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Resümee/Abstract

Embedded system for real-time emotional arousal classification

Me, inimesed, oskame kergelt tajuda teiste emotsioone, ning ootame mingi emotsionaalset taga-

sisidet suhtlemise korral. Masinad, kuid, ei oma emotsioonidega seotud oskust, mistõttu in-

imese ja masina vastastikmju tundub hingetu ja võõrana. Seepärast, tõhusa emotsiooni tunnus-

tamise arendus on üks ülioluline samm inimesesarnase tehisintellekti suuna. Tava inimene ka

saab leida kasu emotsiooni tunnustamises. See saab aidata inimesi, kellel on erinevate põhjuste

tõttu nõrk kontroll oma emotsioonide üle või nad ei saa teiste emotsioone tundma.

Käesolev töö keskendub kompaktse riistvara baseeritud lahenduse peale emotsiooni liigita-

miseks sõltuvalt temast erutusest. Selleks, emotsiooni puudutav teooria oli kogutud, mille pärast

arvukad masinõppimise ja tunnuste ekstraheerimise meetodid olid vaadeldatud ja ära proovitud.

Need meetodid on tugivektor-masinad, otsustusmetsad, näoorientiiri tunnuste ekstraheerimine

ja suunatud gradientide histogramm.

Kehva tulemuste tõttu projekt jäi seisma: väikese mastaabi riistvara kujunes vimetuks laiaula-

tusliku masinõppimise sooritamise jaoks. Seda saab jätkada, kui lisada projekti võimeka ri-

istvara, et ta treeniks tajumiste muudelit ja edastaks kompaktsele riistvarale juba eeltreenitud

muudelit rakendamiseks.

CERCS:

Märksõnad: masinõppimine, emotsioon, pilditöötlus, tugivektor-masin, otsustusmets, scikit-

learn, tehisintellekt

Embedded system for real-time emotional arousal classification
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We, humans, can distinguish the emotions of others with ease and we always expect any sort of

emotional response during a conversation. Machines, however, do not possess emotion related

skills, which makes human-machine interactions feel alien and soulless. Therefore, develop-

ment of an efficient emotion recognition system is one of the crucial steps towards human-like

artificial intelligence. A common person can also find use in emotion recognition. It would be

a great help to the people, who by various reason either have weak control over own emotions

or devoid of any ability to perceive emotions of others.

This thesis focuses on creating a solution based on compact hardware to classify emotions in

relation to its level of arousal. For this, theory concerning the emotions and their classifications

were gathered, after which numerous methods of machine learning and feature description were

reviewed and tried out. The methods list support vector machines, random forests, facial land-

mark feature extraction and histogram of oriented gradients.

The project has came to a halt halfway through due to poor results: small scale hardware ap-

peared unsuitable for extensive machine learning operations. It can be resumed with the possi-

bility of introducing another set of hardware purely for recognition models training and leaving

the compact one deal with pre-made model.

CERCS: T125 Automation, robotics, control engineering; T111 Imaging, image processing

Keywords: machine learning, emotion, image processing, support vector machine, random

forest, scikit-learn, artificial intelligence
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Resümee/Abstract 2

List of Figures 8

List of Tables 10

List of abbreviations, constants etc. 17

1 Introduction 19

1.1 Problem overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Problem review 23

2.1 General look at emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Dimensional models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Selecting a suitable emotion model . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Methodology 35

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 ML application 1: SVM one VS one with FER2013 . . . . . . . . . . . . . . . 53

4



3.9 ML application 2: SVM one VS rest with FER2013 . . . . . . . . . . . . . . . 54

3.10 ML application 3: SVM all VS all with FER2013 . . . . . . . . . . . . . . . . 54

3.11 ML application 4: SVM negative VS positive + neutral with FER2013 . . . . . 55

3.12 ML application 5: RSCV for RFC negative VS neutral VS positive with JAFFE 55

3.13 ML application 6: RSCV for RFC negative VS neutral VS positive with iCV

MEFED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.14 ML application 7: RSCV for SVC negative VS neutral VS positive with facial

landmarks from iCV MEFED . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 ML application 8: RSCV for RFC negative VS neutral VS positive with facial

landmarks from iCV MEFED . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.16 ML application 9: RSCV for SVC negative VS neutral VS positive with facial

landmarks from twice shrunk iCV MEFED . . . . . . . . . . . . . . . . . . . 58

3.17 ML application 10: RSCV for RFC negative VS neutral VS positive with facial

landmarks from twice shrunk iCV MEFED . . . . . . . . . . . . . . . . . . . 58

3.18 Histogram of oriented gradients, data size estimation . . . . . . . . . . . . . . 58

3.19 ML application 11: SVC negative VS neutral VS positive with HOG vectors of

smallest size from iCV MEFED . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.20 ML application 12: RFC negative VS neutral VS positive with HOG vectors of

smallest size from iCV MEFED . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.21 ML application 13: RFC negative VS neutral VS positive with HOG vectors of

smallest resolution from iCV MEFED . . . . . . . . . . . . . . . . . . . . . . 61

4 Results 63

4.1 Results of ML application 1: SVM one VS one with FER2013 . . . . . . . . . 63

4.2 Results of ML application 2: SVM one VS rest with FER2013 . . . . . . . . . 69

4.3 Result of ML application 3: SVM all VS all with FER2013 . . . . . . . . . . . 72

4.4 Result of ML application 4: SVM negative VS positive + neutral with FER2013 72

4.5 Results of ML application 5: RSCV for RFC negative VS neutral VS positive

with JAFFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Results of ML application 6: RSCV for RFC negative VS neutral VS positive

with iCV MEFED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Results of ML application 7: RSCV for SVC negative VS neutral VS positive

with facial landmarks from iCV MEFED . . . . . . . . . . . . . . . . . . . . . 82

5



4.8 Results of ML application 8: RSCV for RFC negative VS neutral VS positive

with facial landmarks from iCV MEFED . . . . . . . . . . . . . . . . . . . . . 91

4.9 Results of ML application 9: RSCV for SVC negative VS neutral VS positive

with facial landmarks from twice shrunk iCV MEFED . . . . . . . . . . . . . 101

4.10 Results of ML application 10: RSCV for RFC negative VS neutral VS positive

with facial landmarks from twice shrunk iCV MEFED . . . . . . . . . . . . . 111

4.11 Results of Histogram of oriented gradients, data size estimation . . . . . . . . . 115

4.12 Results ML application 11: SVC negative VS neutral VS positive with HOG

vectors of smallest size from iCV MEFED . . . . . . . . . . . . . . . . . . . . 116

4.13 Results of application 12: RFC negative VS neutral VS positive with HOG

vectors of smallest size from iCV MEFED . . . . . . . . . . . . . . . . . . . . 119

4.14 Results of ML application 13: RFC negative VS neutral VS positive with HOG

vectors of smallest resolution from iCV MEFED . . . . . . . . . . . . . . . . 122

5 Analysis 124

5.1 Analysis of ML application 1: SVM one VS one with FER2013 . . . . . . . . 124

5.2 Analysis of ML application 2: SVM one VS rest with FER2013 . . . . . . . . 124

5.3 Analysis of ML application 3: SVM all VS all with FER2013 . . . . . . . . . . 124

5.4 Analysis of ML application 4: SVM negative VS positive + neutral with FER2013125

5.5 Analysis of ML application 5: RSCV for RFC negative VS neutral VS positive

with JAFFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Analysis of ML application 6: RSCV for RFC negative VS neutral VS positive

with iCV MEFED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Analysis of ML application 7: RSCV for SVC negative VS neutral VS positive

with facial landmarks from iCV MEFED . . . . . . . . . . . . . . . . . . . . . 126

5.8 Analysis of ML application 8: RSCV for RFC negative VS neutral VS positive

with facial landmarks from iCV MEFED . . . . . . . . . . . . . . . . . . . . . 126

5.9 Analysis of ML application 9: RSCV for SVC negative VS neutral VS positive

with facial landmarks from twice shrunk iCV MEFED . . . . . . . . . . . . . 126

5.10 Analysis of ML application 10: RSCV for RFC negative VS neutral VS positive

with facial landmarks from twice shrunk iCV MEFED . . . . . . . . . . . . . 127

5.11 Analysis of Histogram of oriented gradients, data size estimation . . . . . . . . 127

6



5.12 Analysis ML application 11: SVC negative VS neutral VS positive with HOG

vectors of smallest size from iCV MEFED . . . . . . . . . . . . . . . . . . . . 127

5.13 Analysis of application 12: RFC negative VS neutral VS positive with HOG

vectors of smallest size from iCV MEFED . . . . . . . . . . . . . . . . . . . . 128

5.14 Analysis of ML application 13: RFC negative VS neutral VS positive with HOG

vectors of smallest resolution from iCV MEFED . . . . . . . . . . . . . . . . 128

5.15 Analysis conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusion 129

References 132

Lihtlitsents 142

7



List of Figures

1.1 A most common application of image processing - applying a filter using nowa-

days popular mobile app Instagram [1] . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Representations of the emotion placement patterns on the emotion plane, ac-

cording to the circumplex model (top panel) and the vector model (bottom

panel) [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 ”The two-dimensional structure of affect” depicts the relation between the cir-

cumplex and the PANA model [21] . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Robert Plutchik’s Wheel of Emotions [34] . . . . . . . . . . . . . . . . . . . . 32

2.4 Ekman’s 7 basic emotions placed along the vector emotion model: the model,

which is used in this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 A photo of the hardware used to carry out all of the computations, described in

this paper: Raspberry Pi 4 Model B, 256GB KingSpec Z3 SCSI SSD and HP

Pavilion laptop; ruler for scale . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 A photo of the display board created to be used in this paper . . . . . . . . . . 38

3.3 A visual representation of ML categories [48] . . . . . . . . . . . . . . . . . . 39

3.4 A representation of SVM decision making. On the left on may see a several

possible hyperplanes, however only the hyperplane on the right provides the

maximum margin, and thus is selected [55] . . . . . . . . . . . . . . . . . . . 40

3.5 An example of how a kernel trick operates on a 1 dimensional problem, by

adding a second dimension [56] . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Yet another example of a kernel trick. This time the initial problem lies in a

2D domain, but can easily be projected onto a 3D one, ensuring a successful

result [56] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8



3.7 A representation of a decision tree. Here each sample represents one of a two

classes, either 1 or 0. Based on the features the samples possess, the decision

tree can easily classify them. [59] . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 An example of split based on Gini impurity function. This particular example

uses Iris database to classify flowers. As one can see the left child-node results

in a absolutely homogeneous set, therefore its Gini impurity would be zero.

And so, this split is selected [60] . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Results of differing kernel implementations of multi-class SVC on a 2D (Iris)

dataset [71] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 A visualisation of a 5-fold CV [82] . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Representation of gradients in x and y directions as a right-angled triangle [91] 59

3.12 An orientation of a gradient does not fall strictly into the bin, therefore its mag-

nitude is being shared by the two closest bins, based on how close they are. [91] 60

9



List of Tables

3.1 Author’s Raspberry Pi 4 Model B specifications [41–43] . . . . . . . . . . . . 36

3.2 Specifications of author’s personal laptop PC . . . . . . . . . . . . . . . . . . 37

3.3 The default parameters of an SVC model . . . . . . . . . . . . . . . . . . . . 54

3.4 All the possible value which RSVC could use to train RFC for ML application

5, 6, 8 and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 All the possible value which RSVC could use to train SVC for ML application

7 and 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 An example of a confusion matrix for the model emotion1 VS emotion2 . . . 64

4.2 Confusion matrix resulted from a binary SVC model trained on FER2013 anger

and neutral data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Confusion matrix resulted from a binary SVC model trained on FER2013 anger

and disgust data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Confusion matrix resulted from a binary SVC model trained on FER2013 anger

and fear data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Confusion matrix resulted from a binary SVC model trained on FER2013 anger

and happiness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Confusion matrix resulted from a binary SVC model trained on FER2013 anger

and sadness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Confusion matrix resulted from a binary SVC model trained on FER2013 anger

and surprise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Confusion matrix resulted from a binary SVC model trained on FER2013 neu-

tral and disgust data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Confusion matrix resulted from a binary SVC model trained on FER2013 neu-

tral and fear data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

10



4.10 Confusion matrix resulted from a binary SVC model trained on FER2013 neu-

tral and happiness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Confusion matrix resulted from a binary SVC model trained on FER2013 neu-

tral and sadness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.12 Confusion matrix resulted from a binary SVC model trained on FER2013 neu-

tral and surprise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Confusion matrix resulted from a binary SVC model trained on FER2013 dis-

gust and fear data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Confusion matrix resulted from a binary SVC model trained on FER2013 dis-

gust and happiness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15 Confusion matrix resulted from a binary SVC model trained on FER2013 dis-

gust and sadness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.16 Confusion matrix resulted from a binary SVC model trained on FER2013 dis-

gust and surprise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.17 Confusion matrix resulted from a binary SVC model trained on FER2013 fear

and happiness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 Confusion matrix resulted from a binary SVC model trained on FER2013 fear

and sadness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.19 Confusion matrix resulted from a binary SVC model trained on FER2013 fear

and surprise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.20 Confusion matrix resulted from a binary SVC model trained on FER2013 hap-

piness and sadness data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.21 Confusion matrix resulted from a binary SVC model trained on FER2013 hap-

piness and surprise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.22 Confusion matrix resulted from a binary SVC model trained on FER2013 sad-

ness and surprise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.23 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish anger from the rest of emotions, which are neutral, dis-

gust, fear, happiness, sadness and surprise . . . . . . . . . . . . . . . . . . . . 70

4.24 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish neutral from the rest of emotions, which are anger, dis-

gust, fear, happiness, sadness and surprise . . . . . . . . . . . . . . . . . . . . 70

11



4.25 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish disgust from the rest of emotions, which are anger, neu-

tral, fear, happiness, sadness and surprise . . . . . . . . . . . . . . . . . . . . 70

4.26 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish fear from the rest of emotions, which are anger, neutral,

disgust, happiness, sadness and surprise . . . . . . . . . . . . . . . . . . . . . 71

4.27 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish happiness from the rest of emotions, which are anger,

neutral, disgust, fear, sadness and surprise . . . . . . . . . . . . . . . . . . . . 71

4.28 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish sadness from the rest of emotions, which are anger, neu-

tral, disgust, fear, happiness and surprise . . . . . . . . . . . . . . . . . . . . 71

4.29 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish surprise from the rest of emotions, which are anger, neu-

tral, disgust, fear, happiness and sadness . . . . . . . . . . . . . . . . . . . . . 72

4.30 Confusion matrix resulted from a multi-classification SVC model trained on

FER2013 data in order to distinguish every emotion from each other . . . . . . 72

4.31 Confusion matrix resulted from a binary SVC model trained on FER2013 data

in order to distinguish negative emotions (anger, disgust, fear, sadness) from

the rest, which are neutral, happiness and surprise. The ’gamma’ parameter is

100000 and ’C’ is 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.32 An example of a table containing parameters of the given model . . . . . . . . 73

