIMENTAL	PART		

3.1 MATERIALS	AND	METHODS	

3.1.1 Materials		

In this section the materials employed in the thesis as well as the working conditions set-up

will be addressed.

Computer	

The	computer	used	for	the	thesis	work	is	a	MacBook	Air	(13-inch,	2017),	which	has	a	

processor	Dual-Core	Intel	Core	i5	processor	with	a	processor	base	frequency	of	1.8	GHz	

with	 two	 independent	 cores	 that	 each	 has	 a	 256k	 level	 2	 cache	with	 an	 integrated	

memory	controller.	A	8	GB	1600	MHz	DDR3	of	memory		and	an	Intel	HD	Graphics	6000	

1536	MB	video	card.	

Operating	system	

Since a MacbookAir was employed for the totality of the thesis, the code was written in the

native operative system of MacOS. The versions of the OS used were macOS Mojave 10.14

to current (May 17, 2020) Catalina 10.15. When the OS X was released by Apple, it featured

a fully operating Unix system, one of the most used command-line OS in the world. Other

OS also had similar feautres like Linux or Ubuntu, but the difference being the OS X was a

certified Unix OS (“The Register of UNIX® Certified Products,” n.d.). This is important

because the Unix shell allows the user to run a program without employing a specific IDE

in nearly any language and many tech companies utilize Unix based systems.

Anaconda	

Is an open-source distribution of R and Python programming languages that facilitates

management of packages and development stages for data science and machine learning.

With the aim to fully deliver every need for Python data science, tasks it includes the package

management system conda that is used for keeping versions of the packages updated.

The importance of the conda package manager is the contrast to the usual pip package

manager, when installing a package with pip it does so without verifying if there's a conflict

with packages installed previously. Conda notifies if the installation cannot be done, it

figures out how to install suitable dependencies and it examines if there's any version

limitations in the current environment (including everything that is already installed). There

31

are multiple ways to install a package with anaconda. It can be done through the Anaconda

repository, Anaconda Cloud, the user's own private repository or using the conda install

command. There are available binaries for Windows 32/64 bit, Linux 64 bit and MacOS 64-

bit. Conda can keep track of anything installed in the environment by pip and itself. The

Anaconda distribution also has a graphical user interface (GUI) for desktops called

Anaconda Navigator, it allows Anaconda to manage packages, applications, environments

and more without utilizing command-line commands.

Spyder	

Spyder is a default application found in the Anaconda Navigator, it's an extremely powerful

scientific integrated development environment (IDE) for Python, specially built by and for

data analysts, engineers and scientists. It possesses powerful editing, testing, debugging and

feedback tools as well as a numeric computing environment. The components of the Spyder

IDE are what makes it so powerful. The editor works efficiently with a function/class

browser, code review tools, code autocomplete, etc. the user can employ as many IPython

consoles as necessary with the adaptability of a GUI interface.

Programming	Language	

Just like how humans use languages to communicate, if a human wants to work with a

computer it would need an interface to translate actions (clicks) or words (command lines)

into the desired outputs. A programming language is a set of instructions that the computer

can understand. Each programming language has its own syntax that are adapted to their

respective domains.

Python	

The base code was written in python and given that this is the programming language I

manage the best and that it also has excellent computer vision, machine learning and data

science bindings, packages and libraries that function as the foundation of this thesis, the

adapted and updated version of the code is also written in python.

Libraries	

To explain what programming libraries are let’s use the example of real world libraries. One

goes to the library to gain access to previously existing knowledge, this way you don't need

to start from zero. Software libraries use this logic to offer already existing logic to solve

problems with functions built inside the libraries.

32

OpenCV	

This library was built to solve computer vision problems, starting from reading an image in

the path folder and displaying it, to image transformation and operations like grayscaling,

thresholding, blurrin, erosion, etc. this library is required for the multiple modifications that

need to be applied to the images.

Numpy	

Numpy is a library for research computing in Python it adds support for vectors and matrices.

Consisting of higher mathematical functions to handle vectors and matrices its primary

function is its N-dimensional array data structure. As opposed to Python’s data structure the

numpy arrays are uniformly typed, meaning that all elements of a single array must belong

to the same type.

DLib	

As explained in the literature review in more detail, DLib is a multi-purpose software library

initially written in C++ but with excellent Python bindings. This library is mainly used in

this thesis for its components with data structure, machine learning, image processing and

face detection.

DLib	Face	Detector	

DLib contains a face detector that finds the frontal faces of humans in images and creates a

bounding box that is overlapped onto the face. The detector uses a Support Vector Machine

(SVM) linear classifier and a Histogram of Oriented Gradients (HOG) to detect human faces.

DLib	Model	

DLib’s facial detector has pre-trained models built by Davis King to estimate poses. The

models are used to estimate poses. The model specifically built to find human faces was

based in the famous Kazemi-Sullivan paper (Kazemi and Sullivan, 2014), which was trained

with the ibug 300-W face landmark dataset (“i·bug - resources - Facial point annotations,”

n.d.). Dlib’s facial detector has a pre-trained model that estimates the shape of the face

through mapping the facial features by location of 68 (𝑥, 𝑦) coordinates. The 68 coordinates

index the location of the mouth, right eyebrow, left eyebrow, right eye, left eye, nose, jaw

(shape_predictor_68_face_landmarks.dat) (Fig.12).

