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Chapter 1.

Introduction

This thesis is concerned with the modeling and forecasting of realized covariances of

asset returns in high dimensions. Conditional covariances are key ingredients in many

financial applications as, e.g., optimal portfolio allocation, hedging, the assessment

of systematic risk and option pricing. Due to the relevance of accurate forecasts for

future (co)variances, the modeling of temporal and cross-sectional dependencies of

the (co)variation of asset returns arose as an important field of research in finan-

cial econometrics. The inherent problem that both practitioners and researchers are

facing is that covariance matrices are not directly observable. Traditional model-

ing approaches therefore either assume the (co)variances to be measurable given past

daily return information within observation-driven multivariate GARCH (MGARCH)

models, or assume an inherently latent (co)variance process that is modeled together

with the underlying returns within parameter-driven multivariate stochastic volatility

(MSV) models (see, e.g., the surveys of Bauwens et al., 2006; Asai et al., 2006).

More recent approaches have increasingly focused on the modeling of daily realized

covariance matrices. These realized covariance matrices depict non-parametric con-

sistent ex-post estimates of the ‘true’ daily (co)variation of asset prices, computed

from intraday asset return information (see, e.g., Andersen et al., 2003; Barndorff-

Nielsen and Shephard, 2004). It has been widely documented that observation- and

parameter-driven models for realized covariance matrices provide more precise fore-

casts than MGARCH or MSV models, which only exploit daily asset return informa-

tion (see, e.g., Golosnoy et al., 2012; Jin and Maheu, 2013, 2016; Hautsch et al., 2015;

Callot et al., 2017).

Despite the superiority of this approach, the development of dynamic models for
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Chapter 1. Introduction

the prediction of realized covariance matrices in empirically realistic scenarios of high-

dimensional systems still remains a challenging task for three reasons: (i) Realized

covariance models have to deal with the so-called ‘curse of dimensionality’, arising

from the fact that the number of model parameters quadratically increases in the asset

dimension, and thus become unmanageable even for a handful of assets. (ii) Realized

covariance models need to ensure positive definiteness of the covariance prediction.

(iii) Consistent and well-conditioned high-dimensional realized covariance data has to

be available.

Solving the curse of dimensionality requires sparsity assumptions on the model in

order to reduce the number of parameters. This can, e.g., be achieved by using

LASSO (least absolute shrinkage and selection operator) regressions and employing

carefully designed models which allow for multi-step estimation and covariance tar-

geting. Positive-definiteness is often imposed by using matrix-transformations like the

Cholesky decomposition or the matrix-logarithm. A natural approach, which simul-

taneously assures sparsity and positive-definiteness by construction, is to exploit com-

mon factor structures in the covariances. The factor approach has a long-established

history in economics and finance and dates back to the single index model of Sharpe

(1964) and the Arbitrage Pricing Theory of Ross (1976).

Even though the third challenge applies to the realized covariance data itself, it

is nevertheless interconnected to the econometric modeling approach. Simple real-

ized covariance measures like the realized covariance estimator or the multivariate

realized kernel estimator (Barndorff-Nielsen and Shephard, 2004; Barndorff-Nielsen

et al., 2011) tend to behave poorly if the asset dimension increases, as their con-

struction relies on synchronization of the intraday prices. This drastically reduces

the intraday data points available for the construction of the realized measure, and

results in noisy or even inconsistent estimates of the ‘true’ integrated covariance ma-

trix. Particularly for observation-driven models, reliable realized covariance estimates

play a crucial role as these models treat them as the ‘true’ daily asset covariance. In

contrast, state-space frameworks mitigate the impact of the noisiness in that realized

2



(co)variances only serve as a measurement for the latent integrated covariance (see,

e.g., Asai et al., 2012a,b).

Nevertheless, in high-dimensional scenarios more refined realized covariance estima-

tors have to be applied. State-of-the-art examples are, e.g., the composite realized

kernel estimator of Lunde et al. (2016) and the CholCov estimator of Boudt et al.

(2017) which allow for asynchronicity in the intraday price data when constructing

the realized measure. This approach yields more efficient estimates, but the econo-

metric model performance can again be negatively affected when the differences in

synchronicity are too pronounced.

This thesis contributes to the literature by proposing three novel state-space frame-

works for the modeling and forecasting of realized covariance matrices of asset re-

turns. These models include two related but distinct factor state-space approaches

which tackle the curse of dimensionality by making use of observed risk factors and by

imposing different specifications of sparsity. Furthermore, a Cholesky type modeling

approach is proposed which introduces and exploits a new matrix-variate distribu-

tion capable of coping with liquidity differences in the underlying intraday data. The

proposed models are computationally tractable and applicable in large dimensional

settings which makes them valuable for practitioners and researchers in the field of

finance and financial econometrics.

Overall, this thesis comprises three self-contained essays on the modeling and pre-

diction of realized covariance matrices of asset returns using state-space models. The

essay in Chapter 2 has been joint work with Prof. Dr. Roman Liesenfeld and Dr.

Bastian Gribisch. The essay in Chapter 4 is joint work with Dr. Bastian Gribisch.

Essay 3 is a single-authored project. The essays as well as my contributions to them

are summarized in the following.1

Chapter 2 corresponds to the paper “Factor state-space models for high-dimensional

realized covariance matrices of asset returns” (Gribisch et al., 2020) and was pub-

lished in the Journal of Empirical Finance. This paper proposes a dynamic factor
1An additional listing of my contributions to the joint projects is given in the Section ‘Kooperationen’ at
the end of this thesis.

3



Chapter 1. Introduction

state-space model for high-dimensional covariance matrices of asset returns. The fac-

tor state-space model links the measured co-variation of the assets to economically

motivated observed risk factors, like in the Fama and French (1993) modeling frame-

work where factors are constructed using portfolios formed by firm characteristics.

Thereby, the joint integrated covariance matrix of the assets and factors is modeled

as a latent state variable which is assumed to be observed through their noisy realized

covariance matrix with a Wishart measurement density. A strict factor structure for

the marginal integrated covariance matrix of the assets is imposed, which decomposes

the latter into a low-rank component driven by the factors’ integrated covariance and

a sparse diagonal matrix for the residual components. This factor structure trans-

lates into a factorization of the Wishart measurement density in such a way that the

proposed multivariate state-space model for the covariance matrix can be devoted

into conditionally independent low-dimensional state-space models, which facilitates

statistical inference and makes the approach scalable with respect to the number of

assets.

Statistical inference of the model at hand is conducted by making use of simulation

based Bayesian techniques. For the purpose of parameter estimation a Markov Chain

Monte Carlo scheme is proposed which neatly combines state-of-the-art procedures

for the sampling of the static parameters and latent state series from their respective

full conditional distributions. For its implementation computational parallelization

techniques are exploited allowing for a relatively fast exploration of the joint posterior

of parameters and latent states in medium to large dimensional applications. In order

to provide a complete toolbox for practitioners a Bayesian model comparison approach

based on the Deviance Information Criterion (DIC) is proposed. Therefore, a simple

Bootstrap Particle Filter algorithm is implemented to estimate the likelihood function

of the assets’ realized covariance matrices conditional on the risk factors.

In an extensive empirical study the performance of different specifications of the

resulting Wishart factor state-space (WFSS) model is investigated. To this end, the

WFSS model is applied to daily realized covariance matrices for the returns of 60

4



NYSE traded stocks, which cover six large industry sectors in the S&P500. The

specifications under consideration include WFSS models with either time-constant or

time-varying factor loadings, and with either short-memory AR(1) or long-memory

type heterogeneous AR dynamics for the logarithmic idiosyncratic and factor variance

processes. In addition, different factor specifications are considered. These include

a one-factor model using a market factor only, a three-factor model using the Fama-

French factors and a nine-factor model using the Fama-French factors as well as sector-

specific Exchange Traded Funds (ETFs).

A Bayesian model comparison based on the DIC shows that WFSS models incorpo-

rating time-varying dynamics for the factor loadings in combination with long-memory

dynamics are extremely useful in explaining the observed dynamic variation in the

covariance matrix of the stock returns. Furthermore, the results indicate strong evi-

dence against a one-factor model in favor for the nine-factor specifications. The latter

extension is also found to be critical to justify the approximation of the covariance

matrix for the residual component by a diagonal matrix.

In an out-of-sample forecasting exercise the one-step-ahead predictive performance

of the WFSS approach relative to competing models along several dimensions is il-

lustrated: First, the accuracy of the (co)variance predictions and the reliability of

density forecasts is examined. Second, in an economic evaluation of the predictive

performance the Value-at-Risk forecasts for an equally-weighted portfolio and the

global-minimum-variance-portfolio forecast under short-selling constraints are consid-

ered. The out-of-sample results show that the WFSS model performs favorable in

nearly all dimensions relative to its competitors.

My contributions to Chapter 2 are as follows: Besides assisting the writing pro-

cess by steady revision of the draft of the paper, I contributed to the development of

the model dynamics and to the development of the proposed Markov Chain Monte

Carlo (MCMC) procedure used for parameter estimation and forecasting purposes. I

implemented all of the proposed algorithms in MATLAB and enabled a fast MCMC

sampling scheme by exploiting parallel computation techniques. Furthermore, I im-
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plemented the bootstrap particle filter algorithm needed for the computation of the

DIC and I did the calculations for the statistical and economic evaluation of the pre-

dictive performance of the WFSS model. The latter also includes the implementation

of the benchmark models.

Chapter 3 proposes a new flexible factor state-space framework for the prediction

of realized covariance matrices of asset returns which is capable of efficiently handling

dynamic systems of vast dimensions including 200 assets and more. Similar to the

WFSS model discussed in Chapter 2, this approach proposes to model the realized

asset covariance matrices using an observed factor structure. However, instead of

imposing a joint modeling framework for the realized asset and factor covariance

matrices, it is proposed to independently model the individual components of the

realized factor decomposition.

This separate modeling approach theoretically has certain drawbacks as it ignores

potential data-imposed dependencies in the measurements. However, it is found to be

practically advantageous as it drastically reduces the model complexity and enables

an entirely parallel handling of the individual components without any bottleneck

like, e.g., a single d.o.f. parameter. Moreover, strict assumptions as the often imposed

diagonal residual sparsity can be relaxed without effort, allowing to model empirically

more realistic scenarios.

The method relies on a joint construction of the realized measure for the factors

and assets. After observing the joint covariance matrix, realized factor loadings and

realized residual components are constructed from standard matrix decompositions

resulting in a time-series for each of the individual parts. Now, independent tractable

state-space frameworks are applied to model and predict the individual time-series

of the factors, factor loadings and residual components separately. Forecasts of the

full covariance matrix of the assets are then obtained by combining the separate

predictions via the factor structure.

For the factor and residual covariance components of the resulting composite factor

state-space (CFSS) model the state-space approach of Windle and Carvalho (2014)
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is adopted, which combines Wishart measurement densities with parsimoniously pa-

rameterized Matrix-Beta processes for the corresponding latent integrated precision

matrices. For the proposed model several parameter restrictions are discussed and

their usefulness is examined in an out-of-sample study. As further contribution to the

literature the paper at hand provides additional insights on the dynamics of this mod-

eling approach. For the factor loadings well established models from the time-varying

parameter vector autoregression literature are adopted (Moura and Noriller, 2019).

The CFSS model is entirely tractable in a sense that the predictive distribution,

and hence, the likelihood function, is available in closed-form for each individual com-

ponent. In contrast to other state-space approaches that require high computational

effort for parameter estimation and the prediction of future realizations, this approach

consequently enables parameter estimation and prediction within only few minutes.

In an extensive out-of-sample forecasting and portfolio selection exercise for 225

stocks the performance of the CFSS model is examined. Thereby, different specifica-

tions regarding the residual sparsity as well as different restrictions to the dynamics of

the realized covariance components are imposed. The residual specifications include

block diagonality assumptions based on the Global Industry Classification Standard

sector classifications and strict diagonality assumptions as well as combinations of

both using linear shrinkage. Moreover, different sets of risk factors are considered.

In terms of predictive ability measured through different loss functions for point pre-

dictions of the covariance matrices, the CFSS model is found to significantly outper-

form several state-of-the-art competitors over four forecasting horizons ranging from

one-day-ahead to one-month-ahead. Particularly the CFSS model incorporating a set

of twelve observed risk factors in combination with a linear shrinkage-type residual

specification shows outstanding performance. An economic forecast evaluation shows

that the CFSS model is a valuable tool for optimal portfolio allocation decisions in a

global-minimum-variance and a mean-variance framework, which is confirmed under

different side restrictions.

Chapter 4 corresponds to the paper “Modeling realized covariance measures with
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Chapter 1. Introduction

heterogeneous liquidity: A generalized matrix-variate Wishart state-space model”

(Gribisch and Hartkopf, 2020). This paper introduces a new matrix-variate distribu-

tion to the literature on the modeling of realized covariance matrices of asset returns,

i.e., the so-called Riesz distribution of Hassairi and Lajmi (2001).2 The Riesz distri-

bution depicts a generalization of the Wishart that allows to capture more complex

measurement error structures. This is achieved by incorporating additional degree of

freedom parameters (d.o.f.) in contrast to the central Wishart, which depends on a

single d.o.f. driving the conditional covariance structure. Under the assumption of

equal d.o.f. parameters the Riesz collapses to the Wishart.

In the context of realized covariance measures the need for such a generalized

Wishart is motivated by the presence of heterogeneous liquidity across assets mir-

rored by missing intraday return data. For standard multivariate realized measures,

like the simple realized covariance estimators (Barndorff-Nielsen and Shephard, 2004)

or the more robust realized kernel estimators (Barndorff-Nielsen et al., 2011) liquidity

differences are not present due to the fact of price synchronization. However, since

these basic measures induce severe data loss in increasing dimensions and biased co-

variance estimates due to stale prices and zero returns, up-to-date realized measures

like the composite realized kernel estimators (Lunde et al., 2016) have been developed

to exploit a maximum of available data by implementing two-dimensional realized

measures for all pairs of assets. On one hand this approach has the advantage of

yielding efficient estimates of the covariance of asset returns in high dimensions, on

the other hand, potential liquidity differences in the assets find their way into the

realized measure.

In order to give a better understanding of the distribution at hand, this paper first

analyzes the stochastic properties of the Riesz. Identities for the characteristic func-

tion of the central Riesz and expressions for the conditional first and second order

moments are derived. The Riesz density function is based on a Cholesky decomposi-

tion of the realized measure. Unfortunately, it is thus depending on the ordering of

2It is worth to note, that the Riesz distribution is sometimes also known as Bellman-Gamma distribution.
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the assets. However, based on the findings for the conditional covariance structure

and the Riesz’ data generating process a natural ordering of the assets by increasing

liquidity is proposed. Furthermore, it is shown that the density neatly factorizes in the

product of conditionally independent Gamma and Normal densities for the individual

parts of the Cholesky decomposition.

The benefits of the Riesz distribution in comparison to the Wishart are examined

in an empirical application to 30 NYSE traded stocks with heterogeneous liquid-

ity. Therefore, a Riesz state-space (RSS) model is developed. The model exploits the

Cholesky-structure and the factorization of the Riesz measurement density in order to

obtain a conditionally independent sequence of state-space models for the conditional

Cholesky coefficients. For fast and efficient statistical inference on the independent

state-space models a Bayesian MCMC scheme is proposed, which is completely paral-

lelized over the number of assets. Moreover, to cope with potential overfitting prob-

lems in high-dimensional state-space settings the straightforward implementation of

shrinkage prior restrictions (Bitto and Frühwirth-Schnatter, 2019) on the conditional

state variances is illustrated.

The empirical results indicate that a Wishart-implied attenuation of measurement

errors for less liquid assets due to its single d.o.f. parameter downwards biases the

persistence and upwards biases the conditional variance of the latent state processes.

This bias is successfully alleviated by the Riesz. Distinct disparities in the estimated

Riesz d.o.f. parameters under the proposed liquidity sorting also show evidence

that the Wishart is empirically rejected by the data. This finding is confirmed in

a Bayesian model comparison exercise based on the DIC for six randomly selected

five-dimensional subsets of the full data set.

An out-of-sample forecasting exercise shows that the proposed RSS model signifi-

cantly outperforms its Wishart competitor as well as several other competing models

in terms of one-step-ahead predictive accuracy. In an economic evaluation based on

global-minimum-variance portfolios the Riesz is found to perform superior in terms

of portfolio standard deviations, Sharpe ratios and turn-over when compared to the

9
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Wishart.

My contributions to Chapter 4 are as follows: First, I discovered the Riesz distri-

bution in a differing strand of the literature and conducted a thorough review of the

theoretical and applied papers connected to the Riesz. Second, I proved the proposi-

tions stated in the paper. Third, besides participating in the development of the RSS

model dynamics, I fully developed and implemented the proposed MCMC scheme for

parameter estimation and forecasting. This particularly includes the translation of the

GIG random number generator of Hörmann and Leydold (2014, 2015) needed for the

shrinkage prior implementation from C/C++ to MATLAB. I enhanced the translated

random number generator to properly handle limiting cases of the GIG distribution.3

Furthermore, I proposed and implemented the Rao-Blackwellized particle filter algo-

rithm required for the computation of the DIC and I performed the calculations for

the statistical and economic evaluation of the (predictive) performance of the RSS

model. The latter also includes the implementation of the benchmark models. Fi-

nally, I contributed by authoring several sections and steadily revising the draft of the

paper.

3The MATLAB version of the GIG random number generator is publicly available (Hartkopf, 2020).
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Chapter 2.

Factor State-Space Models for
High-Dimensional Realized Covariance
Matrices of Asset Returns

2.1. Introduction

Modeling and forecasting covariance matrices of asset returns is important in risk

management and portfolio allocation. Recent contributions to this field increasingly

make use of realized covariance matrices which provide non-parametric ex-post es-

timates for the latent integrated covariance matrices of asset returns, and develop

dynamic time-series models for those estimates.1 Pioneering approaches to modeling

and predicting realized covariance matrices are found in Gourieroux et al. (2009),

Chiriac and Voev (2011), Bauer and Vorkink (2011), Noureldin et al. (2012), Golos-

noy et al. (2012) and Jin and Maheu (2013). However, the models developed in

those studies typically suffer from a proliferation of parameters in high dimensional

applications and the estimation of their parameters becomes rapidly difficult as the

number of assets increases so that they often have limited practical relevance in re-

alistic financial applications. Strategies which have been proposed to overcome those

difficulties include the design of models such that their parameters can be iteratively

estimated by multistep procedures (Bauwens et al., 2012, 2016), the use of LASSO

(least absolute shrinkage and selection operator) type estimation techniques (Callot

This chapter is based on:
Factor State-Space Models for High-Dimensional Realized Covariance Matrices of Asset Returns;
Authors: Bastian Gribisch, Jan P. Hartkopf and Roman Liesenfeld.
Journal of Empirical Finance, doi: 10.1016/j.jempfin.2019.08.003, c© 2019 Elsevier B.V.

1For a description of the concept of realized covariance matrices see, for example, Andersen et al. (2003);
Barndorff-Nielsen and Shephard (2004); Park and Linton (2012); Lunde et al. (2016).
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et al., 2017), or the application of sparse factor structures for the assets’ covariance

matrix (Tao et al., 2011; Asai and McAleer, 2015; Jin et al., 2019; Sheppard and Xu,

2019). The particular appeal of using a factor approach relative to the other alterna-

tives is that factor models can be economically motivated and have a long established

history in explaining the variation of financial returns. Prominent examples thereof

are the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965),

the Arbitrage Pricing Theory (APT) of Ross (1976) and the three-factor model of

Fama and French (1993).

In this paper we also adopt a factor approach and propose a dynamic factor state-

space model for high-dimensional covariance matrices of asset returns which can be

easily statistically analyzed by a combination of fairly standard Bayesian Markov

Chain Monte Carlo (MCMC) procedures. It makes use of observed risk factors (such

as those in the Fama-French model) and takes the joint integrated covariance matrix of

the assets and factors as a latent state variable which is observed through their noisy

realized covariance matrix with a Wishart measurement density. For the marginal

integrated covariance matrix of the assets we impose a strict factor structure decom-

posing it into a low-rank component driven by the factors’ integrated covariance and

a sparse diagonal matrix for the residual components. In this matrix factor decompo-

sition we allow for dynamic variation in the (co)variances of the factors and residual

components as well as in the factor loadings. The key to a simple statistical analysis

lies in the property of the Wishart measurement density that it factorizes under an

observed strict factor structure in such a way that the proposed multivariate state-

space model for the covariance matrix can be devoted into conditionally independent

low-dimensional state-space models. Thus, we can rely on a simple MCMC approach

and exploit for its implementation computational parallelization techniques making

the approach fully scalable w.r.t. the number of assets.

Our Wishart factor state-space (WFSS) model which we apply to an analysis of

the US stock market builds upon and generalizes the model of Sheppard and Xu

(2019). Their factor HEAVY (high-frequency based volatility) model also combines

12
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a Wishart density for the realized covariance matrix with an observed strict factor

structure. However, in its application the authors use a single-factor structure based

on the market factor in the CAPM model. In our approach we consider additional risk

factors and utilize the three Fama-French factors as well as sector-specific Exchange

Traded Funds (ETFs). Such an extension can be expected to be critical since a single

factor may not suffice to justify the approximation of the covariance matrix for the

residual component by a diagonal matrix. Empirical evidence that the CAPM market

factor is by far not sufficient to eliminate the correlation in the residual component

and that the combination of the three Fama-French factors with sector-specific ETFs

substantially improves the sparsity of the residual correlation is provided by Fan et al.

(2016) and is also confirmed by our empirical results in Section 2.4. Moreover, recent

results of Aït-Sahalia and Xiu (2017) indicate that latent factor structures uncov-

ered by a principal-component analysis are well approximated by observable factor

structures including sector-specific ETFs. Similar results have been found by Pelger

(2019). Our Bayesian factor state space approach also differs from the factor HEAVY

model in that the latter is an observation-driven GARCH-type framework statistically

analyzed by a two-step quasi Maximum Likelihood (ML) procedure. This two-step

approach is required as the joint estimation of all the parameters (including the de-

grees of freedom of the Wishart distribution) becomes computationally difficult in

high-dimensional applications. Last but not least, the factor HEAVY model as imple-

mented by Sheppard and Xu (2019) uses low-order GARCH(1, 1) recursions so that

it ignores potential long-memory type dynamics in the realized (co)variances of asset

returns which is often found in empirical applications (see, e.g. Corsi et al., 2012;

Bekierman and Manner, 2018, and the literature cited therein). In order to accom-

modate potential long-memory we endow the state variables directing the variances

in the WFSS model with heterogeneous autoregressive (HAR) processes which are

known to provide effective approximations of long-memory dynamics (Corsi, 2009).

An alternative to the observed factor approach with explicit exogenously supplied

factors as adopted in this paper is to rely on implicit factors extracted from realized
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covariance data as proposed by Tao et al. (2011) and Asai and McAleer (2015). They

first construct from the realized covariance matrices of stock returns via an eigenanal-

ysis the covariance matrices of common factors for which they build in a second step

dynamic time-series models. In contrast to our approach, this two-step procedure is

based on the assumption that both the factor loadings as well as the residual covari-

ance matrix are time-invariant which restricts the flexibility to account for nontrivial

contemporaneous and dynamic interactions in the (co)variances of asset returns. The

same applies to the factor approach of Jin et al. (2019) which imposes an eigenvalue

decomposition directly in the dynamic model for the realized covariance matrix of

stock returns.

As a preview of our main empirical results, we apply the WFSS model to daily co-

variance matrices for the returns of 60 NYSE traded stocks and find by using Bayesian

model comparisons that the single factor approach based on the CAPM market factor

is empirically rejected in favor of a factor structure including the three Fama-French

factors and the sector-specific ETF factors. Most importantly, this extended factor

structure combined with a WFSS allowing for dynamically varying factor loadings and

long-memory type dependence is extremely useful in explaining the observed dynamic

variation in the covariance matrix of the stock returns. We also run out-of-sample

forecasts and illustrate the predictive performance of our approach relative to com-

peting models along several dimensions: Accuracy of the (co)variance predictions,

reliability of density forecast and the ability to produce predictions for the Value-at-

Risk and the global-minimum variance portfolio. Our results show that our WFSS

model performs favorable in nearly all dimensions relative to its competitors.

The rest of the paper is organized as follows: Section 2.2 introduces the baseline

model. The proposed MCMC procedure for the Bayesian posterior analysis and model

comparisons as well as the construction of forecasts are discussed in Section 2.3.

Section 2.4 presents the empirical application to NYSE data and Section 2.5 concludes.

Additional material is provided in Appendix A.
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2.2. The Model

2.2. The Model

2.2.1. Factor structure

Consider the m × m realized covariance matrix Ct used to approximate the joint

period-t integrated covariance matrix Σt for a vector of log-prices for p individual

assets together with q observable risk factors with m = p + q. Here, p is assumed to

be substantially larger than q. Let Σt and Ct be partitioned as

Σt =

Σf
t Σrf

t

Σfr
t Σr

t

 , Ct =

Cf
t Crf

t

Cfr
t Cr

t

 , (2.1)

where Σr
t denotes the p× p integrated covariance matrix for the assets, Σf

t the q × q

integrated covariance matrix for the factors and Σrf
t the q×p matrix of the integrated

covariances between the factors and assets. Ct in Eq. (2.1) is partitioned conformably

with Σt so that Cr
t is the realized covariance matrix of the assets, Cf

t that of the

factors and Crf
t the matrix of the realized covariances between the factors and the

assets.

Our aim is to predict the potentially large-dimensional realized covariance matrix

Cr
t . For this purpose, we propose a joint dynamic model for the realized (co)variances

of the factors and assets in Ct. This model is based on a decomposition of the assets’

integrated covariance matrix Σr
t into a low-rank component driven by the integrated

covariance matrix of the observed risk factors Σf
t and a residual component. Such

a decomposition obtains by imposing a continuous-time factor model for the asset

prices relating them to the factor prices and assuming that the factor prices and the

residual components of the asset prices are uncorrelated (Fan et al., 2016; Aït-Sahalia

and Xiu, 2017). The resulting integrated covariance matrix for the assets obtains as

Σr
t = BtΣf

t B′t + Σe
t , (2.2)

where Bt denotes the integrated factor loading matrix of size p × q and Σe
t is the
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integrated covariance matrix of the residual components of the factor model. Here, we

assume a strict factor model such that Σe
t is a diagonal matrix. This ensures that the

number of parameters increases only linearly in the number of assets which is obviously

desirable in (very) high-dimensional applications. Clearly, assuming Σe
t to be diagonal

appears to be fairly restrictive, especially, for a small number of observed factors like

in the one-factor CAPM and the three-factor model of Fama and French (1993),

where we cannot expect the residual correlations to be negligible. However, when

augmenting those small factor models by including sector specific Exchange Traded

Funds (ETFs) as observed additional factors the sparsity of the residual correlation

significantly improves (see Fan et al., 2016, and the empirical results in Section 2.4.2).

In our approach, we allow the factor risk premia in Σf and the idiosyncratic risks

in Σe as well as the betas given by the factor loadings in B to be time-varying. While

time-variation in the factor risk premia and the idiosyncratic risk now is well accepted,

it is less so for the betas. However, the recent empirical literature reports increasing

evidence of dynamically varying betas in a one-factor CAPM model (Andersen et al.,

2005; Ghysels and Jacquier, 2006; Ang and Chen, 2007; Kalnina, 2015; Sheppard and

Xu, 2019) as well in a Fama-French three-factor model (Bollerslev and Zhang, 2003;

Engle, 2016). A further justification for time-varying betas, is that they obtain as

population regression coefficients Bt = Σfr
t (Σf

t )
−1 so that their time-invariance would

require to impose severe restrictions on the dynamics of the joint integrated covariance

matrix Σt (Engle, 2016).

2.2.2. Wishart factor state-space model

Taking the integrated covariance matrix Σt with its components as a latent state

variable observed through the noisy realized covariance matrix Ct it is reasonable to

model Ct by a state-space approach with a measurement density f(Ct|Σt) relating

the measurements Ct to the states Σt and a transition density f(Σt|Σ1:t−1) for the

time-varying Σt to be designed to approximate the observed dynamics of Ct. The

notation As:τ is used to denote the collection {As, . . . , Aτ}.
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A natural selection for the measurement density f(Ct|Σt) of the positive definite ma-

trix valued realized covariance measure Ct is that of a central m-dimensional Wishart

distribution, Ct|Σt ∼ Wm(n,Σt/n), where n ≥ m is the scalar degree of freedom

and Σt/n is the scale matrix (see Philipov and Glickman, 2006; Golosnoy et al., 2012

and Noureldin et al., 2012, for applications of the Wishart distribution to realized

covariance matrices). The scale matrix is normalized by n so that the conditional

expectation of Ct is given by E(Ct|Σt) = Σt. The density function of this Wishart

distribution is

fW(Ct|n,Σt/n) =
|Ct|(n−m−1)/2|Σt/n|−n/2

2nm/2πm(m−1)/4
∏m

i=1 Γ([n+ 1− i]/2)
exp

{
−n

2
tr
(
Σ−1
t Ct

)}
, (2.3)

where Γ(·) denotes the Gamma function.

An important advantage of using a Wishart measurement density for Ct is that it

admits a parametrization reflecting the factor decomposition of the integrated covari-

ance of the assets Σr
t in Eq. (2.2), which when combined with a diagonal form of the

integrated residual covariance Σe
t translates into a convenient factorization of the mea-

surement density. This greatly simplifies the statistical inference in high-dimensional

applications. In particular, using the partitioning of Ct and Σt in Eq. (2.1) and taking

Ce
t = Cr

t − C
fr
t (Cf

t )−1Crf
t , Σe

t = Σr
t − Σfr

t (Σf
t )
−1Σrf

t , Bt = Σfr
t (Σf

t )
−1, (2.4)

the Wishart density function for Ct in Eq. (2.3) factorizes into the product of a

Wishart density for Cf
t , a conditional Gaussian density for Cfr

t given Cf
t and an

independent Wishart density for Ce
t (Muirhead, 2005, Theorem 3.2.10),

fW(Ct|n,Σt/n) = fW

(
Cf
t | n, Σf

t /n
)

× fMN
(
Cfr
t | BtC

f
t , (Σe

t/n)⊗ Cf
t

)
fW (Ce

t | n− q, Σe
t/n) .

(2.5)

Here the function fMN is the density of a matrix-variate normal distribution for

Cfr
t with mean and covariance for vec(Crf

t ) given by vec(Cf
t B′t) and (Σe

t/n) ⊗ Cf
t ,
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respectively. In order to highlight the implications of this factorization for the observed

factor structure assumed for the covariance matrix of the asset returns, we take Ce
t

defined in Eq. (2.4) to write the assets’s realized covariance matrix as

Cr
t = BtC

f
t B
′
t + Ce

t , Bt = Cfr
f (Cf

t )−1. (2.6)

Since Bt and Ce
t respectively define realized measures for the integrated factor load-

ings Bt and the integrated residual covariance matrix Σe
t , Eq. (2.6) represents the

realized equivalent to the factor decomposition in Eq. (2.2) assumed for the in-

tegrated covariance for the assets Σr
t . According to the Wishart factorization in

Eq. (2.5), the individual realized factor components in Eq. (2.6) then have the

following properties: First, the realized residual covariance matrix Ce
t is stochas-

tically independent of the components Bt and Cf
t defining the systematic factor

part, and follows a Wishart distribution with mean E(Ce
t |Σt) = (n − q)Σe

t/n. As

a consequence, the conditional distribution of the covariance of the asset Cr
t given

(Bt, C
f
t ) is a shifted Wishart. Second, since the Wishart factorization implies that

Cfr
t given Cf

t is matrix-variate normally distributed, it follows that the realized

factor loadings Bt = Cfr
f (Cf

t )−1 are conditionally on Cf
t also matrix-variate nor-

mally distributed with mean E(vec(Bt)|Cf
t ,Σt) = vec(Bt) and covariance matrix

Cov(vec(Bt)|Cf
t ,Σt) = (Σe

t/n) ⊗ (Cf
t )−1. Finally, the Wishart factorization implies

that the marginal distribution of the realized factor covariance matrix Cf
t is a Wishart

with mean E(Cf
t |Σt) = Σf

t .

If we now combine the Wishart factorization in Eq. (2.5) with the assumption that

the integrated residual covariance is diagonal with Σe
t = diag(σe1t, . . . , σ

e
pt), then the

joint Wishart density for Ct as a function of the latent states Σt = (Σf
t ,Bt,Σe

t ) obtains

as

fW(Ct|n,Σt/n) ∝
[
|Σf

t |−n/2 exp
{
−n

2
tr[(Σf

t )
−1Cf

t ]
}]

×

[
p∏
i=1

(σeit)
−n/2 exp

{
− n

2σeit
(β′itC

f
t βit − 2β′itc

rf
it + crit)

}]
,

(2.7)
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where βit = (βi1t, . . . , βiqt)
′ denotes the vector of loadings of asset i on the q factors

such that Bt = (β1t, . . . , βpt)
′ and crfit = (crfi1t, . . . , c

rf
iqt)
′ is the vector of realized covari-

ances between the q factors and the ith asset with Crf
t = (crf1t , . . . , c

rf
pt ). The scalar

crit is the ith diagonal element of Cr
t representing the realized variance of asset i. The

component in the first bracket in Eq. (2.7) is the kernel of the Wishart density for

the realized factor covariance Cf
t as given in Eq. (2.5), while the component in the

second bracket is obtained from the multiplication of the Wishart density kernel for

the realized residual covariance Ce
t by the conditional Gaussian density kernel for Cfr

t

given Cf
t . As a result of the diagonal form of Σe

t , this second component factorizes

into p (functionally) independent factors, one for each asset.

In order to complete the factor state-space model, we specify the transition densities

for the latent time-varying integrated covariance matrices (Σf
t ,Σ

e
t ) and the factor load-

ings in Bt. To accommodate the observed dynamics in the realized covariance matrix

with its typically strong persistence, especially in the realized variances, we com-

bine simple AR(1) processes for the factor loadings with heterogeneous autoregressive

(HAR) processes for the integrated variances. Those HAR processes as introduced by

Corsi (2009) provide simple yet effective approximations of long-memory type persis-

tence and are well-suited for modelling realized variances (see, e.g., Bekierman and

Manner, 2018, and the literature cited therein).

For the logs of the p elements in the diagonal idiosyncratic covariance matrix Σe
t

denoted by xeit = log σeit we assume mutually independent Gaussian HAR processes of

the form

xeit − γei = φei1x̄
e
i[t−1:t−1] + φei2x̄

e
i[t−1:t−5] + φei3x̄

e
i[t−1:t−22] + νei η

e
it, (2.8)

with ηeit ∼ N (0, 1), i = 1, . . . , p, where x̄ei[t−1:t−h] =
∑h

τ=1(xeit−τ −γei )/h for h = 1, 5, 22

represents daily, weekly and monthly lags, respectively. The parameters are θei =

(γei , φ
e
i1, φ

e
i2, φ

e
i3, ν

e
i ), and for the restriction φei2 = φei3 = 0 the HAR process in Eq. (2.8)

reduces to a standard AR(1). For the pq factor loadings in Bt we assume the following
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independent standard Gaussian AR(1) processes:

βikt − γβik = φβik(βikt − γ
β
ik) + νβikη

β
ikt (2.9)

with ηβikt ∼ N (0, 1), i = 1, . . . , p, k = 1, . . . , q, parameterized by θβik = (γβik, φ
β
ik, ν

β
ik).

The factor covariance matrix Σf
t is Cholesky-decomposed into

Σf
t = L−1

t DtL
−1
t
′
, (2.10)

where Dt is a diagonal matrix and Lt is a lower-triangular matrix with unit diagonal

elements, say,

Dt = diag(σf1t, . . . , σ
f
qt),

Lt =


1 0 · · · 0

`21t 1 · · · 0
...

... . . . 0

`q1t `q2t · · · 1

 =


`′1t

`′2t
...

`′qt

 .
(2.11)

In order to allow for sufficient flexibility in accounting for the observed dynamics

in the factor covariance we assume for the logs of the q-elements in Dt, denoted by

xfkt = log(σfkt) independent Gaussian HAR processes, that is

xfkt − γ
f
k = φfk1x̄

f
k[t−1:t−1] + φfk2x̄

f
k[t−1:t−5] + φfk3x̄

f
k[t−1:t−22] + νfk η

f
kt, (2.12)

where ηfkt ∼ N (0, 1), k = 1, . . . , q, with parameters θfk = (γfk , φ
f
k1, φ

f
k2, φ

f
k3, ν

f
k ), and for

the q(q−1)/2 free elements in the matrix of pseudo-loadings Lt independent Gaussian

AR(1) processes,

`kjt − γ`kj = φ`kj(`kjt−1 − γ`kj) + ν`kjη
`
kjt, (2.13)

where η`kjt ∼ N (0, 1), k > j = 1, . . . , q − 1, and θ`kj = (γ`kj, φ
`
kj, ν

`
kj).
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For later reference we note that a HAR process of the form as given in Eqs. (2.8)

and (2.12) can be written as the following restricted AR(22):

xt − γ =

[
φ1 +

φ2

5
+
φ3

22

]
(xt−1 − γ) +

[
φ2

5
+
φ3

22

]
(xt−2 − γ) + · · · (2.14)

+

[
φ2

5
+
φ3

22

]
(xt−5 − γ) +

φ3

22
(xt−6 − γ) + · · ·+ φ3

22
(xt−22 − γ) + νηt,

where we have omitted the indices for the assets and factors.

The vector of parameters in this Wishart factor state space (WFSS) model as defined

by Eqs. (2.7)–(2.13) consists of 5[p+ q] + 3[pq+ q(q− 1)/2] + 1 parameters, which are

the set of HAR-parameters (γ, φ1, φ2, φ3, ν) for the [p + q] state processes {xeit} and

{xfkt}, the set of AR(1) parameters (γ, φ, ν) for the [pq + q(q − 1)/2] state processes

{βikt} and {`kjt}, and the degree of freedom n of the Wishart measurement density.

Due to the factor structure, both the number of state processes as well as the number

of parameters are (for a given set of factors) linear in the number of assets p. Still,

for a large number of assets, the actual amount of parameters appears to be fairly

large. For instance, with p = 60 assets and q = 9 observable factors as in our

application below we have for the (unrestricted) WFSS model 645 state processes and

2074 parameters to be estimated. However, as we use a data set covering T = 1510

trading days with (p+q)(p+q+1)T/2 = 3, 646, 650 (co)variance observations we have

1758 observations per parameter which can be expected to provide enough information

for a reliable statistical inference.

In order to efficiently handle the large number of parameters in the Bayesian MCMC

posterior analysis we take full advantage of the factorization of the measurement den-

sity in Eq. (2.7). The fact that its factor component as a function in the factor-specific

states Σf
t and its p asset components as functions in the asset-specific states {σeit, βit}

are mutually functionally independent together with the independent priors for the

state processes given in Eqs. (2.8)–(2.13) allows us to use a simple MCMC approach

and to exploit for its implementation computational parallelization techniques. This

makes our approach fully scalable w.r.t. the number assets p.

21



Chapter 2. Factor State-Space Models for High-Dimensional Realized Covariances

Using the WFSS model for the joint covariance matrix of the assets and the observed

risk factors we can perform forecasting of the assets’ integrated covariance matrix

Σr
t as further detailed in Section 2.3.3 below. Our WFSS framework also allows

us to test the hypothesis that the factor loadings in Bt are time-invariant, which

is the case if in the AR specification for the betas βikt in Eq. (2.9) φβik = 0 and

νβik → 0 so that βikt = γβik ∀t. Likewise, the framework enables us to analyze by

means of corresponding model comparisons the relative importance of the different

factors under consideration in explaining and predicting the observed variation of the

asset returns. Instrumental for such an analysis is the conditional density of Cr
t given

(Cfr
t , C

f
t ,Σt) for the respective set of included factors. As discussed further below

in Section 3.2 this density is required to obtain the conditional likelihood for the

observed realized covariance matrices of the assets. According to Eqs. (2.4) and (2.5)

the realized covariance for the assets can be represented as Cr
t = Cfr

t (Cf
t )−1Crf

t +Ce
t

with Ce
t ∼ Wp(n− q,Σe

t/n) and Jacobian dCr
t = dCe

t , so that the conditional density

for Cr
t is given by

f(Cr
t | C

fr
t , C

f
t ; Σt) = f(Ce

t | Σe
t ) = fW (Ce

t | n− q, Σe
t/n) . (2.15)

2.2.3. A note on the Wishart assumption for the measurement density

Asset returns are typically subject to the presence of outliers generating fat tails in

the corresponding covariance measures (Opschoor et al., 2017). Under the assumed

conditional Wishart distribution, with its fairly thin tails, significant fat-tail behav-

ior can only originate from the unconditional variation of the latent states (Σf
t ,Σ

e
t ,

Bt), but this may not suffice to fully capture the tail behavior of realized covari-

ance data. In such cases, the Wishart can be usefully replaced by a distribution

allowing for conditional heavy tails such as the Matrix-F distribution which obtains

from a Wishart-inverted-Wishart mixture (Konno, 1991). A successful application of

the matrix-F distribution to realized covariances is found in Opschoor et al. (2017)

who combine it with an observation-driven generalized autoregressive score (GAS)
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approach. The Matrix-F nests the Wishart distribution as a special case and admits

a parametrization based on the strict factor decomposition in Eq. (2.2) leading (when

conditioned on the mixing variable) to a factorization of the density for the realized

covariance matrix Ct which is of the same form as under the Wishart (see Eqs. 2.5

and 2.7). This makes the Matrix-F distribution easily applicable for a straightforward

fat-tailed generalization of the WFSS model.2 However, the results we obtained for an

initial posterior analysis of this generalization show that there is no evidence against

the Wishart in favor of the fat-tailed Matrix-F distribution (results are not presented

here). Actually, the posterior estimates for all the parameters of the Matrix-F gen-

eralization are virtually equal to their values obtained for the fitted WFSS model.

This indicates that the marginalization of the conditional Wishart distribution for Ct

w.r.t. the latent state variables suffices to capture the tail behavior of the realized

covariance data. This is illustrated in Figure 2.1 where we plot the histogram of

the observed realized variances of the Citigroup and Caterpillar stock together with

their unconditional distribution predicted under the fitted WFSS model defined by

Eqs. (2.7)–(2.13) for 60 assets using 9 factors (see Section 2.4 below).

2.3. Bayesian Posterior Analysis and Forecasting

We utilize MCMC methods for a Bayesian posterior analysis of the WFSS model and

use the Gibbs approach to simulate from the joint posterior of the parameter and

states

π({θei }, {θ
β
ik}, {θ

f
k}, {θ

`
kj}, n, {xei,1:T}, {βi,1:T}, {xfk,1:T}, {`kj,1:T}|C1:T ). (2.16)

The factorization of the measurement density (2.7) combined with the independent

priors for the state processes as specified by the state-transitions (2.8)–(2.13) imply

that the WFSS model can be devoted in p+ q conditionally independent state-space

models, one for each of the q factors and p assets. This allows us to update within the
2The resulting Matrix-F mixture factor state-space model is presented in Appendix A.3.
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Gibbs approach their respective state processes and their state specific parameters

factor-by-factor and asset-by-asset.

2.3.1. MCMC algorithm

Our proposed MCMC implementation for the WFSS model consists of the following

Gibbs sampling steps:3

1.) Sampling {θfk}, {x
f
k,1:T}: For {θ

f
k}, the parameters of the Gaussian HAR-models

for the factor state processes {xfk,1:T} as given in Eq. (2.12), we select indepen-

dent natural conjugate Normal-inverted-Gamma priors. Thus we can directly

simulate from their full conditional posteriors π(θfk |x
f
k,1:T ), k = 1, . . . , q.

The measurement density in Eq. (2.7) together with the state transitions in

Eqs. (2.10) – (2.12) for Σf
t define conditionally independent nonlinear non-

Gaussian state-space models for the q factor state processes {xfk,1:T} given the

pseudo loadings in Lt. The resulting q full conditional posteriors for {xfk,1:T} are

π(xfk,1:T |`k,1:T , θ
f
k , n, C1:T ) ∝

T∏
t=1

exp
{
−n

2

[
xfkt + (`′ktC

f
t `kt) exp(−xfkt)

]}
(2.17)

× fN
(
xfkt
∣∣ γfk + φfk1x̄

f
k[t−1:t−1] + φfk2x̄

f
k[t−1:t−5] + φfk3x̄

f
k[t−1:t−22] , [νfk ]2

)
,

with k = 1, . . . , q, where fN (·|µ, σ2) denotes a Gaussian density with mean µ

and variance σ2. To sample a full trajectory xfk,1:T from its posterior in one

block we use the Particle Gibbs (PG) procedure based on the Bootstrap Particle

Filter (BPF) combined with Ancestor Sampling (AS). In a nutshell, the PG

as proposed by Andrieu et al. (2010) is a standard Gibbs sampler where we

can use the BPF (Gordon et al., 1993) inside the Gibbs procedure in order to

propose approximate samples from the posterior in such a way that the ‘ideal’

but infeasible Gibbs sampler is approximated. In order to improve the mixing of

the resulting PG algorithm we combine the BPF with AS as recently proposed
3Further details on the proposed MCMC scheme are given in Appendix A.1.
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by Lindsten et al. (2014). A detailed description of this PG-AS procedure is also

found in Grothe et al. (2019).4 Since the q state processes with their specific

parameters {(xfk,1:T , θ
f
k)} are conditionally independent they can be updated by

first drawing in parallel the q parameter vectors and then running in parallel the

PG-AS for the q state processes.

2.) Sampling {θ`kj}, {`kj,1:T}: For the parameters {θ`kj} of the q(q − 1)/2 Gaussian

AR-processes of the pseudo loadings `kjt in Eq. (2.13) we select Normal-inverted-

Gamma priors so that they can be directly sampled from their full conditional

posteriors π(θ`kj|`kj,1:T ), k > j = 1, . . . , q − 1.

Let ˜̀
kt = (`k1t, . . . , `kk−1t)

′ denote the (k − 1)-dimensional vector consisting of

the unrestricted elements in the vector of pseudo loadings `kt in Eq. (2.11) such

that `kt = (˜̀′
kt, 1, 0, . . . , 0)′, k = 2, . . . , q. Then the measurement density (2.7) to-

gether with the state transitions for the `kjt’s in Eq. (2.13) define q−1 condition-

ally independent linear Gaussian state-space models for the (k− 1)-dimensional

processes {˜̀k,1:T} given {xfk,1:T}. The corresponding full conditional posterior of

˜̀
k,1:T has the following particular linear Gaussian form in ˜̀

kt given ˜̀
kt−1:

π(˜̀
k,1:T |xfk,1:T , {θ

`
kj}, n, C1:T ) ∝

T∏
t=1

exp
{
−n

2

[
˜̀′
ktC̃

f
kt

˜̀
kt − 2(c̃fkt)

′ ˜̀
kt

]
exp(−xfkt)

}
× fN (˜̀

kt | γ`k + Φ`
k(

˜̀
kt−1 − γ`k) , Σ`

k), (2.18)

for k = 2, . . . , q, with γ`k = (γ`k1, . . . , γ
`
kk−1)′, Φ`

k = diag(φ`k1, . . . , φ
`
kk−1) and

Σ`
k = diag([ν`k1]2, . . . , [ν`kk−1]2). The matrix C̃f

kt denotes the upper left block of

Cf
t consisting of its first k − 1 rows and columns, and c̃fkt is the column vector

consisting of the first k − 1 elements of k’th row of Cf
t . To simulate the k − 1

trajectories in ˜̀
k,1:T in one block we can straightforwardly apply the forward-

filtering backward-sampling (FFBS) procedure of de Jong and Shephard (1995)

4An alternative to the PG-AS procedure for sampling xfk,1:T is the auxiliary mixture sampler based upon
the Kalman filter as proposed by Kim et al. (1998). We also experimented with this alternative and the
MCMC results we obtained are virtually the same as those based upon the PG-AS.
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for linear Gaussian state-space models. The conditional independence of the

state processes {˜̀k,1:T} allows us to simulate them together with their specific

parameters {(θ`k1, . . . , θ
`
kk−1)} in parallel.

