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Abstract 
Deep brain stimulation (DBS) is an electrical therapy for several advanced neurological 

disorders such as Parkinson’s disease (PD). The improvement of current DBS technique 

has gained more importance in order to increase the therapeutic benefits and reduce the 

side effects. The electrical stimulation of the deep brain is administered at standard high-

frequency (HF) or by using dedicated patterns intending the modulation of pathological 

neuronal activity. Apart from the development of new stimulation protocols such as the 

desynchronizing coordinated reset (CR) DBS protocol, a continuous and appropriate 

adjustment of the stimulation parameters might increase the efficacy of DBS. Therapeutic 

benefits could be maximized by a system that automatically detects the demand for further 

stimulation and continuously modifies the stimulation parameters. For instance, such a 

system can help the clinician to find the optimal parameters easily, without lengthy test 

procedures. In this thesis, the technical realization of a demand-controlled application of 

CR DBS for Parkinson’s disease (PD) with a portable neurostimulator is investigated. The 

applicability of such an autonomic system is studied retrospectively using local field 

potential (LFP) and resting tremor recordings from PD patients, as well as LFP recordings 

from parkinsonian non-human primates were used. A demand-controlled application of 

DBS requires a real-time analysis of the on-going pathological activity. LFP recordings 

during DBS are normally contaminated by strong artifacts that are caused by technical 

drawbacks. The artifacts inhibit the examination of the presence of pathological activity. 

Therefore, software-based technical solutions for artifact reduction were developed and 

implemented to obtain clean feedback signals from the recordings. Additional tests were 

performed on LFP recordings in saline solution to evaluate the performance of the 

implemented algorithms. Results obtained from these tests indicated the efficacy of the 

algorithms in removing most of the artifacts. Furthermore, the biological recordings were 

analyzed to find biomarkers of the pathological activity that can be used as a criterion to 

quantify the demand for tuning the stimulation parameters. The proposed approach aims to 

analyze and monitor the variation in the strength of such pathological activities. A 

demonstration of the tuning of several HF and CR DBS parameters was performed in real-

time with a digital signal processor (DSP) board using tremor-like recordings collected 

from a healthy subject. This thesis explores and demonstrates the design and 

implementation of a demand-controlled application of DBS that is adapted according to the 

pathological fluctuations of patients and can be more efficacious than standard continuous 

DBS technique. 
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Kurzfassung 
Die tiefe Hirnstimulation ist eine elektrische Therapie für verschiedene fortgeschrittene 

neurologische Erkrankungen wie die Parkinson-Krankheit (PD). Die Verbesserung der 

tiefen Hirnstimulation hat mehr an Bedeutung gewonnen, um den klinischen Nutzen zu 

erhöhen und die potenziellen Nebenwirkungen zu verringern. Die elektrische Stimulation 

des tiefen Gehirns kann mittels Standard-Hochfrequenz (HF) oder mit dedizierten, 

speziellen Mustern, die auf die Modulation der pathologischen neuronalen Aktivität 

abzielen, durchgeführt werden. Neben der Entwicklung von neuen Stimulations-

protokollen, wie des Protokolls der de-synchronisierenden „Coordinated Reset“ (CR), 

könnte eine kontinuierliche und gezielte Anpassung der Stimulationsparameter die 

Wirksamkeit der tiefen Hirnstimulation erhöhen. Der therapeutische Nutzen könnte somit 

durch ein System, das den Bedarf für eine weitere Stimulation automatisch erkennt und 

ständig die Stimulationsparameter modifiziert, maximiert werden. Darüber hinaus kann ein 

solches System den Ärzten helfen, die optimalen Stimulationsparameter ohne langwierige 

Einstellungsprozeduren leicht zu finden. In der vorliegenden Arbeit wird die technische 

Realisierung einer bedarfsgesteuerten Anwendung der CR Stimulation für Parkinson-

Patienten mit einem tragbaren Neurostimulator vorgestellt. Die Anwendbarkeit eines 

solchen autonomen Systems wird retrospektiv erforscht. Zu diesem Zweck wurden bereits 

vorhandene Aufnahmen der lokalen Feldpotentiale (LFP) und des Ruhetremors von 

Parkinson-Patienten, sowie LFP Messungen von nicht-menschlichen Primaten, die unter 

Parkinson-Symptomen leiden, verwendet. Die bedarfsgesteuerte Anwendung der tiefen 

Hirnstimulation erfordert eine Echtzeit-Analyse der pathologischen Aktivität. LFP 

Aufnahmen während der tiefen Hirnstimulation sind in der Regel von starken Artefakten 

kontaminiert. Diese Artefakte verhindern die einfache Analyse der erfassten Daten zur 

Feststellung des Vorhandenseins einer pathologischen Aktivität. Deshalb wurden software-

basierte technische Lösungen für die Unterdrückung von Artefakten entwickelt und 

implementiert. Weitere Tests wurden mit LFP Aufnahmen vorgenommen, die im Rahmen 

von Messungen in Salzlösung gewonnen wurden. Diese Messungen helfen, die Leistung 

der implementierten Algorithmen zu beurteilen. Die Ergebnisse aus diesen Tests zeigten, 

dass die entwickelten Algorithmen die meisten Artefakte hochwirksam entfernen können. 

Weiterhin wurden die biologischen Aufnahmen analysiert, um Biomarker für die 

pathologische Aktivität zu finden. Diese Biomarker können als Kriterium verwendet 

werden, um den Bedarf zur Anpassung der Stimulationsparameter zu quantifizieren. Somit 

können entsprechend des vorgeschlagenen Ansatzes die Veränderungen in der Stärke der 

pathologischen Aktivität analysiert und überwacht werden. Die Anpassung von 

unterschiedlichen HF und CR Stimulationsparametern wurde in Echtzeit mit einem 
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digitalen Signalprozessor (DSP), anhand von Parkinson-zitterten-ähnlicher Messdaten 

eines gesunden Probanden, präsentiert. Somit kann diese Arbeit die Konzeption und 

Umsetzung einer bedarfsgesteuerten Anwendung der tiefen Hirnstimulation demonstrieren 

und zeigt, wie die pathologischen Schwankungen der Patienten für die Anpassung der 

Stimulationsparameter verwendet werden können. Es ist zu hoffen, dass solche Verfahren 

die Wirksamkeit der tiefen Hirnstimulation – englisch: Deep Brain Stimulation (DBS) - 

verbessern können.  
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 ملخص  الأطروحة

للدماغ العميق  امراض    Deep Brain Stimulation (DBS)Iالتحفيز  لعدة  كهربائية  تقنية علاجية  هو 

هذه التقنية    تطوير  فكرة   تكتسب.  Parkinson's Disease (PD)Iالباركنسون    ضرمعصبية متقدمة مثل  

عملية التحفيز    . تتم المحتملة  يةانب الج  الآثار  تقليلو  ةالعلاجي  دئفوا ال  زيادة   أجل   من  الوقت  مع  أكبر  أهمية

أو   High Frequency( HF)  التردد  عالية  كهربائية  ذبذبات  إرسال  طريق  عنالدماغي   مستمرة    اما 

  ألنشاط   التأثير على  لغرض  ية المستهدفةالدماغالمناطق  الى    الذبذبات  هذه   من   مخصصة  أنماط  باستخدام

  بروتوكول   مثل  جديدة   كهربائي  تحفيز  بروتوكولات  يرتطو  فكرة   إلى  بالإضافة.  العصبية  للخلايا  المرضي

  المرضي   العصبي  النشاط  إعادة  الى  هدف ي  الذيو  Coordinated Reset (CR) DBS  الموجهة  الإعادة

  فعالية   لزيادة   أكثر واعدة    التحفيز  معاملاتل  والمناسب   دائم ال  قويمالت   فكرة   تعتبر  لطبيعية،ة أقرب لحال  الى

  العصبي  النشاط  وتحليل  اكتشاف  على  قادر  أوتوماتيكي  نظام   تطوير  يقر ط  عنمثلا    ,DBS  ال  تقنية

  المستخدمة   معاملات التحفيز  تغيير  او   للدماغ  الكهربائي  التحفيز   ية استمرار  الى  الحاجة  وتقييم   المرضي

الكهربائي    التحفيز  لتقنية  اوتوماتيكي  تطبيق  إنشاء  إمكانية  بدراسة   قمنا  الأطروحة  هذه   في.  دائم   بشكل

  الى  التطبيق  هذا  يهدف.  العصبي  للتحفيز  يستعمل  محمول  جهاز  مع  الرعاش  الشلل  لمرضى  للدماغ  ميقالع

.  مستمر  بشكل  الدماغ  تحفز  التي  ألحالية  التقنيات   بعكس  فقط   الحاجة  عند  الكهربائي  التحفيز   معاملات  تعديل 

  من  نوعين  باستخدام   يق تطب  هكذا  تحقيق  لإمكانية retrospective study استرجاعية   دراسة عمل  تم   لقد 

  Local Field Potential (LFP)Iالدماغية  العصبية  النشاطات   هو  الأول  النوع :  مسبقا  المسجلة  البيانات 

 مرضى  من  عليهاالحصول    تم   الدماغ  في  المستهدفة  المنطقة  في  مزروع كهربائي  قطب طريق   عن  المسجلة

  ( Macaque monkeys  -  المكاكا  قرود)  كنسونبالبار  تم اصابتها  بشرية  غير  عليا  ثديات  ومن  الباركنسون

لقياس    حساسات  طريق  عنفي مرضى الباركنسون    Resting TremorIالرعاش  قياسات  هو  الثاني  والنوع

  يتطلب   التحفيز  معاملات  ضبط  لإعادة   الحاجة  لتقييم  تطبيق  إنشاء  إن   الاهتزازات في الأطراف المصابة.