33

Figure 12 - The 68 points mark-up used for our annotations (“i·bug - re-sources - Facial

point annotations,” n.d.)

SciPy	

SciPy is a free and open source library. It is composed of algorithm and mathematical tools.

Scipy has modules for Fourier Transform, optimization, special functions, linear algebra,

signal and image processing. Scipy helps with the Euclidean distance function among two

1-D arrays.

Time	

Time is a Python module that can manage tasks related to “time” and represent it in code in

different ways like objects, numbers and string. It can also be used to measure how efficient

the code is and to name outputs based on the date and time they were created.

Date	time		

In python, dates are not a data type, a module built to manage dates and times as data types

need to be imported. By importing the module and executing datetime.datetime.now()

command a new object will be created, containing the current year, month, day, hour, minute,

second and microsecond of when the command was executed.

Line	Profiler	

A module to profile the time each line in a python script takes to execute. Using a built in

magic command in Spyder (%prun), the external package line_profiler is called (works just

like the import command). After the run command completes a txt file with the number of

34

calls of a line/function, the time it took for each line/function and the total time it took the

code ro run from start to finish will be printed on the txt file.

Inputs	for	the	faces	

To determine the source face, an image of president Donal Trump was used. The image is a

JPEG color image, JPEG is a method of compression for digital images. For the target face

a video file was used to to detect the target face. The main video “face2” is an MP4 file with

250 frames, the MP4 format is a digital multimedia container format, it's called contained

because it can compress a variety of data in its files. Due to its high compression power it

permits its files to be smaller in size without decreasing the quality of the file when compared

to other video formats, this is why MP4 is the most common video format for web content.

3.1.2 Methods	

In this section the methods used for video face swapping will be explained. For the program

to work properly the following elements need to be in the folder path where the code is; An

image with a face in it, this image will become the source image, for the thesis a color image

of president Donald Trump was used (“trump3.jpeg”) as the source image. A video file, its

frames will be used as a target image, the video can be a pre-recorded video, if no video file

is available the live feed of the web camera can be used as well. The pre-trained shape

predictor model for 68 face landmarks (shape_predictor_68_face_landmarks.dat) also needs

to be in the folder.

Upon establishing the initial variables the face swapping process starts by calling the

faceswap function and loading the source image and the target image into it.

The process breaks down into five steps and each step includes one or more methods:

1. Face Detection

2. Facial Landmarks Detection

3. Image Transformations

4. Color Correction

5. Image Blending

35

Inside the faceswap function, six other functions are called before returning the face

swapping as an output, new variables are created to make the calculation easier to follow

along.

3.1.2.1 Face	Detection	and	Facial	Landmarks	Detection	

The Face Detection and Facial Landmarks Detection steps happen in the get_landmarks

function. As explained before, DLib uses an implementation of the Kazemi-Sullivan

algorithm (Kazemi and Sullivan, 2014) to identify the facial landmarks from a face bounding

box. The application of this implementation is actually quite simple. Within the get

landmarks function, an empty array is created to store the 68 (𝑥, 𝑦) landmarks coordinates

from the source image and target image at the end of this function, resulting in two landmark

matrices. Then using the face detector to locate and create a list of the rectangles that

correspond to the face bounding boxes in an image. The bounding boxes are used in the

feature extractor as an input for the Kazemi-Sullivan algorithm. This algorithm requires a

the pre-trained shape predictor model for 68 face landmarks.

3.1.2.2 Image	Transformation	

The Image Transformation step is where the majority of the calculations happen. The source

image needs to be aligned and mapped onto the target image. Now that there’s two landmark

matrices, each row within a matrix contains coordinates to an specific facial feature, the two

faces can be aligned using procrustes analysis in the get_M function. Each coordinate is a

point that needs to be rotated, translated and scaled to fit the landmark key points of the

source image over the landmark points of the target image.

First, the input matrices need to be turned into floats, then the centroid has to be subtracted

from each point, subsequently each point needs to be divided by its standard deviation. This

is done in order to remove the scaling component, next rotation needs to be calculated

through Singular Value Decomposition (SVD) (Cao, n.d.). SVD is a data dimensionality

reduction technique that breaks down a matrix into three matrices (U, S, V) to reduce noise

and redundant information. U is the left singular vector and it contains important non

redundant information about observations, S is the diagonal matrix and it contains the entire

information about the decomposition process and V is the right singular vector and it

contains important non redundant information about features. The result is an affine

transformation matrix (Yan et al., 2007)(Yao et al., 2001) that can be used as the input for

36

the warping function. In an affine transformation matrix a combination of linear

transformations, such as scaling and rotation with translations occurs. During affine

transformation points, straight lines, planes, parallel lines, and the ratio of distance between

the points that lay on the same straight line are preserved. What affine transformations do

not preserve are the angles between the lines and the distance between the points, because

they might not be in the same 2D plane they originally were from, therefore the angle and

distance may differ due to the change in planes.

Before getting to the warping function warp_img, the get_mask function is required in order

to get the two masks needed for both images and their landmark matrices, as well as to

establish what parts of both images are going to be used in the last step. An area with value

1 (White) matches the sections where the source image should be displayed, and areas on

black (Value 0) match the areas where the target image should be displayed. The area where

the values fall between 0 and 1 are where the source and target image will be mixed. This is

done by drawing two convex polygons (in white), one encircling the eyes and the other the

mouth and nose. The edges of this mask are blurred towards the outside by 11 pixels, this is

done to prevent the mask border from showing. This is done for both images in the warp_img

function, the affine matrix that was obtained in the procrustes analysis function to align both

images.