3.) Sampling {θei }, {xei,1:T}: For {θei }, the parameters of the p HAR-processes for the

log of the idiosyncratic variances in Eq. (2.8), we use Normal-inverted-Gamma

priors, so that we can directly simulate from their full conditional posteriors

π(θei |xei,1:T ), i = 1, . . . , p.

The measurement density in Eq. (2.7) together with the state transitions in

Eq. (2.8) define conditionally independent nonlinear non-Gaussian state-space

models for the p state processes for the logs of the idiosyncratic variances {xei,1:T}

given the loadings {βi,1:T}. The corresponding full conditional posteriors for

{xei,1:T} are

π(xei,1:T |βi,1:T , θ
e
i , n, C1:T )

∝
T∏
t=1

exp
{
−n

2

[
xeit + (β′itC

f
t βit − 2β′itc

rf
it + crit) exp(−xeit)

]}
(2.19)

× fN
(
xeit
∣∣ γei + φei1x̄

e
i[t−1:t−1] + φei2x̄

e
i[t−1:t−5] + φei3x̄

e
i[t−1:t−22], [νei ]

2
)
,

with i = 1, . . . , p. To sample the full trajectory xei,1:T from its posterior in one

block we use the PG-AS procedure. Here again we can exploit the inherent

parallel structure in the simulation step for {(xei,1:T , θ
e
i )}.

4.) Sampling {θβik}, {βi,1:T}: As for all the other AR parameters we select for those

of the pq time-varying factor loadings in Eq. (2.9) Normal-inverted-Gamma

priors so that we can simulate directly from their full conditional posteriors

π(θβik|βik,1:T ), i = 1, . . . , p, k = 1, . . . , q.

Since the measurement density in Eq. (2.7) together with the state transitions of

the factor loadings βikt define p conditionally independent linear Gaussian state

space models for {βi,1:T} given {xei,1:T}, we can easily simulate by the FFBS

26



2.3. Bayesian Posterior Analysis and Forecasting

procedure each βi,1:T from its full conditional posterior

π(βi,1:T |xei,1:T , {θ
β
ik}, n, C1:T ) ∝

T∏
t=1

exp
{
−n

2

(
β′itC

f
t βit − 2β′itc

rf
it

)
exp(−xeit)

}
× fN (βit | γβi + Φβ

i (βit − γβi ), Σβ
i ), (2.20)

with i = 1, . . . , p, where γβi = (γβi1, . . . , γ
β
iq)
′, Φβ

i = diag(φβi1, . . . , φ
β
iq) and Σβ

i =

diag([νβi1]2, . . . , [νβiq]
2). As in the previous steps the simulation of the beta states

and corresponding parameters {(βi,1:T , θ
β
i1, . . . , θ

β
iq)} can be parallelized.

5.) Sampling n: In the last step we simulate the Wishart degrees of freedom param-

eter. We select for n > m an uniform prior, pr(n), defined on a discrete grid.

Thus we can directly simulate from its full conditional posterior which is given

by a multinomial distribution, i.e.,

π(n|{xei,1:T}, {βi,1:T}, {xfk,1:T}, {`k,1:T}, C1:T ) ∝

[
T∏
t=1

fW(Ct|n,Σt/n)

]
pr(n).

(2.21)

Our MCMC algorithm repeatedly cycles through Step 1.) to 5.). After dropping

the draws from the first cycles as burn-in we use the draws from the next S cycles

for the purpose of approximating the joint posterior in Eq. (2.16). Bayesian point

estimates (posterior means) of the model parameters and latent state variables are

then obtained as sample averages over the corresponding Gibbs draws.

2.3.2. Model comparison

For the purpose of comparing alternative WFSS model specifications obtained under

different sets of risk factors included in Cf
t and/or different restrictions imposed on the

state transitions densities in Eqs. (2.8)–(2.13) we rely upon the Deviance Information

Criterion (DIC) based on the likelihood function (Spiegelhalter et al., 2002). For

models with alternative sets of factors the joint realized covariances for the assets
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and the factors Ct consist of different set of variables which prevents the use of the

likelihood function for C1:T for model comparisons. Hence, we rely on the DIC based

on the conditional likelihood function of the assets’ realized covariances Cr
1:T given

Cfr
1:T and Cf

1:T .

Let θ = ({θei }, {θ
β
ik}, {θ

f
k}, {θ`kj}, n) denote the list of all parameters. Then the

conditional DIC is given by

DIC = −2 log p(Cr
1:T |C

fr
1:T , C

f
1:T ; θ̂) + 2pD, (2.22)

with small values of the criterion preferred. The term p(Cr
1:T |C

fr
1:T , C

f
1:T ; θ̂) represents

the conditional likelihood function evaluated at the posterior estimates for the pa-

rameters rewarding good fits, and pD is the effective sample size, penalizing good fits

achieved by means of excessively rich parameterizations. The effective sample size is

defined as

pD = −2
[
Epost[log p(Cr

1:T |C
fr
1:T , C

f
1:T ; θ)]− log p(Cr

1:T |C
fr
1:T , C

f
1:T ; θ̂)

]
, (2.23)

where Epost[log p(Cr
1:T |C

fr
1:T , C

f
1:T ; θ)] is the mean of the conditional log-likelihood func-

tion taken w.r.t. the posterior distribution of θ.

Based on the result for the conditional density of Cr
t given (Cfr

t , C
f
t ) provided in

Eq. (2.15) the conditional likelihood function in Eqs. (2.22) and (2.23) obtains as

p(Cr
1:T |C

fr
1:T , C

f
1:T ; θ) =

∫ T∏
t=1

f(Ce
t | Σe

t ; θ)f(Σe
t | Σe

1:t−1; θ) dΣe
1:T . (2.24)

Under the Wishart density for f(Ce
t | Σe

t ; θ) together with the diagonal assumption

Σe
t = diag(exp{xe1t}, . . . , exp{xept}) and the independent priors for the state processes

{xei,1:T} the conditional likelihood in Eq. (2.24) as a function in {xei,1:T} factorizes into
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p asset-specific components which are functionally independent, so that

p(Cr
1:T |C

fr
1:T , C

f
1:T ; θ) ∝

p∏
i=1

∫ [ T∏
t=1

exp

{
−1

2
[(n− q)xeit + nceit exp(−xeit)]

}

× fN
(
xeit
∣∣ γei + φei1x̄

e
i[t−1:t−1] + φei2x̄

e
i[t−1:t−5] + φei3x̄

e
i[t−1:t−22], [νei ]

2
)]

dxei,1:T ,

(2.25)

where ceit denotes the ith diagonal element of the realized idiosyncratic covariance

matrix Ce
t . For a given value of θ the p integrals w.r.t. the xei,1:T ’s can be taken

as likelihood functions of independent univariate nonlinear non-Gaussian state-space

models so that they can be easily evaluated in parallel using the standard BPF.5

Using this BPF for the likelihood evaluation we can estimate the posterior mean of

the conditional log-likelihood function in Eq. (2.23) by the arithmetic mean over the

Gibbs draws of the parameters {θ(i)}Si=1, that is

Êpost

[
log p(Cr

1:T |C
fr
1:T , C

f
1:T ; θ)

]
=

1

S

S∑
i=1

log p(Cr
1:T |C

fr
1:T , C

f
1:T ; θ(i)). (2.26)

2.3.3. Forecasting

Using the Gibbs sampler outlined in Section 2.3.1 for fixed values of the parameters θ,

we can perform out-of-sample point- and density forecasting for the realized covariance

matrix of asset returns Cr
t+1. A density forecast for Cr

t+1 obtains as

p(Cr
t+1|C1:t; θ) =

∫
f(Cr

t+1|Σt+1; θ) f(Σt+1|Σ1:t; θ) π(Σ1:t|C1:t; θ) dΣ1:t+1, (2.27)

where π(Σ1:t|C1:t; θ) denotes the posterior density of the state variables in Σ1:t for

the observed data up to period t, and f(Cr
t+1|Σt+1; θ) is the marginal density for

the realized covariance of the assets. Under the Wishart assumption for Ct, this

marginal density for Cr
t+1 is itself a Wishart density given by fW(Cr

t+1|n,Σr
t+1/n)

(Muirhead, 2005, Corollary 3.2.6). The forecasting density (2.27) evaluated at the

ex-post observed value for Cr
t+1 defines the period t+ 1 predictive likelihood. For its

5Implementation details for the BPF approximation of Eq. (2.24) are given in Appendix A.2.
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computation we set the parameters θ equal to their posterior mean estimates based

on the data observed until period t.

Note that the density forecast in Eq. (2.27) and its moments do not account for

parameter estimation uncertainty. An alternative which would account for this un-

certainty is to use the standard Bayesian predictive density (Geweke, 2005). While it

can be straightforwardly implemented for the WFSS model using Gibbs draws from

the joint posterior distribution of the state variables and the parameters, we decided

to perform forecasting based on the density forecast in Eq. (2.27), because we shall

compare the predictive performance of the WFSS model with that of alternative fore-

casting approaches for which it is not clear how to account for estimation uncertainty.

The predictive likelihood according to Eq. (2.27) can be approximated via MC

integration, i.e.,

p(Cr
t+1|C1:t; θ) '

1

S

S∑
i=1

f(Cr
t+1|Σ

(i)
t+1; θ), (2.28)

where {Σ(i)
t+1} are simulated draws from the convolution

f(Σt+1|Σ1:t; θ) π(Σ1:t|C1:t; θ)

based on Gibbs simulations from π(Σ1:t|C1:t; θ). Using the simulated draws {Σ(i)
t+1} the

point forecast of Cr
t+1 given by E(Cr

t+1|C1:t; θ) = E(Σr
t+1|C1:t; θ) can be approximated

by

E(Cr
t+1|C1:t; θ) '

1

S

S∑
i=1

Σ
r(i)
t+1. (2.29)

While the simulated draws {Σ(i)
t+1} required for the computation of the predictive

likelihood in Eq. (2.28) can be straightforwardly obtained, the evaluation of the

(p × p)-dimensional measurement density f(Cr
t+1|Σ

(i)
t+1; θ) = fW(Cr

t+1|n,Σ
r(i)
t+1/n) in

high-dimensional applications turns out to be numerically very unstable. In fact,

30



2.4. Empirical Application

when the Wishart measurement density is high-dimensional as in our application

for p = 60 assets its evaluation suffers from frequent floating-point underflows (see

Kastner, 2019, for a discussion of similar computational problems). Thus, instead of

using the predictive likelihood for the covariance matrix Cr
t+1 itself, we exploit the

property of Wishart distributions of being closed under linear transformations and

rely on the predictive likelihood for ι′Cr
t+1ι where ι denotes a vector full of ones.

This transformation can be interpreted as the return variance of an equally weighted

portfolio. Its predictive likelihood obtains by replacing in Eqs. (2.27) and (2.28)

the multivariate Wishart f(Cr
t+1|Σt+1; θ) = fW(Cr

t+1|n,Σr
t+1/n) by the correspond-

ing univariate density f(ι′Cr
t+1ι|Σt+1; θ) which is a one-dimensional Wishart given by

fW(ι′Cr
t+1ι|n, ι′Σr

t+1ι/n) (Muirhead, 2005, Theorem 3.2.5).

2.4. Empirical Application

2.4.1. Data

We use the WFSS model to analyze the dynamics of the daily realized covariance ma-

trix for 60 stocks traded at the New York Stock Exchange. The stocks are selected by

liquidity from the S&P 500 index and sorted by their sector and industry classification

according to the Global Industrial Classification Standard (GICS). The list of stocks

covering six industry sectors is provided in Table 2.1. For observed risk factors we use

the market, high-minus-low price-earnings ratio (HML) and small-minus-big market

capitalization (SMB) factor in the Fama-French 3-factor model. Following Fan et al.

(2016) and Aït-Sahalia and Xiu (2017), we additionally consider the sector-specific

Spyder Exchange-Traded Funds (SPDR ETFs) for the six sectors covered by the 60

stocks: XLI (Industrials), XLY (Consumer Discretionary), XLP (Consumer Staples),

XLV (Health Care), XLF (Financials), and XLK (Information Technologies). These

SPDR ETFs are traded at very high-frequency and therefore can serve in our approach

for constructing realized covariance measures of factors which track the largest S&P

sectors.
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The daily realized covariance matrices Ct are computed using the composite realized

kernel method of Lunde et al. (2016) based on 5-minute returns for the Fama-French

factors and 1-minute returns for the assets as well as the sector-specific ETFs.6 The

data comprises 2415 time series of realized variances and covariances for the sample

period from January 3, 2007 to December 31, 2012, covering 1510 trading days. See

Figure 2.2 for time-series plots of the realized variance for two randomly selected

stocks (Citygroup and Caterpillar), the ETFs for the sectors of those two stocks (XLF

and XLI), and the three Fama-French factors. Figure 2.2 also provides the sample

autocorrelation functions (ACF) of the realized variance for the two selected stocks

which indicate a very strong serial correlation. Such a strong serial correlation we find

for all assets and risk factors.

Given the joint realized covariance matrices for the assets and the factors Ct we can

compute according to Eqs. (2.1) and (2.4) the realized residual covariance matrices

Ce
t which represent estimates for integrated residual covariance matrices Σe

t . In order

to assess the realized residual sparsity we compute from Ce
t for various sets of factors

the time average of the corresponding residual correlation matrices. Figure 2.3 shows

heat plots of this average residual correlation matrix obtained from using no factors,

the CAPM factor (market), the three Fama-French factors (market, HML, SMB),

and the three Fama-French factor plus the six ETFs. These plots illustrate dense

asset correlations ranging from 0.18 to 0.52 (no factors). We also observe that these

correlations are significantly reduced when including risk factors. Under the 9-factor

case (Fama-French plus ETFs) the resulting residual correlation matrix is fairly close

to diagonal with a maximum absolute average correlation of 0.22. These results are

consistent with those reported by Fan et al. (2016) and justify the use of a strict factor

approximation to the integrated covariance matrix of the assets Σr
t , especially, when

combined with a Fama-French plus ETF factor structure.

6We are grateful to Dacheng Xiu for kindly providing us with the intraday Fama-French factor return data.
The intraday return data for the 60 stocks and 6 ETFs has been obtained from QuantQuote.com.
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2.4.2. Estimation results

Using the complete sample covering 1510 trading days we estimate the WFSS model

for the following three factor structures: A 1-factor model with the market factor

in the CAPM (1F), a 3-factor model based on the Fama-French factors (3F), and a

9-factor model including the Fama-French factors plus the six sector-specific EFTs

(9F). For each of the factor structures we take the unrestricted WFSS specification

defined in Eqs. (2.3)–(2.13) and compare it to model specifications obtained under

the restrictions that the factor loadings are time-invariant (βikt = βik) and/or the

log (pseudo) variances xeit and x
f
kt have simple short-memory AR(1) dynamics (φei2 =

φei3 = 0 and φfk2 = φfk3 = 0). In total we compare for each of the factor structures 1F,

3F and 9F four WFSS specifications: The unrestricted one with time-varying loadings

and HAR variance dynamics (HAR-vβ), the WFSS with constant loadings and HAR

variance dynamics (HAR-cβ), time-varying loadings and AR(1) variance dynamics

(AR1-vβ), and constant loadings and AR(1) variance dynamics (AR1-cβ).

The prior assumptions we use for the parameters are fairly uninformative. For

the (γ, φ1, φ2, φ3, ν
2) parameters in each of the Gaussian HAR processes {xeit} and

{xfkt} we assume independent conjugate Normal-inverted Gamma priors with hyper-

parameters selected such that E(ν2) = 0.2 and Var(ν2) = 0.0156, E(φ1, φ2, φ3) =

(0.3, 0.3, 0.3) and Cov(φ1, φ2, φ3) = diag(0.1, 0.1, 0.1), E(γ∗) = 0 and Var(γ∗) = 20,

where γ∗ = γ(1− φ1 − φ2 − φ3). Likewise we use for the (γ, φ, ν2) parameters in each

of the Gaussian AR(1) processes {βeikt} and {`fkjt} independent conjugate Normal-

inverted Gamma priors with E(ν2) = 0.2 and Var(ν2) = 0.0156, E(φ) = 0.86 and

Var(φ) = 0.1, E(γ∗) = 0 and Var(γ∗) = 20, where γ∗ = γ(1 − φ). This prior we also

assume for the parameters of the Gaussian HAR processes {xeit} and {x
f
kt} under the

AR(1) restriction. For the Wishart degrees of freedom n we select a discrete uniform

prior on the interval (p+ q, 350] with 1000 equally distant grid points.

For parameter estimation we run the MCMC algorithm proposed in Section 2.3.1

for 15,000 iterations, where the first 5,000 are discarded. The PG-AS procedure in

the MCMC update step for the nonlinear state-trajectories {xfk,1:T} and {xei,1:T} is

33



Chapter 2. Factor State-Space Models for High-Dimensional Realized Covariances

implemented using 50 particles (see steps 1.) and 3.) of the MCMC algorithm).

For the computation of the DIC criterion in Section 2.3.2 we run the BPF using

25,000 particles. The MCMC algorithm is implemented in MATLAB. The average

CPU computing time per MCMC iteration ranges from 2.4 (1F-AR1-cβ) to 5.9 sec

(9F-HAR-vβ) on an Intel i7 3.4GHz processor with 4 cores. In order to evaluate the

sampling efficiency of the proposed MCMC procedure for estimating the parameters

of the WFSS model we use the inefficiency factor. Following Kim et al. (1998), it

is computed as IF = 1 + 2[B/(B − 1)]
∑B

j=1K(j/B) ρ̂j, where ρ̂j denotes the lag-j

sample autocorrelation of the MCMC draws of a parameter, K(·) is the Parzen kernel

function, and B the bandwidth which we set equal to B = 100. The interpretation is

that an MCMC sample with S∗× IF parameter draws is needed in order to obtain the

same precision as a (hypothetical) iid sample from the posterior of size S∗, so that

small IF-values are to be preferred. For the unrestricted full WFSS model (9F-HAR-

vβ) the IF values across all of its parameters range from 1.5 to 17.36 with an average

value of 3.44 indicating a high sampling efficiency with a fast mixing rate of our high-

dimensional MCMC algorithm. In fact, it even achieves the efficiency level reported

by Kim et al. (1998) for their MCMC auxiliary mixture sampling approach which

is a well-established efficiency benchmark for simple univariate stochastic volatility

models.

Table 2.2 contains the DIC values for the WFSS specifications. They show that of

all factor structures the 9-factor one including the Fama-French factors and the ETFs

yields the best trade-off between goodness of fit for the realized covariance matrix

of the assets and parametric simplicity. This applies to all model specifications and

is consistent with the results of our initial analysis showing that under the 9-factor

structure the time average of the realized residual correlation matrices is closest to

diagonal (see Section 2.4.2). Hence, these results indicate strong evidence against the

1-factor CAPM structure as used by Sheppard and Xu (2019) in their factor HEAVY

model. We also find that the gain in terms of DIC values obtained from adding to a

3-factor Fama-French model the six sector-specific ETFs is substantially larger than
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the gain we obtain when moving from a 1-factor CAPM model to a 3-factor structure

by adding the two Fama-French factors HML and SMB. Hence, the sector-specific risk

factors when considered together with the Fama-French factors appear to be extremely

useful in explaining the daily variation of the assets’ covariance matrix. As for the

dynamic structure, we observe that WFSS models with dynamically varying factor

loadings uniformly outperform those with constant loadings, and that WFSS models

with long-memory type HAR dynamics for the variances strictly dominate their short-

memory AR(1) counterparts. This evidence in favor of time-varying loadings is fully

consistent with the results reported in Bollerslev and Zhang (2003), Kalnina (2015),

Engle (2016) and Sheppard and Xu (2019). Our DIC results for the loadings are also

particularly remarkable in that they reveal that the improvement in model fit achieved

by allowing the loadings to be time-varying does not appear to be compromised by the

involved significant inflation of parameters (e.g. 994 for the 9F-HAR-cβ versus 2,074 in

the 9F-HAR-vβ). Of all 12 considered WFSS models, the DIC-preferred specification

for the assets’ covariance matrix is the unrestricted full 9F-HAR-vβ WFSS.

Figure 2.4 summarizes the parameter estimates for the DIC-preferred 9F-HAR-vβ

model.7 Figure 2.4 shows box-plots of the posterior mean values for all the autoregres-

sive coefficients of the AR(1)-processes (φ) and HAR-processes (φ1, φ2, φ3) directing

the integrated (co)variances in (Σf
t , Σe

t ) and factor loadings in Bt (see Eqs. 2.8–2.13).

It also provides the posterior mean values for the maximal root of the restricted

AR(22) representation of the HAR processes (z), as well as the posterior mean values

of the stationary variance (V) of the AR(1) and HAR processes.8 As for the maxi-

mal estimated roots of the HAR processes for the assets’ residual variances (ze) and

the diagonals of the factor covariance matrix (zf ), we observe that they are close to

unity implying stationarity though a very strong persistence. The estimates of the

stationary variances V β and AR(1) roots φβ reveal that the assets’ loadings on the

risk factors typically exhibit a relatively small, yet significant variation and a mod-

7The corresponding posterior standard deviations are provided in Figure 2.5.
8For the AR(1) processes the stationary variance obtains as V = ν2/(1 − φ2) and for the HAR processes
analogously from their restricted AR(22) representation in Eq. (2.14) (see Hamilton, 1994, p. 59).
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erate persistence. This finding is in line with the DIC values in Table 2.2 preferring

dynamically varying factor loadings over constant ones. In Figure 2.2 we plot the

ACFs for the realized variance of Citigroup and Caterpillar predicted under the fitted

9F-HAR-vβ WFSS together with their observed sample counterparts. They illustrate

that this model combining long-memory type HAR dynamics for the variances and

short-memory AR(1) dynamics for the loadings is well able to account for the observed

strongly persistent movements of the assets’ realized variances. Similar results we ob-

tain for all assets. Figure 2.6 displays the smoothed estimates of the total integrated

variance (σrt ), the residual variance (σet ) and the loadings on the Fama-French and

sector-specific risk factor (βt) for the Citigroup stock under the 9F-HAR-vβ WFSS

together with the respective observed realized variances and loadings. The smoothed

estimates are obtained as posterior mean values of the integrated variances and load-

ings computed from the MCMC posterior draws of the state variables. Unsurprisingly,

we see that the smoothed estimates follow closely the variation in their realized coun-

terparts.

In order to quantify the relative importance of the risk factors we provide in Fig-

ure 2.7 their estimated contributions to the assets’ total variances under the HAR-vβ

WFSS with 1 (market), 3 (market+HML+SMB) and 9 factors (market+HML+SMB+

ETFs), respectively. For asset i the estimated factor contribution under a given factor

structure is computed as 1− (1/T )
∑T

t=1 E(σeit|C1:T )/crit, where E(σeit|C1:T ) is the pos-

terior mean of the integrated residual variance and crit the total realized variance. The

explained contribution of the market risk under the 1-factor CAPM is quite substan-

tial and varies between 18% and 35%. Combining the market risk with the HML and

SMB factor only moderately increases the explained contribution to a range between

23% and 37%, while a significant increase in that contribution up to a level of 51% is

obtained by adding the ETFs to the market, HML and SMB. This corroborates our

previous results on the relative importance of the HML, SMB and sector-specific risk

factors.
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2.4.3. Out-of-sample forecasting results

We now analyze the out-of-sample forecasting performance of the WFSS for the real-

ized covariance matrix of asset returns Cr
t and compare it to alternative forecasting ap-

proaches. As alternative approaches we consider the Exponentially Weighted Moving

Average (EWMA) model (Morgan, 1996) and the scalar Realized consistent Dynamic

Conditional Correlation (sRe-cDCC) model of Bauwens et al. (2016). The EWMA is

popular in industry practice while the sRe-cDCC model is found by Bauwens et al.

(2016) to be highly effective in predicting large covariance matrices of asset returns

outperforming alternative popular high-dimensional forecasting models.

The EWMA is given by

E(Cr
t+1 | Cr

1:t) = (1− λ)Cr
t + λE(Cr

t | Cr
1:t−1), (2.30)

where we set the smoothing parameter λ to its typically selected value of 0.96 (Callot

et al., 2017). The sRe-cDCC model assumes for Cr
t given Cr

1:t−1 a Wishart distribution,

Cr
t | Cr

1:t−1 ∼ Wp(n, St/n), where the scale matrix is factorized as

St = AVtRtVtA
′, (2.31)

with A being the lower triangular Cholesky factor of E(Cr
t ) = E(St). The matrix Vt is

defined as Vt = diag(
√
v1t, . . . ,

√
vpt), where vit is the conditional variance of asset i,

and Rt is the conditional correlation matrix obtained as Rt = (Qt � Ip)−1/2Qt(Qt �

Ip)
−1/2, where � denotes the Hadamard element-by-element product. Both the vit’s

and Qt are endowed with GARCH-type recursions of the form

vit = (1− κi − δi) + κic
∗
it−1 + δivit−1, i = 1, . . . , p, (2.32)

Qt = (1− α− ϕ)Ip + αCQ
t−1 + ϕQt−1, (2.33)

where c∗it is the i’th diagonal element of C∗t = A−1Cr
tA
−1′ and CQ

t = (Qt�Ip)1/2V −1
t C∗t

V −1
t (Qt � Ip)

1/2, with Ip denoting the p-dimensional identity matrix. The model
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parameters are given by the scalars {κi}, {δi}, α, ϕ and are estimated by the three-

step Quasi-ML (QML) procedure proposed by Bauwens et al. (2016).

In our forecast experiments we focus on 1-day-ahead predictions. They are obtained

by re-estimating the model parameters every 10 trading days on a rolling 4-year

window with 1008 daily observations and then producing a sequence of new 1-day-

ahead forecasts based on the updated parameter estimates. We consider two out-

of-sample forecasting periods each covering one year with 251 trading days (see the

shaded areas in the time series plots in Figure 2.2). The first period is the year 2011

where the volatility ranges from a small to a relatively high level triggered by the

August 11 stock market fall after the credit rating downgrade of US sovereign debt.

The second period covers the year 2012 with a constantly fairly low volatility.

Statistical forecast evaluation

For statistical forecast evaluation we rely on the predictive likelihood and the accuracy

of the point forecasts for the covariance matrix (see Section 3.3).

To assess the point forecast accuracy we follow Ledoit et al. (2003) and use the root-

mean-squared-error (RMSE) based on the Frobenius norm comparing the covariance

matrix forecast Ĉr
t and the ex-post observed value for Cr

t . This RMSE is given by

RMSE =
1

T ?

∑
t

||Cr
t − Ĉr

t || =
1

T ?

∑
t

[∑
i

(crit − ĉrit)2 + 2
∑
i<j

(crijt − ĉrijt)2

] 1
2

, (2.34)

where crit and crijt denote the realized variance of asset i and the realized covariance

between asset i and j, respectively, and ĉrit and ĉrijt their forecasts.9 T ? is the number of

forecast periods. In order to disentangle the forecast performance w.r.t. the different

elements in the covariance matrix we also compute the RMSE separately for the

9Alternative frequently applied loss functions are the Stein loss, the QLIKE and the von Neumann di-
vergence (Bauwens et al., 2014). However, for parameter-driven state-space models as the WFSS these
loss functions are not guaranteed to provide consistent rankings of the forecasting performance (Laurent
et al., 2013).
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variances and covariances, i.e.,

RMSEv =
1

T ?

∑
t

[∑
i

(crit − ĉrit)2

] 1
2

, RMSEc =
1

T ?

∑
t

[∑
i<j

(crijt − ĉrijt)2

] 1
2

. (2.35)

For assessing the significance of differences in the RMSE, RMSEv and RMSEc losses

across models we rely on the model confidence set (MCS) approach of Hansen et al.

(2011). The MCS identifies the model or set of models having the best forecasting

performance at a given confidence level. The MSC is computed for confidence levels

of 75% and 90% using a block bootstrap with block length b(T ?)1/3c and 10,000

bootstrap replications.

The RMSE results for the out-of-sample periods 2011 and 2012 as well as for the

two periods aggregated together are summarized in Table 2.3. They reveal that for

forecasting the assets’ covariance matrix based on the WFSS approach it is important

to make use of all the 9 available risk factors and to account for time-variation in

the factor loadings. In fact, for the fairly volatile period 2011 it is the 9-factor WFSS

with time-varying loadings and AR(1) variance dynamics (9F-AR1-vβ) which exhibits

among all WFSS models the smallest RMSE loss and for the low-volatility period 2012,

the 9-factor WFSS with time-varying loadings and HAR variance dynamics (9F-HAR-

vβ). The latter is also the best performing WFSS for the aggregated period 2011–

2012. Comparing the RMSE losses with RMSEv and RMSEc values indicates that the

comparatively good predictive performance of those two 9-factor WFSS models with

time-varying loadings is due to their ability to produce relatively precise forecasts,

especially for the covariances. However, if it is the forecast performance only for

the variances, the best WFSS is the 9-factor model with constant loadings and HAR

dynamics (9F-HAR-cβ). As for the comparison of the WFSS approach with the

competing alternatives, we find that for the periods 2011 and 2011–2012 the RMSE

loss of the best-performing WFSS is at the 75% MCS-confidence level significantly

smaller than that of the EWMA but is on par with the loss of the sRe-cDCC model.

For the 2012 period both, the EWMA and sRe-cDCC are at the 75% level significantly

39



Chapter 2. Factor State-Space Models for High-Dimensional Realized Covariances

outperformed by the best WFSS. Recall that for the sake of comparison with the (non-

Bayesian) EWMA and sRe-cDCC, the point forecasts E(Cr
t |C1:t−1; θ) used in this

experiment for the (Bayesian) WFSS approach do not account for the uncertainty

about the parameters. In the Technical details Section A.4 we provide RMSE results

for WFSS forecasts including this uncertainty, for which we use the mean under the

Bayesian predictive density E(Cr
t |C1:t−1). They show that parameter uncertainty does

not materially affect forecast accuracy which is fully consistent with the small posterior

standard deviations we observe for the parameters (see Figure 2.5).

Table 2.4 reports the sum of the 1-day-ahead log-predictive likelihoods for the vari-

ance of an equally weighted portfolio
∑T ?

t=1 log p(ι′Cr
t+1ι|C1:t, θ) for the two out-of-

sample periods, and Figure 2.8 shows the time-series plots of the period-wise accumu-

lated log-predictive likelihoods for the entire range of the two out-of-sample periods.

As the EWMA in Eq. (2.30) lacks a distributional assumption its predictive like-

lihoods are computed under the assumption of a conditional Wishart distribution

for the realized covariance matrix given its prediction with degrees of freedom esti-

mated by ML. The results show that the out-of-sample fit of all WFSS specifications

is substantially better than that of the EWMA and sRe-cDCC. The biggest gain in

predictive fit of the WFSS models relative to the EWMA and sRe-cDCC we observe

for the turbulent trading days in the aftermath of the August 2011 stock market fall

(see Figure 2.8). The WFSS models with the largest log-predictive likelihoods are

the same as those with the lowest RMSE loss for the point forecasts: For the volatile

period 2011 it is the 9F-AR1-vβ and for the low-volatility period 2012 the 9F-HAR-vβ

(see Table 2.4). Hence, overall our WFSS approach with 9 factors and dynamically

varying loadings performs favorably in relation to the competing models.

Value-at-risk forecasts

For an economic evaluation of predictive performance we consider Value-at-Risk (VaR)

forecasts for portfolios constructed from the p assets. For simplicity, we focus on

an equally-weighted portfolio with return ω′rt, where rt denotes the p-dimensional
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vector of the period-t asset returns and ω is the vector of equal portfolio weights.

Assuming for the 1-period-ahead predictive distribution of the portfolio returns a

normal N (0, ω′Ĉr
t ω), the predicted period-t portfolio VaR at level α obtains as

VaRt(α) = zα

√
ω′Ĉr

t ω, (2.36)

where zα is the α% quantile of a standard normal distribution. The normal distri-

bution for the portfolio returns can also be replaced by a more flexible student-t.

However, the results we obtained under the student-t (not reported here) do not

qualitatively differ from those for the normal distribution.

For assessing the accuracy of the predicted VaR we follow Chib et al. (2006) and

test for unconditional and conditional coverage based on the ‘hit-indicator’ variable

It = 1[ω′rt ≤ VaRt(α)] for t = 1, . . . , T ?, signaling that the realized portfolio return

is lower or equal than the predicted VaR. The hypothesis of correct unconditional

coverage can be tested with the likelihood-ratio statistic (Kupiec, 1995)

LRUC = 2
{

log[α̂α̂T
?

(1− α̂)(1−α̂)T ∗ ]− log[αα̂T
?

(1− α)(1−α̂)T ∗ ]
}
, (2.37)

where α̂ is the hit-rate defined as α̂ =
∑T ?

t=1 It/T
?. Under the hypothesis that the

observed hit-rate α̂ is equal to the nominal level α (correct unconditional coverage)

the statistic LRUC is distributed asymptotically as a χ2
(1). Conditional coverage can

be tested by jointly testing for unconditional coverage and serial independence of the

hit-indicator sequence {It} with the statistic (Christoffersen, 1998)

LRCC = 2
{

log[(1− π01)T00πT01
01 (1− π11)T10πT11

11 ]− log[αα̂T
?

(1− α)(1−α̂)T ∗ ]
}
, (2.38)

where Tij denotes the number of cases for which we observe It = j and It−1 = i

for i, j ∈ {0, 1} while π01 = T01/(T01 + T00) and π11 = T11/(T10 + T11). Under the

joint hypothesis of correct unconditional coverage and serial independence LRCC is

distributed asymptotically as a χ2
(2).
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The p-values of the coverage tests for the predicted 1% and 5% VaR are shown

in Table 2.5. They reinforce our earlier results on the point-forecast accuracy and

predictive fit for the covariance matrix of the assets. The best performing WFSS

models for both the 1% and 5% VaR are those with all 9 risk factors and time-varying

loadings (9F-AR1-vβ and 9F-HAR-vβ). For the year 2011 as well as the year 2012

they pass the tests for unconditional and conditional coverage at the 1% significance

level. However, for the aggregated period 2011-2012 both models fail to pass the

unconditional coverage test for the 1% VaR as they significantly underestimate the

VaR, but note that this applies to all models. Overall, the performance of the 9-factor

WFSS with time varying loadings is better than that of the EWMA and not worse

than that of sRe-cDCC model.

Global-minimum-variance-portfolio forecasts

As a further economic experiment designed to evaluate the forecasting performance

we use the predicted covariance matrices of the assets to construct optimal invest-

ment portfolios (Bauwens et al., 2016; Callot et al., 2017). For portfolio allocation we

consider a strategy based on the global-minimum-variance portfolio (GMVP) which

has the advantage relative to minimum-variance portfolios that its ex-ante portfolio

weights only depend on the covariance matrix. When constructing the GMVP we

exclude short-selling by imposing the portfolio weights to be non-negative. This is

rather typical in high-dimensional portfolio allocation problems and acts like a regu-

larization device for reducing the impact of errors in covariance matrix forecasts on

the allocation (Frost and Savarino, 1986; Jagannathan and Ma, 2003; and Bauwens

et al., 2016).

For a given covariance matrix forecast Ĉr
t computed in period t − 1, the GMVP

weights ŵt obtain by solving the minimization problem

ŵt = arg min
wt

w′tĈ
r
twt, subject to

p∑
i=1

wit = 1, wit > 0 ∀i, (2.39)
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where wt = (w1t, . . . , wpt)
′ is the vector of period-t portfolio weights to be selected in

period t− 1.

For assessing the relative capabilities of the competing models for optimal portfolio

allocation we use the following four measures:

(i) The average out-of-sample portfolio return defined as µ̂p =
∑T ?

t=1 rpt/T
? with

rpt = ŵ′trt;

(ii) The accumulated portfolio return over the out-of-sample window

µ̂accp =
[∏T ?

t=1(1 + rpt)
]
− 1;

(iii) The portfolio return standard deviation over the out-of-sample window

σ̂p =
√∑T ?

t=1(rpt − µ̂p)2/T ?;

(iv) The Sharpe ratio SRp = µ̂p/σ̂p.

The results are summarized in Table 2.6. As expected, for the low-volatility period

2012 the portfolio return standard deviations are uniformly smaller across all fore-

casting models than for the more turbulent year 2011. On the other hand, all models

generate for 2012 also a lower average and accumulated return than for 2011. As for

the comparison of the competing models, we find that the EWMA and sRe-cDCC

are outperformed in terms of all measures by the respective best WFSS. In terms of

minimal portfolio risk, the 9-factor WFSS HAR model with constant factor loadings

(9F-HAR-cβ) shows across all periods the best performance, though the differences to

the other models are typically not very large. The highest average and accumulated

return as well as the largest Sharpe ratio are obtained by portfolio allocations based

on WFSS models with time-varying loadings: For period 2011 it is the 3-factor WFSS

HAR and for 2012 the 1-factor WFSS AR(1) model.

2.5. Conclusion

In this paper we propose a Wishart factor state-space (WFSS) model for high–

dimensional realized covariance matrices of asset returns. The model assumes a strict
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factor structure for the latent integrated covariance matrix of the assets and relies on

observed risk factors such as the 3 Fama-French factors. The WFSS is based on a

Wishart measurement density for the joint realized covariance measure of the asset-

and factor returns and assumes latent autoregressive processes for the factor- and

idiosyncratic (co)variances as well as the factor loadings. An important advantage of

the Wishart density is that it admits a convenient likelihood factorization, which re-

sults in fast, scalable and numerically precise one-step inference using simple Bayesian

MCMC techniques.

We apply the factor model to a data set of daily realized covariance matrices for 60

NYSE traded stocks. The observed risk factors we consider are the CAPM market

factor, the Fama-French HML and SMB factors as well as sector-specific ETFs. It

turns out that for justifying a strict factor structure with uncorrelated residual com-

ponents it is critical to include all those factors. The fitted factor models feature up

to 2,074 parameters, which are estimated with high numerical precision. A Bayesian

model comparison based on the Deviance Information Criterion (DIC) furthermore

indicates the importance of accounting for time-varying loadings and persistent HAR

dynamics for the integrated variances.

The in-sample findings are confirmed by an out-of-sample forecasting experiment

including both statistical and economic evaluation criteria: Our results show that

for practical forecasting applications it is important to make use of the complete set

of risk factors and to account for time-variation in the factor loadings. The WFSS

model shows good forecasting performance and outperforms its competitors in nearly

all dimensions. We conclude that the WFSS approach is a valuable tool for modeling

and forecasting time-series of high-dimensional realized covariance matrices.
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2.6. Tables and Figures

Table 2.1.: List of the stocks included in the data set.
Symbol Company Sector Symbol Company Sector

BA Boeing Company I MDT Medtronic Inc. H
CAT Caterpillar, Inc. I BAC Bank of America Corporation F
DE Deere & Company I C Citigroup Inc. F
EMR Emerson Electric Company I FITB Fifth Third Bankcorp F
GE General Electric Company I JPM J P Morgan Chase & Co. F
GLW Corning Incorporated I AXP American Express Company F
HON Honeywell International Inc. I GS Goldman Sachs Group, Inc. F
LB la Barge Inc. I MS Morgan Stanley F
LMT Lockheed Martin Corporation I ADBE Adobe Systems Incorporated T
AMZN Amazon.com, Inc. D ADP Automatic Data Processing T
BBBY Bed Bath & Beyond Inc. D CTXS Citrix Systems, Inc. T
BBY Best Buy Co., Inc. D ES Electronic Arts, Inc. T
GPS Gap, Inc. D EBAY Ebay, Inc. T
HD Home Depot, Inc. D EMC EMC Corporation MA T
JCP J.C. Penney Company D IBM International Business Machines T
KSS Kohl’s Corporation D INTU Intuit, Inc. T
LOW Lowe’s Companies, Inc. D MSFT Microsoft Corporation T
COST Costco Wholesale Corporation S NTAP NetApp, Inc. T
CVS CVS Caremark Group S ORCL Oracle Corporation T
KR Kroger Company S ADI Analog Devices, Inc. T
CAG ConAgra, Inc. S ALTR Altera Corporation T
KO Coca-Cola Company S AMAT Applied Materials, Inc. T
MO Altria Group S AMD Advanced Micro Devices, Inc. T
PEP Pepsico, Inc. S BRCM Broadcom Corporation T
A Agilent Technologies Inc. H INTC Intel Corporation T
ABT Abbott Laboratories H KLAC KLA-Tencor Corporation T
BAX Baxter International Inc. H LLTC Linear Technology Corporation T
BMY Bristol-Myers Squibb Company H MU Micron Technology, Inc. T
CAH Cardinal Health Inc. H NVDA NVIDIA Corporation T
JNJ Johnson & Johnson H QCOM QUALCOMM Incorporated T
Note: Stocks are selected by liquidity from the S&P 500 index and sorted by their sector and industry
classification according to the Global Industrial Classification Standard (GICS). The sector labels are: (I)
Industrials; (D) Consumer Discretionary; (S) Consumer Staples; (H) Health Care; (F) Financials; (T) Infor-
mation Technologies.
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Table 2.2.: Deviance information criteria (DIC) for the WFSS model specifications.

WFSS model # params # obs./param DIC
1F-AR1-cβ 244 11,703 -2,860,015
3F-AR1-cβ 379 8,032 -3,414,454
9F-AR1-cβ 856 4,260 -6,030,216
1F-AR1-vβ 364 7,845 -2,868,559
3F-AR1-vβ 739 4,119 -3,469,892
9F-AR1-vβ 1,936 1,884 -6,266,725
1F-HAR-cβ 366 7,802 -2,874,627
3F-HAR-cβ 505 6,028 -3,428,088
9F-HAR-cβ 994 3,669 -6,041,832
1F-HAR-vβ 486 5,875 -2,882,791
3F-HAR-vβ 865 3,519 -3,483,658
9F-HAR-vβ 2,074 1,758 -6,279,064
Note: The table reports the Deviance information criteria (DIC) for the
WFSS model specifications. The likelihood for the DICs given in Eq. (2.24)
is computed using a bootstrap particle filter with 25, 000 particles. # params
is the number of parameters and # obs/param the number of observations
per parameter.
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Table 2.3.: Evaluation of point-forecast accuracy.

Period 2011 Period 2012 Period 2011 – 2012

Model RMSE RMSEv RMSEc RMSE RMSEv RMSEc RMSE RMSEv RMSEc

WFSS
1F-AR1-cβ 56.98 18.28 37.02 25.89 12.62 15.41 41.50 15.46 26.26
3F-AR1-cβ 58.57 18.23 38.15 26.06 12.54 15.55 42.38 15.40 26.90
9F-AR1-cβ 52.33 17.82 33.93 25.08 12.11 15.06 38.76 14.97 24.53

1F-AR1-vβ 52.41 19.10 33.42 25.17 13.03 14.65 38.84 16.08 24.08
3F-AR1-vβ 53.11 18.67 34.01 25.23 12.83 14.76 39.22 15.76 24.42
9F-AR1-vβ 50.58 18.39 32.51 25.14 12.55 14.95 37.91 15.48 23.77

1F-HAR-cβ 58.35 16.77 38.69 25.37 10.67 15.80 41.14 13.59 26.74
3F-HAR-cβ 59.18 16.73 39.30 25.52 10.66 15.91 41.62 13.56 27.09
9F-HAR-cβ 53.46 16.68 35.22 23.84 10.54 14.71 38.00 13.48 24.52

1F-HAR-vβ 53.62 17.14 35.09 24.09 10.82 14.75 38.21 13.84 24.47
3F-HAR-vβ 54.36 16.97 35.65 24.61 10.75 15.17 38.83 13.72 24.96
9F-HAR-vβ 51.24 16.87 33.54 23.02 10.63 14.03 36.51 13.61 23.36

EWMA 57.78 18.64 38.02 23.15 10.81 14.14 41.62 14.88 26.93
sRe-cDCC 53.13 17.92 34.60 24.94 11.27 15.43 39.12 14.60 25.07

Note: The table reports the RMSE, RMSEv, and RMSEc losses as given in Eqs. (2.34) and (2.35). Bold figures indicate the
smallest loss; Light grey-shaded cells indicate that the respective model is in the 90% model confidence set, dark grey-shaded cells
indicate that the respective model belongs to the 75% model confidence set.
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Table 2.4.: Evaluation of density forecasts.

Period Period Period
Model 2011 2012 2011 – 2012

WFSS
1F-AR1-cβ -2291.7 -2092.5 -4384.2
3F-AR1-cβ -2306.3 -2096.7 -4403.1
9F-AR1-cβ -2203.3 -2034.8 -4238.1

1F-AR1-vβ -2247.7 -2066.7 -4314.4
3F-AR1-vβ -2262.8 -2084.4 -4347.2
9F-AR1-vβ -2185.8 -2026.4 -4212.2

1F-HAR-cβ -2325.6 -2126.5 -4452.2
3F-HAR-cβ -2333.0 -2128.7 -4461.7
9F-HAR-cβ -2214.5 -2035.5 -4250.0

1F-HAR-vβ -2269.4 -2083.8 -4353.2
3F-HAR-vβ -2296.2 -2122.7 -4419.0
9F-HAR-vβ -2191.9 -2018.8 -4210.7

EWMA -5348.9 -3785.6 -9134.5
sRe-cDCC -4297.3 -3778.0 -8075.2
Note: The table reports the sum of the log-predictive likelihoods for the
return variance of an equally weighted portfolio ι′Crt+1ι. Bold figures indicate
the largest value for the sum of the log-predictive likelihoods.
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Table 2.5.: VaR forecasting results.

Period 2011 Period 2012 Period 2011 – 2012

LRUC LRCC LRUC LRCC LRUC LRCC

Model 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

WFSS
1F-AR1-cβ 0.00 0.05 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
3F-AR1-cβ 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
9F-AR1-cβ 0.01 0.14 0.02 0.08 0.02 0.21 0.05 0.13 0.00 0.03 0.00 0.05

1F-AR1-vβ 0.00 0.14 0.00 0.08 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.02
3F-AR1-vβ 0.00 0.05 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
9F-AR1-vβ 0.02 0.49 0.05 0.30 0.06 0.32 0.14 0.61 0.00 0.24 0.01 0.37

1F-HAR-cβ 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
3F-HAR-cβ 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
9F-HAR-cβ 0.01 0.02 0.02 0.08 0.01 0.02 0.02 0.02 0.00 0.00 0.00 0.00

1F-HAR-vβ 0.00 0.02 0.00 0.08 0.01 0.02 0.02 0.02 0.00 0.00 0.00 0.00
3F-HAR-vβ 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
9F-HAR-vβ 0.01 0.14 0.02 0.27 0.02 0.08 0.05 0.03 0.00 0.01 0.00 0.01

EWMA 0.00 0.22 0.00 0.03 0.02 0.32 0.05 0.13 0.00 0.12 0.00 0.00
sRe-cDCC 0.06 0.49 0.15 0.78 0.02 0.67 0.05 0.55 0.00 0.55 0.00 0.46
Note: The table reports the p-values for the unconditional coverage test LRUC and conditional coverage test LRCC given in
Eqs. (2.37) and (2.38) for VaR predictions at the 1% and 5% level. Bold figures indicate that the null hypothesis cannot be rejected
at the 1% significance level.
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Table 2.6.: GMVP forecasting results.