 نتيجة  مشوشة  عادة   تكون  الدماغ  في  العصبي  النشاط  تسجيلات.  المرضي  للنشاط  الحقيقي  الوقت  في  تحليلاا 

  تطوير  تم   لذلك،.  المرضى  من  المسجلة  العصبية  الإشاراتتحليل  و  دراسة  منع التي ت  التقنية  العيوب  لبعض

نقاءا   إشارات  على  وللحصول  التشويش  لتقليل(  خوارزميات)  برمجية  تقنية  حلول   اختبار  تم .  أكثر 

  فعالية   النتائج  أظهرت.  ملحي  محلول  في  مخبرية  تجارب  من  LFP  لات تسجي  على  الخوارزميات

  المؤشرات   ولحساب  البيانات  لتحليل اخرى   خوارزميات  برمجة  تم   كما.  التشويش  إزالة  في  الخوارزميات

طريق    المرضية  النشاطات   وجود  على  الحيوية  العصبي  ألنشاط  قوة   في  التغيرات  وتحليل  رصدعن 

 المستخدمة  معاملاتال  ضبط  عادة لإ  الحاجة  لتقييم  كمعيار  مهاااستخد  يتم   ويةحي ال   المؤشرات  هذه .  المرضي

للتطبيق    مبدئي  تجريب  تم علي  التحفيز الكهربائي للدماغ في الوقت الف  معاملاتتعديل    يةلعرض كيف  .للتحفيز

تقنية  على  Digital Signal Processor (DPS)  رقمي  إشارات  معالج  بواسطة  الموجهة  الاعادة   مع 

  وتنفيذ   تصميم   الأطروحة تستكشف  هذه .  شخص سليم  اخذها من  تم   مشابهة لرعاش الباركنسون  جيلاتست

  المرضية   التقلبات  مع  التكيف  على  قادرة تكون    لدماغلعمق االكهربائي    للتحفيز  تيكيةأوتوما  لتقنية  تطبيق

 .التقليدية المستمر التحفيز  تقنيات من فاعلية أكثر تكون ان ويمكن
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Introduction 

 
Deep brain stimulation (DBS) is an effective and approved1 electrical therapy for advanced 

Parkinson’s disease (PD) with medically refractory symptoms and for several other 

neurological disorders (Coffey, 2009, Hariz, 2012, Benabid et al., 1991). For electric DBS, 

depth electrodes are chronically implanted in target areas in the brain and connected 

subcutaneously to an implantable pulse generator (IPG). The IPG is battery-powered and 

implanted under the patient’s collarbone. Via the depth electrodes, the IPG is used to 

administer a continuous high-frequency (HF) periodic pulse train (Coffey, 2009). HF 

(>100 Hz) is the standard DBS protocol and has been empirically developed relying on 

intra-operative observations. Despite therapeutic success for involuntary movement 

disorders, HF DBS still has some limitations. For instance, its therapeutic effects may wear 

off over time and undesired stimulation of neighboring areas might cause side effects 

(Kumar et al., 2003, Volkmann, 2004, Rodriguez-Oroz et al., 2005).  

Strong neuronal synchronization of brain activity has become one of the characteristics 

of PD (Lenz et al., 1994, Nini et al., 1995, Brown, 2003). The mechanism of HF DBS on 

the abnormal neuronal activity is still a matter of ongoing debate (Miocinovic et al., 2013, 

Carron et al., 2012). In order to improve the therapeutic effects of DBS, new stimulation 

protocols have been developed. Among them, coordinated reset (CR) has been introduced 

as a robust desynchronizing stimulation technique based on timely coordinated phase resets 

of synchronized neuronal populations (Tass, 2003b, 2003a). The objective of the CR 

protocol is to selectively counteract the pathological neuronal synchronization process 

(Tass, 2003b). CR protocol splits the entire synchronized neuronal population into several 

sub-populations in a timely coordinated manner that are phase-shifted with respect to each 

other ultimately leading to desynchronization (Tass, 2003b, 2003a).  

The further enhancement and detailed understanding of the DBS mechanism might 

have the potential to maximize therapeutic benefits, minimize power consumption and to 

extend the field of DBS application to other areas. Stimulation parameters of DBS are 

adjusted intermittently every few months to cope with the dynamic nature of PD (Deuschl 

et al., 2006a). This shows that a closed-loop technique that continuously adjusts the 

 
1 By the US Food and Drug Administration (FDA) 
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stimulation parameters according to the current pathological neuronal activity could be 

more effective than classical open-loop DBS (Rosin et al., 2011, Little et al., 2013). In this 

regard, the optimization of the stimulation strategy, through a demand-controlled 

application of desynchronizing CR DBS, is expected to have a strong impact on the 

reduction of side effects. This is because the stimulation amplitude and duration can be 

reduced considerably (Feng et al., 2007, Grant & Lowery, 2013). The demand-controlled 

application aims to optimize the stimulation effects by quantifying and detecting the need 

for further stimulation and appropriately adapting the stimulation parameters.  

A demand-controlled application requires a real-time analysis of the pathologic 

neuronal activity. The implanted electrodes for DBS offer a unique opportunity to record 

the pathological activity from the target area during CR stimulation. The electrical field in 

the vicinity of the implanted electrode, known as the local field potential (LFP), can provide 

relevant information about the pathological activity of large neuronal populations (Tass et 

al., 2010). LFP activity is believed to be modulated by DBS and that it correlates with motor 

and non-motor impairments (Priori et al., 2013, Little & Brown, 2012). LFP activity is 

characterized by multiple rhythms which operate at distinct frequencies (Brown, 2003, 

Cassidy et al., 2002, Levy et al., 2002, Foffani et al., 2005a). Furthermore, the analysis of 

the LFP activity could provide an insight into the mechanisms of action underlying DBS. 

Therefore, LFP recordings are still the most suitable candidate feedback signal for such a 

demand-controlled application of DBS (Priori et al., 2013). In addition, motoric symptoms 

of PD, particularly resting tremor, can be analysed to uncover their relationship to the 

pathological synchronization in the brain (Tass et al., 2010).   

 

 Aim of the thesis 

In this project, we investigate the technical realization of a demand-controlled application 

of CR DBS for Parkinson’s disease (PD) with a portable neurostimulator. The main 

objective is to develop and implement technical solutions for real-time artifact reduction 

and data analysis. The applicability of such an autonomic system is studied retrospectively 

using two kinds of existing electrophysiological recordings:  

 

(i) Internal LFP recordings from PD patients and from non-human primates 

rendered parkinsonian. These include: (a) LFP recordings during 

desynchronizing CR DBS and (b) Spontaneous LFP recordings after CR 

stimulation sessions.  

(ii) External recordings of parkinsonian resting tremor especially of the hands. 

The tremor signal was recorded by means of accelerometers simultaneously 

with the LFP signals during and after the CR stimulation sessions. 
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LFP recordings during active DBS are normally contaminated by strong artifacts that 

can be one million times greater than the LFP activity (Giannicola et al., 2012, Rossi et al., 

2007, Abosch et al., 2012). These artifacts hindered the investigation of the pathological 

neuronal activity. LFP recordings during CR DBS are contaminated by some artifacts such 

as stimulus artifacts, exponential decay/growth after stimuli, power line interference (PLI), 

and electrical background noise. To obtain a reasonable feedback signal during CR DBS 

for the demand-controlled application, we developed and implemented software-based 

technical solutions for real-time artifact reduction. An efficient solution for that was the 

software implementation of the Nelder-Mead algorithm which is an optimization technique 

based on the least squares method (Nelder & Mead, 1965). The aim of implementing the 

Nelder-Mead algorithm was to remove artifacts from short epochs of LFP recordings (i.e., 

up to 500 ms). In order to give a proof-of-principle and to optimize the flexibility and 

accuracy of the implemented technical solutions, off-line simulations and in-vitro tests (i.e., 

in saline solution) were performed. Results obtained from these tests showed a high 

efficacy of the implemented algorithms in removing most of the artifacts. For spontaneous 

LFP activity and tremor recordings after CR DBS, different techniques based on digital 

filtering and wavelet transform were used for artifact reduction.  