3.1.2.3 Colour	Correction	

In the Colour Correction step the color difference between the two images is corrected.

Because both images are not only from different people but were also taken under different

conditions (skin color, light, facial hair, etc.), the source image conditions need to match the

target image conditions, otherwise the result will create a disconnect in the borders of the

superimposed area. This is done in the correct_color function by diving source image and a

gaussian blur of the source image and multiplying the result by the gaussian blur of the target

image, this is a mathematical color balancing method called scaling monitor R, G and B

(Viggiano, 2004), but rather than having a single scale factor for all the image, localised

scale factor is assigned to each pixel. This method covers the differences in light conditions

between the two images to a certain degree. A good example of this is how in the source

picture (Donald Trump) the light is coming from cameras flashes or another light source in

front of Donal Trump, while in the video that is the target image (my face), the light comes

from the window in the back and a light on top of my face, the color correction fixes the

37

light condition in the source image so it also looks like the light is coming from behind and

above so it matches the target image. For this method a suitable kernel size is key, if the size

is too small the facial features from the target image will show up, even when they are

underneath the source image features, too big and discoloration happens.

3.1.2.4 Image	Blending	

In the final step, Image Blending, the two masks are combined by element-wise maximum

in the mask_img function. This guarantees that the features of the target face are covered

with the features of the source image. Then it applies alpha blending to overlay the

foreground image (source image) mask, on top of the background image mask (target

image).

For analysis a line profiler already installed in Spyder was utilized to get the time it takes

the code to run and how many times each function is called.

 	

38

3.2 RESULTS	

The results are going to be divided in stages since the refactored code had to be tested with

every new iteration of the code.

3.2.1 First	result	

During the first stage of experiments, the newly refactored code was not returning any out-

puts, only errors. Meaning that the code couldn't run from start to end. After debugging line

by line, the error was found to be that when the video frame didn't have a face (no person is

present in the frame or the face is obstructed) the get_landmarks function returned a None

type data when it was supposed to return a matrix with the (𝑥, 𝑦) coordinates of the facial

landmarks key points. The None type output cannot be used in further functions since a None

type data cannot be used for calculations. To fix this error a try-except loop was used inside

the while loop in order to try run the faceswap function and if there was any problem to run

the exception part of the code and print the exception to know what the problem was. Addi-

tionally, a pass command was used inside the get_landmarks functions so it returned an

empty matrix instead of a None type data.

3.2.2 Second	result	

In the second stage of experiments, the target image was a live feed from my laptop webcam

and the output was shown using an imshow command to open up a new window to see the

live results of the code. Using the webcam live feed as the target image was replaced with a

pre-recorded MP4 video due to an error with Macs where the imshow window cannot be

closed using keyboard commands, the code just freezes. For this particular error I tried many

of the suggested solutions found in programming forums like Stack Overflow or Github but

nothing worked, for the sake of simplicity and since I needed to record the outputs, the target

image was changed to a pre-recorded video.

3.2.3 Third	result	

In the third stage of experiments, satisfactory results were obtained. Video Face Swap was

performed in all frames of an MP4 video. The problem now was that the code took between

39

7-11 minutes (Fig.13) to produce a 25 seconds face swap video from an original 8 sec video

with 250 frames. The code was analysed with the aim to discover why the code took so long.

After running a line profiler in Spyder to get the execution time for each function (Fig.14)

and how many times each function was called (Fig.15), it was discovered that the landmarks

for the source image were getting calculated all over again for each new video frame, this is

counterproductive since only the video frames have different and new landmarks on each

frame, while the Donald Trump image landmarks remains the same throughout the process.

The code was changed to ensure that the source image landmarks were calculated once at

the beginning of the code and that these values are saved and used alongside each new target

image (frame) landmarks.

Figure 13 - Total time the Python script took calculating VFS for all 250 frames, the code

was tested 10 times to avoid errors in the measurements.

40

Figure 14 - The total execution time of each function, VFS was calculated for all 250 frames,

the code was tested 10 times to avoid errors in the measurements.

Figure 15 - The number of times a function was called from start to end in the Python code,

VFS was calculated for all 250 frames, the code was tested 10 times to avoid errors in the

measurements.

41

3.2.4 Fourth	result	

After the code was optimize, the output was an identical video to the one obtained in stage

3, however, the difference was that now it took between 3-6 minutes to calculate (Fig.16)

face swap in all 250 video frames.

Figure 16 - Total time the Python script took calculating VFS for all 250 frames when the

source image landmarks were calculated once at the begging of the code, the code was tested

10 times to avoid errors in the measurements.

3.2.5 Fifth	result	

The next optimization was to reduce the time it took to create an output video. The strategy

employed was to perform VFS every other frame instead of performing it in all frames in

the video. First, this was tested by calculating VFS every 2 and 3 frames. When VFS was

calculated every 2 frames, the code took 1-3 minutes to process half of the frames (Fig.17).