Period 2011 Period 2012 Period 2011 – 2012

σ̂p µ̂p SRp µ̂accp σ̂p µ̂p SRp µ̂accp σ̂p µ̂p SRp µ̂accp
Model ×103 ×102 ×102 ×103 ×102 ×102 ×103 ×102 ×102

WFSS-
1F-AR1-cβ 6.78 4.17 6.15 9.91 4.22 2.79 6.62 7.34 5.59 3.45 6.17 18.0
3F-AR1-cβ 6.75 4.45 6.59 10.7 4.21 2.76 6.54 7.24 5.57 3.57 6.41 18.7
9F-AR1-cβ 6.56 4.58 6.99 11.1 4.20 2.62 6.24 6.85 5.45 3.56 6.53 18.7

1F-AR1-vβ 6.66 4.48 6.72 10.8 4.29 3.51 8.18 9.37 5.55 3.97 7.16 21.1
3F-AR1-vβ 6.67 4.44 6.65 10.6 4.29 3.42 7.97 9.12 5.55 3.91 7.04 20.7
9F-AR1-vβ 6.79 4.51 6.64 10.8 4.32 3.50 8.11 9.34 5.63 3.98 7.07 21.2

1F-HAR-cβ 6.77 3.89 5.75 9.19 4.22 2.81 6.66 7.39 5.58 3.33 5.96 17.3
3F-HAR-cβ 6.73 4.16 6.19 9.91 4.20 2.71 6.43 7.10 5.55 3.40 6.13 17.7
9F-HAR-cβ 6.55 4.15 6.33 9.90 4.19 2.60 6.20 6.80 5.44 3.34 6.14 17.4

1F-HAR-vβ 6.56 4.33 6.61 10.4 4.25 3.19 7.51 8.46 5.47 3.74 6.83 19.7
3F-HAR-vβ 6.61 4.65 7.02 11.2 4.27 3.16 7.41 8.38 5.51 3.87 7.03 20.5
9F-HAR-vβ 6.63 4.56 6.88 11.0 4.25 2.86 6.74 7.54 5.51 3.67 6.67 19.3

EWMA 6.72 3.32 4.94 7.72 4.25 2.10 4.93 5.40 5.57 2.68 4.82 13.5
sRe-cDCC 6.70 4.33 6.47 10.4 4.22 2.18 5.16 5.63 5.54 3.21 5.79 16.6
Note: The table reports GMVP summary statistics for the three out-of-sample periods under consideration. σ̂p and µ̂p denote the portfolio
standard deviation and mean return, SRp is the Sharpe ratio and µaccp denotes the accumulated portfolio return. Bold figures indicate the
best models.
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Figure 2.1.: Unconditional distribution of two realized asset variances predicted under the
fitted WFSS model.
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Panels (a) and (c): Histograms of the realized variances for the Citigroup and Caterpillar
stocks and their unconditional distribution predicted under the fitted WFSS model (9F-
HAR-vβ) defined by Eqs. (2.7)–(2.13) for 60 assets using 9 factors (red solid line). The
predicted distributions are obtained from kernel density estimates based on simulated data
from the fitted WFSS model for T = 50, 000 time periods. Panels (b) and (d): Section of
the histograms in panels (a) and (c) for the ranges [10, 30] and [20, 50], respectively.
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Figure 2.2.: Time-series plots of selected realized factor and asset variances.
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Panels (a) – (g): Time series plots of the realized variances; The gray shaded areas mark the
two out-of-sample windows used in the forecasting experiments in Section 2.4.3. Panels (h)
and (i): Sample ACF of the realized variance (blue line) and predicted ACF under the fitted
9F-HAR-vβ WFSS model (red line). Predicted ACF is obtained from simulated data from
the fitted WFSS model for T = 50, 000 time periods.
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Figure 2.3.: Heat plots of the time-average of daily realized (residual) correlation matrices.
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Panel (a): unconditional without factors; Panel (c): conditional on the market factor; Panel
(b): conditional on the 3 Fama-French factors; Panel (d): conditional on the 3 Fama-French
factors and 6 sector-specific ETFs. The black squares along the diagonal indicate sector
blocks. The sector labels are: (I) Industrials; (D) Consumer Discretionary; (S) Consumer
Staples; (H) Health Care; (F) Financials; (T) Information Technologies.
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Figure 2.4.: Parameter estimates of the 9F-HAR-vβ WFSS model.
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Box-plots of the posterior mean values for the autoregressive coefficients (panel a), maximal
HAR roots in modulus (panel b) and stationary variances (panel c) for the AR(1) and HAR
processes of the 9F-HAR-vβ WFSS model directing the integrated (co)variances in (Σf

t ,
Σe
t ) and factor loadings in Bt (see Eqs. 2.8 – 2.13). The sector labels are: (I) Industrials;

(D) Consumer Discretionary; (S) Consumer Staples; (H) Health Care; (F) Financials; (T)
Information Technologies.
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Figure 2.5.: Posterior standard deviation values of the parameters of the 9F-HAR-vβ WFSS
model.
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Box-plots of posterior standard deviation values for the autoregressive coefficients (panel a),
maximal HAR roots in modulus (panel b) and stationary variances (panel c) for the AR(1)
and HAR processes of the 9F-HAR-vβ WFSS model directing the integrated (co)variances in
(Σf

t , Σe
t ) and factor loadings in Bt (see Eqs. 2.8 – 2.13). The sector labels are: (I) Industrials;

(D) Consumer Discretionary; (S) Consumer Staples; (H) Health Care; (F) Financials; (T)
Information Technologies.
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Figure 2.6.: Smoothed estimates for the integrated variance and loadings.
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Time series plots of the smoothed estimates for the total integrated variance σrt , integrated
residual variance σet , and integrated loadings βt on the market, HML, SMB and financial
sector specific risk factor for the Citigroup stock under the 9-factor WFSS-tvβ-HAR model
(red line), together with their respective observed realized counterparts (blue line).
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Figure 2.7.: Fractions of realized return variation explained by the risk factors.
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the risk factors, computed as 1 − (1/T )

∑T
t=1 E(σeit|C1:T )/crit, where E(σeit|C1:T ) is the pos-

terior mean of the integrated residual obtained under the fitted HAR-vβ WFSS model with
the 1 (market), 3 (market+HML+SMB) and 9 factors (market+HML+SMB+ETFs), re-
spectively. White bar: Explained variation by the market; White and red bar: Explained
variation by the market+HML+SMB; white, red and blue bar: explained variation by the
market+HML+SMB+ETFs. The sector labels are: (I) Industrials; (D) Consumer Discre-
tionary; (S) Consumer Staples; (H) Health Care; (F) Financials; (T) Information Technolo-
gies.
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Figure 2.8.: Accumulated log-predictive likelihoods.

0
1
/2

0
1
1

0
3
/2

0
1
1

0
5
/2

0
1
1

0
7
/2

0
1
1

0
9
/2

0
1
1

1
1
/2

0
1
1

0
1
/2

0
1
2

0
3
/2

0
1
2

0
5
/2

0
1
2

0
7
/2

0
1
2

0
9
/2

0
1
2

1
1
/2

0
1
2

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1F-AR1-cβ

3F-AR1-cβ

9F-AR1-cβ

1F-AR1-vβ

3F-AR1-vβ

9F-AR1-vβ

1F-HAR-cβ

3F-HAR-cβ

9F-HAR-cβ

1F-HAR-vβ

3F-HAR-vβ

9F-HAR-vβ

EWMA

sRe-cDCC

Time-series plots of the period-wise accumulated log-predictive likelihoods for the return
variance of an equally weighted portfolio ι′Crt+1ι.

58



Chapter 3.

Composite Forecasting of
Vast-Dimensional Realized Covariance
Matrices using Factor State-Space Models

3.1. Introduction

Modeling and forecasting covariance matrices of financial assets is essential in vari-

ous fields like option pricing, risk management and portfolio allocation. Numerous

approaches have been studied in the past decades, mostly based on daily asset return

data. Due to the increasing availability of intraday asset return data it is nowadays

possible to compute accurate non-parametric ex-post estimates of daily integrated

covariance matrices of asset returns, called realized covariance, which are known to

incorporate much more information about daily conditional covariances than daily

return series, and come with the advantage that time-series models can directly be

applied.1

However, this involves two key challenges. Firstly, the need to assure positive defi-

niteness of the covariance matrix forecasts, and secondly, to cope with the parameter

proliferation arising through the fact that the number of objects to be modeled is

proportional to the square of the number of assets. These aspects become even more

pronounced in vast-dimensional applications, that are considered in this paper.

Nevertheless, the direct time-series modeling of realized covariance matrices has

arisen as an important new strand of literature, pioneered by the studies of Gourier-

oux et al. (2009), Noureldin et al. (2012), Golosnoy et al. (2012), and Jin and Maheu

1For a description of the concept of realized covariance matrices see, for example, Andersen et al. (2003),
Barndorff-Nielsen and Shephard (2004), Park and Linton (2012), and Lunde et al. (2016).
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(2013), who focused on capturing the time-series behavior of realized covariance ma-

trices through matrix-variate distributions like the Wishart and inverse-Wishart. In

addition Bauer and Vorkink (2011) and Chiriac and Voev (2011) focused on decompo-

sitions of realized covariances to apply standard time-series models for the prediction

of future realizations. More recent contributions examine additional aspects in model-

ing realized covariances by using more complex distributions like mixtures of inverse-

Wisharts or the Matrix-F distribution that allow for fat tails in the covariance (Jin

and Maheu, 2016; Opschoor et al., 2017; Opschoor and Lucas, 2019; Vassallo et al.,

2019). As further example, the Riesz distribution allows for incorporating liquidity

differences in the intraday returns (Gribisch and Hartkopf, 2020, see also Chapter 4).

The benefits of LASSO (least absolute shrinkage and selection operator) techniques

on the predictive accuracy are examined in Callot et al. (2017). However, most of

the proposed models are limited to low-dimensional applications, say with 30 assets

or less.

In this paper we contribute to another branch in realized covariance modeling, i.e.,

the application of factor structures for the assets’ covariance matrices to deal with

empirically more realistic scenarios in increasing dimensions. Prominent examples of

the factor approach are the models proposed by Tao et al. (2011), Asai and McAleer

(2015), Jin et al. (2019), Sheppard and Xu (2019), Gribisch et al. (2020, see also

Chapter 2) and Brito et al. (2018). While the first three approaches extract implicit

factors from realized covariance data via an eigenanalysis and therefore build dynamic

time-series models, the remaining three rely on economically motivated observed risk

factors, like in the Fama and French (1993) three-factor model.

The use of observed risk factors is particularly appealing as it allows for time-

variation in both the factor loadings and the residual components which yields flex-

ibility gains when modeling the complex structures driving the evolution of realized

covariances. We follow this route and propose a flexible factor state-space model for

the prediction of realized covariance matrices of asset returns based on observed risk

factors which is capable of handling dynamic systems of vast dimensions (say 200 and
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more).

Our method relies on a factor decomposition of the realized asset covariance matrix

from a joint construction of the realized measure for the factors and assets. After

observing the covariances of both the assets and factors, we construct realized fac-

tor loadings and realized residual components from standard matrix decompositions

resulting in a time-series for each of the individual parts. We then propose inde-

pendent state-space models applied to the time-series of the factors, factor loadings

and residual components akin to an approximate factor model taking the ‘true’ in-

tegrated factor and residual covariance matrices and integrated loadings as a latent

state variables which are observed through their noisy realized counterparts.

For the factor and residual covariance matrices we combine independent Wishart

measurement densities with parsimoniously parameterized matrix-variate Beta tran-

sitions in the vein of Windle and Carvalho (2014). Besides yielding positive definite

covariance forecasts by construction, this specification has the advantage of being

tractable in a sense that the predictive distribution of the data, and hence, the likeli-

hood function is available in closed-form. As a further contribution, we derive addi-

tional useful properties of the covariance model at hand. For the factor loadings we

rely on well established models from the TVP-VAR literature with stochastic volatility

estimated by Maximum Likelihood (ML) techniques based on Kalman-like filtering.

Although a separate modeling approach has certain drawbacks as it ignores data-

imposed dependencies in the measurements, it comes with the huge advantage of

reducing model complexity allowing to efficiently handle vast-dimensional portfolios.

In contrast to other state-space approaches that require high computational effort,

our approach enables parameter estimation and prediction on a minute time scale.

Based on the individual models, predictions for each component are readily made

completely in parallel and are combined afterwards to obtain a composite forecast

of the full asset covariance matrix. This makes the model particularly appealing for

practitioners.

In order to investigate whether the loss of information arising from the composite
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nature of our proposed model has any influence on its predictive accuracy we later in-

clude the Factor HEAVY (high-frequency based volatility) model of Sheppard and Xu

(2019) in the set of competing models. The Factor HEAVY relies on a GARCH-type

modeling of the observed factors’ and assets’ covariances based on a joint Wishart

distribution combined with a strict factor structure (i.e., a sparse diagonal resid-

ual component). The diagonal residual assumption is crucial for their model as it

enables a neat factorization into (conditionally) independent low-dimensional compo-

nents allowing for straightforward estimation by Quasi Maximum Likelihood (QML).

However, it imposes severe restrictions on the residual component which can be unre-

alistic in vast-dimensional applications. Our modeling approach allows to relax this

assumption without effort.

The proposed composite factor state-space (CFSS)2 model relies on the same factor

decomposition as used in Brito et al. (2018). They combine the LASSO approach of

Callot et al. (2017) for the factor and residual covariances with linear heterogeneous

autoregressive (HAR, Corsi, 2009) processes for the factor loadings. Their approach

has two major drawbacks in comparison to the CFSS model. First, since their model

specification is prone to over-parameterization, they have to restrict the dynamics of

the residual component to be driven by past residual variances only, neglecting possi-

bly important information when forecasting the assets’ covariance matrices. Second,

and maybe more important, they operate with transformed time-series for the covari-

ance parts based on the matrix-logarithm and make use of the matrix exponential

function to ensure positive definiteness of the predictions which induces a bias to the

forecasts. This bias might be neglectable in short-term forecasts, however, it gets

more pronounced over longer horizons.

In the empirical part, we apply the CFSS model to daily covariance matrices for

the returns of 225 NYSE traded stocks. In an extensive out-of-sample analysis we

compare several model specifications based on varying sets of observed risk factors and

different residual structures, as well as different restrictions imposed to the dynamics
2The name composite factor state-space model arises from the composite nature of how the predictions for
the full asset covariance matrix are obtained.
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of the realized covariance components. We illustrate the predictive performance of our

approach relative to several competing models. As performance measures we consider

the accuracy of the (co)variance predictions and the ability to produce predictions

for the global-minimum variance portfolio under different side restrictions as well as

the ability to produce predictions for the mean-variance portfolio using momentum

signals. Our out-of-sample results show that the CFSS model performs favorable in

almost all dimensions relative to its competitors.

The remainder of the paper is organized as follows: Section 3.2 introduces the pro-

posed CFSS model. The Maximum Likelihood estimation and parameter restrictions

and the construction of composite forecasts are discussed in Section 3.3. Section

3.4 describes the data set. Section 3.5 discusses implementation details and presents

the out-of-sample results. Finally, Section 3.6 concludes. Additional material and

derivations for the model (parts) at hand are provided in Appendix B.

3.2. The Model

3.2.1. Factor decomposition of realized covariances

Consider a positive definite, symmetric consistent estimate Ct of the joint latent in-

tegrated covariance matrix Σt, observed for a panel of p logarithmic asset prices and

q observed factor prices at the trading days t = 1, . . . , T . Let Ct be partitioned as

Ct =

Cf
t Crf

t

Cfr
t Cr

t

 , (3.1)

where Cf
t constitutes the q × q realized covariance matrix for the factors, Cr

t denotes

the p× p realized covariance matrix for the assets and Cfr
t = (Crf

t )′ denotes the p× q

matrix of the realized covariances between the factors and assets.

In the present paper our particular interest is to predict the realized covariance

matrix of the asset returns Cr
t . To this end, we exploit a factor decomposition relating
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the assets’ realized covariance to the risk factors via

Cr
t = BtC

f
t B
′
t + Ce

t , (3.2)

where the matrices Bt (p × q) and Ce
t (p × p) are uniquely found from a block LDL

factorization of the block matrix representation in Eq. (3.1) as the regression coefficient

matrix and the resulting Schur complement of Cf
t in Ct, i.e.

Bt = Cfr
t (Cf

t )−1, Ce
t = Cr

t − C
fr
t (Cf

t )−1Crf
t . (3.3)

The matrices Bt and Ce
t can be interpreted as realized factor loadings and as real-

ized residual covariance matrix approximating the integrated loadings Bt and residual

components Σe
t , respectively.

Since we observe the complete covariance Ct at each point in time, we can use

Eq. (3.3) to determine distinct time-series for Cf
t , Ce

t and Bt, such that these can

be modeled and predicted separately. Afterwards they can be recomposed to obtain

a forecast for the major quantity of interest, the full covariance of the assets Cr
t .

Specifications for the dynamics of the individual parts are presented in the following

section.

3.2.2. Model equations

We take the integrated components Σf
t , Σe

t and Bt as latent state variables observed

through their noisy realized counterparts and model them by a state-space approach

with independent measurement densities f(Cf
t | Σf

t ), f(Ce
t | Σe

t ), f(Bt | Bt), and

corresponding transition equations.

Before specifying the respective measurements for the individual parts, we make

two additional assumptions on Bt and Ce
t . First, we assume row-wise independence

of the betas, i.e., Cov(bit, bjt) = 0 ∀i 6= j, and i, j = 1, . . . , p, where bit is a vector

containing the ith row’s entries of Bt. This assumption is comparably mild as, e.g.,

Brito et al. (2018) assume element-wise independence for the entries in Bt. Second,
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we impose the following block structure for the residual covariance

Ce
t =


Ce

1t ∗ ∗

∗ . . . ∗

∗ ∗ Ce
St

 , (3.4)

where the S diagonal blocks are of size pi× pi, i = 1, . . . , S. The asterisk ‘∗’ indicates

residual covariances which are economically insignificant and thus are ignored.3 The

structure in Eq. (3.4) is supported by empirical evidence in many studies when the

number of factors is chosen large enough, see, e.g., Fan et al. (2016); Aït-Sahalia

and Xiu (2017); Brito et al. (2018); Gribisch et al. (2020). Expecting the significant

entries to cluster in blocks around the diagonal might appear arbitrary. However, by

rearranging the rows and columns in Cr
t such a block structure can almost always be

achieved (at least approximately). As it is now common in the literature to model

Σe
t as a sparse matrix (e.g., Sheppard and Xu, 2019 assume Σe

t to be strict diagonal

and only use residual variance information in a one-factor setting), we impose a block-

diagonal structure and assume that the integrated residual covariance Σe
t is sufficiently

measured by the marginals f(Ce
1t | Σe

1t), . . . , f(Ce
St | Σe

St).

Next, we specify the measurement distributions for the different components Cf
t ,

{Ce
it}Si=1, and {bit}

p
i=1, which read as follows

Cf
t | Σ

f
t ∼ Wq(n

f ,Σf
t /n

f ), Ce
it | Σe

it ∼ Wpi(n
e
i ,Σ

e
it/n

e
i ), bit | βit,Σb

it ∼ Nq(βit,Σb
it),

(3.5)

where Wm(d, s) denotes a m-dimensional Wishart distribution with d > m − 1 de-

grees of freedom and scale matrix s, and Nm(a, b) denotes a m-dimensional Normal

distribution with mean a and covariance b. The latter choice is motivated by the fact

that similar (marginal) distributions result from the assumption of a joint conditional

Wishart distribution for Ct in (3.1), which can be seen as a natural candidate for

the measurement (c.f. Gribisch et al., 2020, and see Philipov and Glickman, 2006;
3Economic significance is explained in more detail in Section 3.4.
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Golosnoy et al., 2012; Noureldin et al., 2012; Bauwens et al., 2016, for applications of

the Wishart to realized covariances).

In order to complete the composite factor state space (CFSS) model, we specify

the transition densities for the latent time-varying integrated factor and residual co-

variances, Σf
t and {Σe

it}, as well as the integrated factor loadings {βit} and their

time-varying covariance matrices {Σb
it}. For Cf

t and the distinct blocks {Ce
it} we

adopt the model of Windle and Carvalho (2014), which combines the measurements

in Eq. (3.5) with a generalized Matrix-Beta type-I transition for the integrated preci-

sion, i.e., the inverse of the integrated covariances Σf
t and {Σe

it}, respectively, implying

a shifted Matrix-F transition for Σf
t and {Σe

it} themselves (see Appendix B.1.2 for

a derivation). In the vein of Windle and Carvalho (2014) we refer to this model as

Uhlig Extension (UE) as it depicts a generalization of the process originally proposed

in Uhlig (1994, 1997).

The UE model comes with three major advantages. First, irrespective of the dimen-

sion of the underlying covariance parts, it is parameterized parsimoniously with only

three parameters. Parsimony has proven to be particularly advantageous in predict-

ing high-dimensional covariance matrices (see, e.g., Bauwens et al., 2016). Second, it

yields positive definite (p.d.) forecasts for Cf
t and Ce

t by construction. Hence, there

is no need to resort to any transformation like the Cholesky decomposition, that de-

pends on the ordering of assets in Ct, or the matrix logarithmic transformation (Bauer

and Vorkink, 2011), which may induce severe biases of the predictions Ĉr
t+1 through

the exponential re-transformation. Third, and most important, for the UE model we

can exploit the conjugacy between the Wishart and the Matrix-Beta distribution to

obtain closed-form filtering formulas for tracking the latent states of the system and

allowing the model parameters to be estimated by Maximum Likelihood in one step

(details are given in the following section).

In the UE model for the factor covariance matrix, the q × q symmetric, p.d. inte-
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grated precision Ωf
t = (Σf

t )
−1 evolves through

Ωf
t = U(Ωf

t−1)′Ψf
t U(Ωf

t−1)
/
λf , Ψf

t ∼ BIq
(
kf

2
,
nf

2

)
, (3.6)

with conditional expectation given by E[Ωf
t |Ω

f
t−1] = Ωf

t−1k
f/[λf (kf + nf )] and initial

condition Ωf
1 ∼ Wq(k

f , (nfSf0 )−1/λf ). U(·) denotes the upper Cholesky factor, Ψf
t are

q × q symmetric, p.d. iid Matrix-Beta type-I shocks to Ωf
t .4 Besides the symmetric

scale matrix Sf0 of the initial distribution, the UE model has three parameters, the

degrees of freedom (d.o.f.) nf , kf > q − 1 and the smoothing parameter λf > 0,

controlling the dynamics of the Ωf
t process.5

Similarly to the integrated factor precision, we define Ωe
it = (Σe

it)
−1 for the i =

1, . . . , S distinct pi × pi symmetric, p.d. blocks of Σe
t , and assume

Ωe
it = U(Ωe

it−1)′Ψe
itU(Ωe

it−1)
/
λei , Ψe

it ∼ BIpi

(
kei
2
,
nei
2

)
, (3.7)

with initial conditions Ωe
i1 ∼ Wpi(k

e
i , (n

e
iS

e
i0)−1/λei ), where nei , kei > pi − 1, λei > 0 and

Si0 is the p.d. pi × pi initial scale matrix.

For the factor loadings {bit} we use a local-level version of the time-varying parame-

ter VAR with stochastic volatility proposed in Moura and Noriller (2019). This model

assumes the latent βs to follow heteroscedastic random walks and uses a Wishart pro-

cess for modeling the volatility of the system. The latent q × 1 vectors of factor

loadings bit, i = 1, . . . , p, evolve as driftless random walk processes of the form

βit = βit−1 + ηit, ηit ∼ N (0,Σb
it/σi), (3.8)

where the transition is allowed to be affected by multivariate stochastic volatility

shocks via Σb
it, scaled by 1/σi. Similar to the UE model, the evolution of Ωb

it = (Σb
it)
−1

4See e.g. Gupta and Nagar (2000) for useful theorems about the matrix-variate Beta distribution.
5In the literature the smoothing parameter λf is typically not estimated, but tied to the d.o.f. nf and kf

through different restrictions which are directly imposed during estimation of the latter. We discuss these
restrictions in Section 3.3.2 below.
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is specified by the following multiplicative transition

Ωb
it = U(Ωb

it−1)′Ψb
itU(Ωb

it−1)
/
λbi , Ψb

it ∼ BIq
(
kbi + 1

2
,
1

2

)
, (3.9)

with fixed initial condition. Here, Ψb
it are q× q iid singular Beta type-I shocks to Ωb

it,

with single d.o.f. parameter kbi governing the time-variation in the precision, given

a predetermined value of 0 < λbi < 1. Again, exploiting the conjugacy between the

Normal, Wishart and Matrix-Beta distributions, analytical expressions for the filtering

distribution of the loadings and the likelihood function can be found, enabling fast and

straightforward estimation of the unknown model parameters. It is worth noting that

for kbi → ∞ the nonlinear state-space model in Eqs. (3.5), (3.8) and (3.9) collapses

to a homoscedastic version (Kim, 2014; Moura and Noriller, 2019). For 1/σi → 0 the

latent factor loadings are time-invariant.

3.3. Estimation and Forecasting

3.3.1. Predictive distributions and likelihood estimation

This section describes the ML estimation of the CFSS model. The unknown model

parameters are estimated by independently maximizing the distinct elements in the

conditional log-likelihood

logLr = logLf (θf ;Cf
1:T ) +

S∑
i=1

logLei (θ
e
i ;C

e
i1:T ) +

p∑
j=1

logLbj(θ
b
j ; bj1:T ), (3.10)

where Lf , Lei and Lbj denote the likelihood contributions of the factors, residual

blocks and factor loadings, with parameters θf = (nf , kf , λf )′, θei = (nei , k
e
i , λ

e
i )
′ and

θbj = (kbj , λ
b
j, σj)

′, respectively. The notation As:τ is used to denote the collection

{As, . . . , Aτ}.

The measurement distributions in Eq. (3.5) combined with the corresponding tran-

sition equations for Ωf
t , {Ωe

it}, {βit} and {Ωb
it} in Eqs. (3.6) to (3.9) constitute indepen-

dent nonlinear state-space models for the realized quantities Cf
t , {Ce

it} and {bjt}. By
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exploiting the conjugacy between Normal, Wishart and Matrix-Beta distributions,

Windle and Carvalho (2014) and Moura and Noriller (2019) derived several useful

propositions for the UE model and the TVP-VAR, including the forward filtering dis-

tributions for the latent precision matrices and factor loadings, which turn out to be

Wishart and multivariate-t, respectively. In addition, Windle and Carvalho (2014)

propose a backward sampling scheme to efficiently draw the latent sequences {Ωf
t }

({Ωe
it}, i = 1, . . . , S) in a single sweep within a Bayesian MCMC sampler. In the fol-

lowing we focus on their results enabling fast and easy to implement ML estimation

of the model parameters, and the prediction of future realizations of Cr
t in Eq. (3.2).

Let Cf
1:t capture the information on the realized factor covariance matrices from

period 1 up to t. With the transition in Eq. (3.6) and the corresponding initial

condition, the predictive distribution for Cf
t+1 given past information is of Matrix-F

type, i.e. Cf
t+1|C

f
1:t ∼ Fq(nf , kf , λfS

f
t ), with density given by

f(Cf
t+1 | C

f
1:t) =

Γq(
nf+kf

2
)

Γq(
nf

2
)Γq(

kf

2
)

|Cf
t+1|(n

f−q−1)/2|λfSft |k
f/2

|λfSft + Cf
t+1|(n

f+kf )/2
, (3.11)

with d.o.f. nf , kf and scale λfSft , where S
f
t = λfSft−1 + Cf

t (see Proposition 3 in

Windle and Carvalho, 2014). The d.o.f. kf are known as fat-tail parameters with low

(high) values indicating fatter (thinner) tails. For kf →∞ the predictive distribution

degenerates to the Wishart with nf d.o.f. (see Opschoor et al., 2017). The conditional

first moment that is used to generate one-step forecasts for Cf
t+1 is given by6

E[Cf
t+1 | C

f
1:t] =

λfnf

kf − q − 1
Sft , (3.12)

where solving the recursion for Sft yields

Sft =
t−1∑
i=0

(λf )iCf
t−i + (λf )tSf0 , (3.13)

implying that the forecast of Cf
t+1 will be a scaled, geometrically weighted sum of the

6A derivation for the conditional second moment, i.e. Cov[vec(Cft+1)], is given in Appendix B.1.1.
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previous observations. From Eq. (3.13) one can see that λf controls the degree of

smoothing of the observations. This is crucial when forming estimates and one-step

ahead predictions (cf. Windle and Carvalho, 2014).7

Based on Eq. (3.11) the likelihood function for the factor part obtains as Lf =

f(Cf
1 ;Sf0 )

∏T
t=2 f(Cf

t |C
f
1:t−1).8 Analogous results hold for the predictive distributions

f(Ce
it+1 | Ce

i1:t) and likelihoods Lei of the distinct residual covariance blocks, and left

out here for space saving reasons.

Now, let bi1:t capture the information on the realized factor loadings from period 1

up to t, for i = 1, . . . , p. The predictive density of bit+1 is that of a scaled multivariate

t distribution (see Moura and Noriller, 2019, Corollary 1)9

f(bit+1 | bi1:t) =
Γ
(
kbi+1

2

)
πq/2Γ

(
kbi−q+1

2

) |Pit+1|1/2
[
1 + (bit+1 − β̄it+1)′Pit+1(bit+1 − β̄it+1)

]− kbi+1

2 ,

(3.14)

with kbi − q + 1 d.o.f., mean β̄it+1, and scale (kbi − q + 1)−1P−1
it+1, where

β̄it+1 =
Nit

(Nit + 1)
(β̄it + bitN

−1
it ), (3.15)

Pit+1 =
Nit

kbi (Nit + 1)
(Sbit)

−1, (3.16)

Sbit+1 = λbiS
b
it +

λbiNit

(kbi + 1)(Nit + 1)
(bit − β̄it)(bit − β̄it)′, (3.17)

Nit+1 =
σiλ

b
i(Nit + 1)

σi + λbi(Nit + 1)
. (3.18)

The initial conditions are fixed parameters.10

7In Section 3.3.2 we propose several restrictions on the smoothing parameter, directly relating it to the
shape of the predictive distribution.

8The likelihood function is based on Sf0 , which could already be challenging to estimate in small to medium
dimensional applications. To circumvent this problem, we apply the approach proposed by Windle
and Carvalho (2014), i.e., we set aside the first T ′ observations and use the set {SfT ′ , C

f
T ′:T }, with

SfT ′ =
∑T ′

i=0(λf )iCfT ′−i to estimate the remaining model parameters.
9Note a typo in Moura and Noriller (2019), where they define the scale of the multivariate t as kbi

kb
i
−q+1

Sbit

by mistake. The error has been fixed here.
10We set Ni1 = 1 and Sbi1 = Iq.
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The predictive expectation of the factor loadings is given by

E[bit+1 | bi1:t] = β̄it+1. (3.19)

Again, the likelihood function Lbi is obtained as the product of the predictive densities

in Eq. (3.14).

3.3.2. Parameter restrictions

Our proposed CFSS model as defined by Eqs. (3.5) to (3.9) includes 3× (1 + S + p)

parameters, whereof the majority relates to the covariance dynamics of the factor

loadings. In order to further increase the parsimony of our approach we utilize com-

monly imposed restrictions to the d.o.f. parameters of the loading processes and the

smoothing parameters.

In initial investigations of the realized factor loadings in scenarios with different risk

factors, we found the estimates for kbi to be similar throughout the asset dimension

p. Moreover, we found that minor changes in the d.o.f. parameters do not have note-

worthy effect on the predictive ability regarding mean forecasts for bit+1. Hence, we

preset kbi in the ongoing of this paper. Similar restrictions are indeed imposed by Uh-

lig (1997) and Kim (2014) in the context of constant coefficient VARs (see also Moura

and Noriller, 2019). Kim (2014) suggests to choose values kbi ∈ [10, 25] which mirrors

our findings for k̂bi . Consequently, we adopt this in the empirical analysis.11 For given

kbi the process Ωb
it is asymptotically degenerate if λbi is too large, and explosive if λbi is

too small. Hence, it seems reasonable to further tie the smoothing parameter to the

d.o.f. via λbi = kbi/(k
b
i + 1), implying 0.90 < λbi < 0.97, for kbi ∈ [10, 25].

In addition we consider three different restrictions on the smoothing parameters

(λf , {λei}). They are all considered as distinct model variants and their predictive

performance is analyzed in the empirical application below. Each of them has been

found to be valuable on its own. Note that all restrictions imply λf , {λei} ∈ (0, 1) and

11The exact restrictions for kbi are postponed to Section 3.5.

71



Chapter 3. Composite Forecasting of Vast-Dimensional Realized Covariance Matrices

that they can straightforwardly be imposed during the estimation of the degree of

freedom parameters. Here they are exemplified for the factor part. Similar restrictions

are later imposed for the residual blocks as well.

The first restriction has been originally proposed by Windle and Carvalho (2014)

and is given by

λf =

(
1 +

nf

kf − q − 1

)−1

, (R1)

It implies that the one-step-ahead forecast for the realized factor (residual) covariance

based on (3.12) is obtained as the exponentially weighted moving average (EWMA)

E[Cf
t+1 | C

f
1:t] = (1− λf )Cf

t + λfE[Cf
t | C

f
1:t−1],

which is known to deliver decent (short-term) predictive performance.12 Notably, this

restriction also results in a martingale for the evolution of latent integrated factor

(residual) covariance matrices, i.e., E[Σf
t |Σ

f
t−1] = Σf

t−1 (E[Σe
it|Σe

it−1] = Σe
it−1). A

derivation for this result is given in Appendix B.1.2.

The second restriction is chosen to induce a random walk behavior for the latent

integrated precision matrices in Eq. (3.6), say E[Ωf
t |Ω

f
t−1] = Ωf

t−1, i.e.,

λf =
kf

kf + nf
. (R2)

A similar restriction has been imposed by Uhlig (1997) in the context of singular

Matrix-Beta transitions for the latent precision. In the context of stochastic covariance

modeling for daily return series, Moura et al. (2020) found (R2) to be performing well

in out-of-sample portfolio allocations.

The third restriction traces back to the work of Shephard (1994), where in an uni-

variate modeling framework akin to Uhlig (1997) the smoothing parameter is chosen

12Note that under restriction (R1) the prediction for Cft+1 is similar to the one implied by the RiskMetrics
methodology (Morgan, 1996). However, in the latter the smoothing parameter is set arbitrarily to 0.96,
whilst in the former λ is determined by the distributional shape mirrored in the degree of freedom
parameters nf and kf .
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as the geometric mean of the latent beta shocks in the precisions’ transition equations.

Shephard (1994) argues that this restriction rules out the case of the precision col-

lapsing to zero if t→∞. Here, we propose a multivariate extension of this restriction

which takes the form

λf = exp{E[log |Ψf
t |]/q}. (R3)

In Appendix B.1.3 we show that E[log |Ψf
t |] = Ψ?

q(k
f/2)−Ψ?

q((n
f+kf )/2), where Ψ?

d(a)

denotes the d-variate digamma function (see e.g. Abramowitz and Stegun, 1972; Gupta

and Nagar, 2000) and that (R3) results in a random walk for the log determinant

process of the integrated precision matrices.

Figure 3.1 visualizes the restrictions on the smoothing parameter for an exemplary

scenario of 25 assets, which corresponds to the average sector-size in the empirical

application. Panels (a) – (c) show contour plots of (R1), (R2) and (R3) on the grid

[26, 300]× [26, 300] for the d.o.f. parameters. The plots indicate that λ→ 1 (λ→ 0)

for n fix at its lower bound and k →∞ (k fix at its lower bound and n→∞). Hence,

the less fat tailed and noisier the observations are, the more the model smooths, and

vice versa.

Panels (d) – (f) show contour plots of the differences between the ML estimate for λ

(when fixing n and k) and the respective restrictions (R1), (R2) and (R3). The black

circles mark the corresponding unrestricted ML estimates of the d.o.f. parameters, i.e.,

n̂ ≈ 89, k̂ ≈ 175. The unrestricted MLE for the smoothing parameter is λ̂ = 0.63 with

a standard deviation of 0.017. We can see that (R1) and (R3) tend to be smaller than

the MLE, whereas (R2) exceeds the MLE slightly, though all differences lie within one

standard deviation. The performance of (R1) and (R3) deteriorates if both d.o.f. tend

to their lower bound. However, it is common in practice to impose these restrictions

when estimating the d.o.f. in order to reduce estimation uncertainty.

Imposing the restrictions stated above reduces the number of parameters to be

estimated to 2× (1 + S) + p. This further increases the parsimony but preserves the
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flexibility of the model at hand and allows for very fast estimation of the unknown

model parameters based on numerical optimization routines.13

3.3.3. Composite forecasting

Exploiting the decomposition of the realized asset covariance in Eq. (3.2), we write the

forecasting equation for the realized asset covariance Cr
t+1 by combining the distinct

forecasts for Cf
t+1, {Ce

it+1} and {bit+1}, i.e.,

Ĉr
t+1 = B̂t+1Ĉ

f
t+1B̂

′
t+1 + Ĉe

t+1, (3.20)

where we use Ĉf
t+1 = E[Cf

t+1 | C
f
1:t], Ĉe

it+1 = E[Ce
it+1 | Ce

i1:t] and b̂it+1 = E[bit+1 | bi1:t]

as obtained from the respective predictive moments in (3.12) and (3.19).14 Since the

forecasts of the factor and residual covariance are p.d., the forecast for the assets

covariance will be p.d. by construction as well.

3.4. Data

The given data set includes and expands the 60 dimensional data of Gribisch et al.

(2020). It consists of 1510 daily observations for 225 stocks traded at the New York

Stock Exchange and 12 risk factors, observed between January 3, 2007 and December

31, 2012, comprising a total of 28,203 time series of realized variances and covari-

ances. The stocks are selected by liquidity from the S&P 500 index and are sorted by

their sector and industry classification according to the Global Industrial Classifica-

tion Standard (GICS). For the observed factors we use the market, the high-minus-low

price-earnings ratio (HML) and small-minus-big market capitalization (SMB) factors

as in the Fama and French (1993) three-factor model. Additionally we consider the
13In the empirical application in Section 3.5 we, e.g., consider a model for 225 assets with block-diagonal

residual assumption based on nine industry sectors resulting in 245 (705) parameters for the restricted
(unrestricted) model. Parallel estimation of all parameters takes < 5 minutes on a standard PC with a
2.3 GHz Intel Core i7 processor in MATLAB.

14Since the predictions are of composite nature, they ignore non-linearities in the term Bt+1C
f
t+1B

′
t+1 when

predicting Crt+1. A simulation study, however, shows that these non-linearities are negligible (see Ap-
pendix B.3).

74



3.4. Data

sector-specific Spyder Exchange-Traded Funds (SPDR ETFs) for the nine sectors cov-

ered by the 225 stocks (Fan et al., 2016; Aït-Sahalia and Xiu, 2017; Gribisch et al.,

2020). A brief summary of the sector sizes along with the sector specific ETF tickers

and some descriptive statistics are given in Table 3.1. A full list of all stocks included

in the data set is given in Table B.3.

The daily realized covariance matrices Ct are computed by using the composite

realized kernel method of Lunde et al. (2016) based on 5-minute returns for the Fama-

French factors and 1-minute returns for the assets as well as the SPDR ETFs (see

Barndorff-Nielsen et al., 2011; Lunde et al., 2016, for further details). Given the

joint realized covariance matrices for the assets and factors, we compute according to

Eq. (3.3) the realized residual covariance matrices Ce
t and the realized factor loadings

Bt which represent estimates for integrated residual covariance matrices and loadings,

for various sets of factors. Figure 3.2 shows time-series plots of the realized variances

for the three Fama-French factors, as well as sector-wise averages of realized asset

variances, realized factor loadings and realized residual variances for the Industrial,

Health Care and Financial sector.

In Figure 3.3 we analyze the sparsity pattern for the realized residual covariance

matrices. Following Aït-Sahalia and Xiu (2017) and Brito et al. (2018) we determine

the economically significant entries of the residual correlation, i.e., we flag each entry

with a minimum absolute correlation of 0.15 for at least 1/3 of the sample period.

Panel (a) displays the results for the realized asset covariance matrices. Panels (b) –

(d) display the results for the realized residual components after removing the common

covariation driven by the market factor only, the three Fama-French factors and the

Fama-French factors plus nine sector specific factors based on the ETFs, respectively.

The analysis shows that using only one or three factors still yields very dense resid-

ual correlation patterns, indicating not only a strong rejection of the strict diagonality

assumption, but also of the block-diagonality based on industry sectors (highlighted

as black rectangles). However, by inclusion of the sector ETFs almost all of the signif-

icant inter-sectoral and most of the intra-sectoral correlations vanish, leaving behind
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a somewhat mixed pattern. This could indicate that a block-diagonal specification

might model irrelevant correlations whereas a strict diagonal specification still ignores

important information.

Both the diagonal and block-diagonal sparsity restrictions are imposed ex ante and

are not changed during the analysis. In order to investigate whether the sparsity

pattern is time-varying we plot the residual pattern for the 12 factor case at different

points in time in panel (e). The results indicate that the pattern is rather constant

over time.

3.5. Out-of-sample Forecasting Analysis

This section reports the out-of-sample forecasting results. Selected in-sample param-

eter estimation results for the proposed CFSS model are presented in Appendix B.2.

3.5.1. Implementation

We analyze the out-of-sample performance of three different factor structures: a 1-

factor model with the market factor only (1F), a 3-factor model based on the Fama-

French factors (3F), and a 12-factor model including the Fama-French factors plus the

nine sector-specific ETFs (12F). For both the realized factor and residual covariance

matrices we fit the unrestricted UE model (R0) and compare its performance to

the restricted models (R1), (R2) and (R3) within the CFSS framework. The d.o.f.

parameters kbi for the stochastic volatility process of the (latent) betas are fixed to their

cross-sectional median values based on the in-sample estimates. For completeness, we

consider diagonal (D) and block-diagonal residual assumptions based on the GICS

classification (S) for each of the factor structures, although this is only (approximately)

supported under the 12-factor specification. The diagonal specification sets S = p

and pi = 1∀i, the block-diagonal specification sets S = 9 with sector sizes given in

Table 3.1. Motivated by the findings of Figure 3.3, we also consider post-prediction

shrinkage of the sector-blocks towards their diagonal. We use a linear shrinkage (LS)
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approach akin to Ledoit and Wolf (2003, 2004). The LS prediction reads as

˜̂
Ce
it+1 = αi

{
Ĉe
it+1 � Ipi

}
+ (1− αi)Ĉe

it+1, (3.21)

where � denotes the Hadamard product (see Lütkepohl, 1996, p. 3). The optimal

shrinkage intensity α?i is found by minimizing the expected Frobenius distance between

the in-sample LS prediction and the realized residual blocks.15

The first three years of the data set are used as in-sample and the remainder as

out-of-sample periods. We employ a rolling-window size of three years to obtain

one-day (h = 1), one-week (h = 5), two-weeks (h = 10) and one-month (h = 22)

ahead predictions. The daily forecasts are obtained by re-estimating each model on a

daily basis and forming predictions via Eq. (3.20). For the multi-step ahead forecasts

we rely on a direct forecasting approach, i.e., we use a horizon-specific estimated

model where the dependent variable is the multi-period ahead value being predicted

(Marcellino et al., 2006).16 Consequently, we predict the cumulative h-day ahead

covariance matrix Cr
t+h =

∑h
i=1 C

r
t+i by applying the CFSS models to the aggregated

series Cf
t+h =

∑h
i=1 C

f
t+i, Ce

t+h =
∑h

i=1C
e
t+i and Bt+h = 1

h

∑h
i=1Bt+i and again using

Eq. (3.20). Following Chiriac and Voev (2011) we aggregate the realized components

of Cr
t using non-overlapping h-day windows.

The sample period includes the financial crisis of 2008 as well as flash crashes in

2010 and 2011. These events lead to the presence of outliers in the (co)variance time-

series which could distort parameter estimation results. In order to mitigate the effect

of this comparably extreme events it is nowadays a conventional approach to perform

a slight ex-post cleaning on the realized covariance matrices (Callot et al., 2017; Brito

et al., 2018). As a means for cleaning the estimation sample we rely on the method

proposed in Callot et al. (2017). Each day for which at least 25% of the unique

elements of the realized covariance matrix exceed their sample mean up to then by

15That is α?i = arg min
αi

E[‖αi{Ĉeit � Ipi}+ (1− αi)Ĉeit − Ceit‖2F ].
16The direct forecasting approach is known to be more robust than the iterated approach as it is less prone to

error propagation, which is especially relevant if there exists a model misspecification problem (Andersen
et al., 2003; Chiriac and Voev, 2011; Bollerslev et al., 2018; Luo and Chen, 2020).
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more than four standard errors are flagged for censoring. The flagged matrices are

then replaced by the sample average of their ten nearest non-flagged neighbors. In

total 22 covariance matrices are flagged, which corresponds to only 1.46% of the whole

sample.

3.5.2. Competing models

In order to compare the out-of-sample forecasting performance of the proposed com-

posite factor state-space model we consider five alternative state-of-the-art forecasting

approaches as benchmarks:

1) The Factor LASSO approach of Brito et al. (2018),

2) the Factor HEAVY (FHEAVY) model of Sheppard and Xu (2019),17

3) the Realized consistent DCC (Re-cDCC) model of Bauwens et al. (2016),

4) the Exponentially Weighted Moving Average (EWMA; Morgan, 1996),

5) and the random walk (RW) model.

While the Factor LASSO and HEAVY models can be seen as natural competitors,

the (non-factor) Re-cDCC is known to be a hard-to-beat benchmark when predict-

ing realized asset covariance matrices. The EWMA and RW models can be seen as

standard industry practice. Models 1) and 2) use the decomposition in Eq. (3.20)

to predict Cr
t+1, models 3) to 5) are directly applied to the series of realized asset

covariance matrices.

The LASSO (and also the EWMA and RW) approach can be implemented as

described in Brito et al. (2018). To implement the HEAVY and Re-cDCC model,

however, minor restrictions are required for the high-dimensional asset (and factor)

setting as considered here. For the factor part in the multi-factor HEAVY model we

implement a scalar version of the CAW model (see Golosnoy et al., 2012) and apply
17Since our focus lies on forecasting the realized measures, we ignore the HEAVY-P equations which link the

realized covariance forecast to the conditional (latent) return covariance (see Sheppard and Xu, 2019).
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a covariance targeting approach (see, e.g., Noureldin et al., 2012) to get rid of the

constant part. For the Re-cDCC model we consider the scalar specification for the

underlying correlation dynamics. Potential unreliability in the parameter estimation

arising from numerically calculating determinants and inverting huge dimensional ma-

trices is circumvented by further restricting the correlation part using the dynamic

equicorrelation (DECO) approach. In the DECO model both the determinant and in-

verse of the correlation matrix are given by closed form expressions (see also Engle and

Kelly, 2012). The resulting model (sRe-cDECO hereafter) is advocated by Bauwens

et al. (2016) as valuable competitor when handling vast dimensional systems.