Analysis techniques of LFP recordings are typically performed in the frequency 

domain. In our application, the real-time spectral analysis of neuronal activity during CR 

DBS resulted to be more challenging because of the short data segments included in the 

CR stimulation protocol but are free of strong artifacts, e.g., the stimulus artifact. The short 

data segments were collected on a regular basis to analyze the pathological neuronal 

activity. We implemented several technical solutions for data analysis in order to calculate 

biomarkers-values of the pathological activity in the LFP recordings. During CR DBS, two 

analysis techniques were used: averaging of data segments and modified spectral analysis. 

The spectral power of the collected short data segments was scaled by a factor that was 

calculated from the selected CR stimulation parameters. In order to investigate the 

spontaneous LFP and tremor recordings, the spectral analysis was the main analysis tool. 

The variation in the spectral power of the LFP and tremor recordings was monitored over 

time to determine the demand value. Finally, tremor-like recordings from a control subject 

were used to test and demonstrate the real-time adjustment of CR DBS parameters.  

Off-line tests and simulations of the implemented technical solutions for the artifact 

reduction and data analysis were performed in MATLAB before being implemented and 

tested for real-time processing in Simulink. Afterward, the Simulink modules were 

converted into C files for hardware applications. The C files were compiled by a C compiler 

to generate a machine code that was finally tested on a digital signal processor (DSP) board. 

The latter is placed in a portable neurostimulator and is used for the implementation of new 

stimulation strategies. The portable neurostimulator is an external trial DBS device which 

was developed to apply HF and CR DBS protocols to patients (Hauptmann et al., 2009). 
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The portable neurostimulator is used for both stimulation and data acquisition and has the 

capability to simultaneously record LFP, tremor and other biological signals during 

stimulation (Hauptmann et al., 2009). The DSP board can instantaneously access the data 

acquired by the portable neurostimulator which is necessary for a closed-loop application. 

In this work, the LFP and tremor recordings used to investigate the realization of the 

demand-controlled application of desynchronizing CR DBS were recorded by the portable 

neurostimulator. 

 

 Structure of the thesis 

The thesis is organized as follows: 

Chapter 2 gives medical background about Parkinson’s disease and its pathophysiology 

and some of its symptoms (Section 2.1). A technical description of the surgical technique 

DBS for Parkinson’s disease is given in Section 2.2. DBS protocols such as the standard 

stimulation technique HF DBS and the newly developed technique CR DBS are presented 

in Section 2.2.1 and Section 2.2.2, respectively. In these sections, stimulation parameters 

and patterns of CR DBS are explained in more detail since most of the implemented 

technical solutions are dedicated to this DBS protocol.   

In Chapter 3 the technical setup and data used to test the demand-controlled 

application are introduced. The portable neurostimulator is presented in Section 3.1 and a 

brief description of the DSP used for real-time data processing is given in Section 3.1.1. 

Information about LFP recordings from PD patients, from non-human primates and in 

saline solution is given in Section 3.2.1 and Section 3.2.2. The tremor recordings from PD 

patients are described in Section 3.2.3. The software and program flow used to generate the 

machine code for our hardware applications are described in Section 3.3.  

Chapter 4 presents the technical solutions for artifact reduction. This chapter describes 

the implemented algorithms to remove the principal artifacts in the LFP recordings during 

active CR DBS (Section 4.1). These artifacts include: the stimulus artifact (Section 4.1.1), 

exponential decay/growth (Section 4.1.2), PLI (Section 4.1.3) and electrical background 

noise (Section 4.1.4). Further movement and technical artifacts are shown in Section 4.1.5. 

The optimal artifact reduction sequence during CR DBS is presented in Section 4.1.6. 

Technical solutions for artifact reduction of spontaneous LFP and tremor recordings are 

introduced in Section 4.2.  

Chapter 5 presents the technical solutions for data analysis and estimation of demand 

as well as the way how to tune the stimulation parameters. The implemented algorithms to 

analyse (i) LFP recordings during active CR DBS and (ii) the spontaneous LFP and tremor  

recordings are introduced in Section 5.1 and Section 5.3, respectively. The implemented 

algorithms to determine the demand from (i) the LFP recordings during active CR DBS 
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and (ii) from the spontaneous LFP and tremor recordings are introduced in Section 5.2 and 

Section  5.4, respectively. Examples for testing the technical solutions on simulated data, 

LFP recordings from non-human primates, as well as on LFP and tremor recordings from 

PD patients are shown in this chapter. The real-time tuning of CR stimulation parameters 

using tremor-like recordings from a control subject is demonstrated in Section 5.5. 

In Chapter 6 the results are summarized and discussed. Real-time artifact reduction 

and data analysis with the portable neurostimulator are discussed in Section 6.1 and Section 

6.2, respectively. The proposed approach for calculating the demand-value from LFP and 

tremor recordings during and after CR DBS is summarized in Section 6.3. Limitations and 

future directions are mentioned in Section 6.4. 

Appendix A gives information about the implementation of the Nelder-Mead 

algorithm in Simulink. The algorithm was the main technique used for the removal of 

exponential and PLI artifacts from the short data segments during active CR DBS.  

Appendix B represents the Simulink modules constructed for the demand-controlled 

application of DBS. All Simulink modules presented in this appendix were converted by 

the Embedded Coder of MATLAB into C source files and tested with the DSP board within 

the portable neurostimulator.



 

 

  

 

Parkinson’s Disease and Deep Brain 

Stimulation Protocols 

 

 Parkinson’s disease 

Parkinson’s disease (PD) is caused by an alteration of physiological activity of the basal 

ganglia; a group of nuclei in the brain that play a major role in the control of human 

movements, association and emotion (Brown, 2003, Bevan et al., 2002, Wichmann & 

DeLong, 1996). The main components included in the basal ganglia are the striatum, 

substantia nigra, globus pallidus and the subthalamic nucleus (STN) (Bevan et al., 2002). 

The substantia nigra is composed of the substantia nigra pars compacta (SNc) and the 

substantia nigra pars reticulata (SNr), while the globus pallidus consists of the globus 

pallidus externus (GPe) and the globus pallidus internus (GPi) (Bevan et al., 2002). A 

simplified diagram of the basal ganglia and its connections to other brain structures is 

shown in Figure 2.1. The dopaminergic neurons in the SNc produce the chemical 

neurotransmitter dopamine which is important for the functionality of the basal ganglia 

system (Alexander & Crutcher, 1990). The output nuclei of the basal ganglia (i.e. the GPi 

and the SNr) is connected with the striatum through two different pathways: direct and 

indirect (Obeso et al., 2000). These two pathways are antagonists in their function for motor 

control. The projection from the striatum to the GPi and the SNr forms the direct pathway, 

which decreases the inhibition of the thalamus and thus facilitates voluntary movements. 

The indirect pathway connects the striatum with the GPi and the SNr through the GPe and 

STN. The excitatory projection from the STN to the GPi and SNr increases the inhibition 

of the thalamus and thus reduces the muscle activity (Obeso et al., 2000). The balance 

between both pathways is maintained and modulated by the dopaminergic connections 

from the SNc to each nucleus (Bevan et al., 2002). Therefore, dopamine is associated with 

the balance and smoothness of muscle movements (Albin et al., 1989). Chronic and 

progressive degeneration of dopaminergic cells, especially in the SNc, reduces the level of 

dopamine (Priebe et al., 2012). This dopamine depletion can be associated with changes in 

the neuronal firing patterns (Magill et al., 2001). 
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Parkinson’s disease is characterized by abnormal neuronal synchronization (Lenz et 

al., 1994, Brown, 2003) where neuronal populations e.g. in the thalamus or basal ganglia 

form a pacemaker that fires in a periodical manner (Deuschl et al., 2000). Under healthy 

conditions, these neuronal populations fire in an uncorrelated manner (Brown et al., 2001). 

Pathological oscillations in the local field potentials (LFP) recorded in the basal ganglia are 

divided into different bands: < 8 Hz (“theta” band), 8 – 13 Hz (“alpha” band) and 

14 – 30 Hz (“beta” band) and > 60 Hz (“high gamma” band) (Brown & Williams, 2005). 

The tremor frequency is classified in the range of 3 – 10 Hz (Bergman & Deuschl, 2002, 

Brown & Williams, 2005). The limits of each band range are defined in different ways in 

order to detect the variations along different frequency regions and gain deeper 

understanding about the disease. 

 
Figure 2.1. A simplified diagram of the pathways in the basal ganglia. The main components included 

in the basal ganglia are the striatum, substantia nigra, globus pallidus (pars externus and internus) and 

the subthalamic nucleus. The direct pathway (indicated by the black arrows) goes from the striatum 

directly to the GPi/SNr and then to the thalamus. The indirect pathway (yellow arrows) goes from the 

striatum through the GPe and the STN and back to the GPi, then to the thalamus. The dopaminergic 

connections from the SNc are shown in green, excitatory connections (Glutamatergic) in red, and 

inhibitory connections (GABAergic) are in blue. This figure is modified from the figures presented in 

(Bevan et al., 2002). 
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Symptoms of PD are motoric and non-motoric. Non-motoric symptoms are such as 

depression, pain and sleep disorders (Chaudhuri & Schapira, 2009). Potential motoric 

symptoms include bradykinesia (slowing of physical movements), akinesia (complete loss 

of physical movements), rigidity, postural instability, and resting tremor (Bergman & 

Deuschl, 2002). Several studies have reported the efficacy of DBS in suppression of 

parkinsonian tremor (Volkmann, 2007, Nishio et al., 2009, Rodriguez-Oroz et al., 2005). 