While for every 3 frames, the code took between 1-2 minutes to calculate for a third of the

frames. The frames where VFS was not calculated were discarded and not used to create the

output video (Fig.18). This resulted in creating a 8 secs video as an output for VFS every 3

frames, which matches the length of the original input video for the target image.

42

Figure 17 - Total time the Python script took calculating VFS for half the frames, the code

was test-ed 10 times to avoid errors in the measurements.

Figure 18 - Total time the Python script took calculating VFS for a third of the frames, the

code was tested 10 times to avoid errors in the measurements.

43

3.3 DISCUSSION	

This section will be focused on discussing the background research, methodology and results

involved with this thesis. While discussing the results the thesis questions are gonna be

answered, obstacles and problems identified, and future research and work is proposed.

Thesis Questions

The following are the theis questions that are going to be answered. In order to do this, the

research background and results will be analyzed.

1. Is it possible to refactor the Image Face Swapping code to work on videos? What are

the main differences between the codes?

2. How does this VFS compare against other face swapping (Image and videos)

approaches?

Answering Q1: Video Face Swapping code

As mentioned before, the original code for Image Face Swapping, can be broken down to 5

steps; Face Detection, Facial Landmarks Detection, Image Transformation, Colour

Correction and Image Blending. These steps have been explained in more detail in the

methods section of the thesis. The whole process can be summarized as getting a mask from

a source image that covers the Region Of Interest (ROI) of the face (eyebrows, eyes, nose,

mouth and jaw), then that mask is aligned, scaled and translated onto the mask face region

of the target image, finally color correction is performed such that the color condition of the

source face matches the color of the target face and then two mask regions are blended

together and a face swap is obtained.

When a video is used as a target image, the core idea is to grab each video frame and treat it

as a single image, then perform a similar process to the one used in Image Face Swapping.

Then the process is repeated for every frame in the video, or as the results showed, if the

input video is a MP4 video the VFS calculations can be done every 3 frames and still create

realistic outputs while at the same time reducing the calculation time and length of the output

video.

44

The approach in the VFS changes a bit different in comparison to the original Image Face

Swapping code. The IFS iterates once, since it only calculates the facial landmarks once for

each image, while for the calculation process for VFS code can be extended a lot depending

on the quality and length of the input video, if the quality of the video is good, VFS

calculations can be done every other frame and the output will still look realistic, if the

quality of the video is poor, the output which is made by stitching together the face swapped

images, it will be apparent that some frames are missing and the face swap illusion will be

lost. Unfortunately, due to technical problems while testing VFS with live feed from the

webcam, I do not have concrete numbers when it comes to the processing time using live

videos.

As shown in the results another key difference is that for every new video frame a new facial

landmark matrix needs to be calculated, this is one of two key causes for delay in the

processing time. The second key cause is the warping calculation, when the mask as well as

the source image itself has to warp onto the shape of the target image using affine matrix

transformation. This calculation has to be done twice for every frame where VFS is done, in

other words if in 50 frames VFS is going to be dcalculate the warping function will be

executed 100 times. However, it needs to be pointed out that even when the warping function

is executed twice, the time it consumes is nothing when compared to the time used in the

get_landmarks function.

More differences are discovered in the results of the VFS code, since it’s a dynamic process,

some distortions occur that take away from the face swapping illusion. Examples are

highlighted in the (Fig.19), where one can see some parts of the source image mask are out-

of-bounds front the target image mask region resulting in an eye or eyebrow to be floating

outside the face boundary when the face turns to the sides. Another example is how the

blurring has to be calculated carefully, if the kernel size is too small the facial features of the

target image will show through the source image mask but if it's too big the facial features

of the source image will stray outside of the face boundary.

45

Figure 19 - Distortions in output video, highlighted in red, the source image mask is out of

boundaries while the face is turned to the sides, highlighted in green are the blurring kernel

size problem.

Conclusion:

It's possible to refactor the IFS code to work with video as long as the necessary requirements

are met. The first requirement would be to choose carefully the inputs for both the target and

source image, it's better to employ a high resolution image with a high quality video. If the

source image has a low resolution the output face might look pixelated due to beign stretched

to fit over the target face. Next, make sure that the facial landmarks are calculated

accordingly, once at the beginning of the code if the source image input is an image and one

time for each new image if the target image is a video. This will greatly impact the overall

performance of the program. Subsequently, the code was to work even when there are no

faces in the video, or the face is obstructed by turning the face to the sides or blocking it with

an object or hand. Finally, in order to find the best rate at which VFS calculations need to be

done, multiple code runs need to be performed, this rate will change depending on the length

and quality of the video.

Answering Q2: Face Swapping Approaches Comparison

Current face swapping programs can be separated into three categories (Chen et al., 2019);

replacement-based, model-based and learning-based. The face swapping used and refactored

in this thesis fall under the first category, replacement based. Under this method a face region

(mask) in the target image is replaced with the face region of a source image and implement-

ing image processing approaches to mend any distortion or difference between the source

46

and target image. A disadvantage of this method is that it is unable to retain some facial

characteristics from the target face since the idea is to overlay the mask of the source image

on top of the mask region of the target face. On the other hand, some advantages are the

streamline algorithms and functions as well as the initial set up being minimal after the re-

factoring was done. This code doesn't employ more advanced Machine or Deep learning, but

it can still deliver realistic results. It relies on common transformations to scale, rotate and

translate the two landmark matrices, and while these methods sound quite complex their

implementation is straightforward when both the source and target are images.