4.33 An example of a confusion matrix for the given model . . . . . . . . . . . . . 74

4.34 The parameters of RFC model: TREE search -2 . . . . . . . . . . . . . . . . . 74

4.35 Confusion matrix from test data of RFC model: TREE search -2 . . . . . . . . 75

4.36 The parameters of RFC model: TREE search -1 . . . . . . . . . . . . . . . . . 75

4.37 Confusion matrix from test data of RFC model: TREE search -1 . . . . . . . . 75

4.38 The parameters of RFC model: TREE search 0 . . . . . . . . . . . . . . . . . 76

4.39 Confusion matrix from test data of RFC model: TREE search 0 . . . . . . . . 76

4.40 The parameters of RFC model: TREE search 1 . . . . . . . . . . . . . . . . . 77

4.41 Confusion matrix from test data of RFC model: TREE search 1 . . . . . . . . 77

4.42 The parameters of RFC model: TREE search 2 . . . . . . . . . . . . . . . . . 78

4.43 Confusion matrix from test data of RFC model: TREE search 2 . . . . . . . . 78

12



4.44 The parameters of RFC model: TREE search 3 . . . . . . . . . . . . . . . . . 79

4.45 Confusion matrix from test data of RFC model: TREE search 3 . . . . . . . . 79

4.46 The parameters of RFC model: iCV tree Search 0 . . . . . . . . . . . . . . . . 80

4.47 Confusion matrix from test data of RFC model: iCV tree Search 0 . . . . . . . 80

4.48 The parameters of RFC model: iCV tree Search 1 . . . . . . . . . . . . . . . . 81

4.49 Confusion matrix from test data of RFC model: iCV tree Search 1 . . . . . . . 81

4.50 The parameters of RFC model: iCV tree Search 2 . . . . . . . . . . . . . . . . 82

4.51 Confusion matrix from test data of RFC model: iCV tree Search 2 . . . . . . . 82

4.52 The parameters of SVC model: Landmark SVC search Pi 0 . . . . . . . . . . 83

4.53 Confusion matrix from test data of SVC model: Landmark SVC search Pi 0 . . 83

4.54 The parameters of SVC model: Landmark SVC search Pi 1 . . . . . . . . . . 84

4.55 Confusion matrix from test data of SVC model: Landmark SVC search Pi 1 . . 84

4.56 The parameters of SVC model: Landmark SVC search Pi 2 . . . . . . . . . . 85

4.57 Confusion matrix from test data of SVC model: Landmark SVC search Pi 2 . . 85

4.58 The parameters of SVC model: Landmark SVC search Pi 3 . . . . . . . . . . 85

4.59 Confusion matrix from test data of SVC model: Landmark SVC search Pi 3 . . 86

4.60 The parameters of SVC model: Landmark SVC search Pi 4 . . . . . . . . . . 86

4.61 Confusion matrix from test data of SVC model: Landmark SVC search Pi 4 . . 86

4.62 The parameters of SVC model: Landmark SVC search PC 0 . . . . . . . . . . 87

4.63 Confusion matrix from test data of SVC model: Landmark SVC search PC 0 . 87

4.64 The parameters of SVC model: Landmark SVC search PC 1 . . . . . . . . . . 88

4.65 Confusion matrix from test data of SVC model: Landmark SVC search PC 1 . 88

4.66 The parameters of SVC model: Landmark SVC search PC 2 . . . . . . . . . . 88

4.67 Confusion matrix from test data of SVC model: Landmark SVC search PC 2 . 89

4.68 The parameters of SVC model: Landmark SVC search PC 3 . . . . . . . . . . 89

4.69 Confusion matrix from test data of SVC model: Landmark SVC search PC 3 . 89

4.70 The parameters of SVC model: Landmark SVC search PC 4 . . . . . . . . . . 90

4.71 Confusion matrix from test data of SVC model: Landmark SVC search PC 4 . 90

4.72 The parameters of SVC model: Landmark SVC search PC 5 . . . . . . . . . . 91

4.73 Confusion matrix from test data of SVC model: Landmark SVC search PC 5 . 91

4.74 The parameters of RFC model: Landmark RFC Search Pi 0 . . . . . . . . . . 92

4.75 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 0 . . 92

4.76 The parameters of RFC model: Landmark RFC Search Pi 1 . . . . . . . . . . 93

13



4.77 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 1 . . 93

4.78 The parameters of RFC model: Landmark RFC Search Pi 2 . . . . . . . . . . 94

4.79 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 2 . . 94

4.80 The parameters of RFC model: Landmark RFC Search Pi 3 . . . . . . . . . . 95

4.81 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 3 . . 95

4.82 The parameters of RFC model: Landmark RFC Search Pi 4 . . . . . . . . . . 96

4.83 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 4 . . 96

4.84 The parameters of RFC model: Landmark RFC Search Pi 5 . . . . . . . . . . 97

4.85 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 5 . . 97

4.86 The parameters of RFC model: Landmark RFC Search Pi 6 . . . . . . . . . . 98

4.87 Confusion matrix from test data of RFC model: Landmark RFC Search Pi 6 . . 98

4.88 The parameters of RFC model: Landmark RFC Search PC 0 . . . . . . . . . . 99

4.89 Confusion matrix from test data of RFC model: Landmark RFC Search PC 0 . 99

4.90 The parameters of RFC model: Landmark RFC Search PC 1 . . . . . . . . . . 100

4.91 Confusion matrix from test data of RFC model: Landmark RFC Search PC 1 . 100

4.92 The parameters of RFC model: Landmark RFC Search PC 2 . . . . . . . . . . 101

4.93 Confusion matrix from test data of RFC model: Landmark RFC Search PC 2 . 101

4.94 The parameters of SVC model: Landmark SVC search 0.5 Pi 0 . . . . . . . . 102

4.95 Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 0 102

4.96 The parameters of SVC model: Landmark SVC search 0.5 Pi 1 . . . . . . . . 103

4.97 Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 1 103

4.98 The parameters of SVC model: Landmark SVC search 0.5 Pi 2 . . . . . . . . 103

4.99 Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 2 104

4.100The parameters of SVC model: Landmark SVC search 0.5 Pi 3 . . . . . . . . 104

4.101Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 3 104

4.102The parameters of SVC model: Landmark SVC search 0.5 Pi 4 . . . . . . . . 105

4.103Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 4 105

4.104The parameters of SVC model: Landmark SVC search 0.5 Pi 5 . . . . . . . . 106

4.105Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 5 106

4.106The parameters of SVC model: Landmark SVC search 0.5 Pi 6 . . . . . . . . 106

4.107Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 6 107

4.108The parameters of SVC model: Landmark SVC search 0.5 Pi 7 . . . . . . . . 107

4.109Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 7 107

14



4.110The parameters of SVC model: Landmark SVC search 0.5 Pi 8 . . . . . . . . 108

4.111Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 8 108

4.112The parameters of SVC model: Landmark SVC search 0.5 Pi 9 . . . . . . . . 109

4.113Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 9 109

4.114The parameters of SVC model: Landmark SVC search 0.5 Pi 10 . . . . . . . . 109

4.115Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 10 110

4.116The parameters of SVC model: Landmark SVC search 0.5 Pi 11 . . . . . . . . 110

4.117Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 11 110

4.118The parameters of RFC model: Landmark RFC Search 0.5 Pi 0 . . . . . . . . 111

4.119Confusion matrix from test data of RFC model: Landmark RFC Search PC 0.5

Pi 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.120The parameters of RFC model: Landmark RFC Search 0.5 Pi 1 . . . . . . . . 112

4.121Confusion matrix from test data of RFC model: Landmark RFC Search 0.5 Pi 1 112

4.122The parameters of RFC model: Landmark RFC Search 0.5 Pi 2 . . . . . . . . 113

4.123Confusion matrix from test data of RFC model: Landmark RFC Search 0.5 Pi 2 113

4.124The parameters of RFC model: Landmark RFC Search 0.5 Pi 3 . . . . . . . . 114

4.125Confusion matrix from test data of RFC model: Landmark RFC Search 0.5 Pi 3 114

4.126The correspondence of resulted HOG vectors’ size in relation to the value of

pixels per cell parameter (x axis) and the value of cells per block parameter

(y axis), part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.127The correspondence of resulted HOG vectors’ size in relation to the value of

pixels per cell parameter (x axis) and the value of cells per block parameter

(y axis), part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.128An example of a confusion matrix for the given model . . . . . . . . . . . . . 116

4.129Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search

PC 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.130Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search

PC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.131Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search

PC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.132Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search

PC 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

15



4.133Confusion matrix from test data of SVC model: HOG 72 p 1 pc4000 SVC

search PC 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.134Confusion matrix from test data of SVC model: HOG 72 p 1 pc4000 SVC

search PC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.135Confusion matrix from test data of SVC model: HOG 72 p 1 pc4000 SVC

search PC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.136Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search

PC 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.137Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search

PC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.138Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search

PC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.139Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search

PC 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.140Confusion matrix from test data of RFC model: HOG 72 p 1 pc4000 RFC

search PC 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.141Confusion matrix from test data of RFC model: HOG 72 p 1 pc4000 RFC

search PC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.142Confusion matrix from test data of RFC model: HOG 72 p 1 pc4000 RFC

search PC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.143Confusion matrix from test data of RFC model: HOG 8 p 1 pc1000 RFC search

PC 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.144Confusion matrix from test data of RFC model: HOG 8 p 1 pc1000 RFC search

PC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

16



List of abbreviations, constants etc.

ADHD - Attention-deficit/hyperactivity disorder

AI - Artificial Intelligence

ANS - Autonomic Neural System

BFS - Behavioral Facilitation System

BIS - Behavioral Inhibition System

CNS - Central Nervous System

CPU - Central Processing Unit

CV - Cross Validation

DNN - Deep Neural Network

EC - Emotion Classification

GPU - Graphics Processing Unit

GSCV - GridSearchCV

HMI - Human-Machine Interface

HOG - Histogram of Oriented Gradients

Lip-sync - Lip Synchronization

ML - Machine Learning

NA - Negative Activation

ovo - one-vs-one

17



ovr - one-vs-rest

PA - Positive Activation

PANA - Positive Activation - Negative Activation

Poly - Polynomial

RBF - Radial Basis Function

RF - Random Forest

RFC - Random Forest Classifier

RSCV - RandomizedSearchCV

SVM - Support Vector Classifier

SVM - Support Vector Machine

18



1 Introduction

Nowadays people come across with digital image processing pretty much every day, be it either

applying a filter on their photos on the social network or adding a funny caption to a picture

found on the Internet. But these are but smaller, simpler capabilities of image processing. In

time, much more sophisticated technologies should reach the general public popularity. Tech-

nologies such as emotion classification, a real-time one to be exact. Why would it? What could

it offer to a future consumer?

Figure 1.1: A most common application of image processing - applying a filter using nowadays
popular mobile app Instagram [1]

We as humans subconsciously use our facial expressions and gestures to convey own emo-

tions, feelings and disposition towards certain topics or things brought up during communica-

tions. Large, plain, emotionless pieces of information, most of the time, are automatically dis-

regarded by our brains for lack of interest. Even in modern text-based conversations one may

spot, how people often mimic their actual smiles with pictures or ideograms, such as emoji. If

people spend time manually looking for an image co-responding to their inner feelings, then
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that means it is information, which is regarded to be highly important for others to perceive. Ig-

noring such valuable information would be foolish, wouldn’t it. If so, what actual applications

could possibly benefit from this data?

To begin with, Emotion Classification (EC) would greatly benefit Human-Machine Inter-

faces (HMIs). It is believed that disabled people would receive a better and somewhat faster

control over assistance equipment like wheelchairs. For example, during a stroll outside a quick

detection of fear might stop the movement of said wheelchair preventing a collision or other

sorts of accidents [2]. Moreover, human emotion recognition is a step towards developing

human-like Artificial Intelligence (AI) [3]. AI without a proper emotional response is easily

detectable for a living person. In services like healthcare, artificial nursing assistants with the

ability to understand emotional feelings would diagnose hospital patients more efficiently. Pa-

tients themselves would not feel alienated and would be more open to answering treatment

necessary questions.

In the fields of recreation, like film and computer game industries, EC would also find it-

self in a successful demand. These are extremely profitable business areas, where computer

graphics are a top requirement. Movie goers and gamers demand ever more beautiful picture

with each consecutive year. Creation of believable imagery in turn demands lots of visual ref-

erences, thus needing a lot of time, money and multiple graphics designers and actors. For this

tasks implementation of assistance algorithms has already been debuted in high budget film and

computer game productions which saves both money and time [4, 5].

As of more Real-time application examples, quite recently a new The Simpsons episode have

aired on television featuring the main character, Homer Simpson, answering live phone calls

from the viewers. Dan Castellaneta, the actor behind the character, would improvise in a di-

alogue with a viewer, while a program named Adobe Character Animator would track actor’s

voice generating co-responding Lip Synchronization (Lip-sync) animation [6]. In Japan a sim-

ilar experience has boomed in popularity, however on a different media - the internet. A new

phenomena was born: ”Virtual Youtuber”. It follows a basic premise of Youtube Streaming,

although one sees a 2.5D Computer Generated Model of a girl, voiced by an anonymous actor,

playing some computer game instead of an actual person [7].
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Not only does a big production company find use of this technology, but a typical everyday life

gamer can have multiple ways of utilising it as well. An interactive virtual avatar immensely ex-

pands the possibilities of cyberspace communications with the rise in popularity of such games

like VRChat. In VRChat players have a vast range of their avatar customization and avatar

manipulation to the lengths of Full-Body Tracking. However, one thing lies missing: despite

any dynamics in tone or facial expressions, the avatar’s face remains static, which leaves out a

crucial point of human interaction as described above.

Stepping away from recreation topics, there are people suffering from disorders, which can alter

the ability of emotion experiencing (e.g. Bipolar Disorder, when a person’s emotions uncon-

sciously fall into quickly fluctuating extremes [8]), or which deny emotion perception of others,

such as the case of Social-emotional agnosia [9]. Having a small device in a pocket capable of

assisting in emotion understanding of both self and others would greatly impact their lives.

1.1 Problem overview

So, if the case of interactive avatar feature is so valuable, why not implement all possible mo-

tion trackers and ECs into computer game or virtual communication software right away? The

difficulties may arrive with hardware limitations, due to implemented algorithms’ tendencies to

consume huge chunks of computational power. This is a vital obstacle especially for computer

game streamers, who most of the time have no luxury redirecting paramount operative force

from computer graphics rendering. In such case one should look for options to either replace

components of one’s computer with newer, more efficient and more expensive counterparts or

expand already existing rig utilising application-specific add-on.

The latter solution would take up the image processing in its entirety saving the rest of the

computer from a computational overload just like a GPU assists a CPU. It’s main advantage is

alleviation of all set-up planning from the user providing a fully-ready out-of-the-box system.

As for the emotion perception assistant tool, a big, heavy and clunky apparatus would be im-

practical to carry around and use. Such tool should be of reasonable size and weight. Ideally, it

would be around the physical qualities of a smartphone, a wallet or a power bank.

Developing of such solution shall be the main focus of this thesis paper.
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1.2 Goals

The solution must represent itself as a complete embedded system of hardware and software

dedicated to performing all the necessary computations for a real-time emotional classification.
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2 Problem review

2.1 General look at emotions

To begin analyzing and classifying emotions, one must first understand them. This is not an easy

task: psychologists till this day still struggle giving a definitive description, because again it is

something everyone seem to have a basic in-built realisation of. This vague grasp on the topic

can be observed when looking up the definition of the word ”emotion” in various dictionaries:

• a strong feeling deriving from one’s circumstances, mood, or relationships with others

[10].

• a strong feeling such as love, fear or anger; the part of a persons character that consists of

feelings [11].

• an affective state of consciousness in which joy, sorrow, fear, hate, or the like, is experi-

enced, as distinguished from cognitive and volitional states of consciousness [12].

• any strong agitation of the feelings actuated by experiencing love, hate, fear, etc., and usu-

ally accompanied by certain physiological changes, as increased heartbeat or respiration,

and often overt manifestation, as crying or shaking [12].

• An emotion is a feeling such as happiness, love, fear, anger, or hatred, which can be

caused by the situation that you are in or the people you are with [13].

• Emotion is the part of a person’s character that consists of their feelings, as opposed to

their thoughts [13].

• a conscious mental reaction (such as anger or fear) subjectively experienced as strong

feeling usually directed toward a specific object and typically accompanied by physiolog-

ical and behavioral changes in the body [14]
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In addition, Wikipedia provides this description: Emotion is a mental state associated with the

nervous system brought on by chemical changes variously associated with thoughts, feelings,

behavioural responses, and a degree of pleasure or displeasure [15].

To summarize, emotion is a state of a person’s feeling, which dictates a person’s behaviour,

gestures, voice, posture and facial expressions. Coincidentally, we humans observe these fea-

tures to determine the emotional state of others. People are able to perform these predictions

seemingly automatically; understanding of individuals in a society is beneficial to our com-

munal survival. But how did we received such a complex yet useful ability. One branch of

theories states that emotion recognition bears a cultural origin; that people are taught since their

early years to distinguish emotions within the boundaries of their upbringing. Contrary to that,

another belief suggests an evolutionary origin, meaning that emotion recognition is innate and

universal between all the individuals, no mater where they are from. So, which of these theories

are correct? As shown in the article Universal Facial Expressions of Emotion by Paul Ekman,

both of them bear a bit of truth. People have both the innate ability of emotional communication

along with learned culture specific traits [16, 17]. Computers, however, lack any sort of prior

skill in this field, and thus they must be taught from the ground up.

To begin our road towards the solution, we have to decide upon the emotional model, within

constraints of which our future machine will try to operate. Various researchers attempted

different approaches to formulating a definitive human emotion model. The majority of models

fall into two categories:

1. Dimensional models; these models suppose, that every emotion could be placed on con-

tinuous axes tied to some descriptor of given emotion [18].

2. Discrete models; these models view each and every emotion to be independent occur-

rences, or have a list of core emotions which can constellate into different complex emo-

tions [18].

Let’s look at these approaches more closely.
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2.2 Dimensional models

This group of models, as apposed to dividing emotions into specific independent classes, pro-

vide a clustered view on a continuous space, where human emotions represent more-or-less

vaguely bordered subsections of said space. One of the earliest models by Wilhelm Max Wundt

placed a person’s feelings on the 3 axis of pleasurable and unpleasurable, arousing and subdu-

ing, straining and relaxing [19].

Later studies, however, reported the third dimension as either small or seemingly non-present,

which leads to nowadays popular dimensional models usually incorporating only 2 dimen-

sions [20, 21]. Such are the cases of the circumplex and the vector models, that value valence

(pleasure displeasure) and arousal. Despite the identical axis definition, the models differ in

their arrangement of emotions inside of the two-dimensional plane. The circumplex model

strives to allocate emotions along a circular pattern (hence the name) with a center at the inter-

crossing point of the axis, a point of neutral valence and medium arousal [22, 23]. The vector

model, as the name implies, has vectors in its base structure: two vectors spring from the com-

mon point of zero arousal and neutral valence, although heading into two opposing directions:

one vector extends into the region of negative valence, while another - into positive one. This

fundamental dissimilarity between the respective frameworks of these models, spawn a dis-

agreement concerning the existence of an emotion of neutral valence and high arousal descrip-

tors. The circumplex model hints at the possibility of such emotions (alarmed and interested

being valid candidates), whereas the vector model outright renounces such a phenomena [23].

In addition to these models, there is also a proposal of utilising the ”consensual” Positive Ac-

tivation - Negative Activation (PANA) model, which is claimed to be an alternative rotational

view of the circumplex model by placing in the same emotional plane its own axis 45◦ away

from valence and arousal. These axis originally named Positive and Negative Affect in the work

of David Watson and Auke Tellegen are described as following: ”The first factor, Positive Af-

fect, represents the extent to which a person avows a zest for life. The second factor, Negative

Affect, is the extent to which a person reports feeling upset or unpleasantly aroused”. Nega-

tive Activation (NA) is described by words such as distressed, fearful and scornful on its High

end, while with relaxed, placid and calm on the Low end. Positive Activation (PA), in turn, is

depicted with words as active, enthusiastic and excited, along with drowsy, sleepy, sluggish in
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Figure 2.1: Representations of the emotion placement patterns on the emotion plane, according
to the circumplex model (top panel) and the vector model (bottom panel) [23]

the High and in the Low states respectively , [21]. This model has trouble finding words denot-

ing description for states of simultaneous High PA and High NA, which are represented by the

high arousal and neutral valence in the circumplex model. Coupled with the statements, that

PA and NA are ”truly unipolar constructs that essentially are defined by their high poles”, ”the

activated, high ends of the dimensions fully capture their essential qualities” and ”the low poles

of these dimensions ultimately reflect the absence of a certain kind of activation rather than the

presence of a certain affective state (such as sluggishness or relaxation)” results in this model

acting akin to the vector model, in spite of being based around the circumplex model [23, 24].