In this thesis, we focus on resting tremor, since it can be externally recorded by means of 

accelerometers (Van Someren et al., 2006). Tremor-like recordings from a control subject 

were used to test the demand-controlled application of DBS; in particular, the real-time 

adjustment of the CR DBS parameters. 

Currently, there is no cure for PD; nevertheless, therapies with medications can 

alleviate the symptoms. A widely used drug for PD is L-Dopa; however, only a small 

portion of the drug reaches the dopaminergic neurons where it is transformed into dopamine 

(Latteri et al., 2011). The rest of the L-dopa is often metabolized to dopamine elsewhere, 

causing a variety of side effects (Wolf et al., 2006). Although the development of L-dopa 

has dramatically reduced the need for neurosurgical treatment for movement disorders, 

patients may become resistant to this drug treatment with time (Rodriguez-Oroz et al., 

2005).  

 

 Deep brain stimulation (DBS) 

DBS has become an effective treatment for advanced PD patients with medically refractory 

symptoms (Limousin et al., 1995, Benabid et al., 1991). The development of DBS for the 

treatment of neurological disorders is based on clinical observations and experimental 

results (Volkmann, 2007). In 1987, Benabid observed that permanent brain stimulation 

leads to therapeutic benefits like those achieved with surgical lesioning (Benabid et al., 

1987, Benabid et al., 1991). By mapping the brain to find the best location to remove 

tremor, Benabid noticed that acute stimulation of the ventral intermediate (VIM) nucleus 

at frequencies above 100 Hz suppressed tremor (Benabid et al., 1987, Benabid et al., 2011). 

Later, DBS was approved in 1997 by the US Food and Drug Administration (FDA) as a 

treatment for Parkinson’s tremor (Coffey, 2009). The list of indications has steadily grown 

since then and DBS has been approved for psychiatric disorders such as obsessive-

compulsive disorders (OCD) and has been tested as a therapy for many other disorders such 

as Gilles de la Tourette syndrome, epilepsy, and treatment-resistant depression (Coffey, 

2009, Hariz, 2012, Miocinovic et al., 2013). DBS is reversible, adaptable, and can be 

performed bilaterally without making a destructive lesion in the brain (Volkmann, 2007, 

Benabid et al., 2011). 
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In the neurosurgical technique DBS, a medical device called brain pacemaker is 

implanted into patients. The DBS device mainly consists of an implantable pulse generator 

(IPG), a multi-contact macro-electrode, and connection cables (see Figure 2.2). Macro-

electrodes are chronically implanted into target structures according to the type of 

symptoms to be addressed (Benabid, 2007). The usual targets for the implantation of DBS 

electrodes for PD patients are either the STN, the globus pallidus internus (GPi) or the 

ventral intermediate (VIM) nucleus (Brown & Williams, 2005, Benabid et al., 1993). The 

IPG is implanted under the patient’s collarbone and connected to the DBS electrodes 

through subcutaneous cables. The IPG is battery-powered and can be programmed 

telemetrically. 

 
Figure 2.2. Main components of DBS device. The DBS leads implanted in the brain are connected 

through subcutaneous cables to the implantable pulse generator (IPG) implanted under the patient’s 

collarbone. (Source: courtesy of Medtronic GmbH). 

 

Implantable components of DBS devices are made of materials with long history of 

use in medical products (Coffey, 2009). Nowadays, Medtronic2 produces the only US 

approved DBS device. Medtronic DBS leads have cylindrical shape with four annular 

platinum/iridium (Pt/Ir) electrode contacts near the tip (Coffey, 2009). The leads are 28 or 

40 cm long with a diameter of 1.27 mm, and a 80A urethane outer jacket (Coffey, 2009). 

The conductor wires within the outer jacket are made of Pt/Ir alloy with fluoro-polymer 

 
2 Minneapolis, Minn., USA 
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insulation (Coffey, 2009). The two most used lead-models for DBS are Medtronic lead 

3387 and Medtronic lead 3389. Target areas in the brain for lead 3387 are Thalamus, GPi 

and STN, whereas the target area of lead 3389 is STN (Coffey, 2009). These two leads have 

a contact length of 1.5 mm and differ in the spacing between the annular contacts where 

3387 and 3389 have 1.5 mm and 0.5 mm spacing, respectively (Coffey, 2009). A model of 

the Medtronic lead 3389 and its electrical field during stimulation are shown in Figure 2.3.  

Scaled-down versions of the human DBS macro-electrode, e.g., with a diameter of 

0.635 mm, 0.50 mm contact length, and 0.50 mm space between contacts 3, are used to 

stimulate the brain of non-human primates (Tass et al., 2012). Other producers of DBS 

devices, who received Conformité Européenne (CE) approval, are St. Jude Medical4 and 

Boston Scientific Corporation5 (Lucht, 2013, Weigelt, 2013). The latter has produced DBS 

leads with eight cylindrical shape electrode contacts. 

Apart from providing therapeutic stimulation, the implanted electrodes for DBS offer 

a unique opportunity to record pathological neuronal oscillations in the target area. The 

DBS leads can be connected to external devices such as the portable neurostimulator (see 

Section 3.1), before being connected to the IPG, to enable intra-operative stimulation or 

externalized macro-recordings (Hauptmann et al., 2009). LFP activity is recorded intra-

operatively, during lead implantation, by micro- and macro-electrodes (Brown & Williams, 

2005). LFP activity is typically recorded bipolarly through two of the four contacts of the 

implanted electrode (Rossi et al., 2007).  

 

 
 

 

Figure 2.3. A model of an electrode implanted for DBS. Left: Medtronic lead No. 3389. Right: 

Electrical potential field distribution during stimulation. (Source: courtesy of Julia Buhlmann 

(Buhlmann et al., 2011)). 

 
3 Numed Inc, Hopkinton, NY 
4 Abbott Inc. (St. Jude Medical), Missesota USA 
5 Boston Scientific - Fremont, California, USA 
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2.2.1 High-frequency (HF) stimulation protocol 

Currently, electrical DBS is performed by administering a permanent HF (> 100 Hz) 

periodic pulse train applied by the IPG via the depth electrode (Benabid et al., 2009, Little 

& Brown, 2012). Depending on the patient’s clinical status, the IPG delivers a constant 

voltage pulse train that can be tuned over a wide range of parameters such as amplitude 

0 – 10.5 V in 0.1 V steps (assuming a 1 kΩ load, i.e., 0 – 10.5 mA), frequency 3 – 250 Hz 

with 33 steps, and pulse width (PW) 60 – 450 µs in 30 µs steps increments (Coffey, 2009).  

It is well known from experimental studies that irreversible electrochemical reactions 

may be caused by an unbalanced charge (Harnack et al., 2004), which can lead to tissue 

destruction (Scheiner et al., 1990) in patient’s brain. High charge-densities can be observed, 

when a pulse train or single pulses are administered (Hauptmann et al., 2009). The charge 

can be influenced by the duration and amplitude of the pulse, as well as by the resistance 

and the electrode contact surface (Harnack et al., 2004, Kuncel & Grill, 2004). Therefore, 

existing brain pacemakers use active or passive charge-balancing techniques (Ortmanns, 

2007) to deliver charge-balanced biphasic pulses (Lilly, 1961). No current is delivered into 

the brain during the intervals between pulses (Coffey, 2009).  

DBS devices typically implement biphasic and asymmetric rectangular stimulus 

waveforms that are charge-balanced (Foutz & McIntyre, 2010). The portable 

neurostimulator applies charge-balanced and rectangular waveforms consisting of a high 

 
Figure 2.4. Stimulation parameters of HF DBS protocol. A: HF DBS biphasic pulse train at 130 Hz. 

B: Two HF pulses (magnified plot of signal represented in A) are shown to illustrate the stimulation 

parameters.  
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amplitude and short duration phase followed by a low amplitude and long duration 

phase (Hauptmann et al., 2009) as shown in Figure 2.4. The electrical DBS pulses can be 

applied with cathodic or anodic polarity. Nevertheless; other different stimulation 

waveforms could be more effective in terms of, e.g., therapeutic stimulation or energy 

consumption than rectangular waveforms (Foutz & McIntyre, 2010).   

Stimulation parameters such as frequency, pulse width, and amplitude are modified 

intermittently every 3-12 months and patients normally attend checkups at neurology 

clinics for this update (Rosin et al., 2011). Between clinical modifications, the stimulation 

parameters remain unadjusted. The optimal choice of stimulation parameters is crucial for 

maximal clinical improvement (Lysyansky et al., 2011). It is also possible that the patient 

can modify some parameters through a dedicated device that communicates in a wireless 

mode with the IPG. This modification only can affect a limited range of parameter values 

determined by the clinicians.  