The second category, model-based face swapping a 2D or 3D model is made in order to

stand in for a human face, the specifications and features of the model are adapted from the

target image. Then a reconstruction based on the features of the source image is performed

onto the model. Some example algorithms (Hong-Xia Wang et al., 2008) of this category

require manual set up and a pre-made 3D model, which would require a certain amount of

faces for model training, other algorithms (Lin et al., 2012) tried fixing these shortcomings

by constructing 3D models based on frontal face images but the resulting 3D model does not

truly reflect the original face parameters and calculations take too much time out of the entire

process.

In the final category, learning-based face swapping approaches use a target images to train

a neural network that already has the information of the source image. This way a convolu-

tion neural network model can swap the face of the target image with the face from the

source image while retaining the light conditions, facial expression and posture of the target

image (Korshunova et al., 2017). Clear advantages of this methods are the realistic output

created by the model, on the other hand the the model needs a lot of training and testing

while using a lot of computational power, additionally the model will only work on a single

target individual at a time.

Conclusion:

While other face swapping programs have no problem using a video as either a source or

target, they mainly utilize machine learning and 3D modelling approaches to create realistic

47

outputs, and while the result might fool the human eye more than the replacement-based

model I use in the thesis, they require a great deal of manual set up and computations to run

the face swapping network in a single target individual, while the replacement-base methods

can be tested multiple times with multiple target individuals and still get satisfactory results.

Future Work

This part will propose future works that could help solve the current obstacles and limitations

of the code as well as other potential uses for the code.

Perfil Face Detector

One of the shortcoming of the code was that when the face was turned to the sides it either

did not perform VFS or it showed the source mask out of bounds from the target image and

it breaks the face swapping illusion for those brief moments. There can be multiple ways to

possibly solve this problem. Regardless of which path one chooses to go, a good tool to have

in any path forward is to train a facial landmarks keypoint model similar to the 68-points

model used in the thesis. That model was trained with frontal faces and it shows problems

assigning the coordinates when the face is turned to the sides (Fig.20). In order to create a

perfil face detector and to assign the (𝑥, 𝑦) coordinates properly to the facial landmarks when

the face is turned to the sides, DLib library offers the option to train your own object

detection model, therefore it is possible to train a model for perfil faces using DLib’s library

and Python.

Figure 20 - Current facial landmarks key points for the 68 points model while the face is

turned to the sides.

Retaining Target Image Pose

48

Continuing the problem stated above, when the face is turned to the sides the source image

mask is outside of the target face boundary. Considering the facial landmarks keypoint

assignment are for (𝑥, 𝑦) coordinates the Z coordinates are missing, consequently the code

is missing the information to know in which direction (front and back) the target moved and

creating a 3D model from the 2D information is difficult. An approach to solve this could be

to calculated the distance between the jaw keypoints and the eyes, nose and mouth keypoints,

this is better illustrated in (Fig.21) where it shows that when the face is turned to the side the

distance between the two sets of keypoints is smaller than when the face is looking toward

the camera. With this information a new mask can be created to fit the face when it is turned

to the sides.

Figure 21 - Difference in distance between the jaw key points and the eyes, nose and

mouth key points when the face is turned to the side and when is turned toward the camera.

Face Swapping with Facial Expressions

Since this face swapping approach is replacement-based, when the mask is overlaying the

target face it becomes impossible to show any facial expression, like any mouth movements

that the target face is making. A possible approach is to create a separate dedicated mask for

each facial feature so it moves accordingly to the expression of the target, this might create

a face swapping that looks like a picasso painting, but the information obtained in this

approach can be helpful to further improve the results in the future.

49

SUMMARY	

In summary the aims of the thesis were achieved, the Image Face Swapping code was

successfully refactored to work with videos and without utilizing ML approaches like

Convolutional Neural Networks or Generative Adversarial Networks. After performing a

satisfactory VFS, the results were analysed in order to find sections to improve within the

code. The result and performance information are summarized in the following Table 2:

Name of Code Total time

(sec)

(average

of 10

tests)

Number

of

frames

Length of

video (Sec)

Number of Calculations

input output Frames

per

VFS

Target

image

landmarks

Source

image

landmarks

vsf_main.py 557.7725 250 8 25 1 250 250

vsf_main_updated.py 265.8103 250 8 25 1 250 1

vsf_main_experiments.py 149.6364 250 8 13 2 250 1

vsf_main_experiments.py 102.709 250 8 8 3 250 1

Table 2 - Summary of results

The problems and obstacles found in the code were:

1. Source image facial landmarks were calculated 250 times.

2. Calculating VFS for all frames was slowing the process to a degree that the time

period for processing 250 frames was 69 times larger than the length of the input

video.

3. Some distortions appeared when the face was turned to the sides; some sections of

the source image mask were outside the target image face boundary, at a certain angle

when the face is turned it looks like the target person has two noses.

4. The blur kernel size was too small and in certain frames the eye movement of the

target image was visible.

5. A computer with better memory capabilities will improve the performance of the

code.

Upon identifying these obstacles, the code was optimized through calculating the source

image face landmarks once at the beginning of the code and saved to be used alongside each

50

new target image facial landmarks. Next VFS was performed for half and third of the video

frames instead of calculating VFS in all frames of the video. Finally the blur kernel size was

increased to prevent the target image eye movements to show through the source image

mask.