Following, e.g., Callot et al. (2017), Opschoor et al. (2017) and Gribisch et al.

(2020), we set the EWMA smoothing parameter to 0.96.

3.5.3. Statistical forecast evaluation

We assess the accuracy of the direct h-step-ahead point forecast with two types of

statistical loss functions. First, the Root Mean Squared Error (RMSE) based on the

Frobenius Norm of the forecasting error that is calculated by comparing Ĉr
t+h and the

ex-post observed value Cr
t+h, is considered (cf. Ledoit et al., 2003). This RMSE is

given by

RMSE =
1

T ?

∑
t

[∑
i

(crit+h − ĉrit+h)2 + 2
∑
i<j

(crijt+h − ĉrijt+h)2

] 1
2

, (3.22)

where cit+h and cijt+h denote the realized variance of asset i and the realized covariance

between asset i and j, respectively. The corresponding forecasts are denoted by ĉit+h

and ĉijt+h, and T ? denotes the number of forecasting periods. In order to see whether

a model performs different w.r.t. the different elements in the covariance matrix we

follow Gribisch et al. (2020) and disentangle the RMSE from above into the following
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two loss functions

RMSEv =
1

T ?

∑
t

[∑
i

(crit+h − ĉrit+h)2

] 1
2

, RMSEc =
1

T ?

∑
t

[∑
i<j

(crijt+h − ĉrijt+h)2

] 1
2

,

(3.23)

where RMSEv uses the variances only and RMSEc considers the covariances. In

addition to the RMSE loss we consider the commonly used QLIKE loss function, i.e.,

QLIKE =
1

T ?

∑
t

log |Ĉr
t+h|+ tr

[
(Ĉr

t+h)
−1Cr

t+h

]
. (3.24)

While the RMSE losses are symmetric, the QLIKE loss function is an asymmetric

loss, penalizing under-predictions more heavily (cf. Luo and Chen, 2020). Both loss

functions are known to be robust to noisy (co)variance proxies (Patton, 2011; Laurent

et al., 2013; Sheppard and Xu, 2019).

In order to evaluate the statistical significance of differences in the RMSE, RMSEv,

RMSEc and QLIKE losses across models, we employ the Model Confidence Set (MCS)

approach of Hansen et al. (2011). The MCS is computed for the 75% confidence level

using a block bootstrap with block length b(T ?)1/3c and 10,000 bootstrap replications.

Table 3.2 reports the RMSE and QLIKE results for the short-, mid- and long-term

out-of-sample forecasts. We first compare the performances of the different CFSS

model specifications. For one-step and five-step ahead forecasts the 12-factor CFSS

model clearly outperforms the single and three-factor settings across all loss func-

tions, regardless of the residual specification considered (though the losses suggest

that block-diagonal specifications S and LS do increase the forecast precision). The

biweekly and monthly results reveal that the three-factor models with diagonal and

linear-shrinkage-based residuals perform best in predicting long-term covariance ma-

trices, especially for the covariance elements as indicated by RMSEc. In terms of

QLIKE loss, however, including sector ETF based factors still yields gains in forecast

precision. Furthermore, we see that imposing restrictions on the smoothing parameter
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helps to increase predictive accuracy – while restriction (R2) solely convinces for the

QLIKE measure, restriction (R1) performs overall well. Now, we turn to a compar-

ison with the nine competing models. Most striking is that for the ‘full’ RMSE loss

all competitors are significantly outperformed by the CFSS model specifications. In

particular, for daily and weekly horizons solely the UE-R1-LS specification belongs to

the 75% MCS.18 Similar results can be found for the QLIKE loss, where the UE-R2-LS

specification significantly outperforms all competitors for daily forecasts. For multi-

step ahead forecasts the sRe-cDECO model and further CFSS specifications, however,

perform equally well. The EWMA and RW models are significantly outperformed in

any case.

3.5.4. Global-minimum-variance-portfolio forecasts

In this section we turn to an economic application in out-of-sample portfolio construc-

tion. We analyze the forecasting performance for the CFSS model and its competitors

based on several variations of the global minimum variance portfolio (GMVP).

For a given asset covariance forecast Ĉr
t+h computed in period t, the (unrestricted)

GMVP is the solution to the minimization problem

ŵt+h = arg min
wt+h

w′t+hĈ
r
t+hwt+h, subject to w′t+hι = 1, (3.25)

where wt+h is the p× 1 vector of portfolio weights and ι is a p× 1 vector of ones. If

the asset covariance forecast is positive definite, the latter minimization problem has

the unique solution ŵt+h = (Ĉr
t+h)

−1ι
/

(ι′(Ĉr
t+h)

−1ι).

In large scale applications as considered here, it might occur that the covariance

prediction is not well conditioned, possibly resulting in unrealistically volatile weights

due to the inversion of Ĉr
t+h. For the factor model predictions based on Eq. (3.20)

this problem is mitigated. Due to the (block)diagonality of the residual covariance

prediction, the p dimensional inverse problem collapses to max{q, p1, . . . , ps} dimen-

18The 75% and 90% MCS are congruent in this case, however, the 90% MCS results are not reported here.
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sions by making use of the Woodbury matrix inversion lemma (see Lütkepohl, 1996,

pp. 29–30).19 Another popular approach to obtain a more stable portfolio is to im-

pose further restrictions on the weights. Following Lunde et al. (2016) we consider

short-selling constraints as well as upper and lower bounds for wit+h, i = 1, . . . , p.

These additional restrictions are imposed to the minimization problem in Eq. (3.25)

by including the following norm constraints

‖wt+h‖1 ≤ 1 + 2s,

‖wt+h‖∞ ≤ u,
(3.26)

where ‖wt+h‖1 =
∑p

i=1 |wit+h|, and ‖wt+h‖∞ = max1≤i≤p |wit+h| denote the L1 and

L∞ norm of the weight vector, respectively. Here, s ∈ [0, 1] denotes the percentage

that is allowed to be held short, and u > 0 denotes the boundary for every distinct

position. The boundary constraint ensures well-diversified portfolios, since the number

of assets included is at least b1/uc (see also Fan et al., 2012; Lunde et al., 2016, for

more detailed discussions).20

In the present paper we follow Brito et al. (2018) and Lunde et al. (2016) and

consider – besides the unrestricted GMVP – three restricted minimum variance prob-

lems, i.e., a 150/50 portfolio (s = 0.50), a 130/30 portfolio (s = 0.30) and a long-only

portfolio (s = 0.00). We focus on daily portfolios and consider weekly horizons as

robustness check. The latter portfolios are constructed using a boundary value of

u = 0.10 for each weight, such that at least ten assets are included. For assessing

the relative capabilities of the competing models for optimal portfolio allocation, we

calculate their out-of-sample portfolio returns rpt = ŵ′trt and report five measures, i.e.,

the portfolio standard deviation

σp =

√
1

T ?

∑
t

(rpt − µp)2, with µp =
1

T ?

∑
t

rpt , (3.27)

19The inverse of Crt is then given by (Crt )−1 = (Cet )−1 − (Cet )−1Bt[(C
f
t )−1 +B′t(C

e
t )−1Bt]

−1B′t(C
e
t )−1.

20Unfortunately, the minimization problem in Eqs. (3.25) and (3.26) has no closed-form solution. We there-
fore rely on the CVX package in Matlab of Grant and Boyd (2014) to solve for ŵt+h.
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the Sharpe ratio

SR = µp/σp, (3.28)

the average portfolio concentration

CO =
1

T ?

∑
t

(
p∑
i=1

ŵ2
it

)1/2

, (3.29)

the average total short positions

SP =
1

T ?

∑
t

p∑
i=1

|wit|Iwit<0, (3.30)

and the average turnover rates

TO =
1

T ?

∑
t

∣∣∣∣ŵit − ŵit−1
1 + rit−1

1 + rpt−1

∣∣∣∣ . (3.31)

The reported portfolio standard deviations and Sharpe ratios are annualized by multi-

plication with
√
b252/hc. For CO, SP and TO smaller values are favorable: whereas

high concentration implies too little diversification of the portfolio possibly resulting

from large prediction errors of Cr
t+h, verifying to which extent short sale constraints

would be violated is of practical relevance, since many portfolio managers are prohib-

ited from taking such positions (Hautsch et al., 2011). Furthermore, high turnover val-

ues can deteriorate the portfolio performance when facing transaction costs (Bauwens

et al., 2016; Bollerslev et al., 2018). Statistical significance of the differences in portfo-

lio standard deviations is assessed by the MCS approach using the squared demeaned

portfolio returns as loss series.

The daily portfolio allocation results are collected in Table 3.3. For the unrestricted

GMVP the EWMA has the lowest standard deviation. However, the 1F-S and 3F-

S CFSS models cannot be outperformed significantly while yielding higher Sharpe

ratios and more diversified portfolios with less extreme short positions. By impos-
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ing 50% short-selling constraints the performance of the 12F and LS-based residual

models improves with comparably lower turnover for the CFSS models. By impos-

ing stronger (30% and 0%) short-selling constraints the portfolio standard deviations

get hardly distinguishable. Though, comparing the CFSS model specifications to the

LASSO and HEAVY competitors we find better performance regarding the SR and

TO results for the CFSS. Overall, the lowest turnover is obtained with the EWMA.

The highest turnover is obtained for the random walk, followed by the Factor LASSO

specifications. The weekly portfolio results are summarized in Table 3.4. They in-

dicate similar allocations. The lowest standard deviations are now obtained by the

sRe-cDECO and EWMA. However the CFSS with block residual belongs to the MCS

in every scenario, whereas the factor HEAVY is only included for long-only portfolios.

3.5.5. Mean-variance-portfolio forecasts

As a second out-of-sample portfolio allocation exercise we consider a mean-variance

portfolio (MVP) based on an investor who aims at minimizing the portfolio risk sub-

ject to a target portfolio return. Hence, the GMVP problem in Eq. (3.25) has to be

augmented as follows

ŵt+h = arg min
wt+h

w′t+hĈ
r
t+hwt+h, subject to w′t+hι = 1, w′t+hm = µtarget, (3.32)

where m is the signal variable and µtarget is the target return. For positive definite

Ĉr
t+h the problem has solution given by

ŵt+h = (Ĉr
t+h)

−1m(Dµtarget − E)− ι(F − Eµtarget)
FD − E2

,

where D = ι′(Ĉr
t+h)

−1ι, E = m′(Ĉr
t+h)

−1ι, F = m′(Ĉr
t+h)

−1m.

Various approaches exist to construct the signal and to choose the target return. For

example, Callot et al. (2017) computem by a moving average of 100 days and fix µtarget

arbitrarily. Chiriac and Voev (2011) consider varying target returns to construct the

efficiency frontier. Here, we follow the more recent approach of Engle et al. (2019)
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and Moura et al. (2020) and construct the signal m using the momentum factor of

Jegadeesh and Titman (1993). For each of the p stocks the individual momentum mi

is computed as the geometric average of the previous 252 returns, but excluding the

22 most recent returns. Collecting all the momentums in a vector yields the signal m.

The target return is computed as the arithmetic average of the momentums of those

stocks that belong to the top-quintile stocks ranked according to momentum.

We combine the problem in Eq. (3.32) with the norm constraints in Eq. (3.26)

to construct four similar portfolios as in the GMVP exercise. Again, we report daily

allocation results, which are collected in Table 3.5. The results are qualitatively similar

to those obtained in the GMVP exercise. For the unrestricted allocations the EWMA

shows the lowest standard deviation. The second best models included in the MCS

are the CFSS 1F-R1-S, 1F-R2-S and 3F-R2-S specifications, respectively. Compared

to the EWMA all three have higher SR as well as lower CO and SP. Imposing short-

selling constraints ameliorates the performance of the 12F CFSS model specifications

in terms of lower standard deviations and lower turnover values than the 1F and 3F

specifications. As robustness check, Table 3.6 shows weekly allocation results. The

results do not differ substantially in comparison to the daily allocations.

3.6. Conclusion

We propose a new factor state-space approach for the composite prediction of vast-

dimensional realized covariance matrices of asset returns. The composite factor state-

space (CFSS) model exploits an observed factor structure of the realized covariances

of asset returns. Its components are found by a block LDL decomposition of the joint

realized covariance matrix of the observed risk factors and assets for each point in

time, yielding individual time-series for the realized factor covariances, the realized

residual covariances and the matrices of realized factor loadings.

A key idea of the proposed approach is to model and predict the individual com-

ponents of the factor decomposition separately. This reduces model complexity and
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allows for fast parameter estimation and prediction of future realizations of asset

covariance matrices in scalable dimensions. A further advantage of the proposed

approach is that the residual components can straightforwardly be modeled and pre-

dicted akin to an approximate factor model, which is empirically more realistic than

imposing diagonality assumptions.

For the realized factors and residual components we adopt matrix-variate state-

space models in the vein of Windle and Carvalho (2014), and combine independent

Wishart measurement densities with Matrix-Beta type-I transition equations. This

state-space framework is particularly appealing as it results in closed-form expressions

for the predictive densities of the realized factor and residual covariances and yields

positive-definite predictions without requiring any transformations like the Cholesky

decomposition or the matrix-logarithm. For the realized factor loadings we rely on

well-established models from the TVP-VAR literature, which incorporate Wishart

stochastic volatility processes.

We apply the factor model to a data set of daily realized covariance matrices for 225

NYSE traded stocks. The observed risk factors we consider are the CAPM market

factor, the Fama and French (1993) HML and SMB factors as well as sector-specific

ETFs. It turns out that for justifying an approximate factor structure based on sector-

blocks for the residual components it is critical to include all those factors. The fitted

factor models are estimated within only a few minutes.

In an extensive out-of-sample application the CFSS model shows superior forecast-

ing performance and outperforms its competitors in almost all forecast horizons. We

conclude that the CFSS approach is a valuable tool for modeling and forecasting

time-series of vast-dimensional realized covariance matrices.
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3.7. Tables and Figures

Table 3.1.: Descriptive statistics for the data set.

Sector ETF Members 10% Mean Median 90%

Energy (E) XLE 16 (–) 1.27 6.03 3.20 11.64
Materials (M) XLB 9 (–) 0.90 4.80 2.51 9.97
Industrials (I) XLI 26 (8) 0.75 3.95 2.10 8.16
Consumer Discretionary (D) XLY 35 (9) 0.98 5.87 2.88 13.33
Consumer Staples (S) XLP 20 (7) 0.39 2.07 1.04 4.06
Health Care (H) XLV 25 (7) 0.55 2.98 1.50 6.18
Financials (F) XLF 34 (7) 0.82 9.45 2.95 19.85
Information Technologies (T) XLK 44 (22) 1.10 4.74 2.85 9.71
Utilities (U) XLU 16 (–) 0.45 2.71 1.27 5.05
Note: The table lists the sectors covered by the data set. In column ETF the the symbols of the respective
sector ETF is stated. Members denote the number of stocks per sector as classified through their GICS
code. The number of assets in the 60D data set of Gribisch et al. (2020) is given in parentheses. The
descriptive statistics are average mean and median asset volatility, as well as average lower and upper 10%
asset volatility.
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Table 3.2.: Evaluation of forecast accuracy.
h = 1 h = 5 h = 10 h = 22

Model RMSE RMSEv RMSEc QLIKE RMSE RMSEv RMSEc QLIKE RMSE RMSEv RMSEc QLIKE RMSE RMSEv RMSEc QLIKE

CFSS 1F
UE-R0-D 138.90 31.92 94.24 294.21 117.90 24.36 80.60 133.96 120.34 23.39 82.51 83.18 138.43 25.51 95.30 46.00
UE-R0-S 138.07 31.85 93.79 283.42 118.47 23.96 81.34 131.41 123.69 22.78 85.43 81.70 145.59 24.20 101.11 45.22
UE-R0-LS 136.79 31.85 92.80 281.46 116.55 23.96 79.87 131.12 120.79 22.78 83.23 81.59 140.71 24.20 97.44 45.23
UE-R1-D 140.46 31.24 95.57 293.60 119.60 23.48 82.06 133.86 120.83 22.10 83.19 83.13 135.24 22.66 93.52 45.93
UE-R1-S 138.59 31.18 94.32 284.31 118.68 23.23 81.63 131.58 122.40 21.79 84.68 81.78 140.48 22.56 97.66 45.24
UE-R1-LS 137.85 31.18 93.75 282.02 117.52 23.23 80.74 131.22 120.57 21.79 83.28 81.62 137.02 22.56 95.04 45.19
UE-R2-D 137.20 32.60 92.82 295.43 116.03 25.53 78.96 134.20 120.90 25.29 82.47 83.34 145.56 28.77 99.82 46.16
UE-R2-S 137.91 32.60 93.53 282.74 119.09 25.13 81.56 131.27 127.32 24.58 87.75 81.63 155.76 27.33 107.94 45.25
UE-R2-LS 135.86 32.60 91.95 281.93 115.84 25.13 79.08 131.21 122.59 24.58 84.15 81.68 148.58 27.33 102.57 45.39
UE-R3-D 138.56 32.00 93.97 294.35 117.37 24.51 80.18 134.00 120.06 23.64 82.26 83.23 138.61 25.50 95.41 46.03
UE-R3-S 137.93 31.94 93.67 283.34 118.36 24.15 81.22 131.39 123.97 23.07 85.58 81.69 146.50 24.55 101.69 45.22
UE-R3-LS 136.57 31.94 92.62 281.46 116.26 24.15 79.61 131.12 120.80 23.07 83.17 81.60 141.19 24.55 97.69 45.25

CFSS 3F
UE-R0-D 138.44 31.51 94.01 288.41 117.68 23.84 80.58 132.79 119.26 22.73 81.89 82.60 132.78 24.27 91.50 45.71
UE-R0-S 137.65 31.41 93.57 282.69 117.99 23.53 81.07 131.34 121.93 22.20 84.26 81.68 138.57 23.12 96.22 45.19
UE-R0-LS 136.72 31.41 92.86 280.63 116.61 23.53 80.01 131.02 119.74 22.20 82.59 81.55 134.83 23.12 93.41 45.17
UE-R1-D 140.28 30.95 95.51 287.99 119.58 23.13 82.14 132.73 120.34 21.64 82.95 82.58 132.05 21.83 91.45 45.66
UE-R1-S 138.53 30.90 94.33 283.80 118.55 22.95 81.58 131.55 121.20 21.38 83.87 81.79 135.28 21.74 94.04 45.23
UE-R1-LS 138.03 30.90 93.94 281.54 117.74 22.95 80.96 131.19 119.85 21.38 82.84 81.62 132.80 21.74 92.16 45.17
UE-R2-D 136.83 32.08 92.69 289.44 115.82 24.79 78.99 132.99 119.44 24.32 81.68 82.74 138.03 27.13 94.72 45.86
UE-R2-S 137.38 32.02 93.26 281.76 118.19 24.46 81.04 131.13 124.76 23.68 86.06 81.57 146.61 25.79 101.59 45.20
UE-R2-LS 135.86 32.02 92.09 280.58 115.82 24.46 79.22 130.98 121.15 23.68 83.32 81.56 140.98 25.79 97.37 45.29
UE-R3-D 138.21 31.56 93.82 288.54 117.30 23.94 80.28 132.83 118.90 22.87 81.59 82.64 132.66 24.18 91.38 45.74
UE-R3-S 137.54 31.47 93.48 282.58 117.86 23.65 80.95 131.30 121.90 22.38 84.19 81.66 138.87 23.32 96.38 45.19
UE-R3-LS 136.57 31.47 92.73 280.58 116.36 23.65 79.80 131.00 119.51 22.38 82.38 81.55 134.79 23.32 93.30 45.19

CFSS 12F
UE-R0-D 132.52 30.98 89.99 280.83 115.17 23.29 79.10 131.36 124.98 22.04 86.56 81.81 150.81 23.27 105.15 45.28
UE-R0-S 132.53 30.82 90.06 279.58 115.31 23.11 79.24 130.89 125.42 21.66 86.95 81.47 151.83 22.37 106.00 45.08
UE-R0-LS 132.34 30.82 89.92 278.41 115.10 23.11 79.09 130.75 125.13 21.66 86.74 81.42 151.34 22.37 105.65 45.07
UE-R1-D 131.81 30.59 89.56 281.76 112.90 22.80 77.56 131.57 120.45 21.23 83.44 81.93 142.63 21.41 99.54 45.31
UE-R1-S 131.60 30.53 89.44 281.10 112.73 22.73 77.45 131.19 120.55 21.08 83.53 81.63 143.32 21.34 100.04 45.15
UE-R1-LS 131.51 30.53 89.37 279.89 112.63 22.73 77.37 131.04 120.40 21.08 83.42 81.56 143.03 21.34 99.84 45.12
UE-R2-D 134.51 31.40 91.37 280.13 119.30 23.97 81.97 131.13 132.68 23.23 91.94 81.69 164.29 25.74 114.43 45.28
UE-R2-S 134.88 31.22 91.71 278.06 120.02 23.73 82.57 130.52 133.78 22.73 92.84 81.26 165.91 24.52 115.80 45.03
UE-R2-LS 134.56 31.22 91.48 277.23 119.61 23.73 82.27 130.43 133.23 22.73 92.44 81.24 165.06 24.52 115.19 45.04
UE-R3-D 132.72 31.02 90.13 280.72 115.72 23.37 79.49 131.31 125.97 22.16 87.25 81.80 152.68 23.26 106.48 45.27
UE-R3-S 132.78 30.87 90.24 279.40 115.97 23.20 79.71 130.82 126.54 21.80 87.74 81.42 153.86 22.55 107.43 45.06
UE-R3-LS 132.58 30.87 90.09 278.25 115.74 23.20 79.54 130.68 126.21 21.80 87.50 81.37 153.32 22.55 107.04 45.05

Factor Lasso 1F 142.07 30.45 97.03 284.22 117.07 22.98 80.56 131.12 124.51 26.80 84.96 82.24 221.70 86.69 135.58 48.32
Factor Lasso 3F 150.61 30.81 103.09 284.12 123.06 22.80 84.87 131.05 134.02 25.68 92.16 82.13 206.17 57.43 136.20 48.15
Factor Lasso 12F 136.67 30.74 93.09 282.83 113.67 22.80 78.16 130.66 229.97 31.39 160.57 81.95 280.82 92.48 181.21 48.03
Factor HEAVY 1F 138.86 31.31 94.31 295.49 129.61 41.25 83.06 140.99 130.55 45.46 81.36 86.84 140.09 47.86 88.25 47.75
Factor HEAVY 3F 142.63 30.87 97.14 290.54 139.20 35.56 92.01 139.22 136.39 38.47 88.51 85.90 138.84 40.31 88.91 47.32
Factor HEAVY 12F 131.89 30.57 89.67 279.93 118.17 34.69 77.73 135.50 128.76 36.52 84.88 83.79 156.11 38.58 105.06 46.30
sRe-cDECO 174.45 33.39 120.49 279.06 157.91 26.57 109.82 130.48 166.63 26.05 116.24 81.23 189.63 28.83 132.45 45.14
EWMA 155.66 33.14 106.67 283.97 180.53 33.04 125.13 131.57 214.65 40.80 148.65 82.65 264.52 56.00 182.43 46.72
RW 154.12 37.66 104.48 328.31 124.78 26.86 85.41 135.56 131.79 24.09 91.05 83.14 158.97 23.68 110.91 45.58

Note: The table reports the RMSE, RMSEv, RMSEc and QLIKE losses as given in Eqs. (3.22) to (3.24) for the forecast horizon h ∈ {1, 5, 10, 22}. To make the results more comparable the
losses have been divided by h. Grey-shaded cells indicate that the respective model belongs to the 75% model confidence set.
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Table 3.3.: Daily GMVP forecasting results.
Unrestricted GMVP Restricted GMVP: 150/50 Restricted GMVP: 130/30 Restricted GMVP: Long-only

Model σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO

CFSS 1F
UE-R0-D 7.73 1.91 0.04 0.48 0.30 7.62 1.90 0.04 0.44 0.30 7.35 1.89 0.04 0.30 0.28 7.75 1.27 0.05 0.00 0.20
UE-R0-S 6.62 2.54 0.06 0.68 0.60 6.66 2.47 0.06 0.48 0.53 6.74 2.33 0.05 0.30 0.45 7.78 1.54 0.05 0.00 0.30
UE-R0-LS 6.66 2.50 0.06 0.62 0.54 6.69 2.43 0.05 0.47 0.48 6.74 2.30 0.05 0.30 0.42 7.74 1.52 0.05 0.00 0.28
UE-R1-D 7.72 1.92 0.04 0.48 0.29 7.61 1.91 0.04 0.44 0.29 7.34 1.89 0.04 0.30 0.27 7.75 1.26 0.05 0.00 0.19
UE-R1-S 6.62 2.55 0.06 0.68 0.57 6.66 2.47 0.06 0.48 0.50 6.74 2.34 0.05 0.30 0.42 7.78 1.55 0.05 0.00 0.28
UE-R1-LS 6.65 2.51 0.06 0.64 0.52 6.68 2.45 0.05 0.48 0.47 6.74 2.31 0.05 0.30 0.40 7.75 1.53 0.05 0.00 0.27
UE-R2-D 7.75 1.91 0.04 0.48 0.29 7.63 1.90 0.04 0.44 0.28 7.36 1.88 0.04 0.30 0.27 7.75 1.26 0.05 0.00 0.19
UE-R2-S 6.61 2.55 0.06 0.67 0.57 6.66 2.47 0.06 0.48 0.50 6.74 2.33 0.05 0.30 0.42 7.78 1.54 0.05 0.00 0.28
UE-R2-LS 6.67 2.48 0.05 0.61 0.49 6.70 2.43 0.05 0.47 0.45 6.75 2.29 0.05 0.30 0.39 7.73 1.52 0.05 0.00 0.26
UE-R3-D 7.73 1.91 0.04 0.48 0.30 7.62 1.91 0.04 0.44 0.30 7.35 1.89 0.04 0.30 0.28 7.75 1.27 0.05 0.00 0.20
UE-R3-S 6.62 2.55 0.06 0.68 0.60 6.66 2.47 0.06 0.48 0.53 6.74 2.33 0.05 0.30 0.45 7.78 1.54 0.05 0.00 0.30
UE-R3-LS 6.66 2.49 0.06 0.62 0.53 6.69 2.43 0.05 0.47 0.48 6.74 2.30 0.05 0.30 0.42 7.74 1.52 0.05 0.00 0.28

CFSS 3F
UE-R0-D 7.31 2.24 0.04 0.48 0.31 7.26 2.18 0.04 0.44 0.30 7.10 2.13 0.04 0.30 0.26 7.71 1.30 0.05 0.00 0.17
UE-R0-S 6.61 2.53 0.06 0.68 0.57 6.66 2.49 0.06 0.48 0.49 6.74 2.36 0.05 0.30 0.40 7.76 1.56 0.05 0.00 0.26
UE-R0-LS 6.64 2.49 0.06 0.63 0.51 6.68 2.45 0.05 0.48 0.45 6.74 2.34 0.05 0.30 0.38 7.72 1.54 0.05 0.00 0.25
UE-R1-D 7.30 2.24 0.04 0.48 0.30 7.25 2.18 0.04 0.43 0.29 7.09 2.13 0.04 0.30 0.25 7.72 1.30 0.05 0.00 0.16
UE-R1-S 6.61 2.53 0.06 0.68 0.54 6.66 2.49 0.06 0.48 0.46 6.74 2.37 0.05 0.30 0.38 7.76 1.56 0.05 0.00 0.25
UE-R1-LS 6.63 2.50 0.06 0.64 0.49 6.68 2.47 0.05 0.48 0.44 6.74 2.35 0.05 0.30 0.37 7.73 1.54 0.05 0.00 0.24
UE-R2-D 7.32 2.24 0.04 0.48 0.30 7.26 2.18 0.04 0.44 0.29 7.10 2.13 0.05 0.30 0.25 7.72 1.30 0.05 0.00 0.16
UE-R2-S 6.61 2.53 0.06 0.68 0.53 6.66 2.49 0.06 0.48 0.46 6.74 2.37 0.05 0.30 0.38 7.76 1.56 0.05 0.00 0.24
UE-R2-LS 6.65 2.48 0.06 0.62 0.46 6.69 2.45 0.05 0.47 0.42 6.74 2.33 0.05 0.30 0.35 7.71 1.53 0.05 0.00 0.23
UE-R3-D 7.31 2.24 0.04 0.48 0.31 7.26 2.18 0.04 0.44 0.30 7.10 2.13 0.04 0.30 0.26 7.71 1.30 0.05 0.00 0.17
UE-R3-S 6.61 2.53 0.06 0.68 0.57 6.66 2.49 0.06 0.48 0.49 6.74 2.36 0.05 0.30 0.40 7.76 1.56 0.05 0.00 0.26
UE-R3-LS 6.64 2.49 0.06 0.63 0.50 6.68 2.45 0.05 0.48 0.45 6.74 2.34 0.05 0.30 0.38 7.72 1.54 0.05 0.00 0.25

CFSS 12F
UE-R0-D 6.85 2.47 0.08 0.76 0.40 6.76 2.40 0.07 0.50 0.33 6.74 2.26 0.07 0.30 0.26 7.66 1.42 0.07 0.00 0.15
UE-R0-S 6.66 2.47 0.08 0.82 0.52 6.65 2.36 0.07 0.50 0.41 6.63 2.24 0.07 0.30 0.33 7.66 1.50 0.07 0.00 0.19
UE-R0-LS 6.68 2.47 0.08 0.79 0.49 6.66 2.37 0.07 0.50 0.39 6.64 2.24 0.07 0.30 0.31 7.65 1.48 0.07 0.00 0.18
UE-R1-D 6.85 2.47 0.07 0.76 0.38 6.76 2.41 0.07 0.50 0.32 6.74 2.26 0.07 0.30 0.25 7.67 1.41 0.07 0.00 0.14
UE-R1-S 6.67 2.47 0.08 0.82 0.50 6.65 2.36 0.07 0.50 0.39 6.63 2.24 0.07 0.30 0.31 7.66 1.50 0.07 0.00 0.18
UE-R1-LS 6.68 2.47 0.08 0.80 0.47 6.66 2.37 0.07 0.50 0.37 6.64 2.24 0.07 0.30 0.30 7.65 1.49 0.07 0.00 0.18
UE-R2-D 6.85 2.47 0.08 0.76 0.38 6.77 2.40 0.07 0.50 0.31 6.74 2.25 0.07 0.30 0.25 7.67 1.41 0.07 0.00 0.14
UE-R2-S 6.66 2.47 0.08 0.82 0.49 6.65 2.36 0.07 0.50 0.39 6.63 2.24 0.07 0.30 0.31 7.66 1.50 0.06 0.00 0.18
UE-R2-LS 6.68 2.47 0.08 0.79 0.45 6.66 2.37 0.07 0.50 0.36 6.64 2.23 0.07 0.30 0.29 7.65 1.48 0.06 0.00 0.17
UE-R3-D 6.85 2.47 0.08 0.76 0.40 6.76 2.40 0.07 0.50 0.33 6.74 2.26 0.07 0.30 0.26 7.67 1.42 0.07 0.00 0.15
UE-R3-S 6.66 2.47 0.08 0.82 0.53 6.65 2.36 0.07 0.50 0.41 6.63 2.24 0.07 0.30 0.33 7.66 1.50 0.07 0.00 0.19
UE-R3-LS 6.68 2.47 0.08 0.79 0.49 6.66 2.37 0.07 0.50 0.39 6.64 2.24 0.07 0.30 0.31 7.65 1.48 0.07 0.00 0.18

Factor Lasso 1F 7.12 2.58 0.06 0.69 0.70 7.02 2.53 0.05 0.50 0.64 6.88 2.39 0.05 0.30 0.57 7.61 1.40 0.05 0.00 0.41
Factor Lasso 3F 6.93 2.58 0.06 0.66 0.69 6.88 2.51 0.05 0.50 0.62 6.82 2.38 0.05 0.30 0.54 7.65 1.49 0.05 0.00 0.38
Factor Lasso 12F 7.17 2.42 0.08 0.84 0.75 6.97 2.38 0.07 0.50 0.59 6.84 2.32 0.07 0.30 0.48 7.68 1.46 0.06 0.00 0.29
Factor HEAVY 1F 7.89 1.92 0.04 0.51 0.30 7.74 1.91 0.04 0.46 0.30 7.37 1.86 0.05 0.30 0.28 7.71 1.26 0.05 0.00 0.21
Factor HEAVY 3F 7.43 2.17 0.04 0.49 0.32 7.34 2.13 0.04 0.44 0.31 7.11 2.10 0.04 0.30 0.28 7.70 1.29 0.05 0.00 0.20
Factor HEAVY 12F 6.94 2.45 0.07 0.73 0.48 6.83 2.44 0.07 0.50 0.41 6.81 2.29 0.06 0.30 0.33 7.64 1.43 0.06 0.00 0.19
sRe-cDECO 7.20 2.46 0.11 1.02 0.47 7.14 2.18 0.09 0.50 0.31 7.20 2.04 0.08 0.30 0.24 8.12 1.41 0.07 0.00 0.13
EWMA 6.52 2.27 0.09 0.92 0.23 6.54 2.05 0.07 0.50 0.17 6.65 1.95 0.07 0.30 0.13 7.74 1.28 0.06 0.00 0.06
RW 7.15 2.39 0.08 0.68 2.59 7.18 2.23 0.07 0.48 2.33 7.40 1.99 0.07 0.30 2.05 8.56 1.11 0.07 0.00 1.34

Note: The table reports GMVP summary statistics for the four portfolios under consideration based on 754 one-step-ahead conditional covariance matrix predictions; σp stands for the
annualized standard deviation of the portfolio returns. The average portfolio concentration CO, short position SP and turnover TO are given by Eqs. (3.29) to (3.31). Grey-shaded cells
indicate that the respective model belongs to the 90% model confidence set.89
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Table 3.4.: Weekly GMVP forecasting results.
Unrestricted GMVP Restricted GMVP: 150/50 Restricted GMVP: 130/30 Restricted GMVP: Long-only

Model σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO

CFSS 1F
UE-R0-D 8.81 1.38 0.04 0.48 0.41 8.70 1.41 0.04 0.44 0.41 8.32 1.44 0.04 0.30 0.38 7.68 1.12 0.05 0.00 0.28
UE-R0-S 7.34 2.02 0.06 0.66 0.68 7.32 2.09 0.05 0.48 0.60 7.25 2.01 0.05 0.30 0.52 7.69 1.33 0.05 0.00 0.35
UE-R0-LS 7.40 1.97 0.05 0.62 0.61 7.39 2.04 0.05 0.48 0.56 7.30 1.98 0.05 0.30 0.49 7.67 1.33 0.05 0.00 0.33
UE-R1-D 8.80 1.39 0.04 0.48 0.40 8.69 1.42 0.04 0.44 0.40 8.31 1.45 0.04 0.30 0.38 7.68 1.12 0.05 0.00 0.27
UE-R1-S 7.34 2.02 0.06 0.66 0.66 7.32 2.09 0.05 0.48 0.59 7.25 2.01 0.05 0.30 0.51 7.70 1.34 0.05 0.00 0.34
UE-R1-LS 7.39 1.98 0.05 0.62 0.61 7.38 2.05 0.05 0.48 0.56 7.29 1.99 0.05 0.30 0.48 7.69 1.33 0.05 0.00 0.33
UE-R2-D 8.83 1.38 0.04 0.49 0.40 8.72 1.41 0.04 0.44 0.40 8.33 1.44 0.04 0.30 0.38 7.69 1.12 0.05 0.00 0.27
UE-R2-S 7.35 2.01 0.06 0.67 0.66 7.34 2.08 0.05 0.49 0.59 7.26 2.00 0.05 0.30 0.50 7.69 1.33 0.05 0.00 0.34
UE-R2-LS 7.45 1.95 0.05 0.61 0.58 7.43 2.01 0.05 0.47 0.53 7.33 1.96 0.05 0.30 0.47 7.66 1.32 0.05 0.00 0.32
UE-R3-D 8.81 1.38 0.04 0.48 0.41 8.70 1.42 0.04 0.44 0.41 8.32 1.45 0.04 0.30 0.38 7.69 1.12 0.05 0.00 0.28
UE-R3-S 7.34 2.02 0.06 0.66 0.69 7.33 2.09 0.05 0.48 0.61 7.25 2.01 0.05 0.30 0.52 7.69 1.34 0.05 0.00 0.35
UE-R3-LS 7.41 1.97 0.05 0.62 0.61 7.40 2.03 0.05 0.48 0.56 7.30 1.98 0.05 0.30 0.49 7.67 1.33 0.05 0.00 0.34

CFSS 3F
UE-R0-D 8.37 1.59 0.04 0.48 0.42 8.29 1.60 0.04 0.44 0.41 8.04 1.60 0.04 0.30 0.36 7.64 1.09 0.05 0.00 0.23
UE-R0-S 7.32 2.00 0.06 0.66 0.63 7.29 2.07 0.05 0.49 0.55 7.23 2.01 0.05 0.30 0.46 7.69 1.32 0.05 0.00 0.29
UE-R0-LS 7.37 1.96 0.05 0.62 0.57 7.35 2.03 0.05 0.48 0.51 7.27 1.98 0.05 0.30 0.43 7.66 1.31 0.05 0.00 0.28
UE-R1-D 8.37 1.59 0.04 0.47 0.41 8.29 1.60 0.04 0.44 0.40 8.04 1.60 0.04 0.30 0.35 7.63 1.09 0.05 0.00 0.22
UE-R1-S 7.32 2.00 0.06 0.66 0.61 7.29 2.07 0.05 0.49 0.53 7.23 2.01 0.05 0.30 0.44 7.70 1.32 0.05 0.00 0.29
UE-R1-LS 7.36 1.97 0.05 0.62 0.57 7.34 2.04 0.05 0.48 0.51 7.26 1.99 0.05 0.30 0.43 7.69 1.31 0.05 0.00 0.28
UE-R2-D 8.38 1.59 0.04 0.48 0.41 8.30 1.60 0.04 0.44 0.40 8.05 1.60 0.04 0.30 0.35 7.65 1.09 0.05 0.00 0.22
UE-R2-S 7.33 1.99 0.06 0.66 0.61 7.30 2.06 0.05 0.49 0.53 7.23 2.00 0.05 0.30 0.44 7.69 1.31 0.05 0.00 0.28
UE-R2-LS 7.40 1.95 0.05 0.61 0.54 7.39 2.01 0.05 0.48 0.49 7.29 1.97 0.05 0.30 0.41 7.66 1.30 0.05 0.00 0.27
UE-R3-D 8.37 1.59 0.04 0.48 0.42 8.29 1.60 0.04 0.44 0.41 8.04 1.60 0.04 0.30 0.36 7.64 1.09 0.05 0.00 0.23
UE-R3-S 7.32 2.00 0.06 0.66 0.64 7.29 2.07 0.05 0.49 0.55 7.23 2.01 0.05 0.30 0.46 7.69 1.32 0.05 0.00 0.29
UE-R3-LS 7.37 1.96 0.05 0.62 0.57 7.36 2.03 0.05 0.48 0.51 7.27 1.98 0.05 0.30 0.43 7.67 1.31 0.05 0.00 0.28

CFSS 12F
UE-R0-D 7.80 1.83 0.07 0.75 0.49 7.72 1.87 0.07 0.50 0.41 7.51 1.85 0.07 0.30 0.34 7.66 1.26 0.07 0.00 0.19
UE-R0-S 7.58 1.97 0.07 0.81 0.56 7.50 1.97 0.07 0.50 0.45 7.36 1.96 0.07 0.30 0.36 7.64 1.32 0.06 0.00 0.21
UE-R0-LS 7.61 1.96 0.07 0.79 0.53 7.53 1.97 0.07 0.50 0.43 7.38 1.95 0.07 0.30 0.35 7.63 1.31 0.06 0.00 0.21
UE-R1-D 7.81 1.83 0.07 0.75 0.48 7.73 1.88 0.07 0.50 0.40 7.51 1.86 0.07 0.30 0.33 7.66 1.27 0.07 0.00 0.19
UE-R1-S 7.59 1.98 0.07 0.80 0.54 7.51 1.98 0.07 0.50 0.43 7.36 1.96 0.07 0.30 0.35 7.64 1.32 0.06 0.00 0.21
UE-R1-LS 7.62 1.97 0.07 0.79 0.52 7.54 1.98 0.07 0.50 0.42 7.38 1.96 0.07 0.30 0.34 7.64 1.32 0.06 0.00 0.20
UE-R2-D 7.80 1.84 0.07 0.76 0.48 7.72 1.87 0.07 0.50 0.40 7.51 1.85 0.07 0.30 0.32 7.67 1.26 0.07 0.00 0.19
UE-R2-S 7.58 1.97 0.07 0.81 0.54 7.50 1.97 0.07 0.50 0.43 7.36 1.95 0.07 0.30 0.34 7.64 1.32 0.06 0.00 0.20
UE-R2-LS 7.62 1.96 0.07 0.79 0.50 7.54 1.96 0.07 0.50 0.41 7.39 1.94 0.07 0.30 0.33 7.64 1.31 0.06 0.00 0.20
UE-R3-D 7.80 1.83 0.07 0.75 0.49 7.72 1.87 0.07 0.50 0.42 7.51 1.85 0.07 0.30 0.34 7.66 1.26 0.07 0.00 0.19
UE-R3-S 7.58 1.97 0.07 0.81 0.56 7.51 1.97 0.07 0.50 0.45 7.36 1.96 0.07 0.30 0.36 7.64 1.32 0.06 0.00 0.21
UE-R3-LS 7.62 1.96 0.07 0.79 0.53 7.54 1.97 0.07 0.50 0.43 7.38 1.95 0.07 0.30 0.35 7.64 1.31 0.06 0.00 0.21

Factor Lasso 1F 7.51 2.11 0.06 0.68 0.68 7.33 2.12 0.05 0.50 0.63 7.17 2.06 0.05 0.30 0.56 7.50 1.43 0.05 0.00 0.39
Factor Lasso 3F 7.41 2.10 0.05 0.66 0.69 7.25 2.12 0.05 0.50 0.62 7.08 2.08 0.05 0.30 0.53 7.47 1.44 0.05 0.00 0.35
Factor Lasso 12F 7.61 2.11 0.08 0.84 0.73 7.40 2.05 0.07 0.50 0.57 7.11 2.06 0.07 0.30 0.46 7.41 1.36 0.06 0.00 0.29
Factor HEAVY 1F 8.60 1.47 0.04 0.49 0.26 8.49 1.48 0.04 0.47 0.27 8.00 1.54 0.04 0.30 0.26 7.55 1.25 0.04 0.00 0.16
Factor HEAVY 3F 8.20 1.51 0.04 0.44 0.27 8.11 1.52 0.04 0.42 0.27 7.81 1.55 0.04 0.30 0.25 7.57 1.25 0.04 0.00 0.16
Factor HEAVY 12F 7.72 1.85 0.06 0.64 0.74 7.64 1.88 0.06 0.49 0.67 7.47 1.87 0.06 0.30 0.55 7.55 1.35 0.06 0.00 0.32
sRe-cDECO 7.10 2.48 0.11 1.00 0.69 7.04 2.28 0.09 0.50 0.46 7.11 2.08 0.08 0.30 0.35 7.59 1.42 0.07 0.00 0.19
EWMA 7.21 2.09 0.09 0.93 0.14 7.14 2.02 0.08 0.50 0.10 7.12 1.97 0.07 0.30 0.07 7.52 1.39 0.07 0.00 0.03
RW 7.43 1.65 0.09 0.93 2.67 7.37 1.73 0.07 0.50 2.04 7.39 1.73 0.07 0.30 1.67 7.77 1.34 0.07 0.00 0.97

Note: The table reports GMVP summary statistics for the four portfolios under consideration based on 150 five-step-ahead conditional covariance matrix predictions; σp stands for the
annualized standard deviation of the portfolio returns. The average portfolio concentration CO, short position SP and turnover TO are given by Eqs. (3.29) to (3.31). Grey-shaded cells
indicate that the respective model belongs to the 90% model confidence set.
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Table 3.5.: Daily MVP with momentum signal forecasting results.
Unrestricted MVP Restricted MVP: 150/50 Restricted MVP: 130/30 Restricted MVP: Long-only

Model σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO

CFSS 1F
UE-R0-D 8.34 2.92 0.05 0.67 0.36 8.14 2.80 0.05 0.49 0.34 8.10 2.64 0.06 0.30 0.31 12.48 1.53 0.07 0.00 0.19
UE-R0-S 7.29 3.43 0.07 0.84 0.66 7.53 3.28 0.07 0.50 0.51 7.99 3.05 0.07 0.30 0.42 12.67 1.48 0.08 0.00 0.21
UE-R0-LS 7.35 3.39 0.07 0.79 0.59 7.55 3.26 0.06 0.50 0.48 7.97 3.04 0.06 0.30 0.40 12.63 1.49 0.08 0.00 0.20
UE-R1-D 8.34 2.93 0.05 0.66 0.35 8.14 2.81 0.05 0.49 0.33 8.09 2.65 0.06 0.30 0.30 12.48 1.52 0.07 0.00 0.19
UE-R1-S 7.29 3.43 0.07 0.84 0.63 7.53 3.29 0.07 0.50 0.49 7.98 3.06 0.07 0.30 0.40 12.67 1.48 0.08 0.00 0.20
UE-R1-LS 7.33 3.40 0.07 0.80 0.58 7.54 3.27 0.06 0.50 0.47 7.97 3.06 0.06 0.30 0.38 12.64 1.49 0.08 0.00 0.20
UE-R2-D 8.34 2.92 0.05 0.67 0.35 8.14 2.80 0.05 0.49 0.33 8.10 2.64 0.06 0.30 0.30 12.48 1.52 0.07 0.00 0.19
UE-R2-S 7.28 3.43 0.07 0.84 0.62 7.53 3.28 0.07 0.50 0.48 7.98 3.06 0.07 0.30 0.40 12.67 1.48 0.08 0.00 0.20
UE-R2-LS 7.35 3.38 0.07 0.78 0.54 7.55 3.26 0.06 0.50 0.45 7.95 3.05 0.06 0.30 0.37 12.62 1.49 0.08 0.00 0.20
UE-R3-D 8.34 2.92 0.05 0.67 0.36 8.14 2.80 0.05 0.49 0.34 8.10 2.64 0.06 0.30 0.31 12.48 1.53 0.07 0.00 0.19
UE-R3-S 7.29 3.43 0.07 0.84 0.66 7.54 3.28 0.07 0.50 0.52 7.99 3.05 0.07 0.30 0.42 12.67 1.48 0.08 0.00 0.21
UE-R3-LS 7.35 3.39 0.07 0.79 0.59 7.55 3.26 0.06 0.50 0.48 7.97 3.04 0.06 0.30 0.40 12.63 1.49 0.08 0.00 0.20