In some particular cases of studies, such as study of human autobiographical memory, one may

add a third dimension - intensity - to the 2D models from above. It must be said that this addi-

tional dimension is not as much of general emotion descriptor, but more like a representative of

a subjective evaluation of experienced feeling. In previously mentioned example of the autobio-

graphical memory, intensity of an emotion is correlated with likelihood of recall, independently

of emotion’s arousal or valence [23].
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Figure 2.2: ”The two-dimensional structure of affect” depicts the relation between the circum-
plex and the PANA model [21]

Application of dimensional models finds most of its popularity in the fields of psychiatry,

neuroscience and behavior studies. It is hinted that the mesolimbic pathway of human Central

Nervous System (CNS) , responsible for pleasure and reward, also plays a role in assessment

of negative emotions, thus encompassing a structure for valence measurement. Also, a greater

activation of the right frontal lobe can be observed in times when subject experiences intervals

of negatively valenced emotions, whereas in times of positive ones the left frontal lobe enters a

similar state. In a likewise fashion, activity among the Reticular Formation networks and amyg-

dala corresponds to the degrees of arousal. Coincidentally, common psychiatric comorbidities

with symptoms of hyperarousal such as Attention-deficit/hyperactivity disorder (ADHD), bipo-

lar disorder and anxiety disorder are tied with abnormalities of Reticular Formation and amyg-

dala [22].

The PANA model has also found its part in previously mentioned fields of studies, particularly

assisting to characterise BIS and BFS. BIS stands for behavioral inhibition system is an evolu-
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tionarily adaptive motivational system that dictates withdrawal behaviors. It helps an organism

to avoid dangerous and possibly harmful objects, subjects, activities etc. It encourages vigilant

analysis of the surroundings and cautious plan of movements. Just as the experiencing feelings

tied to NA awakens the state of attention and anticipation for painful or punishing outcome. The

BFS stands for behavioral facilitation system. Contrary to BIS, this system leads an organism

towards beneficial to survival resources and, as one may have already guessed, links itself to

PA. Feelings from the PA dimension act as a driving force of getting food, water, shelter, so-

cialisation etc and upon achieving a goal serve as a subsequent reward as well. Links between

the activations and behavioral systems one can observe in the distribution of activations over

time. PA has a almost a cyclical nature in the waking hours and throughout season in order to

continuously motivate an organisms survival, shifting priorities from one resource to another,

whereas NA quickly peaks in the moments of trouble and vanishes suddenly along with the

danger for fear of unnecessary resource depletion and physiological exhaustion [24].

Finally, it should be noted, that people find it difficult to exactly discern an emotion they are

experiencing. When communicating, one is prone to use several similarly valenced emotions to

describe oneself, a phrase ”feeling good” tends to be accompanied by words such as ”excited”,

”engaged”, ”cheerful” etc. This shows how we perceive emotions not as isolated states, but as

a continues spectrum; like we perceive colours. All of this comprise strong arguments in favor

of implementing the dimensional models for emotion classification [22].

2.3 Discrete models

As previously mentioned, this type of models suggest every emotion or a selected group of

emotions to be an independent phenomenon possessing distinctive characteristics, e.g. facial

expressions, vocal tones, behaviour. Fear compels us to flee; disgust dissuades consuming

noxious substances - this provides a an intuitive background for discrete models implementa-

tion. But there are just so many emotions. Because of this Tiffany Watt Smith managed to

describe 154 different emotions in her book called ”The Book of Human Emotions”. The most

prominent difficulty arises with international researches due to some cultures having emotions

specific only to them [18]. In this case, perhaps, not all emotions are equal in their importance

and origin. Out of this arises a term ”basic emotions”: a group of emotions which are universal
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to everyone and which are easily recognised by everyone, regardless of their cultural upbring-

ing. The initial point of modern ”basicality” research has been triggered by Charles Darwin

with his book titled The Expression of the Emotions in Man and Animals, where he pointed

out the importance emotions have in survival as a mean of communication, thus resulting in a

necessity for quick distinguishability. This kind of definition roots heavily basic emotions with

evolutionary origin, i.e. basic emotions have been steadily developed throughout the course of

humankind’s history to subconsciously combat with fundamental life tasks [25]. Despite shar-

ing this common framework, researchers provide a large variety of lists reciting basic emotions.

Inspired by Darwin, Silvan Tomkins in his career has proposed the nine affects, which are

innate biological building blocks for emotions. These affects are Distress-Anguish, Anger-

Rage, Fear-Terror, Shame-Humiliation, Disgust, Dissmell (negative affects), Surprise-Startle

(neutral affect), Interest-Excitement, Enjoyment-Joy (positive affects). The affects named with

two descriptive words represent the least and the most intense expression of that affect [26,27].

The next researcher Paul Ekman has also adopted ideas from Darwin as well from Tomkins him-

self. While studying the nature of human facial expressions along with his colleagues, Ekman

has revealed the existence of a number of basic emotions, which seem to be present in every

culture all across the world, even the non-literary ones. This list includes happiness, sadness,

anger, fear, surprise, disgust, with contempt joining the list later on - emotions which can be

easily observed on and decoded from a person’s facial expression [16, 28, 29]. Ekman has con-

tinued his investigation in the field of basic emotions. Eventually, in 1999 he proposed several

characteristics in hopes of providing necessary points to help ”distinguish basic emotions from

one another and from other affective phenomena”. He remarks, that non of the following traits

should be treated as sine qua non:

1. Distinctive universal signals

2. Distinctive physiology

3. Automatic appraisal, tuned to:

4. Distinctive universals in antecedent events

5. Distinctive appearance developmentally
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6. Presence in other primates

7. Quick onset

8. Brief duration

9. Unbidden occurrence

10. Distinctive thoughts, memories images

11. Distinctive subjective experience

Using these guidelines Ekman has further expanded his previous list of basic emotions with the

ones not explicitly coded in facial expressions. An attention is also directed to the fact, that these

should be viewed as ”families of related emotions”. The newly updated list comprises: amuse-

ment, anger, contempt, contentment, disgust, embarrassment, excitement, fear, guilt, pride in

achievement, relief, sadness/distress, satisfaction, sensory pleasure and shame [30, 31].

As an argument in favor of proposed basic emotions, several patterns of Autonomic Neural

System (ANS) activity have been traced coinciding with experience of either happiness, sad-

ness, anger, fear or disgust. Since this patterns have been observed in a variety of different

cultures, this yet again hints at the innate evolutionary origin. But a few inconsistencies should

be pointed out. First of all, not every basic emotion imply possessing an ANS activity pattern.

Ekman counters this by saying that there should not be any specific ANS activity tied to an emo-

tion in the first place if the emotion lacks a specific motor behaviour purposed for performing

specific actions. As an example he provides fighting as such action for anger, which includes

in its ANS pattern increased blood flow into fists. Same parallel can be drawn for fear, flee-

ing from danger and major blood flow redirection toward large skeletal muscles [30]. Another

inconsistency emerges with different sub-types within emotional families. Response of crying

and non-crying sadness(es) differ in cardiovascular activity, increased and decreased respec-

tively. Similar divergence can also be observed among the sub-types of other emotion families,

which are reported to have a particular ANS activity pattern, In addition to basic emotion spe-

cific activity of ANS, the must also be present one in CNS. In the past decade a handful of

studies have found some sequences associated with happiness, sadness, anger fear and disgust,

however there is still much debated concerning the specific components of CNS responsible for

this [25, 30].
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In many aspects Robert Plutchik shared Ekman’s view concerning the existence of biologi-

cally hardwired emotions. He in turn advocated for his own list of basic emotions. Moreover,

he presumed that basic emotions can merge together producing secondary emotions, unlike Ek-

man who has doubted the notion of multiple basic emotions occurring simultaneously [30], In

a work titled ”A general psychoevolutionary theory of emotion” Plutchik provided his own 10

postulates regarding the basic emotions model:

1. The concept of emotion is applicable to all evolutionary levels and applies to animals as

well as to humans.

2. Emotions have an evolutionary history and have evolved various forms of expression in

different species.

3. Emotions served an adaptive role in helping organisms deal with key survival issues posed

by the environment.

4. Despite different forms of expression of emotions in different species, there are certain

common elements, or prototype patterns, that can be identified.

5. There is a small number of basic, primary, or prototype emotions.

6. All other emotions are mixed or derivative states; that is, they occur as combinations,

mixtures, or compounds of the primary emotions.

7. Primary emotions are hypothethical constructs or idealized states whose properties and

characteristics can only be inferred from various kinds of evidence.

8. Primary emotions can be conceptualized in terms of pairs of polar opposites.

9. All emotions vary in their degree of similarity to one another.

10. Each emotion can exist in varying degrees of intensity or levels of arousal.

[32, 33]. In order for one to understand more clearly his proposals, Plutchik has created a so

called The Emotion Wheel (Figure 2.3).
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Figure 2.3: Robert Plutchik’s Wheel of Emotions [34]

One can see the list of basic emotions in this case contains 8 emotions, divided into pairs

of polar opposites: Joy vs Sadness, Trust vs Disgust, Fear vs Anger, Anticipation vs Surprise.

One may also observe how a basic emotion adjusts with a change of intensity: more intense

version of fear is terror, whilst morphing into apprehension with dropping of intensity. As men-

tioned previously, these basic emotions can form dyads blending into secondary, ”non-basic”

emotions. For instance, disgust and anger form contempt, joy and fear - guilt, fear and disgust

- shame and so on. The further away a pair of basic emotions resides in the emotion wheel, the

more seldom a person experiences them, to the point of when it is impossible for a dyad to be

formed out of polar opposite basic emotions [32, 33, 35, 36].

It must be addressed, that Plutchik’s Emotion Wheel model retains qualities similar to both

the discrete and to the dimensional models (e.g.intensity and blending), which makes it stand

out from the rest. Although, it is not the only nor is it the first model to represent the concept
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of core emotions comprising every other emotion. A few centuries prior Descartes claimed all

emotional states to be comprised of 6 basic emotions, passions as he named them, which are joy,

sadness, love, desire, hatred and wonder [25,30]. In recent years, researches from the University

of California conducted a self-report survey among a broad selection of participants concerning

their emotional state after each view of a specific short video. As a result, 27 categories of

emotions were obtained, claimed to be distinct and forming a continues intermixing space of

emotions [37].

2.4 Selecting a suitable emotion model

Having looked at the candidates, which model should be exposed to the machine? We recall,

that the most important place for denoting one’s emotional state is through own facial expres-

sions. Moreover, providing an image of a persons face to the machine would also be easier

than something like scans of neural activity. Therefore, it is a logical decision, to take Ekman’s

6 (or 7, whether contempt is differentiated from disgust or not) basic emotions as the basis.

In addition, a number of popular data sets of people’s facial expressions classifies them using

exactly this list. However, we will also take a dimensional model into account, and place our

chosen basic emotions along the distribution of vector model inside the space of valence and

intensity. This way the machine would not only predict an emotion a user is experiencing, but

also estimate user’s arousal level and allocate it on the valence spectrum.
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Figure 2.4: Ekman’s 7 basic emotions placed along the vector emotion model: the model, which
is used in this paper
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3 Methodology

First of all, a few necessary decisions must be made as a starting point of this project. This deci-

sions mainly encompasses the working basis of an emotion cognition machine such as hardware

and software along with their dependencies. Afterwards, we can then develop applications to

suit our the needs of the project based on the prior selections.

3.1 Hardware

Hardware is a good foundation for any project. It draws concrete limits and forms a path for

further development. The previously defined scope requires the hardware to be rather small

and compact. For the role of base computing hardware much attention imposed Raspberry Pi

product range. It has a relatively small profile and cost, application flexibility and is generally

marketed as a cheaper and mobile alternative to a standard PC. And with a recent release of

Raspberry Pi 4 family, all this made an ever more compelling reason to implement it in the

project, partly to challenge the claim about standard desktop computer equivalent and test its

capabilities in an uneasy task, which is the aim of the paper [38, 39]. In order to obtain a brand

new Raspberry Pi 4, author has purchased a Starter Kit for Raspberry Pi 4 (Model B) distributed

by Labists (Notice that currently the product has been updated) [40]. The kit provided a Rasp-

berry Pi 4 Model B board with the specifications detailed in a table bellow.
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Table 3.1: Author’s Raspberry Pi 4 Model B specifications [41–43]
OS Raspbian GNU/Linux 10 (buster)

Processor
Broadcom BCM2711, quad-core Cortex-A72 (ARM v8-A)

64-bit SoC @ 1.5GHz
Memory 4GB LPDDR4-3200 SDRAM
GPU Broadcom VideoCore VI

Connectivity

2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless
LAN, Bluetooth 5.0, BLE

Gigabit Ethernet
2 USB 3.0 ports
2 USB 2.0 ports

GPIO
40-pin GPIO header

(fully backwards-compatible with previous boards)

Video & sound

2 micro HDMI ports (up to 4Kp60 supported)
2-lane MIPI DSI display port
2-lane MIPI CSI camera port

4-pole stereo audio and composite video port

Multimedia
H.265 (4Kp60 decode);

H.264 (1080p60 decode, 1080p30 encode);
OpenGL ES, 3.0 graphics

SD card support
Micro SD card slot for loading operating system

and data storage

Input power

5V DC via USB-C connector (minimum 3A)
5V DC via GPIO header (minimum 3A)

Power over Ethernet (PoE)-enabled
(requires separate PoE HAT)

Dimensions 88mm × 58mm × 19.5mm, 46g
Operating temperature 0 - 50 degrees C ambient

The kit also came with a SanDisk Ultra 32GB MicroSDHC UHS-I Card Speed Class 10

U1, which had already NOOBS pre-loaded. This card was used as a main storage device for

Raspberry Pi 4. Additional storage was utilized in a form of 256GB KingSpec Z3 SCSI external

SSD, connected via USB 3.1.

In order to better visualise the results of emotion analysis a display was designed and pro-

duced during a course LOTI.05.022 Computer Hardware Project. It is an STM32 microcon-

troller based board able to control 64 diffused RGB LED. Using colours and simple animation

this board can represent users emotional state or attempt to balance out extreme cases of user’s

emotional arousal. A short demonstration can be viewed on youtube by accessing the following

link [44]. The schematic and gerber files can be found here [45] .
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Figure 3.1: A photo of the hardware used to carry out all of the computations, described in this
paper: Raspberry Pi 4 Model B, 256GB KingSpec Z3 SCSI SSD and HP Pavilion laptop; ruler
for scale

Some additional computations have been performed on author’s personal HP laptop. The

characteristics are following:

Table 3.2: Specifications of author’s personal laptop PC

OS
Microsoft Windows 10 Home

version 10.0 18362 Build 18362
System Model, Type HP Pavilion Notebook, x64-based PC

Processor
AMD A9-9410 RADEON R5,

5 COMPUTE CORES 2C+3G, 2900 Mhz,
2 Core(s), 2 Logical Processor(s)

BaseBoard
HP 81FC

version 80.20
Installed Physical
Memory 8.00 GB

Total Physical
Memory 7.45 GB

Total Virtual
Memory 24.5 GB

Storage SSD SanDisk SD8SNAT-256G-1006
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Figure 3.2: A photo of the display board created to be used in this paper

3.2 Machine Learning

With the hardware out of the way, we can now focus on the classification algorithms. A small

reminder: the classification will be based on the analysis of a user’s facial expression. A human

face is not an easy pattern to convey, as we usually neglect to realise. It is full of numerous

lesser shapes and figures, which come in a broad variety from one person to another. General

public does not notice this matter simply because we humans are extremely adept at locating

and interpreting faces of other humans. So proficient in fact, that we can human faces among

inanimate objects, an occurrence called Pareidolia [46].

Another point, which needs to be addressed, is how computers perceive visual information.

Images for them are nothing more than a 3 dimensional or 2 dimensional arrays of numbers,

for a colour and grayscale types of image respectively. So it’s not only human faces, but even

the simple shapes as lines and circles, which are lacking in the repertoire of a blank machine.

Therefore, the machine must be taught from the ground up.

Manually defining all the patterns and values for a machine to consider would be tedious and

difficult. Luckily, there is no explicit necessity for this approach, for there are ways to make the

machine teach itself all of the important computations. This is, of course, all thanks to the ma-

chine learning. This technique enables computers to generate experience in specified problem

solving based on provided data without human interference whatsoever [47, 48]. This would,

hopefully, alleviate greatly the burden on the programming side. Moreover, the author had nei-

ther prior knowledge nor experience in this field, so it would also provide opportunities to learn.

It must be said, that machine learning (ML) isn’t one exact universal solve-all algorithm.
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ML is a plethora of different algorithms banded by common goals. And as the No free lunch

theorem claims, none of them can truly outperform any other in every conceivable task [47,49].

In general terms, these algorithms can be divided into two categorise: algorithms of supervised

learning and algorithms of unsupervised learning. Supervised learning builds a model capable

of formulating predictions based on input. To train such a model, the algorithm must be fed a

mass of sample inputs along with their corresponding correct outputs. Unsupervised learning,

on the other hand, does not attempt to make any sort of predictions, thus does not require an

additional listing of outputs. Its task is to find various correlations, patterns, similarities etc

among the elements of provided data, effectively grouping and clustering them [48].