51

REFERENCES	

Adouani, A., Ben Henia, W.M., Lachiri, Z., 2019. Comparison of Haar-like, HOG and
LBP approaches for face detection in video sequences, in: 2019 16th International
Multi-Conference on Systems, Signals Devices (SSD). Presented at the 2019 16th
International Multi-Conference on Systems, Signals Devices (SSD), pp. 266–271.
https://doi.org/10.1109/SSD.2019.8893214

Annan Li, Shiguang Shan, Wen Gao, 2012. Coupled Bias–Variance Tradeoff for Cross-
Pose Face Recognition. IEEE Trans. Image Process. 21, 305–315.
https://doi.org/10.1109/TIP.2011.2160957

Boyko, N., Basystiuk, O., Shakhovska, N., 2018. Performance Evaluation and Comparison
of Software for Face Recognition, Based on Dlib and Opencv Library, in: 2018
IEEE Second International Conference on Data Stream Mining Processing
(DSMP). Presented at the 2018 IEEE Second International Conference on Data
Stream Mining Processing (DSMP), pp. 478–482.
https://doi.org/10.1109/DSMP.2018.8478556

Bradski, G.R., Kaehler, A., 2011. Learning OpenCV: computer vision with the OpenCV
library, 1. ed., [Nachdr.]. ed, Software that sees. O’Reilly, Beijing.

Briscoe, E., Feldman, J., 2011. Conceptual complexity and the bias/variance tradeoff. Cog-
nition 118, 2–16. https://doi.org/10.1016/j.cognition.2010.10.004

Cao, L., n.d. Singular Value Decomposition Applied To Digital Image Processing 15.
Chen, D., Chen, Q., Wu, J., Yu, X., Jia, T., 2019. Face Swapping: Realistic Image Synthe-

sis Based on Facial Landmarks Alignment. Math. Probl. Eng. 2019, 1–11.
https://doi.org/10.1155/2019/8902701

Chikuse, Y., 1999. Procrustes analysis on some special manifolds. Commun. Stat. - Theory
Methods 28, 885–903. https://doi.org/10.1080/03610929908832332

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273–297.
https://doi.org/10.1007/BF00994018

Craw, I., Tock, D., Bennett, A., 1992. Finding face features, in: Sandini, G. (Ed.), Com-
puter Vision — ECCV’92, Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, pp. 92–96. https://doi.org/10.1007/3-540-55426-2_12

Dai, Y., Nakano, Y., 1996. Face-texture model based on SGLD and its application in face
detection in a color scene. Pattern Recognit. 29, 1007–1017.
https://doi.org/10.1016/0031-3203(95)00139-5

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection, in: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). Presented at the 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05), pp. 886–893 vol. 1.
https://doi.org/10.1109/CVPR.2005.177

Dale, K., Sunkavalli, K., Johnson, M.K., Vlasic, D., Matusik, W., Pfister, H., 2011. Video
face replacement.

deepfakes, 2020. deepfakes/faceswap.
dlib C++ Library [WWW Document], n.d. URL http://dlib.net/ (accessed 4.8.20).
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.,

2000. Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 16, 906–914.
https://doi.org/10.1093/bioinformatics/16.10.906

52

Garrido, P., Valgaerts, L., Rehmsen, O., Thormaehlen, T., Perez, P., Theobalt, C., 2014.
Automatic Face Reenactment, in: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. Presented at the 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, Columbus, OH, USA, pp. 4217–4224.
https://doi.org/10.1109/CVPR.2014.537

Hazim, N., Sameer, S., Esam, W., Abdul, M., 2016. Face Detection and Recognition Using
Viola-Jones with PCA-LDA and Square Euclidean Distance. Int. J. Adv. Comput.
Sci. Appl. 7. https://doi.org/10.14569/IJACSA.2016.070550

Hjorth, L., 2012. Studying Mobile Media: Cultural Technologies, Mobile Communication,
and the iPhone, 1st ed. Routledge. https://doi.org/10.4324/9780203127711

Hong-Xia Wang, Chunhong Pan, Haifeng Gong, Huai-Yu Wu, 2008. Facial image compo-
sition based on active appearance model, in: 2008 IEEE International Conference
on Acoustics, Speech and Signal Processing. Presented at the 2008 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp. 893–896.
https://doi.org/10.1109/ICASSP.2008.4517754

i·bug - resources - Facial point annotations [WWW Document], n.d. URL
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ (accessed 4.17.20).

International Conference on Computer and Communication Technologies, Satapathy, S.C.,
Raju, K.S., Mandal, J.K., Bhateja, V., 2016. Proceedings of the second Interna-
tional Conference on Computer and Communication Technologies: IC3T 2015.
Volume 3 Volume 3.

Jie Yang, Waibel, A., 1996. A real-time face tracker, in: Proceedings Third IEEE Work-
shop on Applications of Computer Vision. WACV’96. Presented at the Proceedings
Third IEEE Workshop on Applications of Computer Vision. WACV’96, pp. 142–
147. https://doi.org/10.1109/ACV.1996.572043

Junior, J.C.S.J., Ozcinar, C., Marjanovic, M., Baró, X., Anbarjafari, G., Escalera, S., 2019.
On the effect of age perception biases for real age regression. ArXiv190207653 Cs.