CFSS 3F
UE-R0-D 8.01 3.12 0.05 0.67 0.38 7.94 2.95 0.05 0.49 0.34 8.04 2.70 0.06 0.30 0.29 12.51 1.55 0.08 0.00 0.18
UE-R0-S 7.30 3.39 0.07 0.85 0.62 7.53 3.24 0.07 0.50 0.48 7.96 3.02 0.07 0.30 0.38 12.65 1.52 0.08 0.00 0.20
UE-R0-LS 7.34 3.36 0.07 0.80 0.56 7.53 3.24 0.06 0.50 0.45 7.94 3.01 0.06 0.30 0.37 12.62 1.53 0.08 0.00 0.19
UE-R1-D 8.01 3.12 0.05 0.66 0.36 7.94 2.95 0.05 0.49 0.32 8.04 2.70 0.06 0.30 0.28 12.52 1.54 0.08 0.00 0.18
UE-R1-S 7.29 3.39 0.07 0.84 0.59 7.52 3.25 0.07 0.50 0.46 7.95 3.03 0.07 0.30 0.37 12.65 1.51 0.08 0.00 0.19
UE-R1-LS 7.32 3.37 0.07 0.81 0.55 7.53 3.24 0.06 0.50 0.44 7.94 3.02 0.06 0.30 0.35 12.63 1.52 0.08 0.00 0.19
UE-R2-D 8.01 3.11 0.05 0.67 0.36 7.93 2.94 0.05 0.49 0.32 8.04 2.71 0.06 0.30 0.28 12.50 1.54 0.08 0.00 0.18
UE-R2-S 7.29 3.40 0.07 0.85 0.59 7.52 3.25 0.07 0.50 0.45 7.95 3.03 0.07 0.30 0.36 12.65 1.51 0.08 0.00 0.19
UE-R2-LS 7.34 3.35 0.07 0.79 0.52 7.54 3.24 0.06 0.50 0.42 7.93 3.02 0.06 0.30 0.34 12.61 1.53 0.08 0.00 0.19
UE-R3-D 8.01 3.12 0.05 0.67 0.38 7.94 2.95 0.05 0.49 0.34 8.04 2.70 0.06 0.30 0.29 12.51 1.55 0.08 0.00 0.18
UE-R3-S 7.30 3.39 0.07 0.85 0.62 7.53 3.25 0.07 0.50 0.48 7.96 3.02 0.07 0.30 0.39 12.65 1.52 0.08 0.00 0.20
UE-R3-LS 7.34 3.36 0.07 0.80 0.56 7.53 3.24 0.06 0.50 0.45 7.94 3.01 0.06 0.30 0.37 12.62 1.53 0.08 0.00 0.19

CFSS 12F
UE-R0-D 7.48 3.41 0.09 0.92 0.46 7.58 3.21 0.08 0.50 0.35 7.87 2.86 0.08 0.30 0.28 12.48 1.54 0.08 0.00 0.17
UE-R0-S 7.33 3.39 0.09 0.98 0.59 7.48 3.21 0.08 0.50 0.41 7.83 2.93 0.08 0.30 0.33 12.51 1.53 0.08 0.00 0.18
UE-R0-LS 7.34 3.40 0.09 0.95 0.55 7.49 3.23 0.08 0.50 0.40 7.82 2.92 0.08 0.30 0.32 12.50 1.53 0.08 0.00 0.18
UE-R1-D 7.49 3.42 0.09 0.92 0.44 7.58 3.22 0.08 0.50 0.33 7.87 2.86 0.08 0.30 0.27 12.49 1.54 0.08 0.00 0.17
UE-R1-S 7.33 3.39 0.09 0.98 0.56 7.48 3.22 0.08 0.50 0.40 7.83 2.93 0.08 0.30 0.32 12.51 1.53 0.08 0.00 0.17
UE-R1-LS 7.34 3.39 0.09 0.96 0.53 7.49 3.23 0.08 0.50 0.38 7.82 2.93 0.08 0.30 0.31 12.50 1.53 0.08 0.00 0.17
UE-R2-D 7.48 3.41 0.09 0.92 0.44 7.57 3.21 0.08 0.50 0.33 7.86 2.86 0.08 0.30 0.27 12.48 1.54 0.08 0.00 0.17
UE-R2-S 7.32 3.39 0.09 0.98 0.55 7.47 3.22 0.08 0.50 0.39 7.82 2.93 0.08 0.30 0.31 12.51 1.53 0.08 0.00 0.17
UE-R2-LS 7.34 3.40 0.09 0.95 0.51 7.48 3.23 0.08 0.50 0.37 7.82 2.92 0.08 0.30 0.30 12.50 1.53 0.08 0.00 0.17
UE-R3-D 7.48 3.41 0.09 0.92 0.46 7.58 3.21 0.08 0.50 0.35 7.87 2.86 0.08 0.30 0.28 12.48 1.55 0.08 0.00 0.17
UE-R3-S 7.33 3.39 0.09 0.98 0.59 7.48 3.21 0.08 0.50 0.41 7.83 2.93 0.08 0.30 0.33 12.51 1.53 0.08 0.00 0.18
UE-R3-LS 7.34 3.40 0.09 0.95 0.55 7.49 3.23 0.08 0.50 0.40 7.82 2.92 0.08 0.30 0.32 12.50 1.53 0.08 0.00 0.18

Factor Lasso 1F 7.73 3.38 0.07 0.82 0.74 7.77 3.27 0.06 0.50 0.62 7.97 3.01 0.06 0.30 0.53 12.57 1.48 0.08 0.00 0.25
Factor Lasso 3F 7.58 3.38 0.07 0.81 0.73 7.68 3.27 0.06 0.50 0.60 7.95 2.98 0.06 0.30 0.51 12.62 1.49 0.08 0.00 0.24
Factor Lasso 12F 7.77 3.21 0.09 0.97 0.79 7.74 3.08 0.08 0.50 0.57 8.00 2.79 0.08 0.30 0.46 12.64 1.49 0.08 0.00 0.21
Factor HEAVY 1F 8.48 2.81 0.05 0.68 0.35 8.22 2.73 0.05 0.49 0.33 8.10 2.58 0.06 0.30 0.30 12.43 1.49 0.07 0.00 0.19
Factor HEAVY 3F 8.13 2.96 0.05 0.66 0.36 8.02 2.86 0.05 0.49 0.33 8.09 2.62 0.06 0.30 0.29 12.48 1.47 0.07 0.00 0.18
Factor HEAVY 12F 7.56 3.32 0.08 0.89 0.52 7.59 3.16 0.07 0.50 0.40 7.82 2.90 0.07 0.30 0.32 12.42 1.54 0.08 0.00 0.18
sRe-cDECO 7.86 3.02 0.12 1.16 0.51 8.00 2.83 0.09 0.50 0.33 8.29 2.72 0.08 0.30 0.27 12.78 1.47 0.08 0.00 0.14
EWMA 7.12 3.37 0.10 1.10 0.29 7.43 3.04 0.08 0.50 0.20 7.83 2.88 0.08 0.30 0.17 12.41 1.50 0.08 0.00 0.14
RW 7.85 3.43 0.09 0.87 2.73 7.94 3.37 0.08 0.50 2.27 8.34 3.08 0.08 0.30 1.89 12.90 1.54 0.08 0.00 0.77

Note: The table reports MVP with momentum signal summary statistics for the four portfolios under consideration based on 754 one-step-ahead conditional covariance matrix predictions;
σp stands for the annualized standard deviation of the portfolio returns. The average portfolio concentration CO, short position SP and turnover TO are given by Eqs. (3.29) to (3.31).
Grey-shaded cells indicate that the respective model belongs to the 90% model confidence set.91



C
hapter

3.
C

om
posite

Forecasting
of

V
ast-D

im
ensionalR

ealized
C

ovariance
M

atrices

Table 3.6.: Weekly MVP with momentum signal forecasting results.
Unrestricted MVP Restricted MVP: 150/50 Restricted MVP: 130/30 Restricted MVP: Long-only

Model σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO σp SR CO SP TO

CFSS 1F
UE-R0-D 9.45 2.31 0.05 0.67 0.52 8.98 2.31 0.05 0.49 0.50 8.67 2.27 0.06 0.30 0.47 12.03 1.44 0.07 0.00 0.34
UE-R0-S 7.91 2.95 0.07 0.83 0.78 8.03 2.85 0.06 0.50 0.63 8.10 2.76 0.06 0.30 0.53 12.06 1.40 0.08 0.00 0.35
UE-R0-LS 8.00 2.89 0.06 0.78 0.71 8.09 2.80 0.06 0.50 0.60 8.14 2.72 0.06 0.30 0.51 12.05 1.41 0.08 0.00 0.35
UE-R1-D 9.44 2.31 0.05 0.66 0.51 8.97 2.32 0.05 0.49 0.49 8.65 2.28 0.06 0.30 0.46 12.03 1.44 0.07 0.00 0.34
UE-R1-S 7.92 2.95 0.07 0.82 0.76 8.03 2.85 0.06 0.50 0.62 8.10 2.76 0.06 0.30 0.52 12.08 1.40 0.08 0.00 0.35
UE-R1-LS 7.98 2.91 0.06 0.79 0.70 8.08 2.82 0.06 0.50 0.59 8.14 2.73 0.06 0.30 0.51 12.07 1.41 0.08 0.00 0.34
UE-R2-D 9.46 2.29 0.05 0.67 0.51 8.99 2.30 0.05 0.49 0.50 8.68 2.26 0.06 0.30 0.46 12.03 1.44 0.07 0.00 0.34
UE-R2-S 7.93 2.94 0.07 0.83 0.76 8.04 2.84 0.06 0.50 0.61 8.12 2.75 0.06 0.30 0.52 12.05 1.40 0.08 0.00 0.35
UE-R2-LS 8.05 2.86 0.06 0.77 0.67 8.13 2.78 0.06 0.50 0.57 8.17 2.70 0.06 0.30 0.50 12.04 1.41 0.08 0.00 0.34
UE-R3-D 9.45 2.31 0.05 0.67 0.53 8.98 2.31 0.05 0.49 0.51 8.66 2.27 0.06 0.30 0.47 12.03 1.44 0.07 0.00 0.34
UE-R3-S 7.92 2.95 0.07 0.83 0.78 8.03 2.85 0.06 0.50 0.63 8.10 2.76 0.06 0.30 0.53 12.06 1.40 0.08 0.00 0.35
UE-R3-LS 8.01 2.89 0.06 0.78 0.71 8.10 2.80 0.06 0.50 0.60 8.15 2.72 0.06 0.30 0.51 12.05 1.41 0.08 0.00 0.35

CFSS 3F
UE-R0-D 9.15 2.39 0.05 0.66 0.54 8.80 2.38 0.05 0.49 0.49 8.64 2.29 0.06 0.30 0.44 12.05 1.44 0.07 0.00 0.33
UE-R0-S 7.94 2.90 0.07 0.83 0.73 8.06 2.81 0.06 0.50 0.59 8.14 2.70 0.06 0.30 0.49 12.04 1.41 0.08 0.00 0.34
UE-R0-LS 8.01 2.85 0.06 0.79 0.67 8.10 2.78 0.06 0.50 0.56 8.18 2.67 0.06 0.30 0.47 12.03 1.42 0.08 0.00 0.34
UE-R1-D 9.14 2.39 0.05 0.66 0.52 8.79 2.38 0.05 0.49 0.48 8.62 2.29 0.06 0.30 0.43 12.06 1.45 0.07 0.00 0.33
UE-R1-S 7.94 2.90 0.07 0.82 0.71 8.05 2.81 0.06 0.50 0.57 8.14 2.70 0.06 0.30 0.48 12.06 1.41 0.08 0.00 0.34
UE-R1-LS 7.99 2.87 0.07 0.79 0.67 8.09 2.79 0.06 0.50 0.55 8.18 2.68 0.06 0.30 0.46 12.05 1.42 0.08 0.00 0.34
UE-R2-D 9.16 2.38 0.05 0.66 0.53 8.81 2.37 0.05 0.49 0.49 8.66 2.28 0.06 0.30 0.43 12.05 1.44 0.08 0.00 0.33
UE-R2-S 7.95 2.90 0.07 0.83 0.71 8.07 2.80 0.06 0.50 0.57 8.15 2.69 0.06 0.30 0.48 12.04 1.41 0.08 0.00 0.34
UE-R2-LS 8.04 2.83 0.06 0.78 0.64 8.13 2.77 0.06 0.50 0.54 8.21 2.65 0.06 0.30 0.46 12.02 1.42 0.08 0.00 0.33
UE-R3-D 9.15 2.39 0.05 0.66 0.54 8.80 2.38 0.05 0.49 0.50 8.63 2.29 0.06 0.30 0.44 12.05 1.45 0.07 0.00 0.33
UE-R3-S 7.94 2.90 0.07 0.83 0.74 8.06 2.81 0.06 0.50 0.59 8.14 2.70 0.06 0.30 0.49 12.05 1.41 0.08 0.00 0.34
UE-R3-LS 8.01 2.85 0.06 0.78 0.67 8.11 2.78 0.06 0.50 0.56 8.19 2.67 0.06 0.30 0.47 12.03 1.42 0.08 0.00 0.34

CFSS 12F
UE-R0-D 8.43 2.70 0.08 0.91 0.61 8.47 2.69 0.08 0.50 0.49 8.58 2.53 0.08 0.30 0.42 12.03 1.40 0.08 0.00 0.32
UE-R0-S 8.14 2.89 0.09 0.96 0.68 8.29 2.79 0.08 0.50 0.52 8.36 2.68 0.08 0.30 0.43 12.01 1.40 0.08 0.00 0.32
UE-R0-LS 8.18 2.87 0.08 0.94 0.65 8.31 2.78 0.07 0.50 0.50 8.39 2.65 0.08 0.30 0.43 12.01 1.40 0.08 0.00 0.32
UE-R1-D 8.42 2.70 0.08 0.90 0.60 8.47 2.69 0.08 0.50 0.48 8.57 2.54 0.08 0.30 0.41 12.03 1.41 0.08 0.00 0.31
UE-R1-S 8.15 2.89 0.09 0.96 0.66 8.30 2.79 0.07 0.50 0.51 8.36 2.68 0.08 0.30 0.42 12.01 1.40 0.08 0.00 0.32
UE-R1-LS 8.19 2.88 0.08 0.94 0.64 8.31 2.79 0.07 0.50 0.50 8.39 2.66 0.08 0.30 0.42 12.01 1.40 0.08 0.00 0.31
UE-R2-D 8.42 2.70 0.09 0.92 0.60 8.47 2.69 0.08 0.50 0.48 8.59 2.53 0.08 0.30 0.41 12.03 1.40 0.08 0.00 0.31
UE-R2-S 8.14 2.89 0.09 0.96 0.66 8.29 2.79 0.08 0.50 0.50 8.36 2.67 0.08 0.30 0.42 12.01 1.40 0.08 0.00 0.31
UE-R2-LS 8.18 2.86 0.08 0.94 0.62 8.31 2.78 0.07 0.50 0.49 8.40 2.64 0.08 0.30 0.41 12.01 1.40 0.08 0.00 0.31
UE-R3-D 8.42 2.70 0.08 0.91 0.61 8.47 2.69 0.08 0.50 0.49 8.58 2.54 0.08 0.30 0.42 12.03 1.40 0.08 0.00 0.32
UE-R3-S 8.15 2.89 0.09 0.96 0.68 8.29 2.79 0.08 0.50 0.52 8.36 2.68 0.08 0.30 0.43 12.01 1.40 0.08 0.00 0.32
UE-R3-LS 8.18 2.87 0.08 0.94 0.65 8.31 2.78 0.07 0.50 0.51 8.39 2.65 0.08 0.30 0.43 12.01 1.40 0.08 0.00 0.32

Factor Lasso 1F 8.09 2.96 0.07 0.82 0.74 8.03 2.88 0.06 0.50 0.64 8.03 2.77 0.06 0.30 0.55 12.08 1.35 0.08 0.00 0.35
Factor Lasso 3F 8.01 2.95 0.07 0.81 0.75 7.97 2.90 0.06 0.50 0.63 8.01 2.79 0.06 0.30 0.53 12.06 1.39 0.08 0.00 0.34
Factor Lasso 12F 8.16 3.00 0.09 0.97 0.80 8.03 2.93 0.08 0.50 0.59 8.06 2.71 0.08 0.30 0.49 11.97 1.41 0.08 0.00 0.31
Factor HEAVY 1F 9.02 2.28 0.05 0.66 0.38 8.81 2.22 0.05 0.50 0.38 8.62 2.01 0.05 0.30 0.36 12.34 1.32 0.07 0.00 0.29
Factor HEAVY 3F 8.78 2.25 0.05 0.62 0.37 8.65 2.20 0.05 0.49 0.37 8.61 1.99 0.05 0.30 0.35 12.31 1.28 0.07 0.00 0.28
Factor HEAVY 12F 8.17 2.66 0.07 0.80 0.78 8.26 2.57 0.07 0.50 0.65 8.43 2.31 0.07 0.30 0.54 12.02 1.43 0.08 0.00 0.33
sRe-cDECO 7.66 3.14 0.12 1.15 0.79 7.84 2.87 0.09 0.50 0.52 8.20 2.58 0.08 0.30 0.43 12.14 1.37 0.08 0.00 0.29
EWMA 7.65 3.09 0.10 1.09 0.32 7.90 2.89 0.08 0.50 0.28 8.13 2.68 0.08 0.30 0.26 12.09 1.43 0.08 0.00 0.28
RW 7.98 2.80 0.11 1.11 2.83 8.15 2.78 0.08 0.50 1.93 8.13 2.75 0.08 0.30 1.51 12.10 1.46 0.08 0.00 0.59

Note: The table reports MVP with momentum signal summary statistics for the four portfolios under consideration based on 150 five-step-ahead conditional covariance matrix predictions;
σp stands for the annualized standard deviation of the portfolio returns. The average portfolio concentration CO, short position SP and turnover TO are given by Eqs. (3.29) to (3.31).
Grey-shaded cells indicate that the respective model belongs to the 90% model confidence set.
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3.7. Tables and Figures

Figure 3.1.: Smoothing parameter restrictions.
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(d) MLE-R1
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(e) MLE-R2
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(f) MLE-R3
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Panels (a) – (c): Smoothing parameter of the UE model under restrictions (R1), (R2) and
(R3). Panels (d) – (f): Differences of the ML estimate for λ (when fixing n and k) and the
values obtained under the respective restrictions. The black circles ‘◦’ mark the respective
unrestricted ML estimates of the d.o.f. parameters.
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Figure 3.2.: Time-series plots of selected realized factor and aggregated (residual) asset vari-
ances.
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Panels (a) – (c): Time series plots of the realized Fama-French factor variances; Columns
(d) – (f): Time series plots of average realized asset variances (top), factor loadings on
the market (middle) and residual variances (bottom) for the Industrials, Health Care and
Financials sector.
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Figure 3.3.: Sparsity pattern of residual correlations.
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The figure displays the significant entries of the residual covariance matrices, relative to (a)
zero, (b) one (Market), (c) three (Market + FF), and (d) 12 (Market + FF + ETFs) observed
factors. Panel (e) displays the the residual sparsity for 12 factors at different points in time.
The sector labels are listed in Table 3.1.
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Chapter 4.

Modeling Realized Covariance Measures
with Heterogeneous Liquidity: A
Generalized Matrix-Variate Wishart
State-Space Model

4.1. Introduction

The modeling and forecasting of covariance matrices of asset returns is an impor-

tant field in financial econometrics with potential applications in portfolio allocation,

hedging, and risk management. Recent approaches increasingly focus on the direct

modeling of time-series of daily realized covariance matrices. These measures are

computed from intraday asset return information and represent non-parametric con-

sistent ex-post estimates of the daily integrated covariance matrices of asset returns

as obtained from a continuous-time diffusion for the underlying intraday price pro-

cess (see, e.g., Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004; Park and

Linton, 2012; Lunde et al., 2016). It is now widely documented that models for re-

alized covariance matrices provide more precise forecasts than multivariate GARCH

(MGARCH) and multivariate stochastic volatility (MSV) models, which only exploit

daily asset return information.

Pioneering contributions on the modeling and forecasting of realized covariance ma-

trices are provided by Gourieroux et al. (2009), Chiriac and Voev (2011), Bauer and

Vorkink (2011), Noureldin et al. (2012), Golosnoy et al. (2012) and Jin and Maheu

This chapter is based on:
Modeling Realized Covariance Measures with Heterogeneous Liquidity: A Generalized Matrix-Variate
Wishart State-Space Model; Authors: Bastian Gribisch and Jan P. Hartkopf.
Currently returned for revision and resubmission to The Journal of Econometrics for possible publication.
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(2013). More recent approaches and model extensions are, e.g., found in Opschoor

et al. (2017), Opschoor and Lucas (2019), Vassallo et al. (2019) and Sheppard and

Xu (2019). The vast majority of models essentially treat the realized covariance ma-

trix as the true integrated covariance matrix and apply observation-driven reduced

form autoregressive models in order to forecast the realized measures. This approach

is convenient from the perspective of parameter estimation and forecasting since the

likelihood of observation-driven models is directly available, but comes with the disad-

vantage of neglected measurement errors in the lagged realized covariances driving the

covariance dynamics. The effect of neglected measurement errors is, e.g., discussed in

Bollerslev et al. (2016), Bollerslev et al. (2018) and Bekierman and Manner (2018),

who suggest model extensions in order to mitigate the resulting bias in the persistence

estimates.

An alternative to the observation-driven approach is to model the realized covari-

ance matrix as a noisy measurement of the time-varying latent integrated covari-

ance matrix. The resulting parameter-driven state-space framework directly accounts

for measurement errors via the measurement density specification. The state-space

approach has, e.g., been advocated by Asai et al. (2012a,b), who find considerable

bias reductions in estimated integrated volatilities if measurement errors in realized

volatilities are accounted for. Further applications are found in Barndorff-Nielsen and

Shephard (2002), Takahashi et al. (2009) and Bekierman and Gribisch (2016).

Parameter-driven models come with the additional advantage of increased flexibility

in modeling the (co)variance dynamics via the additional idiosyncratic innovation

process driving the latent states. This helps to generate overdispersion, heavier tails

and further features, which can put such models at an advantage over observation-

driven models. The state-space approach also appears as a rather natural modeling

framework for realized covariance measures since the latter represent consistent but

noisy estimates of the latent integrated covariance state of an underlying continuous-

time SV diffusion.

Contributions on parameter-driven state-space models for matrix-valued realized
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(co)variance measures are sparse, which is explained by the relative complexity of

model estimation and forecasting in high-dimensional settings combined with the

nonlinear restriction of positive-definiteness (p.d.) for the covariance measure. The

associated likelihood obtains as a high-dimensional integral, typically without closed

form expression. Estimation then has to be based on simulation based techniques like

Bayesian Monte Carlo Markov Chain (MCMC) or Simulated Maximum Likelihood

(SML). Gribisch (2018) employs a linear Gaussian latent dynamic factor model for the

distinct elements of the matrix-logarithm of a realized covariance matrix and Gribisch

et al. (2020, see also Chapter 2 herein) propose a factor state-space model based on

observed risk factors and a Wishart measurement density. Both approaches rely on

Bayesian MCMC techniques for model estimation and model selection. Windle and

Carvalho (2014) propose a simple yet flexible state-space framework via combining

a Wishart measurement density with a sparsely parameterized generalized matrix-

variate Beta type-I transition for the latent precision matrix, resulting in a closed

form expression for the likelihood function.

The Wishart has become a popular approach for modeling realized covariance ma-

trices (see, e.g., Golosnoy et al., 2012; Noureldin et al., 2012; Asai and McAleer, 2015;

Gorgi et al., 2019). However, we find that the Wishart is rather ill-suited in the em-

pirically realistic setting of heterogeneous liquidity across assets: As the Wishart’s

scale matrix is tied to the conditional mean of the covariance matrix, the measure-

ment error’s covariance structure is – ceteris paribus – entirely determined by a single

scalar-valued d.o.f. parameter. Using a simple stylized iid model for k ≥ 1 intraday

asset returns, this d.o.f. parameter corresponds to the number of intraday return

observations common to all assets. Since the (co)variances of Wishart random ma-

trix elements are inverse proportional to the d.o.f. this induces an attenuation of the

measurement error variance for less liquid assets, resulting in underestimation of the

state persistence and overestimation of the state variation. This may induce severe

effects on the forecasting performance of Wishart-based state-space models.

Accounting for heterogeneous liquidity appears crucial in high-dimensional state-
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space modeling of realized covariance matrices. In order to alleviate the attenuation

of measurement errors we consider the Riesz distribution introduced by Hassairi and

Lajmi (2001) as a flexible generalization of the Wishart. Although the Riesz has been

analyzed in a couple of papers on multivariate distributions and graphical models (see,

e.g., Andersson and Klein, 2010; Veleva, 2009) we have not found any applications to

financial data. The Riesz nests the Wishart and generalizes the Wishart-implied data

generating process (DGP) for intraday returns to heterogeneous liquidity across assets.

As a result, the Riesz is parameterized by a scale matrix and one d.o.f. parameter

per asset, implying a substantial increase in flexibility due to k − 1 additional d.o.f.

parameters for modeling the measurement error covariance matrix. We analyze the

stochastic properties of the Riesz, derive the implied covariance structure for the

measurement error and develop a Riesz State-Space (RSS) model, which can be easily

analyzed by Bayesian MCMC procedures. Our empirical results indicate that the

additional flexibility of the Riesz appears important for covariance forecasting in state-

space frameworks.

A particular advantage of the RSS approach is that it allows for a numerically

efficient, yet simple Bayesian analysis using fairly standard MCMC techniques: We

exploit the Cholesky-structure of the Riesz and factorize the measurement density

in order to obtain a conditionally independent sequence of state-space models for

conditional regression coefficients and error variances of asset returns. By modeling

the error variances and regression betas as independent autoregressive state processes

we can employ basic MCMC sampling techniques, completely parallelized over the

number of assets, which greatly simplifies applications to high-dimensional asset re-

turn vectors while preserving positive definiteness of the realized covariance measures

without parametric restrictions. The model structure moreover allows for straightfor-

ward implementation of efficient shrinkage prior restrictions on the conditional state

variances in order to alleviate the risk of overfitting in high-dimensional state-space

settings.

The rest of the paper is organized as follows: Section 4.2 details the Wishart and
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the Riesz distribution and their stochastic properties, and Section 4.3 introduces the

RSS model. The proposed MCMC procedure for the Bayesian posterior analysis and

model comparisons as well as the construction of forecasts are discussed in Section 4.4.

Section 4.5 presents the empirical application to New York Stock Exchange (NYSE)

data and Section 4.6 concludes. Additional material and proofs of the Propositions

are given in Appendix C.

4.2. Wishart and Riesz Measurement Densities for Realized

Covariance Matrices

Consider a (k × k) realized covariance matrix Ct = (cij,t) observed as a noisy but

consistent measurement for the ‘true’ but latent time-varying integrated covariance

matrix Σt = (σij,t) for trading days t = 1, . . . , T . Further denote the k-dimensional

vector of observed asset log-returns for intraday trading period ` at trading day t by

rt` = (rt`,1, . . . , rt`,k)
′, ` = 1, . . . , n.

The day t realized covariance matrix as defined by Barndorff-Nielsen and Shephard

(2004) obtains as

Ct =
n∑
`=1

rt`r
′
t`, (4.1)

where n denotes the total number of intraday return vectors for trading day t. For

simplicity and w.l.o.g. we assume n to be constant across trading days. Under rather

general regularity conditions on the continuous log-price process, Barndorff-Nielsen

and Shephard (2004) show that Ct is a consistent estimator of Σt as n → ∞. The

literature offers numerous refinements of the classical realized covariance estimator in

Eq. (4.1), accounting for market microstructure noise, jumps and non-synchronicity of

intraday asset prices (see e.g. Zhang et al., 2005, Christensen and Kinnebrock, 2010,

and Lunde et al., 2016).

Taking the integrated covariance matrix Σt as a latent state variable observed
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through the noisy realized covariance matrix Ct it is reasonable to model Ct by a

state-space approach with a measurement density f(Ct|Σt) relating the measurements

Ct to the states Σt and a transition density f(Σt|Σ1:t−1) designed to approximate the

observed dynamics of Ct.1

4.2.1. The Wishart

The realized covariance measure in (4.1) allows for a direct derivation of the Wishart

as a measurement density for realized covariance matrices. Let

rt` =
Lt√
n
ut`, (4.2)

where ut` = (ut`,1, . . . , ut`,k)
′ denotes a k-dimensional vector of iid standard normal

intraday return innovations, Lt = TΣ
t

[
DΣ
t

] 1
2 is obtained from the Cholesky decompo-

sition Σt = TΣ
t D

Σ
t T

Σ′
t and the scaling factor 1/

√
n ensures Var(rt) = Var

(∑n
`=1 rt`

)
=

Σt. Summarizing the intraday return innovations of trading day t in the (k × n)

innovation matrix Ut = [ut1, . . . , utn] we rewrite Eq. (4.1) as

Ct =
1

n
LtUtU

′
tL
′
t, with UtU

′
t | n ∼ Wk(n, Ik), (4.3)

whereWk(n, Ik) denotes the Wishart distribution with scalar-valued d.o.f. parameter

n and identity scale matrix. From the scaling property of the Wishart we obtain2

Ct | Σt, n ∼ Wk

(
n,

1

n
Σt

)
. (4.4)

The Wishart pdf, its characteristic function and the associated first and second order

moments are summarized in the following proposition.

Proposition 1. Let Ct denote a positive-definite (k × k) realized covariance matrix

with Ct|Σt, n ∼ Wk

(
n, 1

n
Σt

)
, where n denotes the associated scalar-valued d.o.f. pa-

1The notation As:τ is used to denote the collection {As, . . . , Aτ}.
2See, e.g., Muirhead (2005) and Gupta and Nagar (2000), for details on the properties of the Wishart
distribution.
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rameter and Σt the (k × k) p.d. scale matrix. For n > k − 1 the Wishart pdf is given

by

f(Ct|Σt, n) =
|Ct|(n−k−1)/2|Σt/n|−n/2

2nk/2πk(k−1)/4
∏k

i=1 Γ ((n− i+ 1)/2)
exp

{
−n

2
tr
(
Σ−1
t Ct

)}
, (4.5)

with characteristic function ϕW(Θ) = |Ik − 2ιΘΣt/n|−
n
2 , where Θ is a symmetric k-

dimensional matrix and ι denotes the imaginary number. We have E [Ct|Σt, n] = Σt

and

Cov [vec(Ct)|Σt, n] =
1

n
(Ik2 +Kkk) (Σt ⊗ Σt) , (4.6)

where vec(·) denotes the operator that stacks all columns of a matrix into a vector and

Kkk denotes the commutation matrix (see, e.g., Lütkepohl, 1996, p. 115). Proof: See

Muirhead (2005).

From Eq. (4.6) we obtain Cov[cij,t, clm,t|Σt, n] = 1
n
(σil,t · σjm,t + σim,t · σjl,t), which

implies that the covariance structure of the Wishart measurement error for Σt is

proportional to the sum of the crossproducts of the integrated (co)variances.

The Wishart distribution is frequently applied for the stochastic modeling of re-

alized covariance matrices (see, e.g., Philipov and Glickman, 2006; Golosnoy et al.,

2012; Noureldin et al., 2012; Jin and Maheu, 2013; Bauwens et al., 2014; Asai and

McAleer, 2015; Sheppard and Xu, 2019; Gorgi et al., 2019; Gribisch et al., 2020, for

recent contributions). However, the Wishart DGP for intraday asset returns appears

empirically unrealistic and the Wishart can merely serve as an approximation to the

true (but unknown) measurement density for Ct. Taking Eq. (4.2) as a parametric

model for asset returns ignores intraday time-variation of the spot covariance, poten-

tial non-normality of the return innovation process and heterogeneous liquidity across

assets. Moreover, in practical applications the basic realized covariance measure of

Barndorff-Nielsen and Shephard (2004) is typically replaced by noise-robust alterna-

tives as, e.g., the composite realized kernel estimator of Lunde et al. (2016), for which
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small-sample distributional results are not available. The Wishart is therefore inter-

preted as a Quasi Likelihood (QL) and the integer d.o.f. n is generalized to a real

number on (k − 1,∞) (cf. Muirhead, 2005) and treated as an additional free model-

parameter driving the covariance structure of the measurement error conditional on

E [Ct|Σt, n] = Σt.

Taking a closer look at the Wishart DGP for intraday asset returns, the assumption

of time-constant spot covariances appears hard to relax but may serve as a valid ap-

proximation for highly persistent covariance dynamics over the trading day. Moreover,

assuming normality for intraday return innovations appears rather unproblematic in

continuous volatility mixtures, where mixing over the Σt-dynamics induces leptokurtic

daily return observations (cf. Gribisch et al., 2020). The assumption of homogeneous

liquidity however is critical and – if violated – implies an attenuation of measurement

errors for the less liquid assets in the data. The Wishart covariance in (4.6) reflects

a homogeneous liquidity structure via the scalar d.o.f. parameter n, which induces

an even covariance scaling across assets. Since the Wishart requires n > k − 1, high-

dimensional applications involve increasingly low measurement errors, which may not

be justified for less liquid assets. The resulting attenuation of measurement errors

for the less liquid assets induces overfitting and potentially poor out-of-sample per-

formance since the Σt-dynamics are bound to mimic the noise.

4.2.2. The Riesz

In order to alleviate the Wishart-implied attenuation of measurement errors we now

generalize the Wishart DGP to the empirically realistic setting of heterogeneous liq-

uidity across assets. Let ni denote the number of intraday return observations for the

ith asset at t = 1, . . . , T , with n1 ≤ n2 ≤ · · · ≤ nk. In analogy to the Wishart DGP

in (4.2) we write

rt` = LtQũt`, with Q = diag (1/
√
n1, . . . , 1/

√
nk) , (4.7)
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where ũt` = (ũt`,1, . . . , ũt`,k)
′ denotes a k-dimensional vector of intraday return inno-

vations. The heterogeneous liquidity pattern across assets may now be generated by

a monotone missing data structure for the intraday innovation process (cf. Veleva,

2009): We denote the (k × n) intraday innovation matrix by Ũt with the `th column

given by ũt` and the ith row containing ni iid standard normal random variables,

ni > i− 1, followed by n− ni missing data points replaced by zeros:

Ũt =


ũt1,1 . . . ũtn1,1 . . . 0 0 . . . 0
...

...
...

...
...

ũt1,k−1 . . . ũtn1,k−1 . . . ũtnk−1,k−1 0 . . . 0

ũt1,k . . . ũtn1,k . . . ũtnk−1,k ũtnk−1+1,k . . . ũtnk,k

 . (4.8)

The specific assumption of a monotone missing data pattern on Ũt comes with the

particular advantage of providing a closed form distribution for Ct. Combining the

intraday return DGP in (4.7) with the innovation process in (4.8) yields

Ct = LtQŨtŨ
′
tQL

′
t, with ŨtŨ

′
t | n̄ ∼ BGIk

(
n̄/2, I/2

)
, (4.9)

where BGIk denotes a k-dimensional Bellman-Gamma type-I distribution with identity

scale and d.o.f. vector n̄ = (n1, . . . , nk)
′ (see Gupta and Nagar, 2000 and Veleva, 2009,

for details). By the Cholesky-scaling properties of the Bellman-Gamma we obtain

Ct | Σt, n̄ ∼ Rk

(
n̄,Σt

)
, (4.10)

where Rk denotes the k-dimensional Riesz distribution of Hassairi and Lajmi (2001)

with d.o.f. vector n̄ and scale matrix Σt (see Veleva, 2009 and Andersson and Klein,

2010). The Riesz pdf, its characteristic function and the associated first and second

order moments are given in the following proposition.

Proposition 2. Let Ct denote a positive-definite (k × k) realized covariance matrix

with Ct|Σt, n̄ ∼ Rk(n̄,Σt), where n̄ = (n1, . . . , nk)
′ denotes the associated d.o.f. vector
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and Σt the (k × k) p.d. scale matrix. For ni > i− 1 the pdf of the Riesz distribution

is given by

f(Ct|Σt, n̄) =
1

πk(k−1)/4

[
k∏
i=1

(
ni
2

)ni
2 [ci·i−1,t]

ni−k−1

2

Γ
(
ni−i+1

2

)
[σi·i−1,t]

ni
2

]
exp

{
−tr

(
Σ
− n̄

2
t Ct

)}
, (4.11)

with characteristic function ϕR(Θ) =
∏k

i=1

(
ni

2σi·i−1,t

)ni
2

(ξi·i−1,t(Θ))
ni
2 , where ξi·i−1,t(Θ)

is the i’th diagonal element of DΞ
t from the Cholesky decomposition Ξt =

(
Σ
− n̄

2
t −ιΘ

)
=

TΞ
t D

Ξ
t T

Ξ′
t , ι denotes the imaginary number, Θ is a symmetric k-dimensional matrix,

σi·i−1,t, i = 1, . . . , k, are the diagonal elements of DΣ
t in the Cholesky decomposition

Σt = TΣ
t D

Σ
t T

Σ′
t , ci·i−1,t are the diagonal elements of DC

t in the Cholesky decomposition

Ct = TCt D
C
t T

C′
t , and

Σ
− n̄

2
t =

[
TΣ′

t

]−1

diag

(
n1

2σ1·0,t
, . . . ,

nk
2σk·k−1,t

)[
TΣ
t

]−1
. (4.12)

We obtain E [Ct|Σt, n̄] = Σt and

Cov [vec(Ct)|Σt, n̄] =
nk
4

(Ik2 +Kkk)
(

Σ
n̄
2
t ⊗ Σ

n̄
2
t

)
(4.13)

+
1

4

k−1∑
i=1

(ni − ni+1)(Ik2 +Kkk)
{(

Ξ∗it ⊗ (Σ
n̄
2
t − Ξ∗it/2)

)}
(Ik2 +Kkk),

where Ξ∗it = Σ
n̄
2
t Ei(E

′
iΣ

n̄
2
t Ei)

−1E ′iΣ
n̄
2
t , and Ei = [Ii, 0(i×m−i)]

′. Proof: See Appendix

C.1.

Note that the Riesz nests the Wishart Wk(n,Σt/n) for n1 = · · · = nk = n, and –

similar to the Wishart – the integer Riesz d.o.f. are readily generalized to real numbers

with ni > i− 1.

The assumption of non-decreasing liquidity across assets, i.e., n1 ≤ n2 ≤ · · · ≤ nk,

identifies a liquidity-based sorting of the assets in the underlying return vector. This

sorting appears natural regarding the way the Riesz DGP is constructed, but consti-

tutes an overidentifying restriction since the existence of the Riesz pdf in Eq. (4.11)

only requires ni > i− 1, which may be satisfied although ni > nj for j > i (see, e.g.,
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Andersson and Klein, 2010). For practical applications we suggest to sort the assets

according to a global liquidity measure3, e.g, the median number of trades over a spe-

cific time horizon, and (for the sake of flexibility) relax the overidentifying restrictions

on the d.o.f. to ni > i− 1.

The Riesz constitutes a generalization of the Wishart to missing data structures

and allows for k − 1 additional d.o.f. in fitting the distributional characteristics of

realized covariance matrices. In particular, the measurement error covariance in (4.13)

appears far more flexible in adapting the stochastic properties of potentially complex

measurement errors as compared to its Wishart analogue in (4.6). Moreover, the

Riesz alleviates the attenuation bias of the Wishart, since the lower boundary for the

single Wishart d.o.f. n > k − 1 is replaced by ni > i − 1 for i = 1, . . . , k, which

is clearly less binding in high-dimensional scenarios. For empirical applications to

realized covariance data for stocks with heterogeneous liquidity structure we would

expect the estimated Wishart d.o.f. n̂ to lie somewhere in between the corresponding

Riesz estimates n̂1 to n̂k. Relative to the Riesz, the Wishart would then induce a

downward bias of the measurement error variance for the less liquid stocks in the

liquidity sorted return vector.

It is important to note that, although the Riesz and Wishart DGPs are motivated

from the standard realized covariance measure of Barndorff-Nielsen and Shephard

(2004), see Eq. (4.1), which provides the basic intuition of realized covariance esti-

mation and – under certain assumptions (see above) – allows to obtain closed form

small-sample results, this does not restrict their applicability to more refined and

robust realized measures such as, e.g., the composite realized kernel of Lunde et al.

(2016) or the CholCov estimator of Boudt et al. (2017), which by their data-efficient

nature automatically account for the heterogeneous liquidity across assets and for

which small-sample distributional results are not available. Overall, the Riesz-implied

measurement error covariance offers a QL framework with additional d.o.f. to adapt

to the specific properties of the realized measure at hand. Our empirical application

3Compare Boudt et al. (2017) for a similar approach in a Cholesky realized covariance setting.
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in Section 4.5 employs the data-efficient and microstructure-noise robust composite

realized kernel measure of Lunde et al. (2016) and our findings show that the Riesz

significantly improves the model-fit and alleviates the attenuation of measurement

errors relative to the Wishart.

Alternative distributions, which have been considered for the modeling of p.d. re-

alized covariance measures, are the inverse Wishart and the Matrix-F distribution.

The inverse Wishart implies a Wishart distribution for the precision matrix, therefore

imposing similar restrictions on the measurement errors as the Wishart itself (see,

e.g., Grothe et al., 2019, for an application of the inverse Wishart distribution). The

Matrix-F has been analyzed by Opschoor et al. (2017), Opschoor and Lucas (2019)

and Vassallo et al. (2019) for the class of observation driven generalized autoregres-

sive score (GAS) models. The authors find that replacing the Wishart by a Matrix-F

(a Wishart-inverted-Wishart mixture, which nests the inverted Wishart distribution;

see Konno, 1991, and Gupta and Nagar, 2000, for details) results in significant im-

provements in model fit, since the Matrix-F introduces a second d.o.f. parameter,

which accounts for leptokurtic tail-behaviour. Recent results of Gribisch et al. (2020)

however indicate that there is no evidence against the Wishart and in favor of the

Matrix-F distribution for parameter-driven state-space models, since the marginal-

ization of the conditional Wishart w.r.t. the latent state variables in Σt suffices to

capture the tail behavior of realized covariance data.

4.3. The Riesz State-Space Model

Based on the preceding discussion we take the integrated covariance matrix Σt as a

latent state variable observed through the realized covariance matrix Ct and com-

bine the Riesz measurement density for Ct with a suitably chosen transition density

f(Σt|Σ1:t−1) in order to obtain a tractable state-space model designed to mimic the

persistent dynamics of time series of p.d. realized covariance matrices.

Here we exploit that the Riesz allows for a convenient likelihood factorization which
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4.3. The Riesz State-Space Model

greatly simplifies statistical inference in high-dimensional applications. The Riesz

likelihood factorization is conceptually based on the Cholesky decomposition Σt =

TΣ
t D

Σ
t T

Σ′
t as implied by the recursive sequence of linear regressions

ri,t = β′i·i−1,tr1:i−1,t + εi,t, i = 1, . . . , k, (4.14)

where ri,t denotes the day t log-return of the ith asset, r1:i−1,t = (r1,t, . . . , ri−1,t)
′,

βi·i−1,t = Σ−1
[i−1]tσi−,t, with σi−,t = (σi1,t, . . . , σii−1,t)

′, and Var[εit] = σi·i−1,t = σii,t −

σ′i−,tΣ[i−1],tσi−,t, where Σ[i−1],t indicates the upper left (i− 1× i− 1) submatrix of Σt,

i = 2, . . . , k. For i = 1 we obtain βi·i−1,t = 0 and σ1·0,t = σ11,t. With rt = (r1,t, . . . , rk,t)
′

and εt = (ε1,t, . . . , εk,t)
′ we have εt = Vtrt, where Vt denotes a lower triangular matrix

of negative β-coefficients and ones on the diagonal. The Cholesky decomposition of

Σt then results from DΣ
t = Var(εt) = VtΣtV

′
t and TΣ

t = V −1
t (compare Darolles et al.,

2018).

The Riesz likelihood factorization is detailed in the following proposition.

Proposition 3. The conditional Riesz pdf f(Ct|Σt, n̄) provided in Proposition 2 can

be equivalently expressed as

f(Ct|Σt, n̄) =
k∏
i=1

f(ci·i−1,t|σi·i−1,t, ni)f(bi·i−1,t|βi·i−1,t, ni, σi·i−1,t, C[i−1],t) (4.15)

with

ci·i−1,t | σi·i−1,t, ni ∼ Γ

(
ni − i+ 1

2
,

2

ni
σi·i−1,t

)
, (4.16)

bi·i−1,t | βi·i−1,t, ni, σi·i−1,t, C[i−1],t ∼ N
(
βi·i−1,t,

1

ni
σi·i−1,tC

−1
[i−1],t

)
, (4.17)

where bi·i−1,t = C−1
[i−1]tci−,t, βi·i−1,t = Σ−1

[i−1]tσi−,t, b1·0,t = β1·0,t = 0 ∀ t, σi−,t =

(σi1,t, . . . , σii−1,t)
′, Σ[i−1],t denotes the upper left (i− 1× i− 1) submatrix of Σt, Γ(·, ·)

denotes the gamma distribution in shape-scale parameterization, and C[i−1],t and ci−,t

are defined by analogy. Proof: See Appendix C.2.
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The likelihood representation in Proposition 3 factorizes the conditional density

of Ct in k multiplicative components which treat the realized regression coefficients

bi·i−1,t and realized error variances ci·i−1,t as noisy measurements for their population

counterparts βi·i−1,t and σi·i−1,t, which in turn resemble the Cholesky decomposition of

Σt. The likelihood factorization suggests to model the dynamics of the matrix-variate

p.d. state variable Σt by treating the regression betas βi·i−1,t and error variances

σi·i−1,t as unobserved dynamic state processes which can be modeled conveniently in

real space, preserving positivity of Σt without parametric restrictions.4 Since the k

likelihood components represent mutually independent functions in the asset-specific

states, combining them with independent prior assumptions allows for the imple-

mentation of parallelized computing routines for joint Bayesian MCMC sampling of

the k state sequences
{
σi·i−1,t, βi·i−1,t

}T
t=1

, i = 1, . . . , k. The likelihood factorization

in Proposition 3 therefore greatly simplifies statistical inference in high-dimensional

state-space scenarios. Details on the MCMC implementation of the RSS model are

given in Section 4.4 and Appendix C.3.

We now complete the Riesz state-space model by specifying the transition densities

for the state processes. Here we combine independent random walk (RW) processes

for the k(k − 1)/2 elements of {βi·i−1,t}ki=1 with heterogeneous autoregressive (HAR)

processes (Corsi, 2009) for the logarithmic error variances {log σi·i−1,t}ki=1. While the

RW assumption is rather typical for time-varying coefficient models and preserves

sparsity in model parametrization, the observed logarithmic error variances log ci·i−1,t

feature a particularly strong long-memory like autocorrelation structure which appears

to be well approximated by HAR dynamics (cf. Gribisch et al., 2020).

For xit = log σi·i−1,t, i = 1, . . . , k, we impose mutually independent Gaussian HAR

processes of the form

xit − γi = φi1x̄i[t−1:t−1] + φi2x̄i[t−1:t−5] + φi3x̄i[t−1:t−22] + ηit, ηit ∼ N (0, ν2
i ), (4.18)

4The dynamic modeling of Cholesky factors is frequently applied for multivariate volatility modeling, see,
e.g., Chiriac and Voev (2011), Lopes et al. (2016), Shirota et al. (2017), and Darolles et al. (2018).
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where x̄i[t−1:t−h] =
∑h

τ=1(xit−τ − γi)/h for h = 1, 5, 22 represents daily, weekly and

monthly lags, respectively. The process is initiated by the stationary distribution of

xit as implied by the HAR parameters γi, φi1, φi2, φi3 and νi.