Figure 3.3: A visual representation of ML categories [48]

For this project. the software must be able to accurately perceive a user’s emotional state,

therefore choosing the supervised learning category is a no-brainer.

By this point the range of candidates has been narrowed down to the algorithms of supervised

learning. It is still, however, quite an extensive list. After some web surfing and author’s dis-

cussion with the supervisor, it was decided to use algorithms such as Support Vector Machine

(SVM) and Random Forest (RF). They seem to be the ones of the most popular and efficient

algorithms in terms of image processing. One should also mention Neural Networks, specifi-

cally Deep Neural Networks (DNN), which are claimed to be the best performers for such task.

In fact, during a ”Challenges in Representation Learning: Facial Expression Recognition Chal-

lenge” imposing a similar task, DNN based solutions generally climbed high up the scoreboard,

as far as the top 10 [50, 51]. Problem with them, however, is their dependence of an efficient

GPU, which the present hardware lacks.

39



3.3 Support Vector Machine

Let there be dataset, where each element belongs to either class 0 or 1 and possesses n number

of features. Then we create an n-dimensional space, where each axis corresponds to one of the

features. All the elements are to be placed into the space as a dot based on its features. The

job of the SVM would then be to draw an (n-1)-dimensional hyperplane in order to make a

clear border separating members of one class from another and the space respectively. With

this, as soon as a new input will come for prediction, it can be place into the space and later

classified based on its position relative to the hyperplane. For example, if the elements have

only 2 features, then the space would be represented by a 2-dimensional plane, whereas the

hyperplane would be a straight 1-dimensional line [52–56].

The distance between the hyperplane and the closest points of either dimension is called margin.

Figure 3.4: A representation of SVM decision making. On the left on may see a several possible
hyperplanes, however only the hyperplane on the right provides the maximum margin, and thus
is selected [55]

Those points are referred to as support vector points due to defining the hyperplane position.

Removal of any other point will not affect the hyperplane, unlike a removal of a support vector

point. Margin is also a crucial quality of a model, because it insures robustness of a model.

Hyperplane with a maximal margin for both tends to misclassify incoming data less often. In

several cases it is hard to achieve decently big margin and include all of the data points. In

such cases these unfitting points could be ignored (e.g. by regarding them as noise). Managing
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between a good margin and proper point disclusion is the key for achieving a high accuracy

performance. Another useful technique, when dealing with tasks, where a linear solution is nil

possible, is to map an existing space onto another higher dimensional space and try to draw

a higher dimensional hyperplane in there; all by using an assistant function. This assistant

function is named kernel and the technique itself - a kernel trick [52–56].

An SVM or working on tasks requiring grouping into more than two classes represents an

ensemble of multiple binary SVMs, which follow either ”one-vs-rest” or ”one-vs-one” strategy.

In case of ”one-vs-rest” each SVM takes one specific class and composes all the remaining

classes together in to a single one. In the other case, each class is compared to each other class

in duels [52–56].

Figure 3.5: An example of how a kernel trick operates on a 1 dimensional problem, by adding
a second dimension [56]
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Figure 3.6: Yet another example of a kernel trick. This time the initial problem lies in a 2D
domain, but can easily be projected onto a 3D one, ensuring a successful result [56]

3.4 Random Forest

In the base structure of every RF lie decision trees. A decision tree is similar to a flowchart: data

passes through it from start to one of its exit following some inner path. A decision tree consists

of nodes with a statement. Most often this statements check some feature of the incoming data

in a ”if...then...else” fashion, which allows a node to branch out to other nodes and direct the

data. Because of this quality, these nodes are called decision nodes. Other nodes, which do not

branch out, are referred to as either terminal or leaf nodes, due to representing a final outcome

of data traveling through the branches of a decision tree [57–59].

Decision trees work as ML on their own as well. I does its training by constructing a new

tree starting with a single root-node with the training data in its entirety. The algorithm looks

ways to split the data based on some feature of the data in order to make the new subsets to

be more homogeneous, i.e. that one class would be more prevalent than the others. As soon

as the best possible split is found, the node branches out in the resulted splits with correspond-

ing nodes. The newly created nodes are called child-nodes in a relation to the currently split

42



Figure 3.7: A representation of a decision tree. Here each sample represents one of a two
classes, either 1 or 0. Based on the features the samples possess, the decision tree can easily
classify them. [59]

parent-node. Then each subsequent child-node repeats the splitting process unless it reaches a

state of absolute homogeneity, when only one class remains among the data, thus becoming a

leaf node. In this fashion, the tree continues to build itself, until all branches eventually end

up with leaf nodes or another specified condition is met, like maximal number of leaf nodes or

maximal depth is reached and so on. The biggest concern, so far, is the split selection factor.

Each time a node is reviewed, every possible split is considered and evaluated based on a prior

selected function. The majority of these evaluation function are greedy; this means that they

disregard any possible outcome that might appear in the future steps and only focuses on the

solution which is the best in the present circumstance. We will review to members of these

functions [58, 60].

The first function measures Gini impurities of nodes. As it is written in Wikipedia: ”...Gini

impurity is a measure of how often a randomly chosen element from the set would be incorrectly

labeled if it was randomly labeled according to the distribution of labels in the subset. The Gini

impurity can be computed by summing the probability pi of an item with label being chosen

times the probability
∑
k 6=i

pk = 1− pi of a mistake in categorizing that item.” The Gini impurity

can be calculated using the following expression

IG(p) =
J∑

i=1

pi
∑
k 6=i

pk =
J∑

i=1

pi(1− pi) =
J∑

i=1

(pi − p2i ) =
J∑

i=1

pi −
J∑

i=1

p2i = 1−
J∑

i=1

p2i
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where J is the number of classes, i ∈ {1, 2..., J} and pi is a fraction of elements labeled with

class i in the set [61]. From this expression one may see, that lower Gini impurity implies higher

homogeneity with a value of zero representing data filled with only a single class (in case of a

lead node). And since the aim of a splitting a function is to strive toward more homogeneous

data, from all the options it will select the splits with the lowest combined Gini impurity. [60].

Figure 3.8: An example of split based on Gini impurity function. This particular example
uses Iris database to classify flowers. As one can see the left child-node results in a absolutely
homogeneous set, therefore its Gini impurity would be zero. And so, this split is selected [60]

The second principle revolves around calculating information, which reflects in entropy

(units of measurement are bits) [62]. Entropy can be viewed as a measurement of disorder

within a set and has a mathematical formula of

E(S) = −
J∑

i=1

pi log2 pi

where J is the number of classes, i ∈ {1, 2..., J} and pi is a fraction of elements labeled with

class i in the set [61, 63]. Similar to Gini impurity, lower entropy signifies higher homogeneity,

where zero is once again present in a unicategorical set. And similarly the algorithm must

operate in the direction of reducing the entropy inside the dataset. This reduction represents

Information Gain based of a split based on one of the features; it basically shows how much

we learn about the data by looking a the feature, how good does this feature describe the data.

In order to get an Information Gain of a particular split, one calculates the weighted average
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of the resulting child-nodes’ entropy and subtracts it from the reviewed node’s entropy. In

mathematical expression the Information Gain is depicted as

IG(S,X) = E(S)− E(S—X) = E(S)−
∑
c∈X

P(c)E(c).

Logically, when all possible splits have been computed, the split with the biggest Information

Gain must be chosen [58, 62–64].

Decision Tree is a valid ML algorithm, however it is prone to overfitting, i.e. perform fan-

tastically during the training yet fail miserably working with actual data. This is when Random

Forest comes in play. Essentially, RF is a group of individual Decision Trees, where each tree

casts a vote in favor of a class to be predicted. Every tree analyses incoming input and provides

its corresponding output, then the most resulted class is deemed the final prediction. The idea

behind this logic is that errors of the minority of trees would be compensated by the successful

majority. The results of RF improve with the minimising of correlation among trees and with

individual increase of each tree’s strength [59, 65, 66].

Several supporting methods exist for assisting RF training. One of such methods is called

bootstrap aggregating (a.k.a. bagging): each individual tree is given a set of training data, where

random elements are copied and replace other elements of the initial testing data. Please notice,

that the size of either training data remains equal. Bagging increases variability among the trees’

structure by providing different training basis. To further diversify the trees, another method

implies limiting the set of features to a random subset, one tree may consider, when determining

a split for its nodes. The point for this data manipulation is to stimulate different decision trees

to focus their attention on different chunks of input when making a prediction [59, 65–67].

3.5 Scikit-learn

After selecting the ML algorithms and gathering theory about them, comes the time of imple-

mentation. Frankly, there is no need to reinvent the wheel: it is unnecessary to recreate by hand

those algorithms, because multitude of libraries provide a convenient tools for ML application.

Decision of which library to utilize has fallen in favor scikit-learn library for Python. It is popu-
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lar, well documented and hardware universality is a top priority for the library’s developers [68].

Scikit-learn provides a multitude implementations of SVM. For this paper Support Vector

Machine Classifier was used, represented in the library as sklearn.svm.SVC class. The con-

structor for an SVC model contains several parameters for tuning:

• C: a regularisation parameter. It represent how much the model is willing to sacrifice

largeness of margin, in favor of better classification of data points. A lower value will

result in a simpler decision function, but many data points may be classified improperly

and vice versa. A strictly positive float value; default is 1.0.

• kernel: represents a kernel function used in the algorithm. it can be selected from the list

of ’linear’ ( 〈x, x′〉 ), ’poly’ (polynomial: (γ〈x, x′〉 + r)d ), ’rbf’ (Gaussian Radial Basis

Function: exp(−γ‖x− x′‖2) ), ’sigmoid’ (tanh(γ〈x, x′〉+ r) ). A custom kernel function

can be passed into the model by either putting a standard python function as the kernel

value or by setting the kernel value to ’precomputed’ and providing Gram matrices to fit()

and predict() methods in place of usual data. Has a value of ’rbf’ by default.

• degree: a degree of the polynomial kernel function (poly), is represented by d in the

formula, is of int data type, default value is 3.

• gamma: is a Kernel coefficient for ’rbf’, ’poly’ and ’sigmoid’, represented by γ in the

formulas. It acts as an inverse of a kernel’s radius of influence. A small value may

result in possible support vector to be compared with pretty much the entire dataset and

the model itself might as well perform as a linear one. It is a float value, but strings

”scale” and ”auto” can also be given for an actual value to be calculated by following

the formulas 1 / ( number features * training data variance) and 1 / number features

respectively. ”scale” by default.

• coef0: a float value significant to ’poly’ and ’sigmoid’ kernels, is represented by r in their

formulas. Default is 0.0.

• shrinking: a boolean value whether to use shrinking heuristic or not. Shrinking heuristic

supposedly shortens the training time in cases, when the number of iterations reaches

large numbers. True by default.
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• probability: a boolean value which allows internal 5-fold cross-validation during a train-

ing data fit. This lets a model an ability to provide probability estimation of a class

belonging for each given sample. Will slow down the training. By default is switched to

False.

• tol: denotes the tolerance for stopping criterion; is a float value with 0.001 being the

default.

• cache size: a float value for kernels cash size in MB; 200 by default.

• class weight: takes a dictionary, where to a key of class label corresponds a positive non-

zero float weight value, which would be multiplied to C in order to get a class specific

regularisation. If nothing is provided, all classes are given the weight of one. Additionally,

a string ’balanced’ can be provided instead, which would automatically adjust the class

weight inversely proportional to the class’ frequency of appearance. Default value is

None.

• verbose: a boolean value; allows intermediary logging to appear; may not work properly

with multiple threads; False by default.

• max iter: a positive int value for hard capping the number of iterations within a solver.

Conversely, a -1 can be given to alleviate any restrictions. -1 by default.

• decision function shape: a mostly deprecated parameter kept around for compatibility

sake. Can have value either ’ovo’ or ’ovr’ which represent one-vs-one and one-vs-rest

multi-class decision strategies. The parameter is ignored in binary classification and one-

vs-one is always used for multi-class problems. Default value is ’ovr’.

• break ties: a boolean value responsible for determining cases, when an input falls on

the cross section of numerous classes during a multi-class prediction. If it is True, deci-

sion function shape is ’ovr’ and model checks for more than two classes, then the model

will resolve ties of multiple classes claiming the input to be of them own by performing

a time consuming probability calculation. Else, the first class to claim the input will be

returned in the output. False by default.

• random state: is used to control internal pseudo random number generation for data

shuffling during probability estimation; is ignored when probability parameter is False.
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An int or a numpy.random.RandomState instance can be passed to the parameter or a

None, if no randomness replication is intended.

[68–72]

Figure 3.9: Results of differing kernel implementations of multi-class SVC on a 2D (Iris) dataset
[71]

As for the RF, a Random Forest Classifier was utilized with sklearn.ensemble.RandomForestClassifier

class from the library. It should be noted, that RF provided by scikit-learn do not vote for the

most likely prediction, but have their probabilistic predictions averaged. In total the constructor

for this class has 19 parameters available to tune:

• n estimators: an int value denoting the number of trees in the forest; 100 by default.

• criterion: a function for split selection; can either be ’gini’ (Gini impurity) or ’entropy’

(Information gain); default value is ’gini’.

• max depth: an int value to limit the depth of a tree. Alternatively, None can be passed to

remove any restriction making the nodes split until all the branches end with leaves.
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• min samples split: if the value is int, then the parameter represent the minimum number

of samples of training data, which would be considered when making a split. If the

value is float, then the minimum number of reviewed samples is ceil( samples number *

min samples split). Default value is 2.

• min samples leaf: if the value is int, then only leafs with at least this many samples

would be considered when making a split. If the value is float, then a minimal number

of samples would be calculated as ceil( samples number * min samples leaf). Default

value is 1.

• min weight fraction leaf: ”The minimum weighted fraction of the sum total of weights

(of all the input samples) required to be at a leaf node. Samples have equal weight when

sample weight is not provided”. A float value with 0.0 being the default.

• max features: signifies the maximal number of features that would be considered when

making a split. This number may be exceeded, if no suitable split has been found. If

the value is int then the maximal number of features is the parameter itself. If the

value is float then the maximal number of features is calculated following an expres-

sion ceil( max features * features number). If ’sqrt’ or ’auto’ are given then the maxi-

mal number of features is calculated following an expression sqrt(features number). If

’log2’ is given then the maximal number of features is calculated following an expres-

sion log2(features number). If the value is None then there is no limit on the number of

features to be considered.

• max leaf nodes: the trees are limited to having a certain maximal number of leaf nodes.

Leafs are selected based on their relative reduction in impurity. An int value, but None

can also be given to remove the limitation (the default value).

• min impurity decrease: nodes will be split only if the split induces a decrease of the

impurity greater than or equal to this float value. The weighted impurity decrease is

calculate using the following expression:

Nt/N ∗ (impurity −NtR/Nt ∗ right impurity −NtL/Nt ∗ left impurity),

where N is the total number of samples, Nt is the number of samples at the current node,

NtL is the number of samples in the left child, and NtR is the number of samples in the
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right child.

• min impurity split: a deprecated soon to bee removed parameter.

• bootstrap: a boolean value specifying whether to use bootstrap aggregating or not. If

False, the entire dataset is used for tree building. True by default.

• oob score: a boolean value specifying whether to use unused training data (out-of-bag

samples) to estimate the generalization accuracy.

• n jobs: an int value responsible for parallelisation. The computation is divided into the

number of jobs equal to the value and then jobs are given the same amount of processing

cores. If the value is -1, then all available cores will be used. Is None by default.

• random state: is used to control internal pseudo random number generation for train-

ing data shuffling when bootstraping in on or when max features: is less than fea-

tures number). An int or a numpy.random.RandomState instance can be passed to the

parameter or a None, if no randomness replication is intended.

• verbose: a boolean value; allows intermediary logging to appear; may not work properly

with multiple threads; False by default.

• warm start: a boolean value, which when True allows to add more trees to the forest on

a subsequent data fitting calls instead of fully retraining the model.

• class weight: takes a dictionary (or a list of dictionaries in multiple output cases), where

to a key of class label corresponds a positive non-zero float weight value. If nothing is pro-

vided, all classes are given the weight of one. Additionally, a string ’balanced’ can be pro-

vided instead, which would automatically adjust the class weight inversely proportional

to the class’ frequency of appearance in the data. Another string ’balanced subsample’

can be passed, then the weights for a tree would be computed based on the tree’s bootstrap

data, instead of a whole dataset. Default value is None.

• ccp alpha: is a non-negative float value used for Minimal Cost-Complexity Pruning,

which is a method of removing nodes from a tree to reduce a tree’s complexity and avoid

overfitting; is 0.0 by default.

• max samples: when bootstrap is True, this value is used to for determining the number

of training samples. If the default value of None is provided, then the entire training data
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is taken. If int is provided, then the number of drawn samples would be equal to the

value. If a float ( must be between 0 and 1) is given, then the number of drawn samples

will equal to max samples * samples number.

[72–78]

The hardest part in the ML application are the parameters of course. There is no definitive

way of knowing all the correct values beforehand. Pretty much the majority of ML implement

experimentation to some extent. Trial and Error approach seem to be the most widespread in

contrast to other possibilities. Conveniently, scikit-learn also provides tools for looking-up the

parameter. These are the GridSearchCV (GSCV) and RandomizedSearchCV (RSCV) classes

from sklearn.model selection. These classes essentially train multiple instances of specified

model with a multitude of parameters to select from. Eventually, all the resulted instances are

compared and the best set of parameters and the most efficient model can be accessed. The dif-

ference between them, is that GSCV checks every possible combination from the given range of

parameters, whereas RSCV takes randomly but a specified number of parameter sets [79–81].