Kazemi, V., Sullivan, J., 2014. One millisecond face alignment with an ensemble of re-
gression trees, in: 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition. Presented at the 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Columbus, OH, pp. 1867–1874.
https://doi.org/10.1109/CVPR.2014.241

Kietzmann, J., Lee, L.W., McCarthy, I.P., Kietzmann, T.C., 2020. Deepfakes: Trick or
treat? Bus. Horiz., ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
63, 135–146. https://doi.org/10.1016/j.bushor.2019.11.006

King, D.E., 2020. davisking/dlib-models.
King, D.E., n.d. Dlib-ml: A Machine Learning Toolkit 4.
Kjeldsen, R., Kender, J., 1996. Finding skin in color images, in: Proceedings of the Second

International Conference on Automatic Face and Gesture Recognition. Presented at
the Proceedings of the Second International Conference on Automatic Face and
Gesture Recognition, pp. 312–317. https://doi.org/10.1109/AFGR.1996.557283

Klingenberg, C.P., 2015. Analyzing Fluctuating Asymmetry with Geometric Morphomet-
rics: Concepts, Methods, and Applications. Symmetry 7, 843–934.
https://doi.org/10.3390/sym7020843

Korshunov, P., Marcel, S., 2018. Speaker Inconsistency Detection in Tampered Video. pp.
2375–2379. https://doi.org/10.23919/EUSIPCO.2018.8553270

Korshunova, I., Shi, W., Dambre, J., Theis, L., 2017. Fast Face-swap Using Convolutional
Neural Networks. ArXiv161109577 Cs.

Lanitis, A., Taylor, C.J., Cootes, T.F., 1995. Automatic face identification system using
flexible appearance models. Image Vis. Comput. 97–12.

53

Lee, D., Park, H., Yoo, C.D., n.d. Face Alignment using Cascade Gaussian Process Re-
gression Trees.

Leung, T.K., Burl, M.C., Perona, P., 1995. Finding faces in cluttered scenes using random
labeled graph matching, in: Proceedings of IEEE International Conference on Com-
puter Vision. Presented at the Proceedings of IEEE International Conference on
Computer Vision, pp. 637–644. https://doi.org/10.1109/ICCV.1995.466878

Lew, M.S., 1996. Information theoretic view-based and modular face detection, in: Pro-
ceedings of the Second International Conference on Automatic Face and Gesture
Recognition. Presented at the Proceedings of the Second International Conference
on Automatic Face and Gesture Recognition, pp. 198–203.
https://doi.org/10.1109/AFGR.1996.557264

Lin, Y., Wang, S., Lin, Q., Tang, F., 2012. Face Swapping under Large Pose Variations: A
3D Model Based Approach, in: 2012 IEEE International Conference on Multimedia
and Expo. Presented at the 2012 IEEE International Conference on Multimedia and
Expo, pp. 333–338. https://doi.org/10.1109/ICME.2012.26

Liwei Wang, Yan Zhang, Jufu Feng, 2005. On the Euclidean distance of images. IEEE
Trans. Pattern Anal. Mach. Intell. 27, 1334–1339.
https://doi.org/10.1109/TPAMI.2005.165

Loh, W.-Y., 2011. Classification and regression trees. WIREs Data Min. Knowl. Discov. 1,
14–23. https://doi.org/10.1002/widm.8

Longpre, S., Sohmshetty, A., n.d. Facial Keypoint Detection 8.
Mahajan, S., Chen, L.-J., Tsai, T.-C., 2017. SwapItUp: A Face Swap Application for Pri-

vacy Protection, in: 2017 IEEE 31st International Conference on Advanced Infor-
mation Networking and Applications (AINA). Presented at the 2017 IEEE 31st In-
ternational Conference on Advanced Information Networking and Applications
(AINA), pp. 46–50. https://doi.org/10.1109/AINA.2017.53

Mckenna, S.J., Gong, S., Raja, Y., 1998. MODELLING FACIAL COLOUR AND IDEN-
TITY WITH GAUSSIAN MIXTURES. Pattern Recognit. 31, 1883–1892.
https://doi.org/10.1016/S0031-3203(98)00066-1

Ming-Hsuan Yang, Kriegman, D.J., Ahuja, N., 2002. Detecting faces in images: a survey.
IEEE Trans. Pattern Anal. Mach. Intell. 24, 34–58.
https://doi.org/10.1109/34.982883

OpenCV: Basic concepts of the homography explained with code [WWW Document], n.d.
URL https://docs.opencv.org/master/d9/dab/tutorial_homography.html (accessed
4.21.20).