Despite many clinical improvements in some patients, HF DBS causes side effects 

such as cerebellar ataxia (inability to coordinate balance), dysesthesia (abnormal 

sensation), dysarthria (difficulty saying words), memory decline and depression (Deuschl 

et al., 2006b, Rodriguez-Oroz et al., 2005, Volkmann, 2004, Tasker, 1998). The causes for 

the occurrence of side effects are still not fully understood. Possible reasons might be the 

improper placement of the electrodes or excessive current delivery (Lumsden et al., 2013, 

Starr et al., 2004). Furthermore, pathological neuronal synchronization reappears within 

seconds once HF DBS is turned off (Meissner et al., 2005). Therefore, more efficient 

stimulation techniques are required to increase the therapeutic benefits and to reduce 

unpleasant side effects. 

 

2.2.2 Coordinated reset (CR) stimulation protocol 

Coordinated reset is introduced as a robust desynchronizing stimulation technique (Tass, 

2003b, 2003a). It is primarily developed for electrical DBS to enable effective 

desynchronization and unlearning of pathological synchrony and connectivity (Tass, 

2003b, 2003a). CR is based on the fact that the brain is an adaptive system that is capable 

to learn. Therefore, CR aims at long-lasting effects by forcing the brain to unlearn the 

pathological activity through external perturbation, i.e. through electrical CR stimulation. 

In the CR DBS protocol, short sequences of high-frequency pulse trains are delivered to 

the brain in a coordinated manner, i.e. at different times at different contacts of the 

stimulation electrode (Tass, 2003b, 2003a) as illustrated in Figure 2.5.B and Figure 2.6. 

Consequently, the synchronized neuronal population is divided into several 

sub-populations, i.e. a cluster state, where the sub-populations are phase-shifted with 

respect to each other. Subsequently, the sub-populations go from the cluster state to 

network desynchronization (Tass, 2003b) as shown in Figure 2.5.D. In order to maintain 
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and prolong the desynchronization state, CR is applied in an m:n ON-OFF mode, where m 

cycles with CR stimulation pulses are followed by n cycles without stimulation (Tass, 

2003b, Lysyansky et al., 2011).  

The long-lasting desynchronizing effects of CR stimulation have been investigated in 

detail in several theoretical studies (Tass & Majtanik, 2006, Hauptmann & Tass, 2007, Tass 

& Hauptmann, 2007, Hauptmann & Tass, 2009). In addition, CR stimulation of the 

subthalamic nucleus shows both acute and sustained long-lasting after-effects on motor 

function in parkinsonian non-human primates (Tass et al., 2012). CR stimulation in non-

human primates indicates a possible mechanism of CR DBS; the decrease in synaptic 

connectivity which reduces the pathological oscillatory activity within the motor circuitry 

(Tass et al., 2012).  

 
Figure 2.5. Illustration of the neuronal desynchronization due to CR DBS. A: Synchronized neuronal 

population. B: Brief and mild resetting stimuli administered at different sites at subsequent times. C: 

Cluster state. D: Transient desynchronization. (Source: ANM GmbH, courtesy of Dr. C. Hauptmann).  

 

CR stimulation parameters 

Besides the stimulation parameters used in standard HF DBS, some additional parameters 

(illustrated in Figure 2.6.) are included in the CR stimulation protocol: 

CR frequency (FR): The frequency at which the CR stimulation pattern is repeated. 

On-cycle (Con): One period of FR in which the CR stimulation bursts are delivered via the 

selected contacts of the electrode.  

Number of on-cycles (Non): The number of Con that are delivered in succession. 

Off-cycle (Coff): One period of FR in which no CR stimulation bursts are delivered to the 

target area in the brain.  

Number of off-cycles (Noff): The number of Coff that are delivered in succession. 

Number of pulses (N): The number of pulses included in each burst delivered through one 

contact of the electrode. An overlap between two stimulation bursts of two contacts is not 

allowed. 
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Figure 2.6. Stimulation parameters of CR DBS protocol. The three stimulation signals (blue, green, 

and red) are delivered to the brain in a coordinated manner, i.e., at different times through the three 

contacts (C0, C1 and C2) of the electrode. The fourth contact is used as a reference. The signal at the 

bottom represents the sum of all pulses to illustrate the parameters of CR DBS protocol. In this figure, 

three successive Con are followed by two successive Coff. The CR parameter values used in this case 

are: HF 130 Hz, FR 5 Hz, Non 3, Noff 2, N 10, PW 120 µs, and BPW 1200 µs. 

 

CR stimulation patterns 

The CR stimulation technique enables the application of different stimulation patterns by 

changing the activation sequence of the three contacts of the implanted electrode 

(Hauptmann et al., 2009). For instance, the stimulation bursts of the three contacts can have 

a fixed sequence during stimulation as illustrated in Figure 2.7.A. The fourth contact is 

used as reference (more details can be found later in Section 3.2.1). In order to reduce the 

risk of inducing a cyclic activation of the pathological neuronal population, the sequential 

activation of the stimulation contacts can be randomized (Hauptmann et al., 2009) as shown 

in Figure 2.7.B. In addition, the number of pulses in each burst and the delay between bursts 

allow the portable neurostimulator to apply a variety of CR stimulation patterns. Further 

variations of the CR stimulation pattern were discussed deeply in a modeling study (Tass 

& Hauptmann, 2009). 
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Figure 2.7. Schematic illustration of CR DBS patterns. A: Sequential CR stimulation; the stimulation 

bursts have fixed sequence. B: Random CR stimulation; the stimulation bursts of the three contacts 

follow a random sequence. This figure is modified from the figures presented in (Hauptmann et al., 

2009).



 

 

  

 

Technical Setup and Data Acquisition 

 

 The portable neurostimulator  

The portable neurostimulator 6  is a medical device used for both data acquisition and 

stimulation. It is mainly used as an external trial deep brain stimulation (DBS) device for 

the application of desynchronizing stimulation techniques (Hauptmann et al., 2009). 

Several stimulation strategies can be applied to patients. Among them, one can mention 

high-frequency (HF) and coordinated reset (CR) DBS as well as visual and acoustic 

stimulation protocols. In terms of data acquisition capabilities, the portable neurostimulator 

enables the recording of local field potentials (LFP) through sixteen channels, electro-

encephalograms (EEG) through twelve channels, electromyograms (EMG) through ten 

channels, and heart rate and breathing activity. In addition, six accelerometers and two 

strength sensors can be connected to the portable neurostimulator. The device is powered 

either by internal rechargeable batteries or by a peripheral power supply.   

 

Mainly, three components (shown in Figure 3.1.) were involved in the development of 

the demand-controlled application of CR DBS: 

(i) The portable neurostimulator used as a stimulation and data acquisition unit. 

(ii) A laptop associated to the portable neurostimulator used as a unit visual 

inspection of data and modification of the stimulation process. 

(iii) An additional laptop used as a programming unit. 

 

The stimulation is controlled using a software on laptop (ii). In order to create a better 

interface experience for the physician, this software had implemented a graphical user 

interface (GUI) that allows the selection of stimulation parameters, stimulation mode, and 

the stimulation electrode (see Figure 3.2). Stimulation parameters pass through a 

plausibility check before being transferred from the laptop to the portable neurostimulator 

establishing whether they are within the predefined interval (Hauptmann et al., 2009). The 

 
6 The portable neurostimulator was developed by the Institute of Neuroscience and Medicine at the research 

center Juelich, Germany. 
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portable neurostimulator establishes wired or radio communication with the laptop. The 

GUI is divided into several functional areas. The one used to modify the stimulation 

parameters (blue frame in Figure 3.2) is more relevant for the demand-controlled 

application of DBS. Additionally, the GUI enables data visualization and video streaming 

of patients in real-time.  

The recorded data is converted from analog to digital signal and stored as a binary file 

on the hard disk of the laptop. The sampling rate used for data acquisition is 1 kHz with an 

amplitude resolution of 24 bits. An additional log file (ASCII format) documents the on- 

and offset of stimulation, initiation of the data and video file. Each modification of the 

stimulation mode or parameters is also registered in this file. We refer to (Hauptmann et 

al., 2009) for more details regarding the portable neurostimulator system.  

The programming laptop (iii) is mainly used to implement the technical solutions for 

artifact reduction and data analysis as well as for programing new stimulation protocols. 

The programming laptop can be connected to laptop (ii) via LAN to enable data analysis in 

real-time. This analysis is performed without influencing critical tasks on laptop (ii) such 

as control of stimulation protocol and data storage. The transfer of the implemented 

algorithms between the digital signal processor (DSP) board placed in the portable 

neurostimulator and the programming laptop was handled via a universal serial bus (USB) 

cable. 

 

 

 

The portable neurostimulator

  

Laptop of the portable neurostimulatorProgramming laptop

LAN

WLAN

LAN
 

Programming path (USB connection)

 
 

Figure 3.1. Main hardware components used for the demand-controlled application of desynchronizing 

CR DBS. Right: Portable neurostimulator device used for both data acquisition and stimulation. 