Naturally, any ML requires some training substrate for creation and testing data for perfor-

mance scoring. The models initiated by RSCV and GSCV are not an exception. However,

when they are used, only a single dataset should be provided, all thanks to an internal K-fold

cross-validation(CV). K-fold CV is an assistance method for training and assessing ML models,

which takes the most out of provided data. It breaks down the input data into K equal subsets

(so in case of a 5-fold CV the data would be cut into 5 parts), and carries out 5 independent

training procedures, using K-1 number of subsets for training and the remaining one for testing,

thus each procedure has its own unique combination of training and testing data. Finally, all of

the results are averaged to give a more general description of model’s behaviour. It is quite a

computationally expensive task, but nevertheless beneficial for optimising ML outputs. [79,82]
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Figure 3.10: A visualisation of a 5-fold CV [82]

3.6 Datasets

As has been mentioned numerous times, ML needs samples to fuel its construction, therefore

a good dataset is essential. The dataset should have a broad range of samples and the labels

should correspond to the emotional model chosen previously in the section 2.4. For this paper

several datasets have been obtained:

• FER2013: contains 35896 samples of grayscale images of size 48×48 pixels. The sam-

ples are labeled as either Angry, Disgust, Fear, Happy, Sad, Surprise or Neutral. Samples

include pictures of people’s facial expressions from different angles, along with abstract

drawings [83].

• The Japanese Female Facial Expression (JAFFE) Database: contains 213 samples

of grayscale images of size 256×256 pixels. The samples are labeled as either Anger,

Disgust, Fear, Happiness, Sad, Surprise or Neutral. The samples are frontal pictures of

Japanese female models posing a specific facial expression [84].

• iCV MEFED: contains 28718 samples of coloured images of size 5184×3456 pixels.

The samples are labeled as either Anger, Contempt, Disgust, Fear, Happiness, Sadness

or Surprise. The samples are all frontal pictures of a diverse group of people. Inter-

nally divided into Training, Validation and Testing subsets. Was provided by the paper’s

supervisor.
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TODO: perhaps paste a sample for each of the mentioned databases

3.7 Software

The final solution for this project can be divided into steps of sub-tasks:

1. Receive a picture of a user’s facial expression

2. Perform the necessary image processing

3. Classify the valence of user’s emotion (Negative, Neutral or Positive)

4. Estimate the emotion’s level of arousal (by either classification or regression)

5. Send a corresponding pattern to the display

6. Visualise the pattern through the display

The steps 3 and 4 seem to induce difficulty the most, therefore the practical realisation of soft-

ware will commence with them. To make the steps a bit easier a few assumptions are made

concerning the input data. First of all, to invoke consistency the sample must have a frontal

view over a person’s facial expression. Secondly, it is expected for a person’s facial expres-

sion to be sincere, as not masked or suppressed, because otherwise this brings a broad variety

of culture specific nuances. Since we are basing our emotional model on the concept of basic

emotions, observed sincere facial expressions are universal [16].

3.8 ML application 1: SVM one VS one with FER2013

In order to get the initial firsthand feeling of SVM, each emotion from FER2013 was compared

with each another. An SVC object was used with the parameters being default (Table 3.2) and

with no class balancing. All training and scoring were performed on the Raspberry Pi. The

training data made up a random 60% split of the input data, and the remaining part was used for

assessment.
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Table 3.3: The default parameters of an SVC model
’C’ 1
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ ’auto deprecated’
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

3.9 ML application 2: SVM one VS rest with FER2013

To further expand the grasp over the surface level understanding of interactions between SVM

and FER2013 dataset, a number of additional binary models were trained. This time each

emotion would be compared against the remaining ones grouped together. As in the previous

application, only the kernel parameter was switched from default value to ’rbf’. The input data

was similarly split into random subsets of 60% for training and 40% for testing. All training

and scoring were performed on the Raspberry Pi.

3.10 ML application 3: SVM all VS all with FER2013

As a follow up, attempt at multi-class classification using SVC was carried out. The model

was fed the dataset of each emotion labeled as an independent class, expecting to recieve a

model able to discriminate among the 7 classes. One may recall, that SVC follows one-vs-one

strategy when dealing with multi-classification tasks. Therefore, the resulting model would

be an ensemble of models similar to the ones made in ML application 1. As in the previous

applications, only the kernel parameter was switched from default value to ’rbf’. The input data

was similarly split into random subsets of 60% for training and 40% for testing. All training

and scoring were performed on the Raspberry Pi.
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3.11 ML application 4: SVM negative VS positive + neutral

with FER2013

The final attempt at training an SVM on FER2013 database. This time the plan was to segregate

negative emotions from the rest, which would be happiness, surprise and neutral. In hopes

of balancing the training data and not overwhelming the estimator, only 500 samples of each

negative and 667 samples of the remaining emotions were fed to the SVC. The samples not

used in the training were instead used for testing. This application has been carried out multiple

times, each times with manually changing the ’C’ and ’gamma’ parameters. All training and

scoring were performed on the Raspberry Pi.

3.12 ML application 5: RSCV for RFC negative VS neutral

VS positive with JAFFE

After inspecting a handful of samples from FER2013 database, it became obvious that quite a

lot of the samples do not match the first assumption made in section 3.7. With this in mind,

the author has moved on to another database: JAFFE. This time an RFC was taken as an ML

model, along with RSCV to help outlining the parameters. The classes were also made up to

better reflect step 3 from section 3.7, negative emotions vs neutral vs positive emotions. RSCV

was given a dictionary with parameters to choose from reflected in the Table 3.3; it would train

10 unrelated models simultaneously using a 3-fold CV. For the training data 70% of random

samples from the JAFFE database were used, while the left out 30% were utilizing for scoring

as test data. This application was carried out numerous times with identical training/test data

splits. All training and scoring were performed on the Raspberry Pi.

Table 3.4: All the possible value which RSVC could use to train RFC for ML application 5, 6,
8 and 10

Parameter Possible Values
’n estimators’ {100, 200, 300...100000}

’criterion’ ’gini’or ’entropy’
’bootstrap’ True or False

’max depth’ None or {10, 110, 210...10000}
’min samples split’ {2, 4, 8, 16}
’min samples leaf’ {1, 2, 4}

55



TODO: perhaps paste an unmatching sample

3.13 ML application 6: RSCV for RFC negative VS neutral

VS positive with iCV MEFED

After proving the eligibility of RF implementation for the project, it was time to move on

to another database. iCV MEFED database provides an expansive array of highly detailed

samples to work with. RSCV and RFC were once again utilized with a set up identical to the

one described in the previous section all but with one exception: the 15-fold CV was used

instead. All training and scoring were performed on the Raspberry Pi. The entire Training

and Testing subsets of the dataset was attempted to be used for training and testing the models

respectively.

3.14 ML application 7: RSCV for SVC negative VS neutral

VS positive with facial landmarks from iCV MEFED

It was suggested to look up open source solutions of tasks similar to ours. Two such projects

were found, which performed data argumentation: a method of either extracting additional from

already existing samples or compressing the data into bare essential [85,86]. The idea was, that

instead of providing all the pixel values of the sample to ML, only a few in number values should

be given. The values represent the coordinates of points on the image, which outline the shape

of a person’s face/facial expression. Both projects implemented Facial Landmarks detector for

receiving x and y coordinates of 68 point. The points represent the position of brows, nose,

shape of eyes and mouth [87]. Not only does this helps ML to focus on the important features,

but also avoids overwhelming computer’s memory.

Analysing an image on the basis of Facial Landmarks is a time consuming computation. A

separate pre-processing program was created in order to create child-datasets from Training

and Testing subsets of iCV MEFED database. The steps of the program as followed:

1. Read a sample from the database as grayscale.

2. Detect faces using frontal face detector from dlib [88, 89].
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3. Discard the sample and move on to the next one, if step 2 resulted in several faces detected

(fortunately iCV MEFED database is expansive enough to neglect this loses).

4. Use Facial Landmarks detector to acquire 68 pairs of coordinates.

5. Flatten the results of step 4 into a single vector and write it to .txt file along with sample’s

emotion label, so a human can easily check whether any mistakes occurred.

6. Repeat steps 1 through 5 for each sample in the dataset.

Since the projects used SVC, it was decided to give SVC yet another chance. This time SVC

was accompanied by an RSCV, however used slightly unconventionally. The training of a

single model took several hours, training several models at once could take severely longer

with a chance of stumbling across a memory error. Therefore the number of simultaneous

models trained was reduced to only a single one. This made RSVC into merely a random

parameter selector. CV was also reduced to 2-fold. The possible parameters are show in Table

3.5. Sizes of training sets for each class were kept approximately equal. The computations

were performed on both the Raspberry Pi and author’s PC.

Table 3.5: All the possible value which RSVC could use to train SVC for ML application 7 and
9

Parameter Possible Values
’gamma’ {100, 200, 300...100000}
’kernel’ ’rbf’, ’poly’ or ’sigmoid’

’C’ {100, 200, 300...100000}

3.15 ML application 8: RSCV for RFC negative VS neutral

VS positive with facial landmarks from iCV MEFED

This procedure was nearly identical to the previous one, with differences being the model used,

which is RFC, along with the dictionary of parameters, which is the same as in ML application

5 (Table 3.5).
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3.16 ML application 9: RSCV for SVC negative VS neutral

VS positive with facial landmarks from twice shrunk

iCV MEFED

A follow up application to the 7th application. It was supposed, that perhaps SVC is unable to

have any sufficiently good results because of the large resolution of pictures inside the database

(5184× 3456 pixels). To test this idea, a procedure was carried out similar to the one described

previously about Facial Landmarks extraction. This time the samples were resized to half of

their original dimensions before passing them to detectors. Afterwards, RSCV with SCV have

been implement as described in ML application 7, although all computations were performed

on Raspberry Pi.

3.17 ML application 10: RSCV for RFC negative VS neutral

VS positive with facial landmarks from twice shrunk

iCV MEFED

This procedure was nearly identical to the previous one, with differences being the model used,

which is RFC, along with the dictionary of parameters, which is the same as in ML application

5 (Table 3.5).

3.18 Histogram of oriented gradients, data size estimation

Along with Facial Landmarks detector, the project of Amine Horseman also implements a fea-

ture descriptor method called Histogram of oriented gradients (HOG) [86]. This method is

aimed at extracting the information about the shapes of objects in a picture, discarding every-

thing else like colour, intensity etc. This, again, helps ML algorithms with locating crucial

features and reduces data size.

HOG’s main working aspect is not dealing with a whole image, but instead dividing the

image into a multitude of little sections called cells. Specifically in this project HOG operates

58



over rectangular sections N ×M pixels, where N and M specifies the programmer. Since HOG

is a histogram after all, and as a histogram it provides a view over the frequency distribution of

a set of continuous data, which is orientation in degrees in our case. To achieve this distribution

of gradients is calculated. It can easily be achieved by using, for example, Sobel kernels to

get the initial gradients in the x and y direction. Then using the Pythagoras theorem the over-

all magnitude of a gradient can be calculated, simply because gradients of x and y direction

form a right-angled triangle. Using the same triangle concept the orientation of the gradient can

also be received via arctangent. With the magnitude and orientation values we can move on to

Figure 3.11: Representation of gradients in x and y directions as a right-angled triangle [91]

filling out the plot. The x-dimension will represent the angle of orientation, and y-dimension

will show the the total magnitudes corresponding to the angle. Placing each magnitude value

on a continues axis would be tedious and impractical. Thus the whole range of angle values is

discreetly sectioned into bins of equal size. It should be noted, that in the case of gradients the

angle range goes from 0 to 180 degrees, because the gradient of one direction and a gradient of

the polar opposite direction (180◦apart) are virtually the same, and this does not impact quality

of performance. And so, the gradient magnitudes for every pixel are inserted into the desig-

nated bins. If an orientation does not strictly fall in the value of any bin, then its corresponding

magnitude will be divided among the two closest bins with respect to their distances from the

orientation as depicted in Figure 3.12.
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Figure 3.12: An orientation of a gradient does not fall strictly into the bin, therefore its magni-
tude is being shared by the two closest bins, based on how close they are. [91]

When all the computations for each cell is made, nearby cells can be grouped into (rectangu-

lar) blocks to perform normalisation among the cells inside each block. Normalisation can help

avoid negative effects of extreme lighting. Finally, the result can be flattened down to a single

vector for easier manipulation and possibility to be fed as an input to a ML algorithm [90, 91].

Knowing the inner workings of HOG, programming it can impose a challenge. But yet

again, we are covered by external python library, which provides a ready-to-use implementation.

Now it is a scikit-learn’s sister library: scikit-image - specialises in functions assisting with

image processing [92]. As far as HOG calculation is concerned, scikit-image offers a method

called hog() found in the class hog(skimage.feature). [93] It has several parameters, out of which

the most important are

• orientations: an int value; represents the number of orientation bins, which divide the

angle axis.

• pixels per cell: a (int, int) 2-d tuple, which shows the dimensions of a cell in pixels.

• cells per block: a (int, int) 2-d tuple, which shows the size of blocks in cells.

[93] And as usual in the field of machine learning, these parameters are not easy to obtain and

must be acquired by means of numerous experiments. The obvious part is the fact, that the

more pixels are in the cell, the smaller resolution becomes. Since the data size is incredibly

important within the constraints of a weaker hardware, it can be one of the criteria of selecting
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the parameters. In order to estimate potential size of each sample numerous HOG calculations

with varying values of pixels per cell and cells per block parameters were preformed over a

single random image from iCV MEFED database. In total 81 procedures were carried out and

their vector results saved into .npy files. This way we can estimate the effect the parameters have

on the size of a single sample. As for orientations parameter, it is generally recommended to

use a value of 9.

3.19 ML application 11: SVC negative VS neutral VS posi-

tive with HOG vectors of smallest size from iCV MEFED

It was time to implement HOG into ML. As an ML algorithm SVC was taken with the default

parameters (Table 3.4). HOG vectors for training were computed from iCV MEFED Training

dataset using the parameters: orientations = 9, pixels per cell = 72, cells per block = 1. Sim-

ilarly, HOG vectors for testing were calculated. Each iteration of ML training had a limit on a

maximum number of samples representing each class. All calculations were performed on the

author’s PC.

3.20 ML application 12: RFC negative VS neutral VS posi-

tive with HOG vectors of smallest size from iCV MEFED

Identical to the previous application, albeit RFC was used instead of SVC.

3.21 ML application 13: RFC negative VS neutral VS posi-

tive with HOG vectors of smallest resolution from iCV

MEFED

Perhaps, the problem with the previous application was due to the lost features, which happened

during HOG function execution with a big value of pixels per cell parameter. This implemen-

tation would use HOG vectors, which back up the best resolution achieved with pixels per cell

value of 8. Other parameters: cells per block = 1, orientations = 9. In order to not lose

time much time in between the training sessions, the vectors were pre-calculated and then were
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stored using numpy library’s memmap. This made a binary file of a numpy array, which then

could be accessed by code in slices, and (hopefully) not overwhelm the system’s memory [94].
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4 Results

4.1 Results of ML application 1: SVM one VS one with FER2013

In total 21 SVC models were trained for each possible pair among the 6 emotions + neutral.

The models are named after the pair of emotions they were trained to discern in a format of:

emotion1 VS emotion2. The training time for each model was around 2 to 4 hours.

The list of finished models is following:

anger VS neutral, anger VS disgust, anger VS fear, anger VS happiness, anger VS sadness,

anger VS surprise, neutral VS disgust, neutral VS fear, neutral VS happiness, neutral VS sad-

ness, neutral VS surprise, disgust VS fear, disgust VS happiness, disgust VS sadness, disgust

VS surprise, fear VS happiness, fear VS sadness, fear VS surprise, happiness VS sadness, hap-

piness VS surprise and sadness VS surprise.

In order to assess and compare the models’ performance each model was given a set of test

data, which the model tried to predict. The predicted class was then checked with the sample’s

actual class. Using .score() method of a model a float number has been returned, which shows

the fraction of successful predictions in relation to the number of total predictions made. In

addition, a method sklearn.metrics.confusion matrix() was used to visualise the distribution be-

tween the successful and unsuccessful predictions in a matrix.