For the i − 1 distinct elements in βi·i−1,t = (β1i,t, . . . , βi−1i,t)
′ we impose mutually

independent Gaussian RW processes

βji,t = βji,t−1 + ζji,t, ζji,t ∼ N (0, τ 2
ji), (4.19)

for j = 1, . . . , i− 1, with initial value βji,0 | β̄ji, pji0 ∼ N (β̄ji, pji0).

The vector of parameters, denoted by θ, for the Riesz State-Space (RSS) model as

defined by Eqs. (4.15), (4.18) and (4.19) consists of k+ 5k+ 3k(k− 1)/2 parameters,

which are the k Riesz d.o.f. parameters, the HAR-parameters (γ, φ1, φ2, φ3, ν
2) for

the k state processes {xit} and the RW parameters (β̄, p0, τ
2) for the k(k− 1)/2 time-

varying regression coefficients {βji,t}. Hence, for a large number of assets the actual

amount of model parameters is fairly huge. For instance with k = 30 assets as in

our empirical application below we have for the RSS model 465 state processes and

1485 parameters to be estimated. However, as we use a data set covering T = 3272

trading days with Tk(k + 1)/2 = 1, 521, 480 covariance observations we have 1024

observations per parameter, which can be expected to provide enough information for

reliable statistical inference.

Nevertheless, the unrestricted state dynamics in (4.18) and (4.19) clearly involve

a risk of overfitting the covariance dynamics since the number of model parameters

grows quadratically in the number of assets k. In the Bayesian RSS setting this risk is

readily alleviated by imposing shrinkage priors on the RW parameters of the k(k−1)/2

beta coefficients, automatically reducing time-varying coefficients to constant ones.

This greatly reduces the number of significant model parameters and helps to reduce

the impact of estimation noise on the model’s forecasting performance. An alternative

way of imposing sparsity on the model structure is to rely on common factor structures

(see, e.g., Gribisch et al., 2020). As opposed to a factor approach, the shrinkage RSS
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specification has the advantage of being completely data-driven and can therefore be

expected to be more flexible in fitting the observed covariance dynamics. For the RSS

model it turns out that the implementation of shrinkage prior restrictions is essentially

straightforward. Details on the implementation of the shrinkage approach and the

Bayesian MCMC scheme are provided in the upcoming section and in Appendix C.3.

4.4. Bayesian Posterior Analysis and Forecasting

We apply MCMC methods for a Bayesian posterior analysis of the RSS model and

use the Gibbs approach to simulate from the joint posterior of the parameters and

states

π(θ, {xi,1:T}, {βi·i−1,1:T}|C1:T ). (4.20)

In the following we outline the MCMC algorithm for the RSS model without shrink-

age priors, labeled basic RSS model, and provide details on the minor modifications

needed in order to introduce shrinkage prior restrictions on the time-varying beta

process in (4.19), resulting in the shrinkage RSS model.

4.4.1. MCMC sampling

The properties of the Riesz distribution and the dynamic model structure of the RSS

model allow for fast and numerically efficient Gibbs sampling. In particular, the

factorization of the measurement density in (4.15) combined with independent priors

for the structural model parameters and state processes implies that the RSS model

can be devoted in k functionally independent state-space models, one for each of the

k state sequences {(β′i·i−1,t, σi·i−1,t)
′}Tt=1, i = 1, . . . , k.

The Gibbs sampling algorithm for Bayesian MCMC estimation of the complete RSS

model can then be decomposed into k independent Gibbs samplers, each updating

the structural model parameters and states associated with the respective state-space

model. The k Gibbs samplers can be run completely parallel on multi-core computers,
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resulting in a significant reduction of the computational burden, which is typically

involved in high-dimensional sate-space modeling. It is important to note that this

parallelization is not possible if the Riesz is replaced by a Wishart measurement

density, since the single Wishart d.o.f. parameter n induces functional dependence

between the k state-space models, such that parallelization of the Gibbs sampler is

only possible for the single Gibbs sweep, conditional on the previously simulated d.o.f..

Our proposed MCMC implementation for the basic RSS model consists of the fol-

lowing Gibbs sampling steps 1.) – 3.), parallelized over i = 1, . . . , k:

1.) Sampling of the beta states βi·i−1,0:T and β̄ji, τji, pji0 for j = 1, . . . , i− 1,

2.) sampling of the log variance states xi,1:T and γi, φ1i, φ2i, φ3i, ν2
i ,

3.) sampling of the Riesz degree of freedom parameter ni.

The ith MCMC algorithm, i = 1, . . . , k, repeatedly draws from the full conditional

posterior distributions associated with steps 1.) – 3.), which are detailed below. After

dropping the draws from the first cycles as burn-in we use the draws from the next

S cycles for the purpose of approximating the joint posterior in Eq. (4.20). Bayesian

point estimates (posterior means) of the model parameters and latent state variables

are then obtained as sample averages over the corresponding Gibbs draws.

In step 1.) for full conditional sampling of the beta states it proves advantageous in

terms of mixing and convergence of the Markov chains to re-write the state equation in

(4.19) into its so-called non-centered parameterization (see, e.g., Bitto and Frühwirth-

Schnatter, 2019, and Huber et al., 2020). Eq. (4.19) is then reformulated as βji,t =

β̄ji + τjiβ̃ji,t, t = 0, . . . , T , where β̃ji,t is an independent RW process with iid standard

normal increments,

β̃ji,t = β̃ji,t−1 + ζ̃ji,t, ζ̃ji,t
iid∼ N (0, 1), (4.21)

and initial value β̃ji,0 | p̃ji0 ∼ N (0, p̃ji0), such that pji0 = τ 2
jip̃ji0. Using the above

transformation and conditioning on β̄ji, τji, p̃ji0, for j = 1, . . . , i− 1, ni and xi,1:T , we
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obtain from (4.17) the linear Gaussian measurement equation

bi·i−1,t = β̄i·i−1 + Tiβ̃i·i−1,t + εi·i−1,t, (4.22)

where β̄i·i−1 = (β̄1i, . . . , β̄i−1i)
′, Ti = diag(τ1i, . . . , τi−1i) and εi·i−1,t is a zero mean Gaus-

sian innovation vector with conditional covariance given in (4.17). The measurement

equation (4.22) together with the state transitions for the β̃ji,t’s in Eq. (4.21) defines a

linear Gaussian state-space model for the (i− 1)-dimensional process β̃i·i−1,0:T . Hence

efficient simulation of the trajectory of normalized regression coefficients β̃i·i−1,0:T can

be carried out via the precision sampling algorithm of Chan and Jeliazkov (2009). In

order to increase the computational efficiency and speed of simulation – in particular

for high-dimensional applications – we follow the ideas of Carriero et al. (2019), Koop

et al. (2019) and Kastner and Huber (2020), and employ the Cholesky decomposition

C−1
[i−1],t = Ht∆tH

′
t, which allows to augment the jth equation in the system (4.22)

with the contemporaneous values of the first j− 1 elements in εi·i−1,t, j = 1, . . . , i− 1,

i.e.,

bji,t = β̄ji + τjiβ̃ji,t +

j−1∑
l=1

hlj,tε̃li,t + ε̃ji,t, ε̃ji,t ∼ N (0, σi·i−1,tδj·j−1,t/ni), (4.23)

where ε̃li,t and ε̃ji,t are independent for l 6= j, δj·j−1,t denotes the jth diagonal element

of ∆t and hlj,t is the lth entry in the jth row of Ht. This allows to sample the elements

of βi·i−1,t via a sequence of one-dimensional precision samplers.5

For the basic RSS model sampling of β̄ji and τ 2
ji can be conducted conditionally

on βi·i−1,0:T and xi,1:T , by applying standard conjugate Normal and inverse Gamma

priors, respectively.

For the shrinkage RSS specification we implement a hierarchical Normal-Gamma

shrinkage prior for τji, as recently proposed by Bitto and Frühwirth-Schnatter (2019).

The Normal-Gamma prior allows for a data-driven shrinkage of the beta process vari-

ances τ 2
ji to zero, resulting in time-constant beta-coefficients over the entire observation

5After sampling β̃i·i−1,0:T we obtain a draw for βi·i−1,0:T by the transformation βji,t = β̄ji + τjiβ̃ji,t.
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period.6 We further replace the Gaussian prior for β̄ji by a second Normal-Gamma

prior, inducing shrinkage of the initial values of the beta process to zero. This allows

to shrink static coefficients to coefficients which are not significant over the entire

observation period.

The hierarchical Normal-Gamma shrinkage priors for β̄ij and τij are given as follows:

β̄ji | sβji ∼ N (0, sβji), sβji | a
β
i , b

β
i ∼ Γ(aβi , 2/(a

β
i b
β
i )), aβi ∼ E(d1), bβi ∼ Γ(d2, 1/d3),

τji | sτji ∼ N (0, sτji), sτji | aτi , bτi ∼ Γ(aτi , 2/(a
τ
i b
τ
i )), aτi ∼ E(d1), bτi ∼ Γ(d2, 1/d3),

(4.24)

where i = 2, . . . , k, j = 1, . . . , i − 1, and E denotes the exponential distribution. a•i

(• ∈ {β, τ}) controls the tail behavior of the prior, with smaller values inducing heav-

ier tails, and b•i controls the global level of shrinkage, with larger values inducing more

prior mass for s•ji at zero. Full conditional updating of the hierarchical prior parame-

ters a•i , b•i , and {s•ji} is detailed in the Appendix C.3.7 Conditional on {s•ji}, updating

of {β̄ji} and {τji} exploits that Eq. (4.22) obeys a Gaussian seemingly unrelated re-

gression structure, hence the resulting posteriors are Gaussian. To further increase

the sampling efficiency we redraw the values of β̄ji and τji through interweaving into

the state equation of the centered parameterization in Eq. (4.19) (see, e.g., Yu and

Meng, 2011, and Bitto and Frühwirth-Schnatter, 2019, for details on interweaving).

For {p̃ji0} we impose a conjugate inverse Gamma prior.

In step 2.) the full conditional posterior for xi,1:T obtains as

π(xi,1:T |βi·i−1,1:T , γi, φi1, φi2, φi3, ν
2
i , ni, C1:T )

∝
T∏
t=1

exp
{
−ni

2

[
xit + e−xit(ci·i−1,t + (bi·i−1,t − βi·i−1,t)

′C[i−1],t(bi·i−1,t − βi·i−1,t))
]}

× fN
(
xit
∣∣ γi + φi1x̄i[t−1:t−1] + φi2x̄i[t−1:t−5] + φi3x̄i[t−1:t−22] , ν

2
i

)
, (4.25)

6See e.g. Park and Casella (2008), Carvalho et al. (2010), and Frühwirth-Schnatter and Wagner (2011) for
details on shrinkage priors.

7See also Appendix C.6 for a note on random number generation for the Generalized Inverse Gaussian
distribution, which is needed for the sampling scheme of the shrinkage prior parameters.
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which resembles a conditional, nonlinear and non-Gaussian state-space model for

xi,1:T . We sample the trajectory xi,1:T from its posterior in one block by employ-

ing the Particle Gibbs with Ancestor sampling (PG-AS) approach of Lindsten et al.

(2014).

For sampling of the HAR parameters we select independent conjugate Normal-

inverted-Gamma priors and simulate directly from their full conditional Gaussian

distributions given the xi,1:T state trajectory (see Gribisch et al., 2020).

In step 3.) we select a uniform prior p(ni) on (i−1,∞) and sample the Riesz degree

of freedom parameter ni using the Metropolis-Hastings (MH) algorithm. The target

density is given by

π(ni |{xi,1:T}, {βi·i−1,1:T}, C1:T )

∝ p(ni)
T∏
t=1

f(ci·i−1,t|σi·i−1,t, ni)f(bi·i−1,t|βi·i−1,t, σi·i−1,t, ni, C[i−1]t).
(4.26)

The proposal density for the MH step is chosen as a tailored t distribution. We

select for the mean and variance the mode and inverse Hessian obtained by numerical

optimization of the logarithmic target density kernel in (4.26) over ni, and set the

d.o.f. parameter to 18.

The chosen hyperparameters for the basic RSS model and its shrinkage version are

given in Appendix C.3.

4.4.2. Model comparison

For the purpose of comparing alternative model specifications we rely upon the De-

viance Information Criterion (DIC) based on the likelihood function (Spiegelhalter

et al., 2002).

Let θ denote the list of all static model parameters. Then the conditional DIC is

given by

DIC = −2 log p(C1:T |θ̂) + 2pD, (4.27)
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with small values of the criterion preferred. The term p(C1:T |θ̂) represents the likeli-

hood function evaluated at the posterior estimates for the parameters rewarding good

fits, and pD is the effective sample size, penalizing good fits achieved by means of

excessively rich parameterizations. The effective sample size is defined as

pD = −2
[
Epost[log p(C1:T |θ)]− log p(C1:T |θ̂)

]
, (4.28)

where Epost[log p(C1:T |θ)] is the mean of the conditional log-likelihood function taken

w.r.t. the posterior distribution of θ.

The conditional likelihood function in Eqs. (4.27) and (4.28) obtains as

p(C1:T |θ) =

∫ T∏
t=1

f(Ct | Σt; θ)f(Σt | Σ1:t−1; θ) dΣ1:T . (4.29)

Under the factorization of the Riesz density given in Proposition 3 and the inde-

pendent priors for the state processes {xi,1:T , βi·i−1,1:T} the conditional likelihood in

Eq. (4.29) as a function in {xi,1:T , βi·i−1,1:T} factorizes into k functionally independent

components, such that p(C1:T |θ) is proportional to

k∏
i=1

∫∫ [ T∏
t=1

exp
{
−ni

2

[
xit + e−xit(ci·i−1,t + (bi·i−1,t − βi·i−1,t)C[i−1],t(bi·i−1,t − βi·i−1,t)

′)
]}

× f(xit | xi,t−22:t−1)f(βi·i−1,t | βi·i−1,t−1)

]
dβi·i−1,1:T dxi,1:T , (4.30)

where f(xit | xi,t−22:t−1) and f(βi·i−1,t | βi·i−1,t−1) are the Gaussian transition densities

of the latent states. For a given value of θ the k integrals w.r.t. the βi·i−1,1:T ’s and

xi,1:T ’s can be taken as likelihood functions of independent mixed linear/nonlinear

(non-)Gaussian state-space models, which can be easily evaluated in parallel using a

Rao-Blackwellized particle filter (RBPF) approach (see, e.g., Schön et al., 2005).

Using this RBPF for the likelihood evaluation we can estimate the posterior mean

of the conditional log-likelihood function in Eq. (4.28) by the arithmetic mean over

the Gibbs draws of {θ(i)}Si=1, that is Êpost [log p(C1:T |θ)] = 1
S

∑S
i=1 log p(C1:T |θ(i)).
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4.4.3. Forecasting

Using the Gibbs sampler outlined in Section 4.4.1, we can perform out-of-sample

point- and density forecasting for the realized covariance matrix of asset returns Ct+1.

A density forecast for Ct+1 obtains as

p(Ct+1|C1:t) =

∫
f(Ct+1|Σt+1; θ) f(Σt+1|Σ1:t; θ) π(Σ1:t, θ|C1:t) dΣ1:t+1dθ, (4.31)

where π(Σ1:t, θ|C1:t) denotes the joint posterior density of the state variables in Σ1:t

and the parameter vector θ for the observed data up to period t, and f(Ct+1|Σt+1; θ)

is the measurement density for the realized covariance of the assets. The forecasting

density (4.31) evaluated at the ex-post observed value for Ct+1 defines the period t+1

Bayesian predictive density (Geweke, 2005).

The predictive density according to Eq. (4.31) can be approximated via MC inte-

gration, i.e.,

p(Ct+1|C1:t) '
1

S

S∑
i=1

f(Ct+1|Σ(i)
t+1; θ(i)), (4.32)

where {Σ(i)
t+1} and θ(i) are simulated draws from the convolution of the posterior and

transitions, f(Σt+1|Σ1:t; θ) π(Σ1:t, θ|C1:t), based on Gibbs simulations from the joint

posterior π(Σ1:t, θ|C1:t). Using the simulated draws {Σ(i)
t+1} the point forecast of Ct+1

given by E(Ct+1|C1:t) = E(Σt+1|C1:t) can be approximated by

E(Ct+1|C1:t) '
1

S

S∑
i=1

Σ
(i)
t+1. (4.33)

Note that the point forecast in Eq. (4.33) does account for parameter estimation

uncertainty. However, since we shall compare the predictive performance of the RSS

model with alternative forecasting approaches, which are not estimated by Bayesian

techniques and for which it is not clear how to obtain the posterior distribution, we

rely on the alternative conditional point forecast E(Ct+1|C1:t, θ). For its computation

118



4.5. Empirical Application

we set the parameters θ equal to their posterior mean estimates θ̂1:t based on the data

observed from 1 to t and simulate {Σ(i)
t+1} from f(Σt+1|Σ1:t; θ̂1:t) π(Σ1:t|C1:t, θ̂1:t).

4.5. Empirical Application

4.5.1. Data

We use the RSS model to analyze the dynamics of daily realized covariance matrices

for 30 stocks traded at the NYSE. The stocks are sorted by increasing liquidity and

cover nine relevant industry sectors according to the Global Industry Classification

Standard (GICS). The list of stocks is provided in Table 4.1.

The daily realized covariance matrices Ct are computed by the composite realized

kernel method of Lunde et al. (2016) based on 1-minute intraday returns.8 The com-

posite realized kernel performs a variance/correlation decomposition of the covariance

matrix and estimates the individual asset variances by the noise-robust univariate real-

ized kernel method of Barndorff-Nielsen et al. (2008), which exploits all available data

information for the respective asset. The estimation of the correlations for all asset

pairs is based on bivariate realized kernels with refresh time sampling (see Barndorff-

Nielsen et al., 2011, and Lunde et al., 2016, for details). Hence by the individual

computation of the realized variances and the refresh time sampling for all bivariate

relationships the composite realized kernel directly accounts for the heterogeneous

liquidity of the assets.

The data comprises 30×31/2 = 465 time series of realized variances and covariances

for the sample period from January 2, 2002 to December 31, 2014, covering 3272

trading days. See Figure 4.1 for time-series plots of the realized variances for three

randomly selected stocks (Dover, Nike, and Microsoft) together with the according

sample autocorrelation functions (ACFs). The time-series feature a very strong serial

correlation structure, which is characteristical for all assets in the data set.

8The intraday return data for the 30 stocks has been obtained from QuantQuote.com.
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4.5.2. Estimation results

We estimate the RSS model with and without shrinkage priors for the complete sample

covering 3272 trading days. The prior assumptions are overall fairly uninformative

and detailed in the Technical Appendix C.3.

For parameter estimation we run the MCMC algorithm proposed in Section 4.4.1

for 25,000 iterations, where the first 15,000 are discarded. The PG-AS procedure in

the MCMC updating step for the state-trajectories {xi,1:T} is implemented using 50

particles. For the computation of the DIC criterion we run the RBPF using 25,000

particles. The MCMC algorithm is implemented in MATLAB. In order to evaluate the

sampling efficiency of the proposed MCMC procedure for estimating the parameters

of the RSS model we compute the inefficiency factors for the posterior samples of the

parameters.9 Its benchmark value expected under perfect mixing of the MCMC draws

for the parameters is equal to one. For the RSS Shrinkage model the values of the

inefficiency factors range from 1.01 to 74.02 with an average value of 20.74 indicating

a high sampling efficiency with a very fast mixing rate.

Our in-sample analysis is threefold: We start with analyzing the impact of the

shrinkage prior specification on the estimated β-dynamics under the RSS model. We

then turn to the empirical effect of the attenuation bias of the Wishart relative to the

Riesz distribution and finally assess the in-sample fit of various model specifications

using the DIC criterion.

Figure 4.2 illustrates the impact of the Normal-Gamma shrinkage prior restrictions

on the β-estimates. Panels a) to e) report five selected time series of realized re-

gression coefficients bji together with corresponding smoothed β-estimates (posterior

means). The estimates are obtained under the RSS model with and without shrink-

age priors on the conditional RW variances. Panel f) summarizes the estimated RW

standard deviations for all 435 β-processes via histograms. The results show a strong

9The inefficiency factor for the posterior sample of a parameter is defined as IF = 1 + 2[B/(B −
1)]

∑B
j=1 K(j/B) ρ̂(j), where ρ̂(j) denotes the lag j sample autocorrelation of the MCMC draws of the

parameter, K(·) is the Parzen kernel function and B is the bandwidth which we set equal to B = 100
(for details, see Kim et al., 1998).
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data-driven shrinkage effect for those sequences, where the realized betas imply only

moderate time-variation accompanied with relatively high measurement error noise

(panels c) to e)). The realized betas in panels a) and b) in contrast indicate a pow-

erful signal for time-variation in the β processes, resulting in virtually identical beta

estimates across the two RSS specifications.

We now analyze the Wishart-implied restriction of equal d.o.f. across assets. For

this purpose we estimate a Wishart State-Space (WSS) model, which is obtained from

the RSS by setting n1 = n2 = · · · = nk = n. Figure 4.3 reports the d.o.f. estimates

together with corresponding 95% posterior high-density regions. The Riesz d.o.f. show

highly significant variation and an increasing trend, ranging from 9.63 to 223.18. The

assumption of constant d.o.f. is clearly rejected by the data. The estimated Wishart

d.o.f. amounts to n̂ = 173.06 with a very tight 95% posterior high-density region

and results in a significant attenuation of the implied measurement errors for the less

liquid assets relative to the Riesz (compare the discussion in Section 4.2).

Figure 4.4 provides an illustration of the Wishart-implied attenuation bias. The

Figure reports time-series of measurement error standard deviations for the 1st, 2nd,

10th, 20th and 30th asset for the time period from January 2nd, 2008, to December

30th, 2009, computed at estimated d.o.f. and smoothed estimates of the integrated

variances according to the RSS Shrinkage model (blue) and the WSS Shrinkage model

(red). As expected, the Wishart attenuates the dispersion of the measurement error,

resulting in far lower standard deviations as compared to the Riesz – in particular for

the less liquid assets, which are sorted first in the underlying return vector.

Figure 4.5 illustrates the effect of the Wishart-implied attenuation on the state dy-

namics. Panel a) indicates a significant increase in the conditional standard deviation

of the beta-coefficients. The induced state variation compensates for the reduced

measurement error and may negatively affect the forecasting performance. Similar re-

sults are found for the 30 σi·i−1,t-processes (compare panel e)). Moreover, the Wishart

induces a significant downward bias of the lag-1 HAR parameter φ1 which is of con-

siderable importance for the short-term forecasting performance.
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Table 4.2 contains the DIC values for RSS and WSS specifications with and with-

out shrinkage. Since the computation of the DIC is computationally prohibitive

for medium- and high-dimensional settings, we focus on six randomly chosen five-

dimensional sub-portfolios from the 30-dimensional data set of Section 4.5.1. We also

report DICs for the Uhlig Extension (UE) state-space model of Windle and Carvalho

(2014) as a natural Bayesian state-space competitor. The UE model combines the

Wishart measurement for Ct in Eq. (4) with a generalized matrix-variate Beta type-I

transition density for Ωt = Σ−1
t , resulting in a Matrix-F predictive distribution.10 In

particular the model assumes

Ωt = Ω
1/2
t−1ΨtΩ

1/2′

t−1 /λ, with Ψt ∼ BIk(m/2, n/2), (4.34)

where A1/2 denotes the lower triangular Cholesky factor of A and λ is a scalar-valued

smoothing parameter, which is set to λ = [1 + n/(m− k − 1)]−1 as suggested by the

authors. Windle and Carvalho (2014) derive a closed form expression for the predictive

distribution of Ct, which turns out to be of Matrix-F type. Bayesian estimation of

the UE model is conducted based on the MCMC scheme proposed by the authors.

The DIC results show a clear preference for the RSS Shrinkage specification. The

Wishart measurement and the Matrix-F UEmodel are outperformed in any case. This

is particularly remarkable for the UE model, which is very sparsely parameterized.

Hence the flexible RSS state dynamics together with the Riesz measurement density

appear to outweigh the penalty for the comparably huge number of model parameters.

For the RSS and the WSS model the shrinkage specifications provide the best in-

sample fit in five and four out of six cases, respectively.

Summarizing the in-sample findings, the Wishart-implied restriction of equal d.o.f.

for all assets is clearly rejected by the data and implies a considerable reduction of the

measurement error variance for the less liquid assets, inducing spurious state variation

accompanied by a significant reduction of short-term persistence. The WSS state

10See Gupta and Nagar (2000), for details on the matrix-variate Beta type-I distribution.
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dynamics are bound to capture the suppressed measurement error variation, inducing

overfitting and presumably poor out-of-sample performance. The Riesz distribution

alleviates the attenuation of measurement errors and the RSS specification provides

a significant improvement in in-sample fit relative to the according WSS specification

and the sparsely parameterized Matrix-F UE model of Windle and Carvalho (2014).

4.5.3. Out-of-sample forecasting results

We now analyze the out-of-sample forecasting performance of the RSS model for the

realized covariance matrix of asset returns Ct. As competing forecasting approaches

we consider a simple RW forecast for the realized covariance matrix, the Exponentially

Weighted Moving Average (EWMA) model (Morgan, 1996), the UE Matrix-F state-

space approach of Windle and Carvalho (2014) and the Lasso VAR approach of Callot

et al. (2017). The EWMA is popular in industry practice while the Lasso VAR

approach is found to be highly effective in predicting large covariance matrices of

asset returns. While the RW, EWMA and Lasso VAR approaches are observation-

driven forecasting models, the Matrix-F UE approach represents a parameter-driven

state-space competitor to the RSS model (see Section 4.5.2 for details on the UE

model).

The EWMA is given by

E(Ct+1 | C1:t) = (1− λ)Ct + λE(Ct | C1:t−1), (4.35)

where we set the smoothing parameter λ to its typically selected value of 0.96 (cf.

Callot et al., 2017).

The Lasso VAR model of Callot et al. (2017) employs a vector autoregression (VAR)

of order ` for the unique lower-triangular elements of the matrix logarithm of Ct.11 We

consider VAR(1), VAR(20) and VAR-HAR structures, where the VAR-HAR involves

a regression of the matrix-log on its first lag, the sum of the first 5 lags, and the

11For details on the matrix logarithm see, e.g., Bauer and Vorkink (2011) and Gribisch (2018).
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sum of the first 22 lags (cf. Corsi, 2009). Estimation of the VAR parameters is

conducted equation-wise using the Lasso of Tibshirani (1996), where the penalty

parameter is chosen by the Bayesian Information Criterion (cf. Callot et al., 2017).

Positive definiteness of the covariance forecast is ensured via the inverse of the matrix

logarithm.

We focus on 1-day-ahead predictions Ĉt = E(Ct+1 | Ct−2519+1:t, θ̂), which are ob-

tained by re-estimating the model parameters every 10 trading days on a rolling win-

dow with 2519 daily observations and then producing a sequence of new 1-day-ahead

forecasts based on the updated parameter estimates. We consider three out-of-sample

forecasting periods each covering one year with about 251 trading days, starting at

January 3rd, 2012, and ending at December 31th, 2014.

Statistical forecast evaluation

In order to assess the point forecasting accuracy we follow Ledoit et al. (2003) and

use the root-mean-squared-error (RMSE) based on the Frobenius norm comparing the

covariance matrix forecast Ĉt and the ex-post observed value for Ct. This RMSE is

given by

RMSE =
1

T ?

∑
t

||Ct − Ĉt|| =
1

T ?

∑
t

[∑
i,j

(cijt − ĉijt)2
]1/2

, (4.36)

where T ? denotes the number of forecasting periods. Since the RMSE is susceptible

to outliers in the realized covariance data we also consider the QLIKE loss

QLIKE =
1

T ?

∑
t

log |Ĉt|+ tr
(
Ĉt
−1
Ct

)
, (4.37)

which is known to be robust to noisy (co)variance proxies (see Patton, 2011, and

Laurent et al., 2013).

For assessing the significance of differences in the RMSE and QLIKE losses across

models we rely on the model confidence set (MCS) approach of Hansen et al. (2011).
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The MCS identifies the model or set of models having the best forecasting performance

at a given confidence level. The MCS is computed for a confidence level of 90% using

a block bootstrap with block length b(T ?)1/3c and 10,000 bootstrap replications.

Table 4.3 reports the RMSE and QLIKE results for the out-of-sample periods 2012,

2013 and 2014 as well as all three periods aggregated together. The RSS approach

significantly outperforms its competitors in most cases, in particular for the QLIKE

measure. The lowest RMSE losses are obtained under the shrinkage specification.

For the QLIKE loss the non-shrinkage version of the RSS model performs best. The

Lasso-HAR and the EWMA approach are the strongest competitors under the RMSE

and the QLIKE, respectively, but are significantly outperformed by the RSS models.

The only exception is the Lasso-HAR in 2013 for the RMSE loss.

Figure 4.6 reports time-series plots of period-wise accumulated Bayesian predictive

densities for Ct+1 computed for the RSS Shrinkage model, the WSS Shrinkage model

and the UE approach, which are all estimated by Bayesian inference techniques. Since

the evaluation of the (k× k)-dimensional measurement density f(Ct+1|Σ(i)
t+1; θ) in Eq.

(4.32) turns out to be numerically very unstable in high-dimensional applications12,

we focus on the six five-dimensional sub-portfolios discussed in Section 4.5.2. The

results show evidence for the Riesz state-space model as opposed to its Wishart and

Matrix-F competitors. Only for subsets two and five the Riesz is outperformed by

the Matrix-F UE specification.

Global-minimum-variance-portfolio forecasts

In order to provide an economic evaluation of the forecasting performance we use the

predicted covariance matrices of the assets to construct optimal investment portfolios

(c.f. Bauwens et al., 2016, and Callot et al., 2017). We consider a risk-averse investor

who relies on conditional mean-variance analysis to allocate resources across the 30

firms in Table 4.1.
12For high-dimensional Riesz measurement densities (as in our application for k = 30 assets) the density

evaluation suffers from frequent floating-point underflows (see Kastner, 2019, for a discussion of similar
computational problems).
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For a given covariance matrix forecast Ĉt computed in period t − 1 the investor

obtains portfolio weights ŵt by solving the minimization problem

ŵt = arg min
wt

w′tĈtwt, (4.38)

subject to
∑k

i=1wit = 1 and additional side-conditions which involve constraints on

the absolute portfolio weights, leverage, and the expected portfolio return w′t+1µ̂t+1 =

µtarget, where wt = (w1t, . . . , wkt)
′ denotes the vector of period-t portfolio weights to

be selected in period t−1 and µtarget is the target expected return from t to t+1. We

set µtarget to 10% per year and µ̂t+1 is computed by a moving average of the 30 asset

returns over the previous 100 trading days. The side-conditions are given in Table 4.4

and discussed below.

We use the following measures for assessing the relative capabilities of the competing

models for optimal portfolio allocation:

1. Average out-of-sample portfolio return: µp = 1
T−t0

∑T
t=t0+1 r

p
t , where r

p
t = ŵ′trt

denotes the portfolio return.

2. Accumlated out-of-sample portfolio return: µaccp =
∏T

t=t0+1(1 + rpt )− 1.

3. Out-of-sample portfolio standard deviation: σp =
√

1
T−t0

∑T
t=t0+1 (rpt − µp)

2.

4. Sharpe ratio: SRp = µp
σp
.

5. Minimum weight over all assets and time periods: mint0+1≤t≤T min1≤i≤k(ŵit).

6. Maximum weight over all assets and time periods: maxt0+1≤t≤T max1≤i≤k(ŵit).

7. Proportion of leverage: 1
k(T−t0)

∑T
t=t0+1

∑k
i=1 1(ŵit < 0).

8. Average Turnover: TO = 1
k(T−t0)

∑T
t=t0+1

∑k
i=1 |ŵit − ŵholdit |, where ŵholdit =

ŵit−1
1+rit−1

1+rpt−1
.

The results for the complete out-of-sample phase from 2012 to 2014 are summarized

in Table 4.4. We consider three sets of side-conditions, which are given as captions

126



4.6. Conclusion

of the respective panels in the table. Panel a) considers the global minimum variance

portfolio (GMVP) without additional side-conditions. Panel b) involves a no-leverage

condition and panels c) and d) impose conditions on the weights and the target return.

Panel d) corresponds to the setting of Callot et al. (2017). All four settings show over-

all good and competitive results for the RSS specifications. The RSS performance also

appears robust over the four portfolio settings and involves comparably low portfolio

standard deviations. We however note that the RW and the UE approach are strong

competitors w.r.t portfolio performance as measured by the average return and the

Sharpe ratio. The lowest turnover is always generated by the EWMA model.

Figure 4.7 shows time-series plots of randomly selected portfolio weight forecasts

obtained under the RSS, WSS and UE models. The RSS forecasts appear smoothest,

inducing lower turnover, leverage and less extreme positive and negative weights com-

pared to its state-space competitors (compare Table 4.4). This finding can be inter-

preted as a direct consequence of the reduced variability of the RSS state process

compared to its Wishart state-space competitors, where the Wishart attenuates mea-

surement errors, resulting in spurious state variation, which in turn induces extreme

portfolio weight forecasts.

4.6. Conclusion

We propose a new matrix-variate Riesz state-space (RSS) model for time series of

k-dimensional positive-definite realized covariance matrices of asset returns. The RSS

model is based on the Riesz measurement density, which was introduced by Hassairi

and Lajmi (2001) and can be interpreted as a generalization of the Wishart to missing

data structures. We analyze the stochastic properties of the Riesz and provide a

comparison to the nested Wishart distribution as a measurement density for realized

covariance matrices. Importantly, we find that the Wishart attenuates the dispersion

of measurement errors in high-dimensional applications. This attenuation is alleviated

by the Riesz, which allows for more flexible covariance structures via k− 1 additional
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d.o.f. to capture the underlying liquidity pattern.

We combine the Riesz measurement density with a Cholesky-based state transi-

tion in order to obtain a tractable state-space model which enables straightforward

Bayesian MCMC estimation completely parallelized over the assets. In order to cope

with potential overfitting problems in high-dimensional applications we introduce

sparsity on the state dynamics via implementing the hierarchical Normal-Gamma

shrinkage prior approach of Bitto and Frühwirth-Schnatter (2019).

We provide an empirical application of Wishart- and Riesz state-space models to

30 assets selected from the S&P 500. Our results show that the Wishart implies a

considerable reduction of the measurement error variance for the less liquid assets,

inducing spurious state variation accompanied by a significant reduction of the short-

term state persistence relative to the Riesz. Compared to relevant Wishart state-space

competitors the Riesz specification provides a significant improvement in in-sample

fit.

The in-sample findings are confirmed by an out-of-sample forecasting experiment

including both statistical and economic evaluation criteria. The RSS model shows

good forecasting performance and we can conclude that the RSS approach is a valuable

tool for modeling and forecasting time-series of high-dimensional realized covariance

matrices.
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4.7. Tables and Figures

Table 4.1.: List of the stocks included in the data set.

Avg. Med.
# Symbol Company Sector trades trades Subset

1 VAR Varian Medical Systems H 360.8 374 2
2 DOV Dover Corp. I 371.0 381 5
3 LXK Lexmark Int., Inc. T 374.5 382 3
4 CCE Coca-Cola European Partners S 372.4 385 4
5 PX Pelangio Exploration Inc. M 378.8 386 2
6 CB Chubb Ltd. F 377.0 386 3
7 APOL Apollo Group, Inc. D 381.7 387 1
8 DO Diamond Offshore Drill., Inc. E 375.5 388 4
9 CAG Conagra Brands, Inc. S 383.6 388 6
10 VRSN VeriSign, Inc. T 383.9 388 6
11 A Agilent Technologies, Inc. H 385.0 389 6
12 LMT Lockheed Martin Corp. I 385.4 389 5
13 ETFC E*TRADE Fin. Corp. F 381.1 389 6
14 CIEN Ciena Corp. T 384.8 389 4
15 EMR Emerson Electric Company I 385.1 390 5
16 NKE Nike Inc. D 382.3 390 2
17 TJX TJX Companies Inc. D 382.1 390 1
18 BAX Baxter International H 385.0 390 3
19 ALL Allstate Corp. F 385.5 390 5
20 SO Southern Company U 385.0 390 4
21 C Citigroup Inc. F 389.4 391 1
22 DD DuPont de Nemours, Inc. M 388.3 391 1
23 MSFT Microsoft Corp. T 389.5 391 3
24 SBUX Starbucks Corp. D 388.4 391 4
25 HD The Home Depot, Inc. D 389.1 391 3
26 KO The Coca-Cola Company S 388.7 391 2
27 JNJ Johnson & Johnson H 389.1 391 5
28 USB U.S. Bancorp F 387.4 391 6
29 MS Morgan Stanley F 388.7 391 2
30 EMC EMC Corporation T 389.1 391 1
Note: The stocks are sorted by increasing liquidity based on the median number of trades
per day (Med. trades). Avg. trades denotes the average number of trades per day. Subset
denotes the respective 5-dimensional subset the particular stock belongs to. The sector labels
are: (I) Industrials; (D) Consumer Discretionary; (S) Consumer Staples; (H) Health Care;
(M) Materials; (E) Energy; (U) Utilities; (F) Financials; (T) Information Technologies.
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Table 4.2.: Deviance Information Criteria (DIC) results.

DIC ×10−4

Assets RSS RSS Shr. WSS WSS Shr. UE

apol tjx c dd emc 4.6312 4.6148 4.6471 4.6461 30.8564
var px nke ko ms 0.9327 0.9327 1.0808 1.1317 15.6550
lxk cb bax msft hd 1.0049 0.9797 1.0250 1.0372 16.3226
cce do cien so sbux 5.0921 5.0848 5.0983 5.0913 32.2674
dov lmt emr all jnj −1.6123 −1.6133 −1.6017 −1.6059 5.0853
cag vrsn a etfc usb 5.2281 5.2342 5.2755 5.2643 33.2150

Note: This table reports the DIC results for the RSS, WSS and UE models for the six subsets of
the 30D data. The likelihood for the DICs in Eq. (4.29) is computed using a Rao-Blackwellized
bootstrap particle filter with 25,000 particles. The assets belonging to the corresponding subsets
are listed in Table 4.1.
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Table 4.3.: Evaluation of point-forecast accuracy.

Period

Model 2012 2013 2014 Full 2012 2013 2014 Full

RMSE QLIKE

RSS 12.40 9.04 9.97 10.46 9.89 9.48 10.45 9.94
RSS Shr. 12.40 9.02 9.96 10.45 9.91 9.48 10.47 9.96
WSS 13.28 9.65 10.03 10.98 10.37 9.85 10.85 10.36
WSS Shr. 13.15 9.56 9.98 10.89 10.29 9.79 10.76 10.28
UE 13.31 9.75 10.29 11.11 11.02 10.67 11.78 11.16
Lasso-VAR(1) 13.04 9.19 10.30 10.84 11.50 10.86 11.92 11.43
Lasso-VAR(20) 12.88 9.14 10.28 10.76 11.19 10.44 11.54 11.06
Lasso-VAR(HAR) 12.61 9.06 10.17 10.61 11.08 10.37 11.52 10.99
EWMA 14.18 9.63 10.86 11.55 11.31 9.80 11.61 10.90
RW 16.61 11.95 11.95 13.50 17.47 16.77 18.49 17.58
Note: This table reports the RMSE and QLIKE losses as given in Eqs. (4.36) and (4.37). Grey-shaded
cells indicate that the model is in the 90% model confidence set.
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Table 4.4.: GMVP forecasting results.

Model µp µacc
p σp SRp minw maxw Leverage TO

Unrestricted

RSS 0.0504 0.4507 0.4503 0.1120 -0.1151 0.4084 0.2809 0.0125
RSS Shr. 0.0514 0.4612 0.4497 0.1143 -0.1152 0.4254 0.2849 0.0138
WSS 0.0508 0.4538 0.4616 0.1100 -0.2027 0.5258 0.3282 0.0270
WSS Shr. 0.0517 0.4640 0.4616 0.1120 -0.1928 0.5412 0.3270 0.0262
UE 0.0566 0.5194 0.4641 0.1221 -0.1607 0.5187 0.3371 0.0165
Lasso-VAR(1) 0.0423 0.3635 0.4634 0.0912 -0.0603 0.4775 0.3631 0.0187
Lasso-VAR(20) 0.0433 0.3741 0.4598 0.0941 -0.0645 0.3982 0.3549 0.0126
Lasso-VAR(HAR) 0.0457 0.4003 0.4529 0.1010 -0.0752 0.3821 0.3441 0.0118
EWMA 0.0412 0.3532 0.4447 0.0926 -0.0980 0.3225 0.2885 0.0023
RW 0.0565 0.5152 0.5056 0.1117 -0.1908 0.8176 0.3940 0.0579

wit+1 ≥ 0 ∀i
RSS 0.0455 0.3974 0.4608 0.0988 0.0000 0.4186 — 0.0098
RSS Shr. 0.0464 0.4073 0.4584 0.1013 0.0000 0.4333 — 0.0110
WSS 0.0465 0.4075 0.4702 0.0989 0.0000 0.5185 — 0.0197
WSS Shr. 0.0476 0.4187 0.4690 0.1014 0.0000 0.5350 — 0.0192
UE 0.0494 0.4385 0.4731 0.1045 0.0000 0.5008 — 0.0113
Lasso-VAR(1) 0.0369 0.3090 0.4739 0.0778 0.0000 0.4888 — 0.0137
Lasso-VAR(20) 0.0381 0.3209 0.4699 0.0810 0.0000 0.4134 — 0.0093
Lasso-VAR(HAR) 0.0389 0.3293 0.4646 0.0837 0.0000 0.3997 — 0.0089
EWMA 0.0402 0.3429 0.4585 0.0877 0.0000 0.3235 — 0.0016
RW 0.0460 0.4006 0.5052 0.0911 0.0000 0.8547 — 0.0380

0 ≤ wit+1 ≤ 0.2 ∀i; w′
t+1µ̂t+1 = µtarget

RSS 0.0474 0.4160 0.4838 0.0979 0.0000 0.2000 — 0.0091
RSS Shr. 0.0471 0.4136 0.4823 0.0977 0.0000 0.2000 — 0.0100
WSS 0.0466 0.4077 0.4951 0.0942 0.0000 0.2000 — 0.0176
WSS Shr. 0.0470 0.4114 0.4947 0.0950 0.0000 0.2000 — 0.0171
UE 0.0485 0.4278 0.4975 0.0976 0.0000 0.2000 — 0.0102
Lasso-VAR(1) 0.0406 0.3445 0.4972 0.0816 0.0000 0.2000 — 0.0121
Lasso-VAR(20) 0.0407 0.3457 0.4949 0.0822 0.0000 0.2000 — 0.0085
Lasso-VAR(HAR) 0.0418 0.3575 0.4899 0.0853 0.0000 0.2000 — 0.0081
EWMA 0.0418 0.3574 0.4820 0.0866 0.0000 0.2000 — 0.0029
RW 0.0502 0.4444 0.5165 0.0971 0.0000 0.2000 — 0.0323

|wit+1| ≤ 0.2 ∀i;
∑k

i=1 |wit+1|1(wit < 0) < 0.3; w′
t+1µ̂t+1 = µtarget

RSS 0.0518 0.4649 0.4629 0.1119 -0.1068 0.2000 0.2874 0.0121
RSS Shr. 0.0522 0.4695 0.4635 0.1126 -0.0973 0.2000 0.2927 0.0132
WSS 0.0530 0.4779 0.4752 0.1116 -0.1500 0.2000 0.3258 0.0244
WSS Shr. 0.0534 0.4827 0.4751 0.1125 -0.1440 0.2000 0.3241 0.0237
UE 0.0583 0.5381 0.4734 0.1232 -0.1474 0.2000 0.3275 0.0154
Lasso-VAR(1) 0.0462 0.4039 0.4742 0.0974 -0.0848 0.2000 0.3522 0.0174
Lasso-VAR(20) 0.0473 0.4159 0.4725 0.1001 -0.0887 0.2000 0.3478 0.0121
Lasso-VAR(HAR) 0.0483 0.4263 0.4667 0.1034 -0.0838 0.2000 0.3386 0.0117
EWMA 0.0452 0.3943 0.4567 0.0989 -0.1036 0.2000 0.2935 0.0037
RW 0.0520 0.4657 0.5018 0.1037 -0.1744 0.2000 0.3619 0.0458
Note: This table reports GMVP summary statistics for different restrictions. µ̂t+1 is computed as a moving
average with window length h = 100. µtarget is set to 10% per year.
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Figure 4.1.: Time series plots of selected realized (co)variances.
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Time-series plots and according sample ACFs of the realized (co)variances of three stocks
selected randomly from the 30 stocks in Table 4.1. The dashed lines indicate 95% Bartlett
confidence bounds under the null of no autocorrelation.
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Figure 4.2.: Time series plots of β estimates obtained under the Riesz distribution.

Panels a) – e): time-series plots of β estimates obtained under the Riesz distribution.
Panel f): histograms of estimated conditional RW standard deviations. Red: smoothed
estimates with shrinkage priors; blue: smoothed estimates without shrinkage priors. Gray:
realized betas.
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Figure 4.3.: Estimation results for the d.o.f parameters of the RSS and WSS model.

Panel a): Estimated d.o.f. for the RSS Shrinkage model (dark blue) and the corresponding
WSS Shrinkage model (dark red). The light blue and light red shaded areas mark 95%
posterior high density regions for the RSS Shrinkage model and the WSS Shrinkage model,
respectively. Panel b): Liquidity measured according to the median (solid) and average
number of trades per day (dashed), respectively.
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Figure 4.4.: Time-series of measurement error standard deviations.
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Time-series of measurement error standard deviations for the 1st, 2nd, 10th, 20th and 30th
asset for the time period from January 2nd, 2008, to December 30th, 2009. The standard
deviations are computed at estimated d.o.f. and smoothed estimates of the integrated vari-
ances according to the RSS Shrinkage model (blue) and the WSS shrinkage model (red) for
the 30-dimensional data set detailed in Section 4.5.1.
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Figure 4.5.: Estimation results for the RSS and WSS model.

Estimation results for the state parameters of the RSS Shrinkage model (dark blue) and the
corresponding WSS Shrinkage model (dark red). Panel a): estimated conditional standard
deviations for the RW processes for the βji coefficients. Panel b) – e): estimated HAR
parameters for the log σi.i−1,t processes. The light blue and light red shaded areas mark 95%
posterior high density regions for the RSS Shrinkage model and the WSS Shrinkage model,
respectively.
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Figure 4.6.: Time-series plots of accumulated Bayesian predictive densities.
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Time-series plots of period-wise accumulated Bayesian predictive densities for Ct+1 in dif-
ferent five-dimensional subsets of the full data set. RSS Shrinkage: blue; WSS Shrinkage:
red; Matrix-F UE: black.
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Figure 4.7.: Time-series plots of GMVP weights.
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Time-series plots of GMVP weights for DOV, NKE and MSFT stock under Callot et al.
(2017) restrictions. RSS Shrinkage: solid blue; WSS Shrinkage: dashed red; Matrix-F UE:
dashed black.
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Appendix A.