Middle: Laptop of the portable neurostimulator used for data visualization and modification of the 

stimulation process. Left: Programming laptop for the implementation of the demand-controlled 

algorithms. Connections between the portable neurostimulator and its paired laptop are set via LAN 

and WLAN. The additional programming laptop is connected via a USB cable. 

 

 



Chapter 3: Technical Setup and Data Acquisition 

  18 

 
 

Figure 3.2. Graphical interface of the portable neurostimulator. The functional areas are indicated by 

different colored frames. Red frame presents patient data, stimulation mode, and selection of 

stimulation contacts. Blue frame shows stimulation patterns and parameters. Black frame help us to 

visualize in real-time the stimulation signals and recorded data. Green frame: Indicators of the patient 

status in order to register movement artifacts and manage the data storage. Orange frame: A video 

display of the patient.  

 

 

3.1.1 Digital signal processor board 

The demand-controlled application of DBS was tested with the TMS320C6713 DSP board7 

shown in Figure 3.3. The main advantage of such a processor is its versatility, which 

enables designing, testing, and implementing algorithms for real-time applications 

(Spectrum Digital, 2006). For more details about the key features of the DSP board (i.e., 

central processing unit (CPU), memory and peripherals) we refer to (Kuo & Gan, 2004, 

Rulph, 2004).  

 
7 The DSP resides on a board from Texas Instruments (Spectrum Digital, EBV Electronik, CH). 
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 The DSP board has instantaneous access to the data recorded by the portable 

neurostimulator which is necessary for the DBS autonomic system. The implemented 

technical solutions for artifact reduction and data analysis were optimized iteratively in 

order to meet the requirements of the DSP board. Parts of the implemented algorithms and 

the recorded data were stored on the external memory of the DSP in order to overcome the 

internal memory limitations. However, splitting the implemented algorithms between 

internal and external memories affected the DSP performance. The limited bus width 

(32-bit), between CPU and external memory has limited fetching capability for the required 

data in the short clock cycle; particularly, when the iteration loops of the algorithms were 

processed. 

 

  
 

Figure 3.3. The TMS320C6713 DSP board. Left: The DSP board placed in the portable 

neurostimulator and used to test the demand-controlled application of DBS. Right: Main hardware 

components of the DSP board.  

 

 Data acquisition  

The implemented technical solutions for the demand-controlled application of 

desynchronizing CR DBS are tested retrospectively. We used existing LFP and tremor 

recordings collected from Parkinson’s disease (PD) patients, from parkinsonian non-human 

primates and in in–vitro (i.e., in saline solution). The data of PD patients was used in 

accordance with European and German data protection provisions. The patients approved 

the usage of data for scientific research projects and participated with informed written 

consent and with the permission of the local ethics committee. Additionally, all the animals, 

whose data are used in this thesis, were handled according to the guidelines for the care and 

use of laboratory animals established by the Beijing Association for Laboratory Animal 

Science. 
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3.2.1 LFP recordings 

The human LFP activity was recorded from the target area intra-operatively, i.e. during the 

implantation of the DBS electrode, and post-operatively, i.e. before connecting the 

electrode to the implantable pulse generator (IPG). LFP activity was recorded from the 

subthalamic nucleus (STN) or the ventral intermediate (VIM) nucleus from four patients 

with unilateral (one side, e.g. hand) or bilateral (both sides) predominant resting tremor 

(Tass et al., 2010). Taking into account the fact that recording of neuronal activity generated 

at a distance and picked up by two contacts increases the likelihood that only local 

potentials are recorded, LFP activity was measured bipolarly among each of these three 

contacts (0, 1 and 2) and the contact number 3 which is used as a reference (Brown et al., 

2001). In other words, the data was collected between three contact pairs 0-3, 1-3, and 2-3. 

Mostly, one or two contacts are located in the target area in the brain. For more details 

regarding tremor patients and the data acquisition procedure we refer to (Tass et al., 2010). 

 

Non-human LFP recordings were collected from three parkinsonian Macaque monkeys 

(Xierxin, China). These monkeys were rendered parkinsonian by injecting 1-methyl-4-

pheny1-1,2,3,6-tetrahydropyridine (MPTP). Animals were hosted under controlled 

conditions of humidity, temperature and light, in individual cages. After achieving a stable 

parkinsonism, a scaled-down version of the human DBS macro-electrode (described in 

Section 2.2) was implanted bilaterally under stereotactic guidance into the STN (Tass et 

al., 2012). Spontaneous LFP recordings were performed by the portable neurostimulator 

for at least 2 minutes after stimulation sessions. More than 20 recordings from each side of 

the brain were made over 4 months.  

 

3.2.2 Tests in saline solution 

As a proof-of-concept, the implemented algorithms for artifact reduction and data analysis 

were tested with LFP recordings collected in saline solution. The experimental 

configuration, shown in Figure 3.4, aimed at generating stimulation/recording conditions 

in absence of neuronal activity to study and optimize the accuracy of the implemented 

algorithms. The tests were carried out at different time stamps and locations using two types 

of electrodes: a Medtronic DBS electrode model 3389 used for humans and a scaled-down 

version used for non-human primates (see Section 2.2 for more details). The electrodes 

were immersed in glass container filled with saline solution8 at room temperature and 

connected to the portable neurostimulator. One contact was used as reference and the other 

three contacts were dedicated for performing the stimulation and LFP recording. The CR 

 
8 8.6g of NaCl per liter of water, Berlin Chemie AG, Germany 
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stimulation parameters were set to HF 130 Hz, FR 4 Hz, A 2 mA, Non 3, Noff 2, N 6, PW 

120 µs, polarity cathodic (for more details on the DBS parameters see Section 2.2.1 and 

Section 2.2.2 ).  

 

 

 

Laptop of the portable 

neurostimulator

Stimulation electrode 

in NaCl solution

 

LAN

The portable neurostimulator

 
 

Figure 3.4. Experimental setup for LFP recordings in saline solution. Left: Medtronic stimulation 

electrode model 3389 is placed in saline solution. Middle: Portable neurostimulator is used for 

stimulation and data acquisition. Right: Laptop associated to the portable neurostimulator is used to 

control and monitor the stimulation/recording process.  

 

3.2.3 Tremor recordings  

Parkinsonian tremor recordings were collected from patients using accelerometers during 

and after CR DBS sessions (Tass et al., 2010). A maximum of six DC-response 

accelerometers (FGP FA108-A1 S/N6081) were fixed to the limbs of PD patients, 

specifically to the hands and lower legs. The accelerometers are used for measuring very 

low vibrations in one axis. In this work, the data of four PD patients with predominant 

resting tremor were used to test the demand-controlled application of DBS. The tremor 

signals, recorded at time epochs in which patients developed evident tremor, were 

correlated with the video stream of patients. In this thesis, whenever the word “tremor” is 

used, it refers to the parkinsonian resting tremor. We also use the abbreviation ACC for 

tremor recordings in some figures. 

Additionally, the tremor signals were used to demonstrate the tuning of the stimulation 

parameters in real-time during CR DBS. These tests were performed with tremor-like 

signals generated by a healthy subject and recorded using the portable neurostimulator. An 

accelerometer was placed on the right hand of the subject who imitated tremor with 

different frequencies and amplitudes. Several tests were performed to adjust stimulation 

parameters during sequential and random CR stimulation, as well as during HF DBS. Each 

test lasts 80 s and, in every case, only one stimulation parameter was adjusted (see Section 

5.5 for more details). 
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 Software applications 

Three software environments were used for the development of the demand-controlled 

application of CR DBS: MATLAB9, Simulink10, and Code Composer Studio (CCS)11. 

MATLAB is technical computing software that performs numerical computation, 

acquisition and visualization of data. Simulink is an extension of MATLAB used for 

modeling, simulating, and analyzing dynamical systems (Angermann et al., 2007). CCS is 

a C compiler used for the compilation of code with respect to dedicated target hardware 

such as DSPs.  

Off-line tests were performed in MATLAB in order to characterize the dynamics of 

the LFP and tremor recordings and to test the performance of the implemented algorithms 

for artifact reduction and data analysis. After off-line, these algorithms were transferred to 

Simulink which was the main platform used for the real-time implementation. Different 

algorithms for artifact reduction and data analysis were implemented and optimized to meet 

the DSP board requirements. The program flow for generating the machine code is shown 

in Figure 3.5. All implemented Simulink modules for the demand-controlled application of 

DBS are described in Appendix B. 

 

 

MATLAB 
Implementation of off-

line algorithms 
(simulations and off-

line tests)

Simulink 
 Real-time tests and 

conversion into C 
source files

Code Composer 
Studio (CCS) 

Tests with hardware 
and conversion into 

assembler

TMS320C6713
 DSP board

Portable 

neurostimulator

 
 

Figure 3.5. Flow diagram of the machine code for the demand-controlled application of DBS. 