The results for each model is given in a format of:

———————————————-

model’s name (emotion1 VS emotion2)

scoring: returned value of .score() method
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Table 4.1: An example of a confusion matrix for the model emotion1 VS emotion2

predicted emotion1 predicted emotion2

true emotion1
number of emotion1 samples

predicted as emotion1

number of emotion1 samples
predicted as emotion2

true emotion2
number of emotion2 samples

predicted as emotion1

number of emotion2 samples
predicted as emotion2

———————————————-

anger VS neutral

scoring: 0.5711723828737951

Table 4.2: Confusion matrix resulted from a binary SVC model trained on FER2013 anger and
neutral data

predicted anger predicted neutral
true anger 113 1910
true neutral 3 2435

———————————————-

anger VS disgust

scoring: 0.9172727272727272

Table 4.3: Confusion matrix resulted from a binary SVC model trained on FER2013 anger and
disgust data

predicted anger predicted disgust
true anger 1981 0
true disgust 182 37

———————————————-

anger VS fear

scoring: 0.5196029776674937

Table 4.4: Confusion matrix resulted from a binary SVC model trained on FER2013 anger and
fear data

predicted anger predicted fear
true anger 114 1933
true fear 3 1980

———————————————-
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anger VS happiness

scoring: 0.6634391249775865

Table 4.5: Confusion matrix resulted from a binary SVC model trained on FER2013 anger and
happiness data

predicted anger happiness
true anger 109 1876
true happiness 1 3591

———————————————-

anger VS sadness

scoring: 0.5677697189483227

Table 4.6: Confusion matrix resulted from a binary SVC model trained on FER2013 anger and
sadness data

predicted anger predicted sadness
true anger 115 1904
true sadness 3 2390

———————————————-

anger VS surprise

scoring: 0.6510329424902289

Table 4.7: Confusion matrix resulted from a binary SVC model trained on FER2013 anger and
surprise data

predicted anger predicted surprise
true anger 2011 1
true surprise 1249 321

———————————————-

neutral VS disgust

scoring: 0.9347664936990363

Table 4.8: Confusion matrix resulted from a binary SVC model trained on FER2013 neutral
and disgust data

predicted neutral predicted disgust
true neutral 2479 0
true disgust 176 51
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———————————————-

neutral VS fear

scoring: 0.592756183745583

Table 4.9: Confusion matrix resulted from a binary SVC model trained on FER2013 neutral
and fear data

predicted neutral predicted fear
true neutral 2533 2
true fear 1842 151

———————————————-

neutral VS happiness

scoring: 0.6064197530864197

Table 4.10: Confusion matrix resulted from a binary SVC model trained on FER2013 neutral
and happiness data

predicted neutral predicted happiness
true neutral 76 2391
true happiness 0 3608

———————————————-

neutral VS sadness

scoring: 0.525254582484725

Table 4.11: Confusion matrix resulted from a binary SVC model trained on FER2013 neutral
and sadness data

predicted neutral predicted sadness
true neutral 2500 1
true sadness 2330 79

———————————————-

neutral VS surprise

scoring: 0.7026960784313725

Table 4.12: Confusion matrix resulted from a binary SVC model trained on FER2013 neutral
and surprise data

predicted neutral predicted surprise
true neutral 2519 0
true surprise 1213 348
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———————————————-

disgust VS fear

scoring: 0.9069664902998237

Table 4.13: Confusion matrix resulted from a binary SVC model trained on FER2013 disgust
and fear data

predicted disgust predicted fear
true disgust 38 210
true fear 1 2019

———————————————-

disgust VS happiness

scoring: 0.946526867627785

Table 4.14: Confusion matrix resulted from a binary SVC model trained on FER2013 disgust
and happiness data

predicted disgust predicted happiness
true disgust 40 204
true happiness 0 3571

———————————————-

disgust VS sadness

scoring: 0.919622641509434

Table 4.15: Confusion matrix resulted from a binary SVC model trained on FER2013 disgust
and sadness data

predicted disgust predicted sadness
true disgust 42 213
true sadness 0 2395

———————————————-

disgust VS surprise

scoring: 0.8978021978021978

Table 4.16: Confusion matrix resulted from a binary SVC model trained on FER2013 disgust
and surprise data

predicted disgust predicted surprise
true disgust 43 186
true surprise 0 1591
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———————————————-

fear VS happiness

scoring: 0.6614103472714387

Table 4.17: Confusion matrix resulted from a binary SVC model trained on FER2013 fear and
happiness data

predicted fear predicted happiness
true fear 152 1911
true happiness 0 3581

———————————————-

fear VS sadness

scoring: 0.5689732142857142

Table 4.18: Confusion matrix resulted from a binary SVC model trained on FER2013 fear and
sadness data

predicted fear predicted sadness
true fear 166 1931
true sadness 0 2383

———————————————-

fear VS surprise

scoring: 0.6673972602739726

Table 4.19: Confusion matrix resulted from a binary SVC model trained on FER2013 fear and
surprise data

predicted fear predicted surprise
true fear 2086 6
true surprise 1208 350

———————————————-

happiness VS sadness

scoring: 0.6089264974282396

Table 4.20: Confusion matrix resulted from a binary SVC model trained on FER2013 happiness
and sadness data

predicted happiness predicted sadness
true happiness 3600 0
true sadness 2357 70
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———————————————-

happiness VS surprise

scoring: 0.7687127188762748

Table 4.21: Confusion matrix resulted from a binary SVC model trained on FER2013 happiness
and surprise data

predicted happiness predicted surprise
true happiness 3610 1
true surprise 1201 385

———————————————-

sadness VS surprise

scoring: 0.703125

Table 4.22: Confusion matrix resulted from a binary SVC model trained on FER2013 sadness
and surprise data

predicted sadness predicted surprise
true sadness 2469 0
true surprise 1197 366

4.2 Results of ML application 2: SVM one VS rest with FER2013

In total 7 SVC models were trained for each of the 6 emotions + neutral. The models are named

after the emotion the model tried to discern from the others: emotion VS rest (list of all other

emotions). The training time for each model was around 6 hours.

The list of finished models is following:

anger VS rest (neutral + disgust + fear + happiness + sadness + surprise)

neutral VS rest (anger + disgust + fear + happiness + sadness + surprise)

disgust VS rest (anger + neutral + fear + happiness + sadness + surprise)

fear VS rest (anger + disgust + neutral + happiness + sadness + surprise)

happiness VS rest (anger + disgust + neutral + fear + sadness + surprise)

sadness VS rest (anger + disgust + neutral + fear + happiness + surprise)

surprise VS rest (anger + disgust + neutral + fear + happiness + sadness)

In order to assess and compare the models’ performance each model was given a set of test data,
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which the model tried to predict. Once again the methods .score() and

sklearn.metrics.confusion matrix() were utilized for performance quality depiction.

The results for each model is given in a format described in section 4.1:

———————————————-

anger VS rest (neutral + disgust + fear + happiness + sadness + surprise)

scoring: 0.868617206548241

Table 4.23: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish anger from the rest of emotions, which are neutral, disgust, fear, happiness,
sadness and surprise

predicted anger predicted rest
true anger 92 1880
true rest 6 12377

———————————————-

neutral VS rest (anger + disgust + fear + happiness + sadness + surprise)

scoring: 0.8329501915708812

Table 4.24: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish neutral from the rest of emotions, which are anger, disgust, fear, happiness,
sadness and surprise

predicted neutral predicted rest
true neutral 76 2398
true rest 0 11881

———————————————-

disgust VS rest (anger + neutral + fear + happiness + sadness + surprise)

scoring: 0.9877394636015325

Table 4.25: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish disgust from the rest of emotions, which are anger, neutral, fear, happiness,
sadness and surprise

predicted disgust predicted rest
true disgust 47 175
true rest 1 14132
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———————————————-

fear VS rest (anger + disgust + neutral + happiness + sadness + surprise)

scoring: 0.8665273423894113

Table 4.26: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish fear from the rest of emotions, which are anger, neutral, disgust, happiness,
sadness and surprise

predicted fear predicted rest
true fear 133 1910
true rest 6 12306

———————————————-

happiness VS rest (anger + disgust + neutral + fear + sadness + surprise)

scoring: 0.7538836642284918

Table 4.27: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish happiness from the rest of emotions, which are anger, neutral, disgust, fear,
sadness and surprise

predicted happiness predicted rest
true happiness 94 3532
true rest 1 10728

———————————————-

sadness VS rest (anger + disgust + neutral + fear + happiness + surprise)

scoring: 0.8352490421455939

Table 4.28: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish sadness from the rest of emotions, which are anger, neutral, disgust, fear,
happiness and surprise

predicted sadness predicted rest
true sadness 69 2358
true rest 7 11921

———————————————-

surprise VS rest (anger + disgust + neutral + fear + happiness + sadness)

scoring: 0.9116684082201324
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Table 4.29: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish surprise from the rest of emotions, which are anger, neutral, disgust, fear,
happiness and sadness

predicted surprise predicted rest
true surprise 353 1260
true rest 8 12734

4.3 Result of ML application 3: SVM all VS all with FER2013

A single model was trained for this application. The method sklearn.metrics.confusion matrix()

along with the testing data were used to assess the model’s accuracy. The resulted confusion

matrix for this model is provided below in the Table 4.30.

Table 4.30: Confusion matrix resulted from a multi-classification SVC model trained on
FER2013 data in order to distinguish every emotion from each other

predicted
anger

predicted
neutral

predicted
disgust

predicted
fear

predicted
happiness

predicted
sadness

predicted
surprise

true anger 106 0 0 1 1864 1 0
true neutral 1 71 0 1 2433 1 0
true disgust 0 0 34 0 173 0 0
true fear 4 2 0 134 1933 6 4
true happiness 0 1 0 0 3512 0 0
true sadness 6 2 0 3 2367 73 0
true surprise 1 0 0 5 1238 0 378

4.4 Result of ML application 4: SVM negative VS positive +

neutral with FER2013

Several models were trained for this application. Despite tweaking the ’C’ and ’gamma’ pa-

rameters each iteration of this application, all outcomes seemed the same. Due to a mistake

in the code, each result was over-writing the previous one. Thus only one assessment of the

latest model of ’C’ parameter 1000 and ’gamma’ parameter 100000 is provided, which includes

a .score() method’s returned float number and a sklearn.metrics.confusion matrix() method’s

returned confusion matrix.

scoring: 0.5500972612467966
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Table 4.31: Confusion matrix resulted from a binary SVC model trained on FER2013 data in
order to distinguish negative emotions (anger, disgust, fear, sadness) from the rest, which are
neutral, happiness and surprise. The ’gamma’ parameter is 100000 and ’C’ is 1000

predicted negative predicted rest
true negative 134 14564
true rest 7 17682

4.5 Results of ML application 5: RSCV for RFC negative VS

neutral VS positive with JAFFE

In total 6 models were trained using RSCV. All these models are named in a format of: TREE

search i, where i stands for the iteration of this application.

The list of finished models is following:

TREE search -2, TREE search -1, TREE search 0, TREE search 1, TREE search 2, TREE

search 3.

Notice, that numeration of the RFCs begins with a negative number; all RFCs marked with a

negative number have their models lost.

Just like in the previous applications, methods sklearn.metrics.confusion matrix() and .score()

were used to assess models’ performance. However this time another score is given in addition,

which represents the successful instances of predictions during CV inside of the RSCV training.

It can be accessed from an RSCV object’s attribute best index after training.

The results of assessments for each model along with a table with their parameters are provided

below in a format of:

———————————————-

model’s name (TREE search i)

Table 4.32: An example of a table containing parameters of the given model
parameter1 value of parameter1
parameter2 value of parameter2
... ...
parametern value of parametern
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search score: RSCV’s best index attribute after training

test score: returned value of .score() method

Table 4.33: An example of a confusion matrix for the given model
predicted
negative

predicted
neutral

predicted
positive

true negative
number of negative
samples predicted

as negative

number of negative
samples predicted

as neutral

number of negative
samples predicted

as positive

true neutral
number of neutral
samples predicted

as negative

number of neutral
samples predicted

as neutral

number of neutral
samples predicted

as positive

true positive
number of positive
samples predicted

as negative

number of positive
samples predicted

as neutral

number of positive
samples predicted

as positive

———————————————-

TREE search -2

Table 4.34: The parameters of RFC model: TREE search -2
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 2835
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 75781
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7578125

test score: 0.7818181818181819

74



Table 4.35: Confusion matrix from test data of RFC model: TREE search -2
predicted
negative

predicted
neutral

predicted
positive

true negative 27 0 3
true neutral 4 4 2
true positive 3 0 12

———————————————-

TREE search -1

Table 4.36: The parameters of RFC model: TREE search -1
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 413
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 4
’min weight fraction leaf’ 0.0
’n estimators’ 62663
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7734375

test score: 0.8181818181818182

Table 4.37: Confusion matrix from test data of RFC model: TREE search -1
predicted
negative

predicted
neutral

predicted
positive

true negative 27 0 3
true neutral 3 5 2
true positive 2 0 13

———————————————-
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TREE search 0

Table 4.38: The parameters of RFC model: TREE search 0
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 2633
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 81836
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7734375

test score: 0.8181818181818182

Table 4.39: Confusion matrix from test data of RFC model: TREE search 0
predicted
negative

predicted
neutral

predicted
positive

true negative 27 0 3
true neutral 3 5 2
true positive 2 0 13

———————————————-

TREE search 1
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Table 4.40: The parameters of RFC model: TREE search 1
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 9899
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 2
’min weight fraction leaf’ 0.0
’n estimators’ 55600
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7734375

test score: 0.8363636363636363

Table 4.41: Confusion matrix from test data of RFC model: TREE search 1
predicted
negative

predicted
neutral

predicted
positive

true negative 27 0 3
true neutral 3 5 2
true positive 1 0 14

———————————————-

TREE search 2
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Table 4.42: The parameters of RFC model: TREE search 2
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 8789
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 4
’min weight fraction leaf’ 0.0
’n estimators’ 35418
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.765625

test score: 0.8181818181818182

Table 4.43: Confusion matrix from test data of RFC model: TREE search 2
predicted
negative

predicted
neutral

predicted
positive

true negative 27 0 3
true neutral 4 5 1
true positive 2 0 13

———————————————-

TREE search 3
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Table 4.44: The parameters of RFC model: TREE search 3
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 6468
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 16
’min weight fraction leaf’ 0.0
’n estimators’ 67709
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.765625

test score: 0.7818181818181819

Table 4.45: Confusion matrix from test data of RFC model: TREE search 3
predicted
negative

predicted
neutral

predicted
positive

true negative 27 0 3
true neutral 3 4 3
true positive 3 0 12

4.6 Results of ML application 6: RSCV for RFC negative VS

neutral VS positive with iCV MEFED

In total 3 models were trained using RSCV. All these models are named in a format of: iCV

tree Search i, where i stands for the iteration of this application.

The list of finished models is following:

iCV tree Search 0, iCV tree Search 1, iCV tree Search 2.

The assessment and format of result representation is exactly identical as the one described in
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section 4.5.

———————————————-

iCV tree Search 0

Table 4.46: The parameters of RFC model: iCV tree Search 0
’bootstrap’ True
’class weight’ None
’criterion’ ’entropy’
’max depth’ 5560
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 47527
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.700857912204897

test score: 0.7000521648408973

Table 4.47: Confusion matrix from test data of RFC model: iCV tree Search 0
predicted
negative

predicted
neutral

predicted
positive

true negative 4026 0 0
true neutral 115 0 0
true positive 1610 0 0

———————————————-

iCV tree Search 1
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Table 4.48: The parameters of RFC model: iCV tree Search 1
’bootstrap’ True
’class weight’ None
’criterion’ ’entropy’
’max depth’ 4349
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 4
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 72754
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.700857912204897

test score: 0.7000521648408973

Table 4.49: Confusion matrix from test data of RFC model: iCV tree Search 1
predicted
negative

predicted
neutral

predicted
positive

true negative 4026 0 0
true neutral 115 0 0
true positive 1610 0 0

———————————————-

iCV tree Search 2
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Table 4.50: The parameters of RFC model: iCV tree Search 2
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 3844
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 4
’min samples split’ 4
’min weight fraction leaf’ 0.0
’n estimators’ 47527
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.5884605228412991

test score: 0.27995131281516256

Table 4.51: Confusion matrix from test data of RFC model: iCV tree Search 2
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4026
true neutral 0 0 115
true positive 0 0 1610

4.7 Results of ML application 7: RSCV for SVC negative

VS neutral VS positive with facial landmarks from iCV

MEFED

In total 11 models were trained using RSCV. All these models are named in a format of: Land-

mark SVC search p i,

where P denotes the hardware upon which the training of the model was carried out (can be

either Pi meaning the training was performed on Raspberry Pi 4 model B or PC meaning the

training was instead performed on the author’s laptop),

and i stands for the iteration of this application.
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The list of finished models is following:

Landmark SVC search Pi 0, Landmark SVC search Pi 1, Landmark SVC search Pi 2, Land-

mark SVC search Pi 3, Landmark SVC search Pi 4, Landmark SVC search PC 0, Landmark

SVC search PC 1, Landmark SVC search PC 2, Landmark SVC search PC 3, Landmark SVC

search PC 4 and Landmark SVC search PC 5.

The assessment and format of result representation is exactly identical as the one described in

section 4.5.

———————————————-

Landmark SVC search Pi 0

Table 4.52: The parameters of SVC model: Landmark SVC search Pi 0
’C’ 85300
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 90500
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.7005277044854882

test score: 0.7014767932489452

Table 4.53: Confusion matrix from test data of SVC model: Landmark SVC search Pi 0
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-
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Landmark SVC search Pi 1

Table 4.54: The parameters of SVC model: Landmark SVC search Pi 1
’C’ 32800
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 32200
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.7005277044854882

test score: 0.7014767932489452

Table 4.55: Confusion matrix from test data of SVC model: Landmark SVC search Pi 1
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search Pi 2
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Table 4.56: The parameters of SVC model: Landmark SVC search Pi 2
’C’ 94400
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 38200
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.7005277044854882

test score: 0.7014767932489452

Table 4.57: Confusion matrix from test data of SVC model: Landmark SVC search Pi 2
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search Pi 3

Table 4.58: The parameters of SVC model: Landmark SVC search Pi 3
’C’ 53000
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 19400
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

85



search score: 0.7005277044854882

test score: 0.7014767932489452

Table 4.59: Confusion matrix from test data of SVC model: Landmark SVC search Pi 3
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search Pi 4

Table 4.60: The parameters of SVC model: Landmark SVC search Pi 4
’C’ 30200
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 84700
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.7005277044854882

test score: 0.7014767932489452

Table 4.61: Confusion matrix from test data of SVC model: Landmark SVC search Pi 4
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-
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Landmark SVC search PC 0

Table 4.62: The parameters of SVC model: Landmark SVC search PC 0
’C’ 82800
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 28300
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4719207173194903

test score: 0.7014767932489452

Table 4.63: Confusion matrix from test data of SVC model: Landmark SVC search PC 0
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search PC 1
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Table 4.64: The parameters of SVC model: Landmark SVC search PC 1
’C’ 68000
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 82600
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4719207173194903

test score: 0.7014767932489452

Table 4.65: Confusion matrix from test data of SVC model: Landmark SVC search PC 1
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search PC 2

Table 4.66: The parameters of SVC model: Landmark SVC search PC 2
’C’ 8200
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 87600
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False
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search score: 0.4719207173194903

test score: 0.7014767932489452

Table 4.67: Confusion matrix from test data of SVC model: Landmark SVC search PC 2
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search PC 3

Table 4.68: The parameters of SVC model: Landmark SVC search PC 3
’C’ 31900
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 23700
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4719207173194903

test score: 0.7014767932489452

Table 4.69: Confusion matrix from test data of SVC model: Landmark SVC search PC 3
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-
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Landmark SVC search PC 4

Table 4.70: The parameters of SVC model: Landmark SVC search PC 4
’C’ 16500
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 87300
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4719207173194903

test score: 0.7014767932489452

Table 4.71: Confusion matrix from test data of SVC model: Landmark SVC search PC 4
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

———————————————-

Landmark SVC search PC 5
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Table 4.72: The parameters of SVC model: Landmark SVC search PC 5
’C’ 69700
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 41200
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

rch score: 0.3918918918918919

test score: 0.7014767932489452

Table 4.73: Confusion matrix from test data of SVC model: Landmark SVC search PC 5
predicted
negative

predicted
neutral

predicted
positive

true negative 3990 0 0
true neutral 114 0 0
true positive 1584 0 0

4.8 Results of ML application 8: RSCV for RFC negative

VS neutral VS positive with facial landmarks from iCV

MEFED

In total 10 models were trained using RSCV. All these models are named in a format of: Land-

mark RFC Search p i,

where P denotes the hardware upon which the training of the model was carried out (can be

either Pi meaning the training was performed on Raspberry Pi 4 model B or PC meaning the

training was instead performed on the author’s laptop),

and i stands for the iteration of this application.