Appendix for Chapter 2

A.1. Details on the MCMC Algorithm

A.1.1. PGAS algorithm for the sampling of xfk,1:T and xei,1:T

In steps 1.) and 3.) of the proposed MCMC sampling scheme in Section 2.3.1, we

sample the latent state series {xfk,1:T} and {xei,1:T} full conditional on the static model

parameters and latent states {˜̀k,1:T} and {βi,1:T} using particle Gibbs with ancestor

sampling (PG-AS, Andrieu et al., 2010; Lindsten et al., 2014). Note, in addition to

conditioning on the static parameters, the particle Gibbs algorithm also uses a draw

of xfk,1:T (xei,1:T ) from the previous MCMC iteration as reference trajectory.

In the following, the PG-AS algorithm is stated for sampling of the ith idiosyncratic

component with AR(1) state dynamics. The algorithm is straightforwardly altered

to sample the factor components or to incorporate latent HAR dynamics. The PG-

AS algorithm proceeds in the following steps to sample xei,1:T from its posterior in

Eq. (2.19):

1.) For t = 1: Initialize M − 1 particles xe(1)
i1 , . . . , x

e(M−1)
i1 from N (mxi, v

2
xi), where

mxi and v2
xi are the stationary mean and variance of the latent AR process,

respectively, and deterministically set xe(M)
i1 = xei1. Then calculate the weights

w
(j)
i1 = exp

{
−n

2

[
x
e(j)
i1 +

(
β′i1C

f
1 βi1 − 2β′i1c

rf
i1 + cri1

)
exp(−xe(j)i1 )

]}
, (A.1)

and compute the normalized weights w̃(j)
i1 = w

(j)
i1 /

∑M
l=1w

(l)
i1 , for j = 1, . . . ,M .

2.) For t = 2, . . . , T : Re-sample the state trajectories by drawing x̃e(1)
i,1:t−1, . . . , x̃

e(M−1)
i,1:t−1

from the set {xe(j)i,1:t−1}Mj=1 according to the probabilities {w̃(j)
it−1}Mj=1, and draw an
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index J ∈ {1, . . . ,M} with probability

Pr(J = j) =
w

(j)
it−1fN (xeit | x

e(j)
it−1)∑M

l=1w
(l)
it−1fN (xeit | x

e(l)
it−1)

, (A.2)

for j = 1, . . . ,M . Here fN (xeit | x
e(j)
it−1) denotes the Gaussian transition density

of the latent states evaluated at the reference trajectory. Set x̃e(M)
i1:t−1 = x

e(J)
i1:t−1.

Then, sample M − 1 draws xe(1)
it , . . . , x

e(M−1)
it from the corresponding transitions

N (γei + φei (x̃
e(j)
it−1 − γei ), [νei ]2), j = 1, . . . ,M − 1, and set xe(M)

it = xeit and x
e(j)
i,1:t ≡

(x̃
e(j)
i,1:t−1, x

e(j)
it ), j = 1, . . . ,M . Now, calculate the weights

w
(j)
it = exp

{
−n

2

[
x
e(j)
it +

(
β′itC

f
t βit − 2β′itc

rf
it + crit

)
exp(−xe(j)it )

]}
, (A.3)

and compute the normalized weights w̃(j)
it = w

(j)
it /

∑M
l=1w

(l)
it , for j = 1, . . . ,M .

3.) For t = T : Sample an index J? ∈ {1, . . . ,M} with probability Pr(J? = j) =

w̃
(j)
iT . The trajectory xe(J

?)
i,1:T ≡ (x̃

e(J?)
i,1:T−1, x

e(J?)
iT ) is now used as approximate draw

from the posterior distribution.

The PG-AS algorithm for the sampling of the factor components xfk,1:T , k = 1, . . . , q,

is obtained by setting the weights w(j)
it in Eqs. (A.1) and (A.3) to

w
(j)
kt = exp

{
−n

2

[
x
f(j)
kt +

(
`′ktC

f
t `kt

)
exp(−xf(j)

kt )
]}

, (A.4)

for t = 1, . . . , T .

A.1.2. FFBS algorithm for the sampling of ˜̀
k,1:T and βi,1:T

In steps 2.) and 4.) of the proposed MCMC sampling scheme, we sample the latent

state series {˜̀k,1:T} and {βi,1:T} full conditional on the static model parameters and

latent states {xfk,1:T} and {xei,1:T} via a Forward Filtering Backward Sampling algo-

rithm (FFBS, de Jong and Shephard, 1995). In the following, the FFBS algorithm

is stated for an arbitrary d-variate vector state-space model with latent state vector
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x1:T , which can straightforwardly be adjusted to match the corresponding models for

{˜̀k,1:T} and {βi,1:T}.

The d-variate vector state-space model is given by

yt | xt ∼ N (xt, Ft), xt | xt−1 ∼ N (Γ + Φxt−1, V ), (A.5)

with x0 ∼ N (Γ̃, Ṽ ), where Γ̃ = (Id − Φ)−1Γ and vec(Ṽ ) = (Id2 − Φ⊗ Φ)−1vec(V ).

Given the initial conditions M0 = Γ̃ and P0 = Ṽ , the forward filter cycles in

expectation through the predictive and filtering distributions

xt | y1:t−1 ∼ N (M?
t , P

?
t ), and xt | y1:t ∼ N (Mt, Pt), (A.6)

where

M?
t = Γ + ΦMt−1, P ?

t = ΦPt−1Φ′ + V (A.7)

Mt = M?
t +Kt(yt −M?

t ), Pt = P ?
t −Kt(P

?
t + Ft)K

′
t (A.8)

with Kt = P ?
t (P ?

t + Ft)
−1, for t = 1, . . . , T .

After the forward filtering is finished, the sequence x1:T of latent states is drawn

recursively from their posterior

π(x1:T | y1:T , θ) = f(xT | y1:T , θ)
T−1∏
t=1

f(xt | y1:t, xt+1, θ), (A.9)

by first sampling from the full conditional distribution

xT | y1:T , θ ∼ N (MT , PT ), (A.10)

and then recursively backward sampling from

xt | y1:t, xt+1, θ ∼ N (Mt + K̃t(xt+1 − Γ− ΦMt), Pt − K̃t(V + ΦPtΦ
′)K̃ ′t), (A.11)
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with K̃t = PtΦ(V + ΦPtΦ
′)−1, for t = T − 1, . . . , 1, where Mt and Pt are found from

the forward filtering algorithm in (A.7) and (A.8); see also Kim and Nelson (1999).

The FFBS algorithms for {˜̀kt}qk=2 and {βit}pi=1 are readily set up by setting

yt ≡ lkt = (C̃f
kt)
−1c̃fkt, xt ≡ ˜̀

kt, Ft ≡
ex

f
kt

n
(C̃f

kt)
−1,

Γ ≡ γ`k, Φ ≡ Φ`
k, V ≡ Σ`

k,

and

yt ≡ bit = (Cf
t )−1crfit , xt ≡ βit, Ft ≡

ex
e
it

n
(Cf

t )−1,

Γ ≡ γβi , Φ ≡ Φβ
i , V ≡ Σβ

i ,

respectively. The vectors and matrices C̃f
kt, c̃

f
kt, γ

`
k,Φ

`
k,Σ

`
k and γβi ,Φ

β
i ,Σ

β
i are defined

in Section 2.3.1.

A.1.3. Sampling of HAR parameters

The WFSS-HAR model assumes HAR dynamics for the individual time-series {xfk,1:T}

and {xei,1:T}. Based on an arbitrary time-series xi,1:T , this section describes how to

sample the corresponding static parameters.

Conditional on xi,1:T , joint updating for the HAR parameters γi, φi1, φi2, φi3, ν2
i is

done by sampling from

ν2
i | xi,1:T ∼ IG

(ν1

2
,
s1

2

)
, (A.12)

(γ∗i , φi1, φi2, φi3)′ | xi,1:T , ν
2
i ∼ N4(M−1

1 b1, ν
2
iM

−1
1 ), (A.13)
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with γ∗i = γi(1− φi1 − φi2 − φi3), and

ν1 = ν0 + T, (A.14)

s1 = s0 + y′(y −Xb) + (b0 − b)′(M−1
0 + (X ′X)−1)−1(b0 − b), (A.15)

M1 = M0 +X ′X, (A.16)

b1 = M0b0 +X ′Xb, (A.17)

where ν0, s0, b0 and M0 are the prior hyperparameters, y is a (T − 22) × 1 vector

with entries xi,23:T , X is a (T − 22)× 4 matrix obtained by stacking the 1× 4 vectors

Xt = (1, x̄i[t−1:t−1], x̄i[t−1:t−5], x̄i[t−1:t−22]), for t = 23, . . . , T , and b = (X ′X)−1X ′y. A

sample for γi is obtained by rescaling γ∗i with (1− φi1 − φi2 − φi3)−1.

Sampling from the Normal-inverted-Gamma posterior in Eqs. (A.12) and (A.13)

does not ensure stationarity of the underlying HAR process and invertibility of (1 −

φi1 − φi2 − φi3). However, this can be achieved via a Metropolis-step. Therefore,

a proposal for (γ∗i , φi1, φi2, φi3) is drawn from (A.13). The proposal is accepted as

new draw with probability one if the stationarity conditions for the HAR process and

(1− φi1 − φi2 − φi3) 6= 0 are fulfilled, and is rejected otherwise.

A.1.4. Sampling of AR(1) parameters

The WFSS model assumes AR(1) dynamics for the individual time-series {`kj,1:T},

and – in few model specifications – {βik,1:T}, {xfk,1:T} and {xei,1:T}. Based on an

arbitrary time-series xi,1:T , this section describes how to sample the corresponding

static parameters.

Similar to the updating of the HAR parameters in Section A.1.3, joint updating for

the AR(1) parameters γi, φi, ν2
i is done conditional on xi,1:T , by sampling from

ν2
i | xi,1:T ∼ IG

(ν1

2
,
s1

2

)
, (A.18)

(γ∗i , φi)
′ | xi,1:T , ν

2
i ∼ N2(M−1

1 b1, ν
2
iM

−1
1 ), (A.19)
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with γ∗i = γi(1 − φi). The posterior parameters ν1, s1, b1 and M1 are defined in

Eqs. (A.14)–(A.17). Here, y is a (T−1)×1 vector with entries xi,2:T , X is a (T−1)×2

matrix obtained by stacking the 1 × 2 vectors Xt = (1, xi,t−1), for t = 2, . . . , T , and

b = (X ′X)−1X ′y. A sample for γi is obtained by rescaling γ∗i with (1− φi)−1.

Sampling from the Normal-inverted-Gamma posterior in Eqs. (A.18) and (A.19)

does not ensure stationarity of the underlying AR(1) process and invertibility of (1−

φi). However, this can be achieved via a Metropolis-step. Therefore, a proposal for

(γ∗i , φi) is drawn from (A.19). The proposal is accepted as new draw with probability

one if the stationarity conditions for the AR(1) process and (1− φi) 6= 0 are fulfilled,

and is rejected otherwise.

A.1.5. Sampling of d.o.f. parameter n

In the last step we simulate the Wishart degrees of freedom parameter n, which is

allowed to take values on a discrete grid, i.e., n ∈ {n(1), n(2), . . . , n(N)}, with m <

n(1) < n(2) < · · · < n(N). Given the discrete uniform prior, pr(n), which assigns the

prior probability Pr(n = n(i)) = 1
N
, i = 1, . . . , N , the posterior probability for each

n(i) is given by

Pr(n = n(i)|{xei,1:T}, {βi,1:T}, {xfk,1:T},{`k,1:T}, C1:T )

=

∏T
t=1 fW(Ct|n(i),Σt/n(i))∑N

j=1

∏T
t=1 fW(Ct|n(j),Σt/n(j))

,
(A.20)

where fW(Ct|·) is defined in Eq. (2.3). That is, we generate a sample from the multi-

nomial distribution in Eq. (2.21), by sampling n from {n(1), n(2), . . . , n(N)} with prob-

abilities (A.20).

A.2. BPF Approximation of the Likelihood in Equation (2.24)

The Deviance Information Criteria (DIC) calculations in Eq. (2.22) are based on the

conditional likelihood in Eq. (2.24). Since the integral in Eq. (2.24) is analytically
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intractable we have to rely on approximations. For its evaluation we use the Bootstrap

particle filter (BPF) algorithm of Gordon et al. (1993). Based on the factorization

of the conditional likelihood in Eq. (2.25), we implement p independent BPFs to

approximate the asset-specific likelihood contributions

pi(C
r
1:T |C

fr
1:T , C

f
1:T ; θ)

=

∫ [ T∏
t=1

exp

{
−1

2
[(n− q)xeit + nceit exp(−xeit)]

}
fN (xeit | xei1:t−1)

]
dxei,1:T ,

(A.21)

for i = 1, . . . , p, where fN (xeit | xei1:t−1) denotes the Gaussian transition density of the

latent xeit’s.

In the following we state the BPF algorithm for any asset-specific component i,

whereby we drop the conditioning on Cfr
1:T , C

f
1:T and θ and we focus on AR(1) dynam-

ics for the latent idiosyncratic components for notational convenience. Likelihood

estimates for the WFSS models with latent HAR dynamics are found in a similar

fashion.

The BPF algorithm for estimating the conditional likelihood in Eq. (A.21) pro-

duces Monte Carlo estimates for the sequence of the period-t likelihood contributions

pi(C
r
t |Cr

1:t−1) by sequentially importance sampling (IS) and re-sampling using the tran-

sition densities fN (xeit | xeit−1) as IS densities for the states xeit. For a given value of

the parameters θ the BPF algorithm proceeds in the following steps:

1.) For t = 1: Initialize M draws xe(1)
i1 , . . . , x

e(M)
i1 from N (mxi, v

2
xi), where mxi and

v2
xi are the stationary mean and variance of the latent AR process, respectively,

and compute the period-1 likelihood estimate p̂i(Cr
1) as

p̂i(C
r
1) =

1

M

M∑
j=1

w
(j)
i1 , w

(j)
i1 = e

{
− 1

2

[
(n−q)xe(j)i1 +ncei1 exp(−xe(j)i1 )

]}
. (A.22)

Then compute the normalized weights w̃(j)
i1 = w

(j)
i1 /

∑M
l=1w

(l)
i1 and re-sample by

drawing x̃
e(1)
i1 , . . . , x̃

e(M)
i1 from the set {xe(j)i1 }Mj=1 according to the probabilities

{w̃(j)
i1 }Mj=1.

147



Appendix A. Appendix for Chapter 2

2.) For t = 2, . . . , T : Sample M draws xe(1)
it , . . . , x

e(M)
it from the corresponding tran-

sitions N (γei +φei (x̃
e(j)
it−1− γei ), [νei ]2), set xe(j)i,1:t = (x̃

e(j)
i,1:t−1, x

e(j)
it ), j = 1, . . . ,M , and

compute the period-t likelihood estimate p̂i(Cr
t |Cr

1:t−1) as

p̂i(C
r
t | Cr

1:t−1) =
1

M

M∑
j=1

w
(j)
it , w

(j)
it = e

{
− 1

2

[
(n−q)xe(j)it +nceit exp(−xe(j)it )

]}
. (A.23)

Then compute the normalized weights w̃(j)
it = w

(j)
it /

∑M
l=1w

(l)
it , j = 1, . . . ,M , and

re-sample by drawing x̃e(1)
i,1:t, . . . , x̃

e(M)
i,1:t from the set {xe(j)i,1:t}Mj=1 according to the

probabilities {w̃(j)
it }Mj=1.

3.) The BPF estimate for pi(Cr
1:T ) is then obtained as p̂i(Cr

1)
∏T

t=2 p̂i(C
r
t | Cr

1:t−1).

Finally, the estimate for the conditional ‘full’ likelihood is given by

p̂(Cr
1:T |C

fr
1:T , C

f
1:T ; θ) = KT (n,Ce

1:T )

p∏
i=1

p̂i(C
r
1:T |C

fr
1:T , C

f
1:T ; θ), (A.24)

where KT (n,Ce
1:T ) = (n/2)T (n−q)p/2 [Γp((n− q)/2)]−T

∏T
t=1 |Ce

t |(n−q−p−1)/2.

A.3. A Matrix-F Mixture Factor State-Space Model

In the following we derive a Matrix-F mixture factor state-space model by exploit-

ing the Wishart-mixture representation of the Matrix-F distribution. Therefore, we

assume

C−1
t | St

ind∼ Wm(n2, S
−1
t ), St | Σt

ind∼ Wm(n1,Σt/c), (A.25)

where St is the m×m mixture-scale matrix, n1, n2 > m−1 are the d.o.f. parameters,

and c is a scalar parameter scaling Σt. The matrices Ct and Σt are partitioned as

stated in Eq. (2.1).

The marginal density of C−1
t given Σt is readily obtained by integrating the joint
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density f(C−1
t , St | Σt) w.r.t. St, i.e.,

f(C−1
t | Σt) =

∫
f(C−1

t , St | Σt) dSt

=
[
2(n1+n2)m/2Γm

(n1

2

)
Γm

(n2

2

)]
|cΣ−1

t |n1/2|C−1
t |(n2−m−1)/2

×
∫
|St|(n1+n2−m−1)/2 exp

{
−1

2
tr
[
St(C

−1
t + cΣ−1

t )
]}

dSt. (A.26)

The identity |St|(n1+n2−m−1)/2 exp
{
−1

2
tr
[
St(C

−1
t + cΣ−1

t )
]}

in the latter equation is

the kernel of a Wm(n1 + n2, (C
−1
t + cΣ−1

t )−1) distribution for St. Hence,∫
|St|(n1+n2−m−1)/2 exp

{
−1

2
tr
[
St(C

−1
t + cΣ−1

t )
]}

dSt

= 2(n1+n2)m/2Γm

(
n1 + n2

2

)
|C−1

t + cΣ−1
t |−(n1+n2)/2.

(A.27)

Combining (A.26) and (A.27) yields

f(C−1
t | Σt) =

Γm
(
n1+n2

2

)
Γm
(
n1

2

)
Γm
(
n2

2

) |cΣ−1
t |n1/2|C−1

t |(n2−m−1)/2|C−1
t + cΣ−1

t |−(n1+n2)/2,

(A.28)

which is the pdf of a matrix-variate F distribution with n1, n2 > m−1 d.o.f. and pos.

def. parameter matrix cΣ−1
t (see, e.g., Konno, 1991; Opschoor et al., 2017). From the

latter result, i.e., C−1
t | Σt ∼ Fm(n2, n1, cΣ

−1
t ), the conditional distribution of Ct given

Σt follows as (Konno, 1988)

Ct | Σt ∼ Fm(n1, n2,Σt/c), (A.29)

with conditional moments

E[Ct | Σt] =
c−1n1

n2 −m− 1
Σt,
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and

Cov[vec(Ct) | Σt] =
c−2n1(n1 + n2 −m− 1)

(n2 −m)(n2 −m− 1)(n2 −m− 3)

×
(

(Im2 +Kmm)(Σt ⊗ Σt) +
2

n2 −m− 1
vec(Σt)vec(Σt)

′
)
,

where Kmm denotes the m2 × m2 commutation matrix with Kmmvec(A) = vec(A′)

(see Lütkepohl, 1996, Chapter 9).1 The second order moment exists if n2−m−3 > 0.

By setting the scalar c in Eq. (A.25) to n1/(n2−m−1) we can assure E[Ct | Σt] = Σt.

Assuming a partition for the mixture-scale St similar to Ct and Σt, we can derive

a factorization of f(St | Σt) similar to that stated in Eq. (2.7). Futhermore, we can

exploit that the posterior π(Σ1:T | C1:T , S1:T ) is proportional to f(Σ1:T )
∏T

t=1 f(St|Σt).

Hence, we can conduct MCMC sampling of the individual components of Σ1:T based

on a draw for S1:T from its posterior distribution. The posterior of S1:T is given by

π(S1:T | C1:T ,Σ1:T ) ∝ f(S1:T , C
−1
1:T , | Σ1:T ) ∝

T∏
t=1

f(C−1
t | St)f(St, | Σt). (A.30)

From Eq. (A.27) we know, that (A.30) is proportional to the product of independent

Wishart densities with n1 + n2 d.o.f. and scale matrices (C−1
t + cΣ−1

t )−1, for t =

1, . . . , T . This result allows to sample S1, . . . , ST | C1:T ,Σ1:T independently from their

respective posteriors.

The results we obtained for an initial posterior analysis of this generalization show

that there is no evidence against the Wishart in favor of the fat-tailed Matrix-F

distribution. Actually, the posterior estimates for all the parameters of the Matrix-

F generalization are virtually equal to their values obtained for the fitted WFSS

model. However, draws from the posterior of n2 showed that for the additional d.o.f.

parameter very large values (n2 > 103) were found (detailed results are not presented

here). Since for n2 →∞ the Matrix-F collapses to the Wishart, this result indicates

that the original WFSS model suffices to capture the tail behavior of the realized

1A derivation for the second order moment can, e.g., be found in Appendix B.

150



A.4. Impact of Parameter Uncertainty on Forecast Accuracy

covariance data.

A.4. Impact of Parameter Uncertainty on Forecast Accuracy

for the WFSS Model

In this Appendix we compare the accuracy of point forecasts for the realized covariance

matrix of the asset returns Cr
t obtained under the WFSS model using forecasts ignor-

ing the uncertainty about the parameters with the accuracy of forecasts accounting

for this uncertainty.

Recall that when ignoring parameter uncertainty, forecasts for Cr
t are taken to be

the mean of the forecast density E(Cr
t+1|C1:t; θ), where the parameters θ are set to

their (time-sequentially updated) estimated values (see Eqs. 2.27 – 2.29). Forecasts

which account for parameter uncertainty are given by the mean of the predictive

density (Geweke, 2005). This predictive density, denoted by p(Cr
t+1|C1:t), obtains by

replacing in the forecast density given in Eq. (2.27) the period-t conditional posterior

of the states π(Σ1:t|C1:t; θ) given the parameters θ by the corresponding joint posterior

π(Σ1:t, θ|C1:t), and then integrating w.r.t. Σ1:t+1 as well as θ, so that

p(Cr
t+1|C1:t) =

∫∫
f(Cr

t+1|Σt+1; θ) f(Σt+1|Σ1:t; θ) π(Σ1:t, θ|C1:t) dθdΣ1:t+1. (A.31)

The mean of this predictive density given by E(Cr
t+1|C1:t) = E(Σr

t+1|C1:t) can straight-

forwardly be approximated by

E(Cr
t+1|C1:t) '

1

S

S∑
i=1

Σ
r(i)
t+1, (A.32)

where {Σr(i)
t+1}Si=1 are simulated draws from the convolution f(Σt+1|Σ1:t; θ) π(Σ1:t, θ|C1:t)

based on Gibbs simulations from the period-t posterior π(Σ1:t, θ|C1:t).

For the sake of comparison, we use for those Bayesian forecasts of Cr
t+1 the same

parameter-updating scheme as it is used for the forecasts based on E(Cr
t+1|C1:t; θ)

which consists of re-estimating the parameters every 10 time periods (see Section
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2.4.3). For the Bayesian forecasts according to Eq. (A.32) this is implemented by

sampling every 10 periods {Σ(i)
1:t, θ

(i)}i from the corresponding period-t joint posterior

π(Σ1:t, θ|C1:t) to obtain {Σr(i)
t+1}i from sampling for each pair (Σ

(i)
1:t, θ

(i)) from the state

transition f(Σt+1|Σ(i)
1:t; θ

(i)). Then the Gibbs draws of the parameters {θ(i)}i from such

an up-dating period are kept fixed for the next 9 periods (t+ s, s = 1, . . . , 9) and are

used to sample {Σ(i)
t+s}i from the corresponding period-(t + s) conditional posterior

π(Σ1:t+s|C1:t+s; θ
(i)) and to obtain {Σr(i)

t+s+1}i from f(Σt+s+1|Σ(i)
1:t+s; θ

(i)).

In Table A.1 we provide the average RMSE losses for the Bayesian point forecasts

E(Cr
t+1|C1:t) under the WFSS specification with the largest set of parameters (the un-

restricted full 9-factor WFSS with time-varying loadings and HAR variance dynamics,

9F-HAR-vβ) together with those of the corresponding forecasts E(Cr
t+1|C1:t; θ) which

are reproduced from Table 2.3. From the results we see that in our WFSS applica-

tion parameter uncertainty is of very limited importance for the accuracy of point

forecasts. This is to be expected in view of the low posterior uncertainty about the

parameters as indicated by their posterior standard deviations provided in Figure 2.5.

In fact, those standard deviations are fairly small relative to their posterior means

(see Figure 2.4).

A.5. Additional Posterior Summary Results

We carefully checked the convergence of the proposed MCMC algorithm as well as its

mixing rate (in terms of the correlation of the Gibbs draws). For this we monitored

the trace plots of the Gibbs draws for the parameters and their sample autocorrelation

function (ACF). Following the standard practice in the literature, we report in Section

2.4.2 as diagnostic summary statistics for the mixing rate the inefficiency factor (IF).

For the unrestricted full WFSS model (9F-HAR-vβ) the IF values across all of its

parameters range from 1.5 to 17.36 with an average value of 3.44 indicating a high

sampling efficiency with a fast mixing rate of the MCMC algorithm. In Figure A.1 we

provide the box plot of the IF values for all the parameters for the full 9F-HAR-vβ
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WFSS model and in Figures A.2 – A.4 the trace plots of the Gibbs draws (including

those of the burn-in period) together with the respective ACFs for the parameter with

the smallest IF value (Figure A.2), the median IF value (Figure A.3) and the largest

IF value (Figure A.4). Those plots corroborate the fast mixing rate of the MCMC

algorithm.

A.6. Additional Tables and Figures

Table A.1.: RMSE evaluation of point-forecast accuracy for the 9F-HAR-vβ WFSS model.

Period 2011 Period 2012 Period 2011 - 2012

Forecast rule RMSE RMSEv RMSEc RMSE RMSEv RMSEc RMSE RMSEv RMSEc

E(Cr
t+1|C1:t; θ) 51.24 16.87 33.54 23.02 10.63 14.03 36.51 13.61 23.36

E(Cr
t+1|C1:t) 51.58 16.94 33.78 23.06 10.65 14.06 36.69 13.65 23.48

Note: The table reports the RMSE, RMSEv, and RMSEc losses as given in Eqs. (2.34) and (2.35).
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Figure A.1.: Inefficiency factors.
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Box plots of the IF values for all parameters for the full unrestricted 9F-HAR-vβ WFSS
model.

Figure A.2.: Traceplot for a parameter with small IF value.
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Upper panel: Trace plots of the Gibbs draws (including those of the burn-in period) for
the parameter of the full unrestricted 9F-HAR-vβ WFSS model with the smallest IF value;
Lower panel: The sample ACF for the Gibbs draws (excluding those of the burn-in period).
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Figure A.3.: Traceplot for a parameter with median IF value.
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Upper panel: Trace plots of the Gibbs draws (including those of the burn-in period) for
the parameter of the full unrestricted 9F-HAR-vβ WFSS model with the median IF value;
Lower panel: The sample ACF for the Gibbs draws (excluding those of the burn-in period).

Figure A.4.: Traceplot for a parameter with large IF value.
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Upper panel: Trace plots of the Gibbs draws (including those of the burn-in period) for the
parameter of the full unrestricted 9F-HAR-vβ WFSS model with the largest IF value; Lower
panel: The sample ACF for the Gibbs draws (excluding those of the burn-in period).
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Appendix for Chapter 3

B.1. Further Derivations for the UE Model

In the following we derive several results for the model at hand, which were not

considered in the original work of Windle and Carvalho (2014). First, we derive a

closed-form formula for the second order predictive moment, which, e.g., enables the

calculation of confidence intervals for the point prediction of the covariance elements.

Second, to improve the interpretability of the UE we derive the underlying dynamic

process for the latent integrated covariance matrix, as implied by the Matrix-Beta

transition for the integrated precision. Third, we derive the autoregressive dynamics

of the logarithmic determinant of the latent precision process. E.g., Philipov and

Glickman (2006) use these dynamics to deduce stationarity conditions for their matrix

process.

For notational convenience reconsider the UE model without any superscript indi-

cating correspondence to the factor or residual part. For any realized covariance Ct

of dimension d× d the UE model is written as

Ct | Σt ∼ Wd(n,Σt/n), (B.1)

Ωt = U(Ωt−1)′ΨtU(Ωt−1)/λ, Ψt ∼ BId
(
k

2
,
n

2

)
, (B.2)

where Ωt = Σ−1
t , with initial condition Ω1 ∼ Wd(k, (nS0)−1/λ). In general the updat-

ing and filtering distributions for Ωt are given by Ωt|C1:t ∼ Wd(n + k, (nSt)
−1) and

Ωt+1|C1:t ∼ Wd(k, (nSt)
−1/λ), respectively, where St = λSt−1 + Ct (see Windle and

Carvalho, 2014, Prop. 1).
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B.1.1. Second order predictive moments

The first order predictive moment of Ct+1 given the information set C1:t is readily

obtained by the law of iterated expectations (Konno, 1991; Windle and Carvalho,

2014)

E[Ct+1 | C1:t] = E [E[Ct+1 | Σt+1] | C1:t] = E
[
Ω−1
t+1 | C1:t

]
=

λn

k − d− 1
St.

It exists for k > d + 1. The second order predictive moment, i.e., the covariance

of vec(Ct+1) given C1:t, can be found using the law of total variance and the results

in Muirhead (2005) and von Rosen (1988) for the moments of (inverted) Wishart

matrices

Cov[vec(Ct+1) | C1:t]

= E [Cov [vec(Ct+1) | Σt+1] | C1:t] + Cov [E [vec(Ct+1) | Σt+1] | C1:t]

= E
[
n−1(Id2 +Kdd) (Ωt+1 ⊗ Ωt+1) | C1:t

]
+ Cov [vec(Ωt+1) | C1:t]

=
1

n
(Id2 +Kdd)E [Ωt+1 ⊗ Ωt+1 | C1:t] + E [vec(Ωt+1)vec(Ωt+1)′ | C1:t]

− E [vec(Ωt+1) | C1:t] E [vec(Ωt+1) | C1:t]
′

=
(k + n− d− 1)

n(k − d)(k − d− 1)(k − d− 3)

[
λ2n2(Id2 +Kdd)(St ⊗ St) +

2λ2n2

(k − d− 1)
vec(St)vec(St)

′
]

=
λ2n(k + n− d− 1)

(k − d)(k − d− 1)(k − d− 3)

[
(Id2 +Kdd)(St ⊗ St) +

2

(k − d− 1)
vec(St)vec(St)

′
]

where Kdd denotes the d2 × d2 commutation matrix with Kddvec(A) = vec(A′) (see

Lütkepohl, 1996, Chapter 9). The second order moment exists if k > d+ 3.

B.1.2. Underlying latent dynamic process for the integrated covariance

The Matrix-Beta type-I transition equation in Eq. (B.2) implies a shifted Matrix-F

transition for the underlying latent integrated covariance matrix Σt itself. Defining
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Ω−1
t = Σt, we have

Ω−1
t = λ(U(Ωt−1))−1Ψ−1

t (U(Ωt−1)′)−1

= λ(U(Ωt−1))−1(Ψ−1
t − Id + Id)(U(Ωt−1)′)−1

= λ(U(Ωt−1))−1(Ψ−1
t − Id)(U(Ωt−1)′)−1 + λ(U(Ωt−1)′U(Ωt−1))−1

= λ(U(Ωt−1))−1Υt(U(Ωt−1)′)−1 + λΩ−1
t−1,

where Υt = (Ψ−1
t − Id) follows a d-dimensional Matrix-Beta type-II distribution

(also known as Matrix-F distribution), say Υt ∼ BIId (n
2
, k

2
), with expectation E[Υt] =

n
k−d−1

Id (Gupta and Nagar, 2000, Theorems 5.3.5 (and below) and 5.3.20), and Id

denotes the d-dimensional identity matrix. It follows, that the conditional distribution

of Ω−1
t = Σt given Ωt−1 is of Matrix-F type shifted by the factor λΩ−1

t−1, and the

conditional expectation is given by

E[Ω−1
t | Ωt−1] = λ

(
1 +

n

k − d− 1

)
Ω−1
t−1.

By restricting the parameter λ through (R1) the Ω−1
t process becomes a martingale

with conditional expectation E[Ω−1
t |Ωt−1] = Ω−1

t−1.

B.1.3. Log determinant process for the latent precision

From Eq. (B.2) the evolution of the logarithmic determinant of Ωt follows as

log |Ωt| = log |U(Ωt−1)′ΨtU(Ωt−1)/λ|

= log
{
|U(Ωt−1)′U(Ωt−1)| · |Ψt| · λ−d

}
= log |Ωt−1|+ log |Ψt| − d log λ.
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Setting λ = exp{E[log |Ψt|]/d} according to restriction (R3) results in a random walk

process for the log determinant as

log |Ωt| = log |Ωt−1|+ (log |Ψt| − E[log |Ψt|]) = log |Ωt−1|+ ψ̃t,

with ψ̃t = log |Ψt| − E[log |Ψt|] being a white noise increment. Hence, the log |Ωt|

process is a martingale with conditional expectation E[log |Ωt| | Ωt−1] = log |Ωt−1|.

The unconditional expectation for the logarithmic determinant of Ψt follows from

Ψt ∼ BId(k2 ,
n
2
) as

E[log |Ψt|] =

[
Γd
(
n
2

)
Γd
(
k
2

)
Γd
(
n+k

2

) ]−1 ∫
0<Ψt<Id

(log |Ψt|)|Ψt|(k−d−1)/2|Id −Ψt|(n−d−1)/2dΨt

= 2

[
Γd
(
n
2

)
Γd
(
k
2

)
Γd
(
n+k

2

) ]−1 ∫
0<Ψt<Id

∂

∂k
|Ψt|(k−d−1)/2|Id −Ψt|(n−d−1)/2dΨt

= 2

[
Γd
(
n
2

)
Γd
(
k
2

)
Γd
(
n+k

2

) ]−1
∂

∂k

∫
0<Ψt<Id

|Ψt|(k−d−1)/2|Id −Ψt|(n−d−1)/2dΨt

= 2

[
Γd
(
n
2

)
Γd
(
k
2

)
Γd
(
n+k

2

) ]−1
∂

∂k

[
Γd
(
n
2

)
Γd
(
k
2

)
Γd
(
n+k

2

) ]

= 2
∂

∂k
log

[
Γd
(
n
2

)
Γd
(
k
2

)
Γd
(
n+k

2

) ]

= Ψ?
d

(
k

2

)
−Ψ?

d

(
k + n

2

)
,

with Ψ?
d(a) = ∂ log Γd(a)/∂a being the d-variate digamma function (see, e.g., Abramowitz

and Stegun, 1972; Gupta and Nagar, 2000).

B.2. Parameter Estimation Results

This section presents selected summary results of the in-sample parameter estimates.

Table B.1 reports a summary of the parameter estimates for the factor and residual

components of the 12F CFSS model. The results show similar estimates for the d.o.f.
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parameters n and k across the restrictions (R0) – (R3). Solely under restriction

(R1) the estimates for n tend to be higher in comparison to the other restrictions.

The smoothing parameter estimates also only slightly differ across the restrictions

with highest (median) values for restrictions (R1) and (R2). Interestingly, the (mean

and median) smoothing parameter estimates under restrictions (R0) and (R3) do not

differ at all within the first four digits. This finding is confirmed by Figure B.1,

which displays the cross-section of smoothing parameter estimates for the residual

components in the 12F CFSS model. Panel (a) shows the results for the diagonal

specification, Panel (b) for the block-diagonal specification. Here, both (R0) and

(R3) are congruent throughout all blocks.

Mean and median values for the d.o.f. parameter kbi across the asset dimension

in different factor settings are presented in Table B.2. In the out-of-sample exercise

the d.o.f. are not re-estimated based on a rolling window scheme, but fixed to their

(rounded) in-sample median value. The corresponding smoothing parameters are set

to λbi = kbi/(k
b
i + 1).

B.3. Composite vs. Simulated Predictions

Since the point forecasts using Eq. (3.20) are of composite nature and neglect potential

nonlinear structures in the term Bt+1C
f
t+1B

′
t+1 when predicting Cr

t+1, we compare the

ad-hoc forecasting method with the following ‘unbiased’ prediction based on

Ĉr?
t+1 ≈

1

103

103∑
i=1

{
X

(i)
b X

(i)
f X

(i)′

b +X(i)
e

}
,

whereX(i)
f andX(i)

e are draws from the respective predictive distribution in Eq. (3.11),

and X(i)
b are draws from the predictive distribution in Eq. (3.14).

Figure B.2 shows the results of the point forecasts for the realized covariance of

the nine assets from the Materials sector at the first day of the out-of-sample period

(t = 756). The blue curves display the approximate predictive densities of Cr
t+1,
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dashed black lines are the point forecasts using the simulation setting above, solid

red lines are the point forecasts obtained by the composite method from Section 3.2.

The results show a slight undershooting of the variance forecasts when using the ad-

hoc method, which is negligible. For the covariance elements there is virtually no

difference between both approaches. The exercise has been repeated for several days

of the out-of-sample period finding similar results.

B.4. Additional Tables and Figures

Table B.1.: Summary of in-sample parameter estimates of the factor and residual components
for the 12F CFSS model.

nfi kfi λfi
Factor Mean Median Mean Median Mean Median

R0 124.30 — 52.92 — 0.6892 —
R1 137.87 — 52.17 — 0.7053 —
R2 126.20 — 52.06 — 0.7080 —
R3 123.94 — 52.93 — 0.6892 —

nei kei λei
Residual Mean Median Mean Median Mean Median

R0-D 22.90 23.02 11.75 11.71 0.6417 0.6513
R1-D 25.25 25.58 11.50 11.55 0.6621 0.6684
R2-D 23.28 23.55 11.49 11.55 0.6626 0.6698
R3-D 22.87 22.97 11.75 11.71 0.6417 0.6513

R0-S 252.31 237.72 130.41 117.86 0.6455 0.6558
R1-S 281.30 264.36 127.68 116.49 0.6650 0.6746
R2-S 258.44 244.19 127.23 116.42 0.6685 0.6786
R3-S 251.95 237.52 130.41 117.86 0.6455 0.6558
Note: This table reports the average and median across the in-sample Maximum likelihood
estimates for the 12F CFSS model for the factor and residual parameters.
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Table B.2.: Summary of in-sample parameter estimates for the d.o.f. parameters of the factor
loading components.

kbi λbi
Mean Median Mean Median

1F 9.07 8.46 0.9007 0.8943
3F 15.68 15.00 0.9400 0.9375
12F 23.01 22.72 0.9584 0.9578
Note: This table reports the average and median across the
in-sample Maximum likelihood estimates of the d.o.f. parameter
kbi , i = 1, . . . , 225, for the factor loading components in the 1F, 3F
and 12F CFSS models. The corresponding smoothing parameters
are calculated as λbi = kbi/(k

b
i + 1).
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Table B.3.: List of the stocks included in the data set.

# Symb. Company Sector # Symb. Company Sector

1 do Diamond Offshore Drilling E 29 lmt Lockheed Martin Corporation I
2 ne Noble Corp E 30 noc Northrop Grumman Corp. I
3 rig Transocean E 31 rtn Raytheon Co. I
4 bhi Baker Hughes Incorporated E 32 utx United Technologies I
5 hal Halliburton Company E 33 jci Johnson Controls International I
6 slb Schlumberger Ltd. E 34 mas Masco Corporation I
7 cvx Chevron Corporation E 35 glw Corning Incorporated I
8 hes Hess Corporation E 36 emr Emerson Electric Company I
9 xom Exxon Mobil Corp. E 37 ge General Electric Company I
10 apa Apache Corporation E 38 hon Honeywell International Inc. I
11 apc Anadarko Petroleum Corporation E 39 mmm 3M Company I
12 cop ConocoPhillips E 40 cat Caterpillar, Inc. I
13 mro Marathon Oil Corp. E 41 de Deere & Company I
14 oxy Occidental Petroleum Corporation E 42 dov Dover Corp. I
15 vlo Valero Energy E 43 ir Ingersoll-Rand PLC I
16 wmb Williams Cos. E 44 itw Illinois Tool Works I
17 dd E.I. du Pont de Nemours and Company M 45 wm Waste Management Inc. I
18 dow Dow Chemical Company M 46 fdx FedEx Corporation I
19 apd Air Products & Chemicals Inc M 47 ups United Parcel Service I
20 px Praxair Inc. M 48 luv Southwest Airlines Company I
21 ppg PPG Industries M 49 csx CSX Corp. I
22 aa Alcoa Inc. M 50 nsc Norfolk Southern Corp. I
23 abx Barrick Gold Corporation M 51 unp Union Pacific I
24 nem Newmont Mining Corporation M 52 gt Goodyear Tire & Rubber D
25 ip Internation Paper Company M 53 f Ford Motor Company DEL D
26 ba Boeing Company I 54 hog Harley-Davidson D
27 gd General Dynamics I 55 dhi D. R. Horton D
28 lll L-3 Communications Holdings I 56 len Lennar Corp. D
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Table B.3.: List of the stocks included in the data set.

# Symb. Company Sector # Symb. Company Sector

57 igt International Game Technology D 85 bbby Bed Bath & Beyond Inc. D
58 anf Abercrombie & Fitch D 86 spls Staples Inc. D
59 apol Apollo Group Inc. D 87 cvs CVS Caremark Corp. S
60 nke Nike, Inc. D 88 wba Wallgreens Boots Alliance S
61 ccl Carnival Corp. D 89 syy Sysco Corp. S
62 mar Marriott Int’l. D 90 kr Kroger Company S
63 dri Darden Restaurants D 91 cost Costco Wholesale Corporation S
64 mcd McDonald’s Corporation D 92 wmt Wal-Mart Stores S
65 sbux Starbucks Corp. D 93 cce Coca-Cola Enterprises S
66 yum Yum! Brands Inc. D 94 ko Cocoa-Cola Company S
67 ipg Interpublic Group D 95 pep Pepsico, Inc. S
68 omc Omnicom Group D 96 adm Archer-Daniels-Midland Co S
69 cbs CBS Corporation D 97 cag ConAgra, Inc. S
70 dis Walt Disney Company D 98 gis General Mills S
71 twx Time Warner Inc. D 99 k Kellogg Co. S
72 tgna Tegna, Inc. D 100 tsn Tyson Foods S
73 amzn Amazon.com, Inc. D 101 mo Altria Group S
74 jcp J.C. Penney Company, Inc. Holding Co. D 102 cl Colgate-Palmolive Company S
75 m Macy’s Inc. D 103 clx The Clorox Company S
76 fdo Family Dollar Stores Inc. D 104 kmb Kimberly-Clark S
77 lb L Brands Inc. D 105 avp Avon Products S
78 kss Kohl’s Corporation D 106 pg Procter & Gamble Company S
79 tgt Target Corp. D 107 bdx Becton Dickinson H
80 gps Gap, Inc. D 108 dhr Danaher Corp. H
81 tjx TJX Companies Inc. D 109 syk Stryker Corp. H
82 bby Best Buy Co., Inc. D 110 var Varian Medical Systems H
83 hd Home Depot, Inc. D 111 zbh Zimmer Biomet Holdings H
84 low Lowe’s Companies, Inc. D 112 mck McKesson Corp. H
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Table B.3.: List of the stocks included in the data set.

# Symb. Company Sector # Symb. Company Sector

113 thc Tenet Healthcare H 141 slm SLM Corporation F
114 aet Aetna Inc H 142 axp American Express Company F
115 antm Anthem Inc. H 143 cof Capital One Financial F
116 hum Humana Inc. H 144 hrb Block H&R F
117 unh United Health Group Inc. H 145 bk The Bank of New York Mellon Corp. F
118 a Agilent Technologies Inc. H 146 ntrs Northern Trust Corp. F
119 abt Abbott Laboratories H 147 stt State Street Corp. F
120 bax Baxter International Inc. H 148 etfc E*Trade F
121 bmy Bristol-Myers Squibb Company H 149 gs Goldman Sachs Group, Inc. F
122 cah Cardinal Health Inc. H 150 ms Morgan Stanley Dean Witter & Co F
123 jnj Johnson & Johnson H 151 schw Charles Schwab Corporation F
124 mdt Medtronic Inc. H 152 pcl Plum Creek Timber F
125 stj St. Jude Medical H 153 aon Aon plc F
126 amgn Amgen, Inc. H 154 mmc Marsh & McLennan Companies, Inc. F
127 gild Gilead Sciences Inc. H 155 afl AFLAC Inc F
128 agn Allergan, Plc H 156 met MetLife, Inc. F
129 lly Eli Lilly and Company H 157 pru Prudential Financial F
130 mrk Merck & Company, Inc. H 158 lnc Lincoln National F
131 pfe Pfizer, Inc. H 159 aig American International Group Inc. F
132 usb U.S. Bancorp F 160 all Allstate Corporation F
133 wfc Wells Fargo F 161 cb Chubb Limited F
134 key KeyCorp F 162 hig Hartford Financial Services Group, Inc. F
135 pnc PNC Financial Services F 163 pgr Progressive Corp. F
136 sti SunTrust Banks F 164 trv The Travelers Companies Inc. F
137 bac Bank of America Corporation F 165 xl XL Capital F
138 c Citigroup Inc. F 166 adp Automatic Data Processing T
139 fitb Fifth Third Bancorp F 167 ctxs Citrix Systems, Inc. T
140 jpm J P Morgan Chase & Co F 168 ebay Ebay Inc. T
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Table B.3.: List of the stocks included in the data set.

# Symb. Company Sector # Symb. Company Sector

169 intu Intuit Inc. T 197 lltc Linear Technology Corporation T
170 ntap NetApp, Inc. T 198 mu Motorola Solutions, Inc. T
171 payx Paychex, Inc. T 199 nvda Micron Technology, Inc. T
172 vrsn Verisign Inc. T 200 qcom NVIDIA Corporation T
173 yhoo Yahoo Inc. T 201 lrcx Lam Research T
174 acn Accenture plc T 202 ter Teradyne T
175 csc Computer Sciences Corp T 203 adi Analog Devices Inc. T
176 emc EMC Corporation MA T 204 altr Altera Corporation T
177 ibm International Business Machines Corp. T 205 amd Advanced Micro Devices Inc. T
178 jbl Jabil Circuit T 206 brcm Broadcom Corporation T
179 adbe Adobe Systems Incorporated T 207 mchp Microchip Technology T
180 adsk Autodesk Inc T 208 txn Texas Instruments T
181 orcl Oracle Corporation T 209 xlnx Xilinx Inc. T
182 symc Symantec Corp. T 210 aep American Electric Power U
183 ca CA, Inc. T 211 d Dominion Resources U
184 msft Microsoft Corporation T 212 duk Duke Energy Corporation U
185 ea Electronic Arts Inc. T 213 ed Consolidated Edison U
186 hpq Hewlett-Packard Company T 214 etr Entergy Corp. U
187 lxk Lexmark Int‚ l Inc T 215 fe FirstEnergy Corp U
188 csco Cisco Systems, Inc. T 216 peg Public Serv. Enterprise Inc. U
189 jnpr Juniper Networks, Inc. T 217 so Southern Co. U
190 cien Ciena Corporation T 218 exc Exelon Corp. U
191 aapl Apple Inc. T 219 nee NextEra Energy U
192 sndk SanDisk Corporation T 220 ni NiSource Inc. U
193 xrx Xerox Corp. T 221 pcg PG&E Corp. U
194 amat Applied Materials Inc. T 222 sre Sempra Energy U
195 intc Intel Corporation T 223 te TECO Energy U
196 klac KLA-Tencor Corporation T 224 xel Xcel Energy Inc U
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Table B.3.: List of the stocks included in the data set.