Algorithms for artifact reduction and data analysis were tested off-line in MATLAB before being 

implemented in Simulink for real-time processing. Then, the Embedded Coder of MATLAB converts 

the Simulink modules into C source files. Finally, these C source files are compiled using CCS and 

implemented on the memory of the DSP board.  

 

 

 

 

 

 

 
9 MathWorks, Inc., USA, version 2007a and 2006b 
10 MathWorks, Inc., USA, version 2006b 
11 Texas Instruments, USA, version 3.1. CCS is software provided by the Texas Instruments to support its 

DSPs platforms. 



 

  

 

Software-based Solutions for Artifact 

Reduction 

 
The implanted electrodes for DBS can be connected intra- and post-operatively to external 

devices such as the portable neurostimulator before being connected to the implantable 

pulse generator (IPG), i.e. while the connection cables are still accessible. Apart from 

providing therapeutic stimulation, the implanted electrodes offer a unique opportunity to 

record pathological neuronal activity from the target area in the brain. These electrodes 

record the electrical activity, i.e. the local field potential (LFP) in the vicinity of its contacts 

and this enables to study the pathological neuronal dynamics.  

LFP recordings during DBS are normally contaminated by strong artifacts that are 

caused by technical drawbacks. Several techniques have been proposed for artifact removal 

during DBS, especially for high-frequency (HF) DBS. However, these techniques cannot 

compensate the effect of several factors like stimulation and recording systems, ambient 

environment etc. Artifact-reduced LFP recordings can be used as feedback signal for the 

demand-controlled application of DBS and support the rational selection of stimulation 

parameters (Kent & Grill, 2012, Rossi et al., 2007).  

The LFP recordings during desynchronizing coordinated reset (CR) DBS are also 

contaminated by artifacts caused by hardware, patients’ movement and the background. 

The artifacts found in the LFP recordings during active CR DBS differ from those detected 

in the spontaneous signals recorded after stimulation. In this chapter, we discuss each type 

of artifact along with its developed and implemented reduction techniques which were 

tested off-line before being implemented for real-time processing. These tests were 

performed with data collected from PD patients, non-human primates, and in saline 

solution.  

 

 Artifact reduction during CR DBS 

To effectively reduce artifacts during CR DBS, some information on their characteristics 

were required, such as their source, form and regularity. The principal artifacts found in 

LFP recordings during CR DBS are: 
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1. Stimulus artifact 

2. Saturation artifact (exponential decay after stimuli) 

3. Power line interference (PLI) 

4. Electrical background noise 

 

4.1.1 Stimulus artifact 

The stimulus artifact is a technical problem created by the electrical stimulation pulses. 

Simultaneous stimulation and LFP recording via the implanted electrode often prevent the 

neuronal activity from being recorded properly. The typical graphical description of 

stimulus artifact shows a spike followed by an exponential decay curve (McGill et al., 

1982). Several techniques have been introduced for the removal of the stimulus artifact. An 

overview of these techniques and their applicability to the LFP recordings during CR DBS 

is presented in this section. 

Several researchers have written about the usage of analogue and digital filters for the 

removal of the stimulus artifact (Wichmann, 2000, Rossi et al., 2007). Although digital 

filters are successful in eliminating high-frequency components of this artifact, they may 

not be able to restrict its low frequency components (Al-ani et al., 2011). Moreover, it is 

difficult to remove the stimulus artifact in the frequency domain by means of filters, since 

filtering is inadequate for eliminating artifacts with a frequency content close to that of the 

neuronal structure (Wichmann, 2000, Hashimoto et al., 2002).  

Furthermore, the LFP recordings during CR DBS indicate that the stimulation pulses 

are followed by exponential decays as shown in Figure 4.1. This figure presents LFP 

recording in saline solution with stimulation periods (i.e., on-cycles) and large pauses (i.e., 

off-cycles). The figure also illustrates the variability of the stimulus artifact in terms of: (i) 

amplitude and (ii) exponential decays after stimuli (i.e. during the on-cycles) and between 

stimulation periods (i.e. during the off-cycles). The application of filters to these decays 

caused low frequencies which overlapped the spectral components of the neuronal activity. 

Additionally, the removal of the stimulus artifact by means of filters has affected the short 

off-cycles (i.e., < 500 ms), which are included in the CR stimulation protocol and which 

are, by construction, free of stimulus artifact (see Section 2.2.2).  

Another approach has been the subtraction of a template of the artifact from the LFP 

recording (Hashimoto et al., 2002, Wichmann, 2000, Blogg & Reid, 1990). Such a template 

can be built by averaging a large number of artifact-containing segments of LFP recordings, 

which are triggered by their onset. The artifact is expected to be removed by subtracting 

the template from the individual and subsequent segments. This approach could help in 

revealing neuronal responses with short latency to stimulation (Hashimoto et al., 2002); 

however, this method presents some limitations. For instance, if a neuronal response occurs 

with a fixed latency to the stimulus artifact, it might appear in the artifact template; thus, 
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getting eliminated from the subsequent segments. In addition, building a template without 

neuronal activity is not well-suited for real-time processing, though it might be better suited 

for off-line procedures. 

 
Figure 4.1. Stimulus artifact in the LFP recordings during CR DBS. A: LFP recording in saline solution 

during CR DBS. B: Magnified plot of the dashed red frame in graph A shows the stimulus artifact 

during the on-cycles. The graphs illustrate the variability of the stimulus artifact in terms of: (i) 

amplitude and (ii) exponential decays after stimuli (i.e. during the on-cycles) and between stimulation 

bursts (i.e. during the off-cycles). 

 

Some authors have also come up with the implementation of hardware and software 

blanking for removal of the stimulus artifact (Knaflitz & Merletti, 1988, Roby & Lettich, 

1975, Black et al., 1983). In this approach, an electrical circuit switch is turned on to sample 

the input signal and turned off to hold-mode during the artifact (Freeman, 1971, Babb et 

al., 1978). The circuit is usually triggered either by an external pulse or by the stimulation 

pulse itself (Minzly et al., 1993). A disadvantage of the hardware blanking method is that 

it involves the usage of analogue electronics which are not that stable, and could blank out 

some useful information as well (O'Keeffe et al., 2001). Specifically, if the trigger signal 

mismatches the targeted segment of the input signal, a part of the stimulus artifact could 

persist and get recorded along with the neuronal activity.  

Another practiced method is the ‘down-sampling and interpolation’ of LFP recordings. 

Under this method, the signal is down-sampled in such a way that only the time intervals 

between stimuli are sampled (Waddell et al., 2009). However, this method requires a high 

sampling rate (e.g. > 10 kHz), whereas the LFP recordings of the portable neurostimulator 
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are sampled at 1 kHz to support the real-time processing. In addition, it demands that the 

stimulus artifact should have a clear shape. This is because the interaction between the new 

samples in the presence of unclear stimulus artifact might affect the spectral content of the 

recorded data. The stimulus artifact, recorded through the LFP recordings during CR DBS, 

is irregular in shape, and is followed by irregular exponential decays as shown in Figure 

4.1.  

Due to the variability of the stimulus artifact, and the subsequent exponential artifact 

after each stimulus, the fore-mentioned techniques are unable to adapt to the artifact 

dynamic. Consequently, residuals of the stimulus artifact could still exist. In order to 

remove the exponential artifact during CR DBS (i.e. during the on-cycles), fitting functions 

should be calculated for each exponential artifact in real-time. This procedure results to be 

computationally expensive, affecting the performance of the digital signal processor (DSP) 

board. Consequently, the total removal of the LFP recordings within the on-cycles was 

necessary for the accurate interpretation of the recorded neuronal activity.  

The technical solutions for artifact reduction and data analysis during CR DBS were 

executed such that only the off-cycles were considered. The CR stimulation protocols 

contain larger pauses (off-cycles) of up to 500 ms where no stimulation is applied. 

Collecting this stimulus artifact-free data can be useful for analyzing the pathological 

neuronal activity on a regular basis (Hauptmann et al., 2009). Therefore, we implemented 

two methods to delimit the off-cycles from the LFP recordings in real-time: candidate 

segment of data and sawtooth wave. The latter is calculated based on the CR stimulation 

parameters used.  

 

Candidate segment of data 

This method involves the following steps:  

Detection of off-cycles: during the on-cycles, the amplitude of the stimulus artifact is 

much larger than the biological signal; whereas, during the off-cycles, the signal decreases 

exponentially and approximately by a factor of ten. This difference in amplitude was used 

to set a user-defined threshold for detection of the off-cycles. The output of this step 

consists of only logical values (1/0), where ones and zeros are assigned to values above and 

below the threshold respectively, as illustrated in Figure 4.2.A. Although a threshold can 

be manually set on the laptop paired with the portable neurostimulator (for more details see 

Section 3.1), a fixed threshold was mostly used for a large number of PD patients.  