The list of finished models is following:
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Landmark RFC search Pi 0, Landmark RFC search Pi 1, Landmark RFC search Pi 2, Land-

mark RFC search Pi 3, Landmark RFC search Pi 4, Landmark RFC search Pi 5, Landmark

RFC search Pi 6, Landmark RFC search PC 0, Landmark RFC search PC 1 and Landmark RFC

search PC 2.

The assessment and format of result representation is exactly identical as the one described in

section 4.5.

———————————————-

Landmarks RFC Search Pi 0

Table 4.74: The parameters of RFC model: Landmark RFC Search Pi 0
’bootstrap’ True
’class weight’ None
’criterion’ ’gini’
’max depth’ 2026
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 4
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 64681
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7312425565700675

test score: 0.3785161744022503

Table 4.75: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 0
predicted
negative

predicted
neutral

predicted
positive

true negative 710 0 3280
true neutral 18 0 96
true positive 139 2 1443

———————————————-
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Landmarks RFC Search Pi 1

Table 4.76: The parameters of RFC model: Landmark RFC Search Pi 1
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 4193
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 4
’min samples split’ 4
’min weight fraction leaf’ 0.0
’n estimators’ 31381
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7283313484186846

test score: 0.3790436005625879

Table 4.77: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 1
predicted
negative

predicted
neutral

predicted
positive

true negative 716 2 3272
true neutral 20 0 94
true positive 141 3 1440

———————————————-

Landmarks RFC Search Pi 2

93



Table 4.78: The parameters of RFC model: Landmark RFC Search Pi 2
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 2983
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 16
’min weight fraction leaf’ 0.0
’n estimators’ 10190
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.7320365224295355

test score: 0.37746132208157523

Table 4.79: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 2
predicted
negative

predicted
neutral

predicted
positive

true negative 700 0 3290
true neutral 18 0 96
true positive 135 2 1447

———————————————-

Landmarks RFC Search Pi 3
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Table 4.80: The parameters of RFC model: Landmark RFC Search Pi 3
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 2026,
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 21290
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.679984922728986

test score: 0.6680731364275668

Table 4.81: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 3
predicted
negative

predicted
neutral

predicted
positive

true negative 3244 0 746
true neutral 106 0 8
true positive 1028 0 556

———————————————-

Landmarks RFC Search Pi 4
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Table 4.82: The parameters of RFC model: Landmark RFC Search Pi 4
’bootstrap’ False
’class weight’ None
’criterion’ ’gini’
’max depth’ 4899
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 4
’min samples split’ 16
’min weight fraction leaf’ 0.0
’n estimators’ 19272
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.6836285965573564

test score: 0.6689521800281294

Table 4.83: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 4
predicted
negative

predicted
neutral

predicted
positive

true negative 3254 0 736
true neutral 108 0 6
true positive 1033 0 551

———————————————-

Landmarks RFC Search Pi 5
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Table 4.84: The parameters of RFC model: Landmark RFC Search Pi 5
’bootstrap’ True
’class weight’ None
’criterion’ ’entropy’
’max depth’ 4092
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 43490
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.6855132554340998

test score: 0.6726441631504922

Table 4.85: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 5
predicted
negative

predicted
neutral

predicted
positive

true negative 3325 0 665
true neutral 109 0 5
true positive 1083 0 501

———————————————-

Landmarks RFC Search Pi 6
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Table 4.86: The parameters of RFC model: Landmark RFC Search Pi 6
’bootstrap’ True
’class weight’ None
’criterion’ ’entropy’
’max depth’ 1068
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 22300
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.6687608318890814

test score: 0.409985935302391

Table 4.87: Confusion matrix from test data of RFC model: Landmark RFC Search Pi 6
predicted
negative

predicted
neutral

predicted
positive

true negative 973 4 3013
true neutral 101 0 5
true positive 1083 0 501

———————————————-

Landmarks RFC Search PC 0
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Table 4.88: The parameters of RFC model: Landmark RFC Search PC 0
’bootstrap’ True
’class weight’ None
’criterion’ ’gini’
’max depth’ 1219
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 4
’min weight fraction leaf’ 0.0
’n estimators’ 32390
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.587069372345446

test score: 0.6060126582278481

Table 4.89: Confusion matrix from test data of RFC model: Landmark RFC Search PC 0
predicted
negative

predicted
neutral

predicted
positive

true negative 2692 52 1246
true neutral 81 10 23
true positive 836 3 745

———————————————-

Landmarks RFC Search PC 1
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Table 4.90: The parameters of RFC model: Landmark RFC Search PC 1
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 2227
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 8
’min weight fraction leaf’ 0.0
’n estimators’ 49545
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.6775039328788673

test score: 0.5497538677918424

Table 4.91: Confusion matrix from test data of RFC model: Landmark RFC Search PC 1
predicted
negative

predicted
neutral

predicted
positive

true negative 2317 049 1624
true neutral 61 15 38
true positive 783 6 795

———————————————-

Landmarks RFC Search PC 2
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Table 4.92: The parameters of RFC model: Landmark RFC Search PC 2
’bootstrap’ True
’class weight’ None
’criterion’ ’entropy’
’max depth’ 665
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 2
’min weight fraction leaf’ 0.0
’n estimators’ 70736
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.5489864864864865

test score: 0.5070323488045007

Table 4.93: Confusion matrix from test data of RFC model: Landmark RFC Search PC 2
predicted
negative

predicted
neutral

predicted
positive

true negative 2157 544 1289
true neutral 40 50 24
true positive 726 181 677

4.9 Results of ML application 9: RSCV for SVC negative

VS neutral VS positive with facial landmarks from twice

shrunk iCV MEFED

In total 12 models were trained using RSCV. All these models are named in a format of: Land-

mark SVC search 0.5 Pi i, where i stands for the iteration of this application.

The list of finished models is following:

Landmark SVC search 0.5 Pi 0, Landmark SVC search 0.5 Pi 1, Landmark SVC search 0.5 Pi

2, Landmark SVC search 0.5 Pi 3, Landmark SVC search 0.5 Pi 4, Landmark SVC search 0.5
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Pi 5, Landmark SVC search 0.5 Pi 6, Landmark SVC search 0.5 Pi 7, Landmark SVC search

0.5 Pi 8, Landmark SVC search 0.5 Pi 9, Landmark SVC search 0.5 Pi 10 and Landmark SVC

search 0.5 Pi 11.

The assessment and format of result representation is exactly identical as the one described in

section 4.5.

———————————————-

Landmark SVC search 0.5 Pi 0

Table 4.94: The parameters of SVC model: Landmark SVC search 0.5 Pi 0
’C’ 500
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 40600
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4839580857729286

test score: 0.6998780700226441

Table 4.95: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 0
predicted
negative

predicted
neutral

predicted
positive

true negative 4018 0 0
true neutral 115 0 0
true positive 1608 0 0

———————————————-

Landmark SVC search 0.5 Pi 1
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Table 4.96: The parameters of SVC model: Landmark SVC search 0.5 Pi 1
’C’ 49500
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 59100
’kernel’ ’poly’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4814734795290051

test score: 0.28009057655460723

Table 4.97: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 1
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4018
true neutral 0 0 115
true positive 0 0 1608

———————————————-

Landmark SVC search 0.5 Pi 2

Table 4.98: The parameters of SVC model: Landmark SVC search 0.5 Pi 2
’C’ 17500
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 92300
’kernel’ ’poly’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False
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search score: 0.4814734795290051

test score: 0.28009057655460723

Table 4.99: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 2
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4018
true neutral 0 0 115
true positive 0 0 1608

———————————————-

Landmark SVC search 0.5 Pi 3

Table 4.100: The parameters of SVC model: Landmark SVC search 0.5 Pi 3
’C’ 24600
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 67400
’kernel’ ’poly’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4814734795290051

test score: 0.28009057655460723

Table 4.101: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 3
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4018
true neutral 0 0 115
true positive 0 0 1608

———————————————-
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Landmark SVC search 0.5 Pi 4

Table 4.102: The parameters of SVC model: Landmark SVC search 0.5 Pi 4
’C’ 45900
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 56200
’kernel’ ’poly’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.37735849056603776

test score: 0.28009057655460723

Table 4.103: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 4
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4018
true neutral 0 0 115
true positive 0 0 1608

———————————————-

Landmark SVC search 0.5 Pi 5
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Table 4.104: The parameters of SVC model: Landmark SVC search 0.5 Pi 5
’C’ 39100
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 33800
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4716981132075472

test score: 0.6998780700226441

Table 4.105: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 5
predicted
negative

predicted
neutral

predicted
positive

true negative 4018 0 0
true neutral 115 0 0
true positive 1608 0 0

———————————————-

Landmark SVC search 0.5 Pi 6

Table 4.106: The parameters of SVC model: Landmark SVC search 0.5 Pi 6
’C’ 57600
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 86900
’kernel’ ’poly’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False
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search score: 0.37735849056603776

test score: 0.28009057655460723

Table 4.107: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 6
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4018
true neutral 0 0 115
true positive 0 0 1608

———————————————-

Landmark SVC search 0.5 Pi 7

Table 4.108: The parameters of SVC model: Landmark SVC search 0.5 Pi 7
’C’ 69500
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 76800
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4716981132075472

test score: 0.6998780700226441

Table 4.109: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 7
predicted
negative

predicted
neutral

predicted
positive

true negative 4018 0 0
true neutral 115 0 0
true positive 1608 0 0

———————————————-
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Landmark SVC search 0.5 Pi 8

Table 4.110: The parameters of SVC model: Landmark SVC search 0.5 Pi 8
’C’ 69400
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 90700
’kernel’ ’poly’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.37735849056603776

test score: 0.28009057655460723

Table 4.111: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 8
predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 4018
true neutral 0 0 115
true positive 0 0 1608

———————————————-

Landmark SVC search 0.5 Pi 9
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Table 4.112: The parameters of SVC model: Landmark SVC search 0.5 Pi 9
’C’ 78300
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 52700
’kernel’ ’sigmoid’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4716981132075472

test score: 0.6998780700226441

Table 4.113: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 9
predicted
negative

predicted
neutral

predicted
positive

true negative 4018 0 0
true neutral 115 0 0
true positive 1608 0 0

———————————————-

Landmark SVC search 0.5 Pi 10

Table 4.114: The parameters of SVC model: Landmark SVC search 0.5 Pi 10
’C’ 57000
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 74700
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False
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search score: 0.4716981132075472

test score: 0.6998780700226441

Table 4.115: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 10
predicted
negative

predicted
neutral

predicted
positive

true negative 4018 0 0
true neutral 115 0 0
true positive 1608 0 0

———————————————-

Landmark SVC search 0.5 Pi 11

Table 4.116: The parameters of SVC model: Landmark SVC search 0.5 Pi 11
’C’ 68700
’cache size’ 200
’class weight’ None
’coef0’ 0.0
’decision function shape’ ’ovr’
’degree’ 3
’gamma’ 77300
’kernel’ ’rbf’
’max iter’ -1
’probability’ False
’random state’ None
’shrinking’ True
’tol’ 0.001
’verbose’ False

search score: 0.4716981132075472

test score: 0.6998780700226441

Table 4.117: Confusion matrix from test data of SVC model: Landmark SVC search 0.5 Pi 11
predicted
negative

predicted
neutral

predicted
positive

true negative 4018 0 0
true neutral 115 0 0
true positive 1608 0 0
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4.10 Results of ML application 10: RSCV for RFC negative

VS neutral VS positive with facial landmarks from twice

shrunk iCV MEFED

In total 4 models were trained using RSCV. All these models are named in a format of: Land-

mark RFC Search 0.5 Pi i, where i stands for the iteration of this application.

The list of finished models is following:

Landmark RFC Search 0.5 Pi 0, Landmark RFC Search 0.5 Pi 1, Landmark RFC Search 0.5 Pi

2, Landmark RFC search 0.5 Pi 3.

The assessment and format of result representation is exactly identical as the one described in

section 4.5.

———————————————-

Landmarks RFC Search 0.5 Pi 0

Table 4.118: The parameters of RFC model: Landmark RFC Search 0.5 Pi 0
’bootstrap’ True
’class weight’ None
’criterion’ ’gini’
’max depth’ 413
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 4
’min samples split’ 16
’min weight fraction leaf’ 0.0
’n estimators’ 34409
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.5240566037735849

test score: 0.5796899494861523
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Table 4.119: Confusion matrix from test data of RFC model: Landmark RFC Search PC 0.5 Pi
0

predicted
negative

predicted
neutral

predicted
positive

true negative 2678 42 1298
true neutral 81 0 34
true positive 94 17 650

———————————————-

Landmarks RFC Search 0.5 Pi 1

Table 4.120: The parameters of RFC model: Landmark RFC Search 0.5 Pi 1
’bootstrap’ True
’class weight’ None
’criterion’ ’entropy’
’max depth’ 2933
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 4
’min weight fraction leaf’ 0.0
’n estimators’ 9181
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.5679245283018868

test score: 0.646577251349939

Table 4.121: Confusion matrix from test data of RFC model: Landmark RFC Search 0.5 Pi 1
predicted
negative

predicted
neutral

predicted
positive

true negative 3259 45 714
true neutral 111 0 4
true positive 1143 12 453

———————————————-

112



Landmarks RFC Search 0.5 Pi 2

Table 4.122: The parameters of RFC model: Landmark RFC Search 0.5 Pi 2
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 1018
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 2
’min samples split’ 16
’min weight fraction leaf’ 0.0
’n estimators’ 64681
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.5556603773584906

test score: 0.6568542065842188

Table 4.123: Confusion matrix from test data of RFC model: Landmark RFC Search 0.5 Pi 2
predicted
negative

predicted
neutral

predicted
positive

true negative 3062 30 926
true neutral 79 0 36
true positive 886 13 709

———————————————-

Landmarks RFC Search 0.5 Pi 3
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Table 4.124: The parameters of RFC model: Landmark RFC Search 0.5 Pi 3
’bootstrap’ False
’class weight’ None
’criterion’ ’entropy’
’max depth’ 5000
’max features’ ’auto’
’max leaf nodes’ None
’min impurity decrease’ 0.0
’min impurity split’ None
’min samples leaf’ 1
’min samples split’ 2
’min weight fraction leaf’ 0.0
’n estimators’ 14227
’n jobs’ None
’oob score’ False
’random state’ None
’verbose’ 0
’warm start’ False

search score: 0.5509433962264151

test score: 0.5983278174534054

Table 4.125: Confusion matrix from test data of RFC model: Landmark RFC Search 0.5 Pi 3
predicted
negative

predicted
neutral

predicted
positive

true negative 2748 50 1220
true neutral 75 2 38
true positive 907 16 685
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4.11 Results of Histogram of oriented gradients, data size es-

timation

Having calculated all 81 HOG vectors, they each were saved as a binary .npy file. The sizes
of files was then measured using path.getsize() method found in python’s os library and then
translated into either MiB or GiB depending on the result. The file size’s dependence in relation
to cells per block and pixels per cell parameters are depicted in the Tables 4.126 and 4.127.