# Symb. Company Sector # Symb. Company Sector

225 aes AES Corp U

Note: Stocks are selected by liquidity from the S&P500 index and sorted by their sector and industry classification according to the Global Industry Classification

Standard (GICS). Sector labels are: (E) Energy; (M) Materials; (I) Industrials; (D) Consumer Discretionary; (S) Consumer Staples; (H) Health Care; (F) Financials;

(T) Information Technologies; (U) Utilities.
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B.4. Additional Tables and Figures

Figure B.1.: Smoothing parameter estimates for the residual components.
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In-sample Maximum likelihood estimates of the smoothing parameters for the residual com-
ponents under different restrictions. Panel (a): Diagonal residual components. Panel (b):
Block-diagonal residual components based on GICS sectors. R0: black; R1: blue; R2: red;
R3: green.

169



A
ppendix

B
.

A
ppendix

for
C

hapter
3

Figure B.2.: Simulated vs. composite predictions.

Point forecasts for the realized covariance of the nine assets from the Materials sector at the first day of the out-of-sample period (t = 756).
Blue curve: approximate predictive densities of Crt+1; dashed black line: point forecasts using the simulation setting in B.3; solid red line:
point forecasts obtained by the composite method from Section 3.2.
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Appendix C.

Appendix for Chapter 4

C.1. Proof of Proposition 2

Note, whenever unambiguous in the following the subscript t and the conditioning on

Σ are dropped for notational convenience.

C.1.1. Characteristic function

We obtain

ϕR(Θ) = E [exp {ιtr(ΘS)}]

=

∫
C>0

exp {ιtr(ΘC)} f(C | Σ, n̄) dC

= π−k(k−1)/4

[
k∏
i=1

(
ni
2

)ni
2

Γ
(
ni−i+1

2

)
(σi·i−1)

ni
2

]

×
∫
C>0

k∏
i=1

(ci·i−1)
ni−k−1

2 exp
{
−tr

(
Ξ(Θ)−1C

)}
dC,

(C.1)

where Ξ(Θ) ≡ (Σ−
n̄
2 − ιΘ)−1. The integral in the latter equation is known as the

well-defined Siegel integral, which is finite if and only if ni > i − 1, i = 1, . . . , k, and

in that case it evaluates to (see Andersson and Klein, 2010, Eq. (4))

∫
C>0

k∏
i=1

(ci·i−1)
ni−k−1

2 exp
{
−tr

(
Ξ−1C

)}
dC = π

k(k−1)
4

k∏
i=1

(
Γ(ni−i+1

2
)

(ξi·i−1)−
ni
2

)
. (C.2)
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By combining Eqs. (C.1) and (C.2) the result follows as

ϕR(Θ) =
k∏
i=1

(
ni

2σi·i−1

)ni
2

k∏
i=1

(ξi·i−1)
ni
2 . (C.3)

This completes the proof.

It proves helpful to rewrite the characteristic function in terms of the so-called

generalized power or highest weight vector ∆ n̄
2
(·)

ϕR(Θ) = ∆ n̄
2
(Σ−

n̄
2 )∆ n̄

2
(Ξ(Θ)), (C.4)

where

∆ n̄
2
(A) =

k∏
i=1

(ai·i−1)
ni
2 = |A[1]|

n1
2

k∏
i=2

(
|A[i]|
|A[i−1]|

)ni
2

=
k∏
i=1

|A[i]|
ni−ni+1

2 , (C.5)

with A[i] being the ith submatrix of A = A[k] and the notational convention nk+1 = 0.

Note that a submatix A[i] of A can be equivalently expressed in terms of a (k × i)

selector matrix Ei = [Ii, 0(i×k−i)]
′ and Ek = Ik in the way A[i] = E ′iAEi (see Díaz-

García, 2013).

C.1.2. Expectation

We have

E[vec(C)] =
∂ϕR(Θ)

ι∂vec(Θ)′

∣∣∣∣
Θ=0

.

The derivative of ϕR(Θ) w.r.t vec(Θ) is obtained by considering the differential of ϕR,

i.e.,

dϕR(Θ) = ∆ n̄
2
(Σ−

n̄
2 ) d∆ n̄

2
(Ξ(Θ)) , (C.6)
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C.1. Proof of Proposition 2

where Ξ(Θ) = (Σ−
n̄
2 − ιΘ)−1. By successively applying the product rule d(AB) =

(dA)B + A(dB), d∆ n̄
2

(Ξ(Θ)) obtains as1

d∆ n̄
2

(Ξ(Θ)) =
k∑
i=1

d
(
|E ′iΞ(Θ)Ei|

ni−ni+1
2

) k∏
j=1,j 6=i

|E ′jΞ(Θ)Ej|
nj−nj+1

2 , (C.7)

where the differential on the right hand side can be obtained from d|F (A)|p =

p|F (A)|ptr(F (A)−1dF (A)) and d((F (A))−1) = −(F (A))−1dF (A)(F (A))−1 (see, e.g.,

Magnus and Neudecker, 1988) as

d
(
|E ′iΞ(Θ)Ei|

ni−ni+1
2

)
= ι

(
ni − ni+1

2

)
|E ′iΞ(Θ)Ei|

ni−ni+1
2 tr

(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)dΘ
)
,

(C.8)

since d(Σ−
n̄
2−ιΘ) = −ιdΘ. Now combining Eqs. (C.7), (C.8) and exploiting tr(AB) =

vec(A)′vec(B) = vec(B)′vec(A) (see Lütkepohl, 1996, Eq. 2.2.17) yields

d∆ n̄
2
(Ξ(Θ))

= ι∆ n̄
2
(Ξ(Θ))

[
k∑
i=1

(
ni − ni+1

2

)
vec
(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)
)]′

dvec(Θ).

(C.9)

Finally, by plugging (C.9) in (C.6) and differentiating w.r.t. vec(Θ) and dividing by

ι we obtain

∂ϕR(Θ)

ι∂vec(Θ)′
= ∆ n̄

2
(Σ−

n̄
2 )∆ n̄

2
(Ξ(Θ))︸ ︷︷ ︸

=ϕR(Θ)

k∑
i=1

(
ni − ni+1

2

)
vec
(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)
)
.

(C.10)

1Recall that nk+1 = 0.
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Evaluating (C.10) at Θ = 0 gives a first expression for E[vec(C)], i.e.,

∂ϕR(Θ)

ι∂vec(Θ)′

∣∣∣∣
Θ=0

=
k∑
i=1

(
ni − ni+1

2

)
vec
(

Σ
n̄
2Ei(E

′
iΣ

n̄
2Ei)

−1E ′iΣ
n̄
2

)
, (C.11)

where Σ
n̄
2 = (Σ−

n̄
2 )−1 = TΣD?TΣ′ with D? = diag

(
2σ1·0
n1

, . . . , 2σk·k−1

nk

)
and

Σ
n̄
2Ei(E

′
iΣ

n̄
2Ei)

−1E ′iΣ
n̄
2 =

 TΣ
[i]D

?
[i]T

Σ′

[i] TΣ
[i]D

?
[i]T

Σ
1:i,i+1:k

TΣ′

1:i,i+1:kD
?
[i]T

Σ′

[i] TΣ′

1:i,i+1:kD
?
[i]T

Σ
1:i,i+1:k

 , (C.12)

resulting from the respective decomposition of Σ
n̄
2 . Everything left to do now, is

evaluating the sum in (C.11), here exemplarily done for k = 2, s.th.

Σ = TΣDΣTΣ′ =

1 0

t1 1

σ1·0 0

0 σ2·1

1 t1

0 1

 =

 σ1·0 t1σ1·0

t1σ1·0 t21σ1·0 + σ2·1


and Σ

n̄
2

[1] = T[1]D
?
[1]T

′
[1] = 2

n1
σ1·0 and Σ

n̄
2
1:1,2:k = T[1]D

?
[1]T

′
1:1,2:k = t1

2
n1
σ1·0, respectively.

Then

n1 − n2

2
vec
(

Σ
n̄
2E1(E ′1Σ

n̄
2E1)−1E ′1Σ

n̄
2

)
+
n2

2
vec
(

Σ
n̄
2E2(E ′2Σ

n̄
2E2)−1E ′2Σ

n̄
2

)
=
n1

2
vec

 2
n1
σ1·0 t1

2
n1
σ1·0

t1
2
n1
σ1·0 t21

2
n1
σ1·0

− n2

2
vec

 2
n1
σ1·0 t1

2
n1
σ1·0

t1
2
n1
σ1·0 t21

2
n1
σ1·0


+
n2

2
vec

 2
n1
σ1·0 t1

2
n1
σ1·0

t1
2
n1
σ1·0 t21

2
n1
σ1·0 + 2

n2
σ2·1


= vec

 σ1·0 t1σ1·0

t1σ1·0 t21σ1·0 + σ2·1


= vec (Σ) .

This result is readily verified for k > 2 and completes the proof.2

2In order to obtain E[C] we simply reshape vec(Σ) to the symmetric squared matrix Σ.
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C.1.3. Covariance structure

We have

Cov[vec(C)] = E[vec(C)vec(C)′]− E[vec(C)]E[vec(C)]′,

where

E[vec(C)vec(C)′] =
∂2ϕR(Θ)

ι∂vec(Θ)∂vec(Θ)′

∣∣∣∣
Θ=0

.

The Hessian of ϕR(Θ) is obtained by differentiating dϕR(Θ) again, i.e.,

d2ϕR(Θ)

= ι∆ n̄
2
(Σ−

n̄
2 )

[
d∆ n̄

2
(Ξ(Θ))

k∑
i=1

(
ni − ni+1

2

)
tr
(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)dΘ
)

+ ∆ n̄
2
(Ξ(Θ))

k∑
i=1

(
ni − ni+1

2

)
dtr
(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)dΘ
)]
, (C.13)

where d∆ n̄
2
(Ξ(Θ)) is given by Eq. (C.9), and since dtr(A) = tr(dA)

dtr
(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)dΘ
)

= tr
(
(dΞ(Θ))Ei(E

′
iΞ(Θ)Ei)

−1E ′iΞ(Θ)dΘ
)

+ tr
(
Ξ(Θ)Ei(d(E ′iΞ(Θ)Ei)

−1)E ′iΞ(Θ)dΘ
)

+ tr
(
Ξ(Θ)Ei(E

′
iΞ(Θ)Ei)

−1E ′i(dΞ(Θ))dΘ
)
.

(C.14)

Since dΞ(Θ) = ιΞ(Θ)dΘΞ(Θ), by exploiting d((F (A))−1) = −(F (A))−1dF (A)(F (A))−1

it follows

d(E ′iΞ(Θ)Ei)
−1 = −ι(E ′iΞ(Θ)Ei)

−1E ′iΞ(Θ)(dΘ)Ξ(Θ)Ei(E
′
iΞ(Θ)Ei)

−1. (C.15)

For clarity, define

Ξ∗i (Θ) = Ξ(Θ)Ei(E
′
iΞ(Θ)Ei)

−1E ′iΞ(Θ).
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Now, combining the results from Eq. (C.15) with (C.14) and inserting in (C.9) and

(C.14) in (C.13) yields

d2ϕR(Θ) = ι2ϕR(Θ)

×

vec(dΘ)′

(
k∑
i=1

(
ni − ni+1

2

)
vec(Ξ∗i (Θ))

)(
k∑
i=1

(
ni − ni+1

2

)
vec(Ξ∗i (Θ))

)′
vec(dΘ)

+ 2
k∑
i=1

(
ni − ni+1

2

)
tr (Ξ∗i (Θ)dΘΞ(Θ)dΘ)−

k∑
i=1

(
ni − ni+1

2

)
tr (Ξ∗i (Θ)dΘΞ∗i (Θ)dΘ)

]
,

(C.16)

or equivalently exploiting tr(ABCD) = vec(B′)′(C ′⊗A)vec(D) (see Lütkepohl, 1996,

Eq. 4.1.1.9) and for symmetric matrices vec(A) = 1
2
(Ik2 + Kkk)vec(A) (see Díaz-

García, 2013, Eq. 14)

d2ϕR(Θ) = ι2ϕR(Θ)

×

vec(dΘ)′

(
k∑
i=1

(
ni − ni+1

2

)
vec(Ξ∗i (Θ))

)(
k∑
i=1

(
ni − ni+1

2

)
vec(Ξ∗i (Θ))

)′
vec(dΘ)

+
1

2

k∑
i=1

(
ni − ni+1

2

)
vec(dΘ)′(Ik2 +Kkk) (Ξ∗i (Θ)⊗ Ξ(Θ)) (Ik2 +Kkk)vec(dΘ)

− 1

4

k∑
i=1

(
ni − ni+1

2

)
vec(dΘ)′(Ik2 +Kkk) (Ξ∗i (Θ)⊗ Ξ∗i (Θ)) (Ik2 +Kkk)vec(dΘ)

]
,

(C.17)

since (Ik2 + Kkk)
′ = (Ik2 + Kkk) and (Ik2 + Kkk)(A ⊗ B)(Ik2 + Kkk) = (Ik2 +

Kkk)(B⊗A)(Ik2 +Kkk) (see Lütkepohl, 1996, Eqs. 9.2.1.16 & 9.2.2.7). Now, applying
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result 7(b) in Díaz-García (2013) yields

∂2ϕR(Θ)

∂vec(Θ)∂vec(Θ)′

= ι2ϕR(Θ)

( k∑
i=1

(
ni − ni+1

2

)
vec(Ξ∗i (Θ))

)(
k∑
i=1

(
ni − ni+1

2

)
vec(Ξ∗i (Θ))

)′

+
1

2

k∑
i=1

(
ni − ni+1

2

)
(Ik2 +Kkk) (Ξ∗i (Θ)⊗ Ξ(Θ)) (Ik2 +Kkk)

− 1

4

k∑
i=1

(
ni − ni+1

2

)
(Ik2 +Kkk) (Ξ∗i (Θ)⊗ Ξ∗i (Θ)) (Ik2 +Kkk)

]
. (C.18)

Evaluating (C.18) at Θ = 0 and dividing by ι2 gives a first expression for E[vec(C)vec(C)′],

i.e.,

∂2ϕR(Θ)

ι2∂vec(Θ)∂vec(Θ)′

∣∣∣∣
Θ=0

= vec(Σ)vec(Σ)′

+
1

2

k∑
i=1

(
ni − ni+1

2

)
(Ik2 +Kkk)

(
(Σ

n̄
2Ei(E

′
iΣ

n̄
2Ei)

−1E ′iΣ
n̄
2 )⊗ Σ

n̄
2

)
(Ik2 +Kkk)

− 1

4

k∑
i=1

(
ni − ni+1

2

)
(Ik2 +Kkk)(

(Σ
n̄
2Ei(E

′
iΣ

n̄
2Ei)

−1E ′iΣ
n̄
2 )⊗ (Σ

n̄
2Ei(E

′
iΣ

n̄
2Ei)

−1E ′iΣ
n̄
2 )
)

(Ik2 +Kkk). (C.19)

Finally, subtracting E[vec(C)]E[vec(C)]′ = vec(Σ)vec(Σ)′ (see the intermediary result

in Eq. (C.11)) from Eq. (C.19) and recalling that Ek = Ik and nk+1 = 0, as well as

making use of (Ik2 +Kkk)(A⊗A)(Ik2 +Kkk) = 2(Ik2 +Kkk)(A⊗A) (see Lütkepohl,

1996, Eq. 9.2.2.2.a) completes the proof.
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C.2. Proof of Proposition 3

Recall the Riesz pdf in Eq. (4.11). We first decompose the trace in the exponent. We

therefore rewrite C as follows

C =

 C[k−1] c′k,1:k−1

ck,1:k−1 ck,k

 =

 C[k−1] C[k−1]b
′
k·k−1

bk·k−1C[k−1] bk·k−1C[k−1]b
′
k·k−1 + ck·k−1

 ,
and we Cholesky decompose Σ = TΣDΣTΣ′ = V −1DΣV ′−1, s.th.

Σ =

 Σ[k−1] σ′k,1:k−1

σk,1:k−1 σk,k

 =

 V[k−1] 0

−βk·k−1 1

−1 DΣ
[k−1] 0

0 σk·k−1

V ′[k−1] −β′k·k−1

0 1

−1

.

Hence, we get the following expression for the generalized inverse

Σ−
n̄
2 =

V ′[k−1] −β′k·k−1

0 1

D?−1
[k−1] 0

0 nk
2σk·k−1

 V[k−1] 0

−βk·k−1 1


=

Σ
−
n̄1:k−1

2

[k−1] + nk
2σk·k−1

β′k·k−1βk·k−1 − nk
2σk·k−1

β′k·k−1

− nk
2σk·k−1

βk·k−1
nk

2σk·k−1

 ,
whereD?−1

[k−1] = diag (n1/(2σ1·0), . . . , nk−1/(2σk−1·k−2)) and Σ
−
n̄1:k−1

2

[k−1] = V ′[k−1]D
?−1
[k−1]V[k−1]

denotes the generalized inverse for the (k− 1)-dimensional upper left block of Σ with
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respect to n̄1:k−1 = (n1, . . . , nk−1)′. Substituting the latter results into the trace yields

tr
(

Σ−
n̄
2C
)

= tr

(
Σ
−
n̄1:k−1

2

[k−1] C[k−1]

)
+ tr

(
nk

2σk·k−1

β′k·k−1βk·k−1C[k−1]

)
− tr

(
nk

2σk·k−1

β′k·k−1bk·k−1C[k−1]

)
− tr

(
nk

2σk·k−1

b′k·k−1βk·k−1C[k−1]

)
+

nk
2σk·k−1

bk·k−1C[k−1]b
′
k·k−1 +

nk
2σk·k−1

ck·k−1

= tr

(
Σ
−
n̄1:k−1

2

[k−1] C[k−1]

)
+

nk
2σk·k−1

βk·k−1C[k−1]β
′
k·k−1 −

nk
2σk·k−1

bk·k−1C[k−1]β
′
k·k−1

− nk
2σk·k−1

βk·k−1C[k−1]b
′
k·k−1 +

nk
2σk·k−1

bk·k−1C[k−1]b
′
k·k−1 +

nk
2σk·k−1

ck·k−1

= tr

(
Σ
−
n̄1:k−1

2

[k−1] C[k−1]

)
+

1

2
(bk·k−1 − βk·k−1)

nk
σk·k−1

C[k−1](bk·k−1 − βk·k−1)′ +
nk

2σk·k−1

ck·k−1

=
k∑
i=1

ni
2σi·i−1

ci·i−1 +
1

2

k∑
i=2

(bi·i−1 − βi·i−1)
ni

σi·i−1

C[i−1](bi·i−1 − βi·i−1)′,

where the last line follows by induction.

Now, we have to rearrange the expression in front of the exponential function, i.e.

π−
k(k−1)

4

k∏
i=1

(
ni
2

)ni
2 [ci·i−1]

ni−k−1

2

Γ
(
ni−i+1

2

)
[σi·i−1]

ni
2

=
k∏
i=1

π−
i−1

2 [ci·i−1]
ni−k−1

2

Γ
(
ni−i+1

2

)
[ 2
ni
σi·i−1]

ni
2

=
k∏
i=1

π−
i−1

2 [ci·i−1]
ni−i+1

2
−1[ci·i−1]−

k−i
2

Γ
(
ni−i+1

2

)
[ 2
ni
σi·i−1]

ni−i+1

2 [ 2
ni
σi·i−1]

i−1
2

=
k∏
i=1

[ci·i−1]
ni−i+1

2
−1

Γ
(
ni−i+1

2

)
[ 2
ni
σi·i−1]

ni−i+1

2

(2π)−
i−1

2 |C−1
[i−1]|

1
2

[σi·i−1

ni
]
i−1

2

.

Finally, taking into account the Jacobian
∏k

i=1 J (ci,1:i−1 → bi·i−1) =
∏k

i=1 |C
−1
[i−1]|−1

the proof is completed.

C.3. Details on the MCMC Algorithm

C.3.1. Prior assumptions

The prior assumptions we use for the parameters are fairly uninformative. For the

(γ, φ1, φ2, φ3, ν
2) parameters in each of the Gaussian HAR processes {log σi·i−1,t =
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xit} we assume independent conjugate Normal-inverted-Gamma priors with hyper-

parameters selected such that E(ν2) = 0.2 and Var(ν2) = 0.0156, E(φ1, φ2, φ3) =

(0.3, 0.3, 0.3) and Cov(φ1, φ2, φ3) = diag(0.1, 0.1, 0.1), E(γ∗) = 0 and Var(γ∗) = 20,

where γ∗ = γ(1 − φ1 − φ2 − φ3). In the basic RSS model we apply the standard

conditional conjugate priors τ 2
ji ∼ IG(s0, S0) with s0 = 0.1 and S0 = 0.001, and

β̄ji ∼ N (0, A0) with A0 = 10. The prior hyper-parameters for the shrinkage priors are

set to d1 = 10 and d2 = d3 = 0.001, as proposed by Bitto and Frühwirth-Schnatter

(2019). The prior for pji0 is chosen as IG(vp, (vp − 1)cp), with vp = 20 and cp = 1,

s.th. no prior moment exists.

C.3.2. Sampling of βji,0:T

Step 1.) of the proposed MCMC sampling scheme in Section 4.4.1 samples the latent

states βji,0:T conditional on static parameters and σi·i−1,1:T using the precision sampler,

as discussed in Chan and Jeliazkov (2009).3 Subsequently, we provide details how the

precision sampling algorithm is implemented.

The implementation exploits the non-centered and adjusted parameterization of

the state-space model for bi·i−1,t as stated in Eq. (4.23). Recall the measurement and

transition equations given by

b?ji,t = τjiβ̃ji,t + ε̃ji,t, ε̃ji,t ∼ N (0, $ji,t), (C.20)

β̃ji,t = β̃ji,t−1 + ζ̃ji,t, ζ̃ji,t ∼ N (0, 1), (C.21)

with initial condition β̃ji,0 ∼ N (0, p̃ji0). Here, b?ji,t = bji,t − β̄ji −
∑j−1

l=1 hlj,tε̃li,t and

$ji,t = σi·i−1,tδj·j−1,t/ni, for j = 1, . . . , i − 1 and t = 1, . . . , T . The components hlj,t

and δj·j−1,t (uniquely found from the LDL-decomposition of C−1
[i−1]t = Ht∆tH

′
t) are

readily pre-calculated once before running the MCMC algorithm.

Conditional on all other variables, the joint posterior for the state process β̃ji,0:T is

3Note, that the precision sampler is equivalent to the all without a loop sampler used by Bitto and Frühwirth-
Schnatter (2019).
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multivariate Gaussian, i.e.,

β̃ji,0:T | bi·i−1,1:T , {β̃li,1:T}j−1
l=1 , β̄ji, τji, p̃ji0 ∼ NT+1(Π−1

? m?,Π
−1
? ), (C.22)

where

Π−1
? = K ′Π−1

0 K + Π−1
1 , m? = τji(0, b

?
ji,1/$ji,1, · · · , b?ji,T/$ji,T )′, (C.23)

with Π−1
0 = diag(1/p̃ji0, 1, . . . , 1), Π−1

1 = diag(0, τ 2
ji/$ji,1, . . . , τ

2
ji/$ji,T ), and K is a

(T + 1)× (T + 1) banded matrix with ones on its main diagonal and −1 on its second

lower diagonal, i.e.,

K =



1 0

−1 1
. . .

0 −1
. . .

. . . . . . 1 0

−1 1


, s.th K ′Π−1

0 K =



p̃−1
ji0 + 1 −1

−1 2
. . .

0 −1
. . .

. . . . . . 2 −1

−1 1


.

The posterior in Eq. (C.22) is (T + 1)-dimensional and sampling involves the in-

version of Π?. However, as all matrices involved in the precision sampler are ei-

ther sparse diagonal, or sparse banded, Π? results as a sparse banded matrix, too.

This implies that its Cholesky decomposition Π? = P?P
′
? is computationally inex-

pensive. Efficient sampling from the posterior can be conducted by first drawing

e ∼ N (0, IT+1) and then consecutively solving P?m̂? = m? for m̂? and P ′?β̃ = m̂? + e

for β̃ = (β̃ji,0, . . . , β̃ji,T ), by making use of back-band substitution instead of calculat-

ing P−1
? (see Chan and Jeliazkov, 2009; McCausland et al., 2011; and the Webappendix

of Bitto and Frühwirth-Schnatter, 2019).

Finally, after sampling β̃ji,t, we obtain a draw for βji,t by the transformation βji,t =

β̄ji + τjiβ̃ji,t, t = 0, . . . , T .
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C.3.3. Sampling β̄, τ and corresponding shrinkage prior hyperparameters

The MCMC sampling scheme proposed by Bitto and Frühwirth-Schnatter (2019) for

the parameters of the latent beta processes consists of full conditional updating steps

for β̄ji and τji (and optionally an interweaving step), their respective prior variances

s•ji and the hyper-parameters a•i , b•i , • ∈ {β, τ}. The sampler cycles through the

following steps, where steps ii) to iv) are done consecutively for • ∈ {β, τ}:

i) Conditional on β̃i·i−1,0:T , xi,1:T , ni and the prior variances {sβji} and {sτji}, joint

updating of {β̄ji} and {τji} is done by sampling αi = (β̄1i, . . . , β̄i−1i, τ1i, . . . , τi−1i)
′

from

αi ∼ N2(i−1)(m1, P
−1
1 ) (C.24)

with

P−1
1 = P

− 1
2

0

(
I2(i−1) + P

− 1
2

0 X ′ΩXP
− 1

2
0

)−1

P
− 1

2
0 , m1 = P−1

1 X ′Ωb, (C.25)

where P−1
0 = diag(sβ1i, . . . , s

β
i−1i, s

τ
1i, . . . , s

τ
i−1i), b = (b′i·i−1,1, . . . , b

′
i·i−1,T )′ is a T (i−

1)×1 vector with stacked realized beta coefficients, X is a sparse T (i−1)×2(i−1)

matrix which results from stacking Xt = [Ii−1, diag(β̃i·i−1,t)] for t = 1, . . . , T , and

Ω = diag
(

ni
σi·i−1,1

C[i−1]1, . . . ,
ni

σi·i−1,T
C[i−1]T

)
is a sparse T (i− 1)× T (i− 1) block

diagonal covariance matrix.4

i*) Interweaving step: After a draw for (β̄1i, . . . , β̄i−1i, τ1i, . . . , τi−1i)
′ is obtained,

each pair (β̄ji, τji), j = 1, . . . , i − 1, is redrawn through interweaving into the

state equation of the centered parameterization. Therefore, we update βji,0:T

via the deterministic transformation βji,t = β̄ji + τjiβ̃ji,t, for t = 0, . . . , T , and

4Note, that the matrix Ω can be expressed as the product of two sparse (block)diagonal matrices ΩC and
Ωσ, where ΩC = diag(C[i−1]1, . . . , C[i−1]T ) and Ωσ = [diag(ni/σi·i−1,1, . . . , ni/σi·i−1,T , ) ⊗ Ii−1]. The
data-dependent covariance part ΩC is readily prepared once before running the MCMC algorithm.
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sample from

τ 2
ji | βji,0:T , β̄ji,, s

τ
ji, p̃ji0 ∼ GIG

(
−T

2
,

1

sτji
,
T∑
t=1

(βji,t − βji,t−1)2 +
(βji,0 − β̄ji)2

p̃ji0

)
,

β̄ji | βji,0, τji, sβji, p̃ji0 ∼ N

(
sβjiβji,0

sβji + τ 2
jip̃ji0

,
sβjiτ

2
jip̃ji0

sβji + τ 2
jip̃ji0

)
.

The new draws (β̄1i, . . . , β̄i−1i, τ1i, . . . , τi−1i)
′ replace those obtained in step i).

Note, that after taking the square root of τ 2
ji, the sign of the old τji value is

assigned to the new draw. Finally, β̃ji,0:T is updated via β̃ji,t = (βji,t − β̄ji)/τji,

for t = 0, . . . , T .

ii) Full conditional sampling of a•i is conducted using a random walk Metropolis-

Hastings step based on proposing log(a•,newi ) ∼ N (log(a•i ), d4) and accepting

a•,newi as the new draw with probability

min

{
exp(−d1a

•,new
i )a•,newi

exp(−d1a•i )a
•
i

i−1∏
j=1

p(•ji|a•,newi , b•i )

p(•ji|a•i , b•i )
, 1

}
, (C.26)

where

p(•ji|a•i , b•i ) =

∫
p(•ji|s•ji)p(s•ji|a•i , b•i )ds•ji

=
(
√
a•i b
•
i )
a•i+1/2

√
π2a

•
i−1/2Γ(a•i )

| •ji |a
•
i−1/2Ka•i−1/2(| •ji |

√
a•i b
•
i ),

and Ka•i−1/2(·) is the modified Bessel function of the second kind with index

(a•i − 1/2).5

iii) For the Normal-Gamma hierarchical priors, it follows that the conditionally Nor-

mal priors •ij|s•ji lead to posteriors for the variances s•ji where the respective

likelihoods are the kernel of an inverse Gamma density in s•ji. In combination

with the Gamma priors s•ji | a•i , b•i this leads to Generalized Inverse Gaussian

5Ka•
i
−1/2(·) is e.g. implemented in MATLAB in the function besselk.
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distributions

s•ji | •ji, a•i , b•i ∼ GIG
(
a•i −

1

2
, a•i b

•
i , (•ji)2

)
. (C.27)

iv) Finally, full conditional updating of b•i is done by sampling

b•i | a•i , {s•ji}i−1
j=1 ∼ G

(
d2 + (i− 1)a•i , d3 +

a•i
2

i−1∑
j=1

s•ji

)
, (C.28)

where G denotes the Gamma distribution in shape-rate parameterization.

Efficient sampling from the GIG distribution in steps i*) and iii) is done based on the

random number generator proposed by Hörmann and Leydold (2014). Hartkopf (2020)

translated their R-function GIGrvg (see Hörmann and Leydold, 2015) to MATLAB

and included proper handling of limiting cases (see also Appendix C.6).

C.3.4. Sampling of the scale parameters p̃0

For {p̃ji0} we impose independent conjugate inverse gamma priors. Samples from the

corresponding full conditional posterior distributions are obtained by sampling

p̃ji0 | β̃ji,0 ∼ IG
(
vp +

1

2
, (vp − 1)cp +

1

2
β̃2
ji,0

)
, (C.29)

for j = 1, . . . , i− 1.

C.3.5. Sampling of log σi·i−1,1:T

In step 2.) of the proposed MCMC sampling scheme, we sample the latent state

series {xi,1:T} full conditional on the static model parameters (γi, φi1, φi2, φi3, ν
2
i ) and

latent states {βi·i−1,1:T} using particle Gibbs with ancestor sampling (PG-AS, Andrieu

et al., 2010; Lindsten et al., 2014). A full description for the PG-AS algorithm is

already given in Appendix A.1.1. Subsequently, we provide details on how the PG-

AS algorithm is implemented for the RSS model.
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The implementation of the PG-AS algorithm relies on a vector representation of the

latent HAR process. Therefore, we define Zit = (xit, xit−1, . . . , xit−21)′ and we re-write

the state equation in (4.18) as follows

Zit = Γi + ΦiZit−1 + Fηit, ηit ∼ N (0, ν2
i ), (C.30)

where F = (1, 0′21)′, 0d is a d× 1 vector of zeros, and

Γi =

γi(1− φ1i − φ2i − φ3i)

021

 , Φi =

 φ?i

I21 | 021

 ,
with φ?i = (φ?i1, φ

?
i2ι
′
4, φ

?
i3ι
′
17), φ?i1 = φi1 + 1

5
φi2 + 1

22
φi3, φ?i2 = 1

5
φi2 + 1

22
φi3, φ?i3 = 1

22
φi3,

and ιd is a d× 1 vector of ones.

Now, the PG-AS algorithm proceeds in the same steps as described in Appendix

A.1.1 to produce a trajectory Zi,1:T . For the RSS model, the period-t weights are

calculated as

w
(j)
it = exp

{
−ni

2

(
F ′Z

(j)
it + e−F

′Z
(j)
it yit

)}
, (C.31)

with yit = ci·i−1,t + (bi·i−1,t − βi·i−1,t)
′C[i−1],t(bi·i−1,t − βi·i−1,t). A sample for xi,1:T is

obtained as xit = F ′Zit, for t = 1, . . . , T .

C.3.6. Sampling of HAR parameters γ, φ1, φ2, φ3, ν2

See Appendix A.1.3 for a description of how to obtain a sample from the posterior

distribution of the parameters γi, φi1, φi2, φi3 and ν2
i , for i = 1, . . . , k.

C.3.7. Sampling of d.o.f. parameters n

Draws from the posterior distributions of the k Riesz degrees of freedom parame-

ters are obtained by the Metropolis-Hastings (MH) algorithm. Therefore we select

independent uniform priors p(ni) on the grid i − 1 < ni < ∞. The (indepen-
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dent) target density for each ni, i = 1, . . . , k, is then given by π(ni | ·) ≡ π(ni |

{xi,1:T}, {βi·i−1,1:T}, C1:T ), i.e.,

π(ni | ·) ∝

[
(ni/2)ni/2

Γ
(
ni−i+1

2

)]T ( T∏
t=1

ycit

)ni/2

exp

{
−ni

2

T∑
t=1

(ycit + ybit)

}
, (C.32)

with ycit = ci·i−1,t/σi·i−1,t, and ybit = (bi·i−1,t − βi·i−1,t)
′C[i−1],t(bi·i−1,t − βi·i−1,t)/σi·i−1,t.

The proposal density for the MH step is chosen to be a tailored t distribution with

ξ degrees of freedom, mean mni and variance v2
ni
, say fT (ni|ξ,mni , v

2
ni

). We find mni

and v2
ni

by numerical optimization of the logarithmic target density as

mni = argmax
ni

log π(ni | ·), v2
ni

= {−∂2 log π(ni | ·)/∂n2
i }−1. (C.33)

The MH step is completed by proposing the value n′i > i − 1 from fT (ni|ξ,mni , v
2
ni

)

and accepting it with probability

α(ni, n
′
i) = min

{
π(n′i | ·)fT (ni|ξ,mni , v

2
ni

)

π(ni | ·)fT (n′i|ξ,mni , v
2
ni

)
, 1

}
. (C.34)

If the proposal value is rejected, the current value ni is retained as the next draw.

Numerical optimization of the target density is readily speeded up by pre-calculating

the terms depending on ycit and ybit.

C.4. RBPF Approximation of the Likelihood in Equation (4.29)

The Deviance Information Criteria (DIC) calculations in Eq. (4.27) are based on

the likelihood in Eq. (4.29). We evaluate the integral in Eq. (4.29) using a Rao-

Blackwellized version of the Bootstrap particle filter (RBPF) algorithm of Gordon

et al. (1993). Based on the factorization in Eq. (4.30), the RBPF uses Bayes’ theorem

to marginalize out the linear state variables βi·i−1,1:T based on standard Kalman filter
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recursions and then applies a standard BPF to the simplified integrals

pi(C1:T ) ∝
∫ [ T∏

t=1

f(ci·i−1,t, bi·i−1,t | C[i−1],1:t, ci·i−1,1:t−1, bi·i−1,1:t−1, xi,1:t, θ)

× f(xi,t|xi,1:t−1θ)

]
dxi,1:T ,

(C.35)

for i = 1, . . . , k.

The RBPF algorithm proceeds in the same steps as described in Appendix A.2 to

estimate pi(C1:T ) = pi(C1)
∏T

t=2 pi(Ct|C1:t−1). Here, the period-t importance weight

(ignoring the factorKt(ni, ci·i−1,t) = (ni/2)ni/2 [Γ((n− i+ 1)/2)]−1 c
(ni−k−1)/2
i·i−1,t ) is given

by

w
(j)
it =

|V (j)
it |1/2

|V ?(j)
it |1/2

exp

{
−1

2

[
ni

(
x

(j)
it + cii,te

−x(j)
it

)
−m(j)′

it V
(j)
it m

(j)
it +m

?(j)′

it V
?(j)
it m

?(j)
it

]}
,

(C.36)

where m?
it, V

?
it and mit, Vit denote the mean and variance of the predictive and filter-

ing distributions for βi·i−1,t, found through the Kalman filter recursions. Given the

initialization m0 = (β̄1i, . . . , β̄i−1i)
′ and V0 = diag(p1i0, . . . , pi−1i0), the moments are

updated via

m
?(j)
it = m

(j)
it−1, (C.37)

V
?(j)
it = V

(j)
it−1 + diag(τ 2

1i, . . . , τ
2
i−1i), (C.38)

m
(j)
it = V

(j)
it

(
(V

?(j)
it )−1m

?(j)
it + nie

−x(j)
it C[i−1],tbi·i−1,t

)
, (C.39)

V
(j)
it =

(
(V

?(j)
it )−1 + nie

−x(j)
it C[i−1],t

)−1

, (C.40)

for t = 1, . . . , T , while running the particle filter algorithm.
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C.5. Additional Posterior Summary Results

We carefully checked the convergence of the proposed MCMC algorithm as well as its

mixing rate (in terms of the correlation of the Gibbs draws). For this we monitored

the trace plots of the Gibbs draws for the parameters and their sample autocorrelation

function (ACF). Following the standard practice in the literature, we report in Sec-

tion 4.5.2 as diagnostic summary statistics for the mixing rate the inefficiency factor

(IF). For the RSS model incorporating shrinkage priors the IF values across all of its

parameters (excluding the shrinkage prior parameters) range from 1.01 to 74.02 with

a median value of 20.74 indicating a high sampling efficiency with a fast mixing rate

of the MCMC algorithm. In Figure C.1 we provide the box plot of the IF values for

all the parameters (excluding the shrinkage prior parameters) for the RSS shrinkage

model and in Figures C.2 – C.4 the trace plots of the Gibbs draws together with the

respective ACFs for a parameter with small IF value (Figure C.2), median IF value

(Figure C.3) and large IF value (Figure C.4). Those plots corroborate the fast mixing

rate of the MCMC algorithm.

C.6. A Note on Sampling from the GIG Distribution

Hörmann and Leydold (2014, 2015) have implemented a stable random number gener-

ator for the GIG in their R package GIGrvg. Originally written in C/C++ the package

GIGrvg has been translated to MATLAB and made publicly available by Hartkopf

(2020, gigrnd).

Note, that the sampling scheme of Hörmann and Leydold (2014, 2015) seems to

lack proper handling of the limiting cases when the GIG parameters are close to zero.

In the following, useful results for those limiting cases are derived. The MATLAB

function gigrnd has been expanded to handle these limiting cases more properly.
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C.6.1. Some properties of the Generalized Inverse Gaussian distribution

A random variable X follows a Generalized Inverse Gaussian distribution with pa-

rameters λ, χ and ψ, say X ∼ GIG(λ, χ, ψ), if its pdf is given by

fX(x) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1 exp

{
−1

2
(χx−1 + ψx)

}
, (C.41)

where Kλ(z) denotes the modified Bessel function of the second kind. The domain of

variation of the parameters in (C.41) is given by

λ ∈ R, (χ, ψ) ∈


{(χ, ψ) : χ ≥ 0, ψ > 0}, λ > 0

{(χ, ψ) : χ > 0, ψ > 0}, λ = 0

{(χ, ψ) : χ > 0, ψ ≥ 0}, λ < 0,

(C.42)

where parameterizations with χ = 0 (λ > 0) or ψ = 0 (λ < 0) have to be understood

as limiting cases (Jørgensen, 1982; von Hammerstein, 2010).

If the random variable X has distribution GIG(λ, χ, ψ) we have the following re-

ciprocal and rescaling properties (see Jørgensen, 1982, pp. 7–12)

X−1 ∼ GIG(−λ, ψ, χ) (C.43)

cX ∼ GIG(λ, cχ, c−1ψ), for c > 0, (C.44)

and its rth moment is given by

E[Xr] =
Kλ+r(

√
χψ)

Kλ(
√
χψ)

(
χ

ψ

) r
2

. (C.45)

C.6.2. Random number generation for limiting cases

Hörmann and Leydold (2014, 2015) have implemented a stable random number gen-

erator for the GIG(λ, χ, ψ) distribution in the case that χ, ψ > 0 in their R package

GIGrvg. However, their sampling algorithm seems to lack proper handling of the

limiting cases χ = 0(λ > 0) or ψ = 0(λ < 0), see Eq. (C.42). In the following, few re-
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sults for GIG(λ, 0, ψ) and GIG(−|λ|, χ, 0) are derived, and also the problematic cases

λ < 0, χ→ 0 and λ > 0, ψ → 0 are considered.

The derivations of the limiting cases rely on the following asymptotically equivalent

representation of the modified Bessel function of the second kind (see Abramowitz

and Stegun, 1972, Eq. (9.6.9), and Greiner and Reinhardt, 2009, p.74)

Kλ(z) ∼ Γ(|λ|)2|λ|−1z−|λ|, for|λ| > 0, (C.46)

with Γ(z) being the Gamma function.6

Case λ > 0, χ = 0

In the case λ > 0, χ = 0 considering the limit limχ→0 fX(x) yields

lim
χ→0

fX(x) = lim
χ→0

[
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1 exp

{
−1

2
(χx−1 + ψx)

}]
= lim

χ→0

[
(ψ/χ)λ/2

2Kλ(
√
χψ)

]
lim
χ→0

[
xλ−1 exp

{
−1

2
(χx−1 + ψx)

}]
by (C.46)

= lim
χ→0

[
(ψ/χ)λ/2

2Γ(λ)2λ−1(χψ)−λ/2

]
lim
χ→0

[
xλ−1 exp

{
−1

2
(χx−1 + ψx)

}]
= lim

χ→0

[
ψλ

2λΓ(λ)

]
lim
χ→0

[
xλ−1 exp

{
−1

2
(χx−1 + ψx)

}]
=

(ψ/2)λ

Γ(λ)
xλ−1 exp

{
−ψ

2
x

}
. (C.47)

The latter density (C.47) corresponds to that of a Gamma distribution with degrees

of freedom parameter λ and scale 2/ψ. Hence, for χ < ε, with ε being sufficiently

small, one obtains a random sample from GIG(λ, 0, ψ) by sampling X ∼ G(λ, 2/ψ).7

6In the case λ = 0 one obtains K0(z) ∼ − ln(z) implying that the integrating constant of the GIG in (C.41)
goes to zero for χψ → 0 (see von Hammerstein, 2010, p. 9).

7In MATLAB one can generate a random sample from this distribution by calling x =
2*randg(lambda)/psi;
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Case λ < 0, ψ = 0

In the case λ < 0, ψ = 0 considering the limit limψ→0 fX(x) yields

lim
ψ→0

fX(x) = lim
ψ→0

[
(ψ/χ)−|λ|/2

2K|λ|(
√
χψ)

x−|λ|−1 exp

{
−1

2
(χx−1 + ψx)

}]
= lim

ψ→0

[
(ψ/χ)−|λ|/2

2K|λ|(
√
χψ)

]
lim
ψ→0

[
x−|λ|−1 exp

{
−1

2
(χx−1 + ψx)

}]
by (C.46)

= lim
ψ→0

[
(ψ/χ)−|λ|/2

2Γ(|λ|)2|λ|−1(χψ)−|λ|/2

]
lim
ψ→0

[
x−|λ|−1 exp

{
−1

2
(χx−1 + ψx)

}]
= lim

ψ→0

[
χ|λ|

2|λ|Γ(|λ|)

]
lim
ψ→0

[
x−|λ|−1 exp

{
−1

2
(χx−1 + ψx)

}]
=

(χ/2)|λ|

Γ(|λ|)
x−|λ|−1 exp

{
−χ

2
x−1
}
. (C.48)

The latter density (C.48) corresponds to that of an Inverse-Gamma distribution with

degrees of freedom parameter |λ| and scale χ/2. Hence, for ψ < ε, with ε being

sufficiently small, one obtains a random sample from GIG(−|λ|, χ, 0) by sampling

X ∼ IG(|λ|, χ/2).8

Case λ > 0, ψ → 0

In the undefined case λ > 0, ψ = 0 considering the limit limψ→0 fX(x) yields

lim
ψ→0

fX(x) = lim
ψ→0

[
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1 exp

{
−1

2
(χx−1 + ψx)

}]
= lim

ψ→0

[(
ψ

2

)λ
1

Γ(λ)
xλ−1 exp

{
−1

2
(χx−1 + ψx)

}]
→ 0, (C.49)

implying that the density of GIG(λ, χ, 0) has no positive mass. However, it may occur

in applications that one faces the case λ > 0 and 0 < ψ < ε, with ε > 0 being some

small non-zero upper bound. In this problematic case the rescaling property of the

GIG might prove itself as helpful. Using (C.44) one could generate a random sample

8In MATLAB one can generate a random sample from this distribution by calling x =
0.5*chi/randg(abs(lambda));
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from

Y = ψX ∼ GIG(λ, ψχ, 1), (C.50)

and do rescaling afterwards to obtain a draw for X as X = Y/ψ, assuming that ψ

is large enough to assure ψ−1 << ∞. Now, if χψ > 0 the random variate Y can be

generated using the sampling procedure of Hörmann and Leydold (2014, 2015), or

else if ψχ → 0 by sampling from a Gamma distribution with degrees of freedom λ

and scale 2, i.e., Y ∼ G(λ, 2).

Case λ < 0, χ→ 0

In the undefined case λ < 0, χ = 0 considering the limit limχ→0 fX(x) yields

lim
χ→0

fX(x) = lim
χ→0

[
(ψ/χ)−|λ|/2

2K|λ|(
√
χψ)

x−|λ|−1 exp

{
−1

2
(χx−1 + ψx)

}]
= lim

χ→0

[(χ
2

)|λ| 1

Γ(|λ|)
x−|λ|−1 exp

{
−1

2
(χx−1 + ψx)

}]
→ 0, (C.51)

implying that the density of GIG(λ, 0, ψ) has no positive mass. However, it may occur

in applications that one faces the case λ < 0 and 0 < χ < ε, with ε > 0 being some

small non-zero upper bound. In this problematic case the rescaling property of the

GIG might prove itself as helpful. Using (C.44) one could generate a random sample

from

Y = χ−1X ∼ GIG(λ, 1, ψχ), (C.52)

and do rescaling afterwards to obtain a draw for X as X = χY , assuming that χ

is large enough to assure χ−1 << ∞. Now, if χψ > 0 the random variate Y can be

generated using the sampling procedure of Hörmann and Leydold (2014, 2015), or else

if ψχ→ 0 by sampling from an Inverse-Gamma distribution with degrees of freedom

|λ| and scale 1/2, i.e., Y ∼ IG(|λ|, 1/2).
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C.7. Additional Figures

Figure C.1.: Inefficiency factors.
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Box plots of the IF values for all parameters (excluding shrinkage prior parameters) for the
RSS shrinkage model.

Figure C.2.: Traceplot for a parameter with small IF value.
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Upper panel: Trace plots of the Gibbs draws for the parameter of the RSS shrinkage model
with small IF value; Lower panel: The sample ACF for the Gibbs draws (excluding those of
the burn-in period).
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Figure C.3.: Traceplot for a parameter with median IF value.
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Upper panel: Trace plots of the Gibbs draws for the parameter of the RSS shrinkage model
with median IF value; Lower panel: The sample ACF for the Gibbs draws (excluding those
of the burn-in period).

Figure C.4.: Traceplot for a parameter with large IF value.
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Upper panel: Trace plots of the Gibbs draws for the parameter of the the RSS shrinkage
model with large IF value; Lower panel: The sample ACF for the Gibbs draws (excluding
those of the burn-in period).
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