Osuna, E., Freund, R., Girosit, F., 1997. Training support vector machines: an application
to face detection, in: Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. Presented at the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, IEEE Comput. Soc, San
Juan, Puerto Rico, pp. 130–136. https://doi.org/10.1109/CVPR.1997.609310

Rossner, M., Yamada, K.M., 2004. What’s in a picture? The temptation of image manipu-
lation. J. Cell Biol. 166, 11–15. https://doi.org/10.1083/jcb.200406019

Rowley, H.A., Baluja, S., Kanade, T., 1998. Neural network-based face detection. IEEE
Trans. Pattern Anal. Mach. Intell. 20, 23–38. https://doi.org/10.1109/34.655647

Schneiderman, H., Kanade, T., 1998. Probabilistic modeling of local appearance and spa-
tial relationships for object recognition, in: Proceedings. 1998 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (Cat.
No.98CB36231). Presented at the Proceedings. 1998 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), pp.
45–51. https://doi.org/10.1109/CVPR.1998.698586

54

Sharma, S., Shanmugasundaram, K., Ramasamy, S.K., 2016. FAREC — CNN based effi-
cient face recognition technique using Dlib, in: 2016 International Conference on
Advanced Communication Control and Computing Technologies (ICACCCT). Pre-
sented at the 2016 International Conference on Advanced Communication Control
and Computing Technologies (ICACCCT), pp. 192–195.
https://doi.org/10.1109/ICACCCT.2016.7831628

Story, D., n.d. From Darkroom to Desktop—How Photoshop Came to Light 3.
Sung, K.-K., Poggio, T., 1998. Example-based learning for view-based human face detec-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 20, 39–51.
https://doi.org/10.1109/34.655648

The Register of UNIX® Certified Products [WWW Document], n.d. URL
https://www.opengroup.org/openbrand/register/ (accessed 4.25.20).

Turk, M., Pentland, A., 1991. Eigenfaces for Recognition. J. Cogn. Neurosci. 3, 71–86.
https://doi.org/10.1162/jocn.1991.3.1.71

Viggiano, J.A.S., 2004. Comparison of the accuracy of different white-balancing options
as quantified by their color constancy, in: Blouke, M.M., Sampat, N., Motta, R.J.
(Eds.), . Presented at the Electronic Imaging 2004, San Jose, CA, p. 323.
https://doi.org/10.1117/12.524922

Vincent, E., Laganiere, R., 2001. Detecting planar homographies in an image pair, in:
ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal
Processing and Analysis. In Conjunction with 23rd International Conference on In-
formation Technology Interfaces (IEEE Cat. No.01EX480). Presented at the ISPA
2001. Proceedings of the 2nd International Symposium on Image and Signal Pro-
cessing and Analysis, Univ. Zagreb, Pula, Croatia, pp. 182–187.
https://doi.org/10.1109/ISPA.2001.938625

Wan, J., Escalera, S., Anbarjafari, G., Escalante, H.J., Baro, X., Guyon, I., Madadi, M.,
Allik, J., Gorbova, J., Lin, C., Xie, Y., 2017. Results and Analysis of ChaLearn
LAP Multi-modal Isolated and Continuous Gesture Recognition, and Real Versus
Fake Expressed Emotions Challenges, in: 2017 IEEE International Conference on
Computer Vision Workshops (ICCVW). Presented at the 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), pp. 3189–3197.
https://doi.org/10.1109/ICCVW.2017.377

Xu, X., Kakadiaris, I.A., 2017. Joint Head Pose Estimation and Face Alignment Frame-
work Using Global and Local CNN Features, in: 2017 12th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2017). Presented at the
2017 12th IEEE International Conference on Automatic Face & Gesture Recogni-
tion (FG 2017), IEEE, Washington, DC, DC, USA, pp. 642–649.
https://doi.org/10.1109/FG.2017.81

Yan, S., Xu, D., Tang, X., Member, S., 2007. Face verification with balanced thresholds.
IEEE Trans. Image Process. 262–268.

Yang, G., Huang, T.S., 1994. Human face detection in a complex background. Pattern
Recognit. 27, 53–63. https://doi.org/10.1016/0031-3203(94)90017-5

Yao, P., Evans, G., Calway, A., 2001. Using affine correspondence to estimate 3-D facial
pose, in: Proceedings 2001 International Conference on Image Processing (Cat.
No.01CH37205). Presented at the Proceedings 2001 International Conference on
Image Processing (Cat. No.01CH37205), pp. 919–922 vol.3.
https://doi.org/10.1109/ICIP.2001.958274

Young, I.T., Gerbrands, J.J., Vliet, L.J. van, TU Delft, F. der T.N., 1998. Fundamentals of
image processing: [dictaat behorende bij college et2720in. Delft University of
Technology, Delft.

55

Yow, K.C., Cipolla, R., 1996. Feature-Based Human Face Detection. Image Vis. Comput.
15, 713–735.

Zenonos, A., Khan, A., Kalogridis, G., Vatsikas, S., Lewis, T., Sooriyabandara, M., 2016.
HealthyOffice: Mood recognition at work using smartphones and wearable sensors,
in: 2016 IEEE International Conference on Pervasive Computing and Communica-
tion Workshops (PerCom Workshops). Presented at the 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops), IEEE, Sydney, Australia, pp. 1–6.
https://doi.org/10.1109/PERCOMW.2016.7457166

56

NON-EXCLUSIVE	LICENCE	TO	REPRODUCE	THESIS	AND	MAKE	THESIS	

PUBLIC	

I, Barbara Wilson Soto,

 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital ar-

chives until the expiry of the term of copyright,

Video Face Swapping,

 (title of thesis)

supervised by PhD Gholamreza Anbarjafari, M.A. Doğuş Karabulu

 (supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving

appropriate credit to the author, to reproduce, distribute the work and communicate it to the

public, and prohibits the creation of derivative works and any commercial use of the work

until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-

tual property rights or rights arising from the personal data protection legislation.

Barbara Wilson Soto

20/05/2020