Table 4.126: The correspondence of resulted HOG vectors’ size in relation to the value of
pixels per cell parameter (x axis) and the value of cells per block parameter (y axis), part 1

8
pixels

16
pixels

24
pixels

32
pixels

40
pixels

1 cell 19.22MiB 4.81MiB 2.14MiB 1.20MiB 0.76MiB
2 cells 76.59MiB 19.07MiB 8.44MiB 4.73MiB 2.99MiB
3 cells 0.17GiB 42.58MiB 18.78MiB 10.48MiB 6.59MiB
4 cells 0.30GiB 75.12MiB 33.00MiB 18.34MiB 11.49MiB
5 cells 0.46GiB 0.11GiB 50.95MiB 28.21MiB 17.60MiB
6 cells 0.66GiB 0.16GiB 72.50MiB 39.97MiB 24.83MiB
7 cells 0.90GiB 0.22GiB 0.10GiB 53.54MiB 33.11MiB
8 cells 1.17GiB 0.28GiB 0.12GiB 68.80MiB 42.35MiB
9 cells 1.47GiB 0.36GiB 0.15GiB 85.65MiB 52.49MiB

Table 4.127: The correspondence of resulted HOG vectors’ size in relation to the value of
pixels per cell parameter (x axis) and the value of cells per block parameter (y axis), part 2

48
pixels

56
pixels

64
pixels

72
pixel

1 cell 0.53MiB 0.39MiB 0.30MiB 0.24MiB
2 cells 2.09MiB 1.50MiB 1.16MiB 0.92MiB
3 cells 4.59MiB 3.28MiB 2.54MiB 1.99MiB
4 cells 7.96MiB 5.67MiB 4.37MiB 3.41MiB
5 cells 12.14MiB 8.61MiB 6.61MiB 5.14MiB
6 cells 17.06MiB 12.04MiB 9.21MiB 7.12MiB
7 cells 22.65MiB 15.91MiB 12.11MiB 9.33MiB
8 cells 28.85MiB 20.17MiB 15.28MiB 11.71MiB
9 cells 35.60MiB 24.76MiB 18.68MiB 14.24MiB

115



4.12 Results ML application 11: SVC negative VS neutral

VS positive with HOG vectors of smallest size from iCV

MEFED

In total 7 models were trained following this application. All these models are named in a for-

mat of: HOG 72 op 1 pcm SVC search PC i,

where m denotes the maximal number of samples a class could get,

and i represents the iteration of an iteration of this application with respective m value.

The list of finished models is following:

HOG 72 p 1 pc400 SVC search PC 0, HOG 72 p 1 pc400 SVC search PC 1, HOG 72 p 1 pc400

SVC search PC 2, HOG 72 p 1 pc400 SVC search PC 3, HOG 72 p 1 pc4000 SVC search PC

0, HOG 72 p 1 pc4000 SVC search PC 1 and HOG 72 p 1 pc4000 SVC search PC 2.

Once again for assessment methods sklearn.metrics.confusion matrix() and .score() were im-

plemented.

The results are represented in a following format:

———————————————-

model’s name (HOG 72 op 1 pcm SVC search PC i)

maximal number of samples per class: m

scoring: returned value of .score() method

Table 4.128: An example of a confusion matrix for the given model
predicted
negative

predicted
neutral

predicted
positive

true negative
number of negative
samples predicted

as negative

number of negative
samples predicted

as neutral

number of negative
samples predicted

as positive

true neutral
number of neutral
samples predicted

as negative

number of neutral
samples predicted

as neutral

number of neutral
samples predicted

as positive

true positive
number of positive
samples predicted

as negative

number of positive
samples predicted

as neutral

number of positive
samples predicted

as positive
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———————————————-

HOG 72 p 1 pc400 SVC search PC 0

maximal number of samples per class: 400

scoring: 0.33482142857142855

Table 4.129: Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search
PC 0

predicted
negative

predicted
neutral

predicted
positive

true negative 75 0 0
true neutral 67 0 0
true positive 82 0 0

———————————————-

HOG 72 p 1 pc400 SVC search PC 1

maximal number of samples per class: 400

scoring: 0.35267857142857145

Table 4.130: Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search
PC 1

predicted
negative

predicted
neutral

predicted
positive

true negative 79 0 0
true neutral 60 0 0
true positive 85 0 0

———————————————-

HOG 72 p 1 pc400 SVC search PC 2

maximal number of samples per class: 400

scoring: 0.3482142857142857

Table 4.131: Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search
PC 2

predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 85
true neutral 0 0 61
true positive 0 0 78
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———————————————-

HOG 72 p 1 pc400 SVC search PC 3

maximal number of samples per class: 400

scoring: 0.32589285714285715

Table 4.132: Confusion matrix from test data of SVC model: HOG 72 p 1 pc400 SVC search
PC 3

predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 93
true neutral 0 0 58
true positive 0 0 73

———————————————-

HOG 72 p 1 pc4000 SVC search PC 0

maximal number of samples per class: 4000

scoring: 0.47596153846153844

Table 4.133: Confusion matrix from test data of SVC model: HOG 72 p 1 pc4000 SVC search
PC 0

predicted
negative

predicted
neutral

predicted
positive

true negative 792 0 0
true neutral 72 0 0
true positive 800 0 0

———————————————-

HOG 72 p 1 pc4000 SVC search PC 1

maximal number of samples per class: 4000

scoring: 0.4753605769230769

Table 4.134: Confusion matrix from test data of SVC model: HOG 72 p 1 pc4000 SVC search
PC 1

predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 809
true neutral 0 0 64
true positive 0 0 791
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———————————————-

HOG 72 p 1 pc4000 SVC search PC 2

maximal number of samples per class: 4000

scoring: 0.47896634615384615

Table 4.135: Confusion matrix from test data of SVC model: HOG 72 p 1 pc4000 SVC search
PC 2

predicted
negative

predicted
neutral

predicted
positive

true negative 0 0 808
true neutral 0 0 59
true positive 0 0 757

4.13 Results of application 12: RFC negative VS neutral VS

positive with HOG vectors of smallest size from iCV

MEFED

In total 7 models were trained following this application. All these models are named in a

format of: HOG 72 op 1 pcm RFC search PC i,

where m denotes the maximal number of samples a class could get,

and i represents the iteration of an iteration of this application with respective m value.

The list of finished models is following:

HOG 72 p 1 pc400 RFC search PC 0, HOG 72 p 1 pc400 RFC search PC 1, HOG 72 p 1 pc400

RFC search PC 2, HOG 72 p 1 pc400 RFC search PC 3, HOG 72 p 1 pc4000 RFC search PC 0,

RFC 72 p 1 pc4000 SVC search PC 1 and RFC 72 p 1 pc4000 SVC search PC 2.

The assessment of models and result representation follows the format described in section 4.12.

———————————————-

HOG 72 p 1 pc400 RFC search PC 0

maximal number of samples per class: 400

scoring: 0.40625
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Table 4.136: Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search
PC 0

predicted
negative

predicted
neutral

predicted
positive

true negative 32 12 27
true neutral 22 25 20
true positive 35 17 29

———————————————-

HOG 72 p 1 pc400 RFC search PC 1

maximal number of samples per class: 400

scoring: 0.4375

Table 4.137: Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search
PC 1

predicted
negative

predicted
neutral

predicted
positive

true negative 32 9 27
true neutral 14 40 9
true positive 36 10 33

———————————————-

HOG 72 p 1 pc400 RFC search PC 2

maximal number of samples per class: 400

scoring: 0.53125

Table 4.138: Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search
PC 2

predicted
negative

predicted
neutral

predicted
positive

true negative 46 9 27
true neutral 14 40 9
true positive 36 10 33

———————————————-

HOG 72 p 1 pc400 RFC search PC 3

maximal number of samples per class: 400

scoring: 0.5044642857142857
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Table 4.139: Confusion matrix from test data of RFC model: HOG 72 p 1 pc400 RFC search
PC 3

predicted
negative

predicted
neutral

predicted
positive

true negative 57 8 20
true neutral 19 26 19
true positive 30 15 30

———————————————-

HOG 72 p 1 pc4000 RFC search PC 0

maximal number of samples per class: 4000

scoring: 0.6243990384615384

Table 4.140: Confusion matrix from test data of RFC model: HOG 72 p 1 pc4000 RFC search
PC 0

predicted
negative

predicted
neutral

predicted
positive

true negative 562 0 225
true neutral 33 10 35
true positive 332 0 467

———————————————-

HOG 72 p 1 pc4000 RFC search PC 1

maximal number of samples per class: 4000

scoring: 0.6358173076923077

Table 4.141: Confusion matrix from test data of RFC model: HOG 72 p 1 pc4000 RFC search
PC 1

predicted
negative

predicted
neutral

predicted
positive

true negative 607 1 217
true neutral 29 3 23
true positive 336 0 448

———————————————-

HOG 72 p 1 pc4000 RFC search PC 2

maximal number of samples per class: 4000

scoring: 0.6207932692307693
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Table 4.142: Confusion matrix from test data of RFC model: HOG 72 p 1 pc4000 RFC search
PC 2

predicted
negative

predicted
neutral

predicted
positive

true negative 553 0 251
true neutral 30 4 30
true positive 320 0 476

4.14 Results of ML application 13: RFC negative VS neu-

tral VS positive with HOG vectors of smallest resolution

from iCV MEFED

Only 2 models were trained following this application. All these models are named in a format

of: HOG 8 op 1 pcm RFC search PC i,

where m denotes the maximal number of samples a class could get,

and i represents the iteration of an iteration of this application with respective m value.

The list of finished models is following:

HOG 8 p 1 pc1000 RFC search PC 0, HOG 8 p 1 pc1000 RFC search PC 1.

The assessment of models and result representation follows the format described in section 4.12.

———————————————-

HOG 8 p 1 pc1000 RFC search PC 0

maximal number of samples per class: 1000

scoring: 0.41

Table 4.143: Confusion matrix from test data of RFC model: HOG 8 p 1 pc1000 RFC search
PC 0

predicted
negative

predicted
neutral

predicted
positive

true negative 51 14 35
true neutral 0 0 0
true positive 56 13 31

———————————————-
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HOG 8 p 1 pc1000 RFC search PC 1

maximal number of samples per class: 1000

scoring: 0.47

Table 4.144: Confusion matrix from test data of RFC model: HOG 8 p 1 pc1000 RFC search
PC 1

predicted
negative

predicted
neutral

predicted
positive

true negative 58 12 30
true neutral 0 0 0
true positive 54 10 36
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5 Analysis

5.1 Analysis of ML application 1: SVM one VS one with

FER2013

Despite the fact of high scoring result (even as far as being over 0.9 for anger VS disgust, neutral

VS disgust, disgust VS fear, disgust VS sadness), confusion matrices show the absolute chaos

of classifications and the high scoring values are nothing more than a coincidence with class

imbalance. This proves the inability of the default parameters to efficiently influence a training

model in the scope of a presented task.

5.2 Analysis of ML application 2: SVM one VS rest with

FER2013

Just like in the previous case, scoring outputs are deceptively high, most exceeding 0.83 success

rate. Confusion matrices shed light on the actual cause of such performance. The models most

of the time predict the rest class, due to the sheer size of the data belonging to this class. Its

dataset can be 3 to 6 (if not even more) times bigger than the database of a single emotion. The

rest class is simply more likely to appear, based on the training data. Moreover, even if during

the testing a model fails to predict instances of a singled out emotion, the number of successful

rest responses will greatly outweigh them, which is exactly the case here.

5.3 Analysis of ML application 3: SVM all VS all with FER2013

We can see, that the overwhelming majority of predictions result in happiness class (quite an

optimistic model, one can say). The reason for this may be that the default parameters do not
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activate tie breaking based on the probability. Instead the model would return the first prediction

made when the input falls onto shared regions of sub-classifiers. Apparently, happiness would

be predicted before any other computation could be made.

5.4 Analysis of ML application 4: SVM negative VS positive

+ neutral with FER2013

Unfortunately, controlling the shape of training data did not bolster the results in any meaningful

way. Neither has parameter tuning yielded any significant impact.

5.5 Analysis of ML application 5: RSCV for RFC negative

VS neutral VS positive with JAFFE

Here we can see an obvious spike in performance. This shows how efficient RF can be in

terms of being an estimator in the field of image processing. The improved results may also

be attributed to the database used, for its uniformity and consistency. However, it is also fair to

mention the narrow range of diversity and the general small size of the JAFFE database. The

application 5 gives a bit of understanding concerning the parameters of a RFC, although no con-

crete correlation between the combination of parameters and performance is observed. Coupled

with the downsides of the database, the resulted models are not suitable to be implemented as a

solution to step 3 of section 3,7.

5.6 Analysis of ML application 6: RSCV for RFC negative

VS neutral VS positive with iCV MEFED

It was obvious something was wrong in the code. Turns out there was a bug which read the

samples incorrectly, constantly returning None instead of an array. Quite peculiar, that RFC

accept an array of None as a training data. The results depicted prior now stand as a testimony

to the lost time, because each of failed models took around a week to train, let alone all the

unfinished models, which took considerably more training time and had to be stopped. The bug

was not the only issue, however. After the bug has been removed, the training data could not fit
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into RAM, periodically raising a memory error. An alternative method should be found instead.

5.7 Analysis of ML application 7: RSCV for SVC negative

VS neutral VS positive with facial landmarks from iCV

MEFED

No matter the parameter, every model was constantly predicting negative class. It may be due to

the samples’ value being extremely similar and SVC did not compute probability, instead only

returning the first predicted class.

5.8 Analysis of ML application 8: RSCV for RFC negative

VS neutral VS positive with facial landmarks from iCV

MEFED

The results are visibly better than the results from the previous approach. It must be noted

that all the assessments from CV during parameter search are above 0.5, some even are going

as high as 0.7, although most of the models fail at efficiently predicting classes of the test

dataset. Only Pi 3, Pi 4 and Pi 5 have their test score consistently high enough with their

search score. An interesting common point of these models is the fact of never having returned

any neutral class instance, neither right nor wrong. Moreover, these models are more biased

towards predicting negative class. However, this is where the similarities end. The saddest part

is, that their parameters do not seem to match among each other, which makes it hard to discern

meaningfully useful values for them.

5.9 Analysis of ML application 9: RSCV for SVC negative

VS neutral VS positive with facial landmarks from twice

shrunk iCV MEFED

Results practically resemble the results of ML application 7: now in addition to the models

returning negative class for any input, are also models always predicting only positive class.
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5.10 Analysis of ML application 10: RSCV for RFC negative

VS neutral VS positive with facial landmarks from twice

shrunk iCV MEFED

The result are similar to the ones from the ML application 8, albeit slightly worse. Perhaps,

some essential features were lost after downsizing.

Around this time author has noticed that Raspberry Pi is using a 32-bit version Python. A

following query has revealed, that the default operating system for Raspberry Pi 4 is but a 32-

bit OS, which is not able to fully utilize the 64-bit processor and 4 GB RAM installed on the

board [95, 96].This explains the constant memory errors and long training times. With this

information in mind, any future ML on the Raspberry ceased, since the Raspberry is not tested

to its fullest and handling with the 32-bit OS is but a waste of time.

5.11 Analysis of Histogram of oriented gradients, data size

estimation

We can see that HOG vector’s size correlates negatively with pixels per cell parameter, but pos-

itively with cells per block. Moreover, the pixels per cell parameter’s correlation is stronger,

than of cells per block. The smallest size, which is less than a third of a MiB, is achieved using

pixels per cell of 72 and cells per block of just 1, while the largest (ca one and a half GiB)

size is achieved by specifying 8 pixels per cell and 9 cells per block.

5.12 Analysis ML application 11: SVC negative VS neutral

VS positive with HOG vectors of smallest size from iCV

MEFED

Results practically resemble the results of ML application 7 and 9.
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5.13 Analysis of application 12: RFC negative VS neutral

VS positive with HOG vectors of smallest size from iCV

MEFED

Yet again, RFC was outperforming SVC at the similar task. Models which could have up to

4000 samples per class had a higher accuracy than the models with a stricter limitation. The best

models possessed a score quite similar to the score of best models trained on Facial Landmarks

feature from ML application 8.

5.14 Analysis of ML application 13: RFC negative VS neu-

tral VS positive with HOG vectors of smallest resolution

from iCV MEFED

The models performed noticeably worse than the models from the previous application. This

can be addressed to strict a limitations of only 1000 samples per class, however any larger

training set caused memory errors.

5.15 Analysis conclusions

Numerous attempts were carried out in order to create an ML model able to accurately classify

a human’s current valence of emotion based on an image of said human’s current facial expres-

sion. Unfortunately, none of the attempts resulted with a sufficiently high performance.

Out of all the models the equally best results gave RFC models, which were trained on either

Facial Landmarks features or HOG vectors. Those results were slightly higher than 60%. Coin-

cidentally, somewhat similar results were achieved in the project, form where the idea of using

Facial Landmarks detector and HOG vectors was adapted from [86].

Without finding a working solution for valence of human emotion classification (step 3; Section

3.7) the project cannot move further and because of the approaching deadline shall remain at

this stage of development.
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6 Conclusion

This paper touches many various fields of study: clinical psychiatry, neural biology, mathe-

matical statistics etc. Most importantly, it ventures on a bridge linking human and computer

recognition. A little step to bring human-machine interaction ever closer to each over. An ex-

tremely ambitious direction, one may say. Especially for an undergrad student. Author had to

learn many new topics, acquire fresh practical experience, try out multiple branches of problem

solving. Despite not reaching the final goal, the overall intermediary process of exploring left

a beneficial mark. Having that said, the author wishes to reflect back on some aspects of the

project.

The hardware used in for this project uncovered as unsuitable. The new out-of-the-box

Raspberry Pi 4, although marketed as a rightful alternative to a desktop computer, was unable

to efficiently deal with the difficult tasks provided by the project. In its place, an average laptop

could not operate skillfully with the imposing assignments, it never meant for, as well. Most

likely, an introduction of better hardware could expand the project further in its wake. At least,

in ML model training position and leave the prepared model for the smaller embedded system

to utilize in the final implementation.

Machine learning is a promising, yet chaotic methodology. The results can potentially sur-

pass anything a human can produce in terms of sheer computational competence, but it balances

it out with the multitude of mostly unguessable attributes, which can only be obtained through

trial and error, when each error is extortionately expensive. Countless models took days of

training time without any foreseeable outcome and had to be stopped. As the point of better

hardware rises up again, algorithms with reportedly better performance than of Support Vector

Machine and Random Forest such as Deep Neural Networks could be investigated.
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In the end, all these possibilities remain in the realms of theoretical future, outside of the

given paper’s scope. This paper, however, offers a look at different methods and solutions with

a deeper than surface level examination of their inner workings.
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