Segmentation: the aim of this step is to identify whether the binary output of the previous 

step corresponds to the on- or off-cycles. This is because for exponential decay segments, 

even the on-cycles may have values low enough after stimuli to cross the threshold set for 

detecting the off-cycle values, resulting in zeros in the binary output. Fortunately, the 

duration of the off-cycles is much longer than the time between two stimuli in the on-cycles, 
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and the amplitude of the signal during the off-cycles is always below the threshold. Hence, 

it was possible to eliminate the problem of zeros of the on- cycles by setting the following 

condition: the logical values after the threshold should include a specific and long enough 

chain of successive zeros. These successive zeros correspond to signal values that are 

considered a valid candidate to be included in the data to be analyzed; also known as a 

candidate segment of data, as shown in Figure 4.2.B.  

      Comparison: The aim of this step is to determine the onset and end of the off-cycles. 

A window of comparators is used to examine the values of the candidate segment of data. 

The length of the window (typically 10 – 80 values in 10 steps) should be given before the 

detection step is performed. The candidate segment of data should include a vector of 

successive zeros of the window of comparators’ length. If all values of the candidate 

segment of data match the values set for the window of comparators (zeros), one-flag is 
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Figure 4.2. Illustration of the concept of the candidate segment of data method for delimiting the off-

cycles in real-time. A: Samples of LFP recording, for which a threshold (input>3) is set, which 

translates the input signal in binary (1/0). B and C demonstrate the two different cases of matching 

results in binary, which are matched by window of comparators containing the same number of zeros. 

B: Mismatch of signal (red background). C: Match of signal (green background). The zero- and one-

flags (colored red) to the right indicate whether the next step is enabled or not to form the delimiting 

signal.  
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given by all comparators to indicate that the next step is enabled, as shown in Figure 4.2.C. 

However, in case of mismatch, a zero-flag is given, i.e. the current segment is omitted and 

the next one is processed, and simultaneously, the input signal is shifted by one sample.   

Delimitation: If the previous step results in a one-flag, a delimiting signal is generated, 

which is automatically synchronized with the LFP recording. By multiplying both signals, 

only the off-cycles appear in the output for further processing, as illustrated in Figure 4.3 

Subplots D and E.  

 
Figure 4.3. Real-time delimitation of the off-cycles from the LFP recordings. A: The absolute value of 

the reference signal (red asterisks depict the onset and end of the off-cycles). B: The delimiting signal 

formed in real-time. C: LFP recording from a PD patient. D: The result of multiplying the delimiting 

signal by the LFP recording; only the off-cycles are delimited. E: Concatenation of the off-cycles. In 

this example, we get 1.4 s off-cycles out of a 4 s LFP recording.  
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For the candidate segment of data method, the reference signal generated by the 

portable neurostimulator was optimal for the detection of the off-cycles, as shown in Figure 

4.3. This reference signal is, by construction, synchronized with the LFP recordings and 

consists of clear stimulation pulses. In case the reference signal is distorted and 

inappropriate for the detection step, one of the LFP recording channels can be used. The 

length of the window of comparators is adjustable during stimulation according to the 

selected CR stimulation parameters; in particular, the CR frequency FR, the number of on-

cycles Non, and the number of off-cycles Noff (The CR stimulation parameters are explained 

in Section 2.2.2).  

The objective of using a long enough chain of successive zeros is to avoid detecting 

the time intervals between the stimuli within the on-cycles. In addition, the segment length 

determines the number of samples that are discarded directly after the on-cycles. This 

shortcoming of the candidate segment of data method, i.e. discarding some milliseconds of 

data after stimulation, might result in loss of neuronal activity with short latency to 

stimulation. The required inputs for this method are the threshold value and the length of 

the window of comparators. An additional parameter can be used to determine the number 

of samples to be discarded at the end of the off-cycles. Figure 4.3 demonstrates a typical 

real-time application of this method of discarding the on-cycles, including the stimulus 

artifact, from an LFP recording during CR DBS. 

 

Sawtooth wave with CR stimulation parameters 

The second solution to delimit the off-cycles in real-time is implemented by using a 

sawtooth wave, as illustrated in Figure 4.4.A. The CR stimulation parameters FR, Non, and 

Noff are used to build the sawtooth wave Ssw which is sampled at 1 kHz as the LFP 

recordings. The parameters that define the sawtooth wave are: (i) the duration of one cycle 

Dcy of FR, (ii) the duration Dn of one set of successive on- and off-cycles, and (iii) the 

frequency Fsw of the sawtooth wave. The calculation of these values is described in 

Equation 4.1, Equation 4.2 and Equation 4.3, respectively. 

 

 

 

 

 
𝑫𝒄𝒚 =

𝟏

𝑭𝑹 
, 

 

4.1 

 𝑫𝒏 = (𝑵𝒐𝒏 + 𝑵𝒐𝒇𝒇) ∙ 𝑫𝒄𝒚, 
 

4.2 

 

 
𝑭𝒔𝒘 =

𝟏

𝑫𝒏
. 

 

4.3 
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Subsequently, the initial sawtooth wave 𝑆𝑠𝑤0
 is calculated and its amplitude is scaled by Dn 

as shown in Equation 4.4. 

 

 𝑺𝒔𝒘𝟎
= 𝒎𝒐𝒅 (𝒕𝒊 ∙ 𝑭𝒔𝒘 , 𝟏) ∙ 𝑫𝒏, 4.4 

 

where i is a time index and mod is the modulus after division. The duration of the on-cycles, 

𝑁𝑜𝑛 ∙ 𝐷𝑐𝑦 in Equation 4.5, is then subtracted from 𝑆𝑠𝑤0
, i.e. the wave is vertically shifted 

below the zero line, as shown in Figure 4.4.B. An additional parameter q is introduced in 

order to discard some samples at the onset of the off-cycles. 

 

 𝑺𝒔𝒘 = 𝑺𝒔𝒘𝟎
− 𝑵𝒐𝒏 ∙ 𝑫𝒄𝒚 + 𝒒. 4.5 

 

Afterwards, the signum function (sign) sorts the values of the sawtooth wave. The sign 

function assigns -1, 1, and 0 to samples below, above, and at the zero line, respectively. As 

negative values are generated by the sign function, the sawtooth wave is offset by 1 and 

subsequently scaled by 0.5, such that the amplitude is restricted between 0 and 1, as shown 

in Figure 4.4.C. So, it is noteworthy that the amplitude of the LFP recording should not be 

scaled. The end sawtooth wave 𝑆𝑑𝑙 is then multiplied with the LFP recording to delimit the 

off-cycles. 

 

𝑺𝒅𝒍 = 𝟎. 𝟓 ∙ (𝒔𝒊𝒈𝒏(𝑺𝒔𝒘) + 𝟏).                                  4.6 

 

 

The use of the sawtooth wave method to delimit the off-cycles requires that the LFP data 

should be shifted along the time axis, so that it gets synchronized with the delimiting signal. 

For the real-time implementation, this is performed once at the beginning of the recording 

process and as long as the stimulation parameters (i.e., FR, Noff and Non) remain unchanged. 

This method has an advantage over the candidate segment of data method, in that 

discarding some samples after the on-cycles is optional. This method can also be used to 

remove the stimulus artifact if the duration of the stimuli and their onset during the on-

cycles are known. Both the candidate segment of data and the sawtooth wave methods are 

implemented in the Simulink module which is represented in Appendix B. 
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Figure 4.4. Illustration of the concept of building a sawtooth wave based on the CR stimulation 

parameters for delimiting the off-cycles in real-time. A: Initial sawtooth wave 𝑺𝒔𝒘𝟎
. B: The wave is 

shifted vertically below the zero line by subtracting the duration (in milliseconds) of the on-cycles from 

the sawtooth wave. C: The sign function is used to build the delimiting signal. The CR stimulation 

parameters used here are FR 4 Hz, Non 4, and Noff 2. 

 

 
Figure 4.5. Sawtooth wave with a higher number of off-cycles. This figure is identical to Figure 4.4, 

except for the number of off-cycles. This increase in number of off-cycles resulted in increased 

proportion of time for amplitude value 1, as compared to that for value 0. The CR stimulation 

parameters used here are FR 4 Hz, Non 4, and Noff 8. The purpose of the figure is to explain the effect of 

increasing the number of off-cycles 
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4.1.2 Saturation artifact after stimuli 

After the removal of the stimulus artifact, we focused on the artifacts that contaminate the 

off-cycles. The principal artifact in the off-cycles resulted from an exponential 

decay/growth after the on-cycles. In order to select appropriate artifact removal techniques, 

it was crucial to define the exact source of the artifact. The application of an inappropriate 

technique could misrepresent the results or generate new artifacts that could be wrongly 

interpreted as a neuronal activity. As mentioned in Section 2.2.1, balanced and biphasic 

DBS pulses are used by the portable neurostimulator. A mismatch of the biphasic pulses 

can occur due to the imperfection of the fabrication of the electrical circuitry used in 

neurostimulators (Sooksood et al., 2009). This mismatch can be avoided by the 

implementation of some active or passive techniques that support the charge-balancing. 

One of the active techniques involves the use of non-integrated and large direct current 

(DC) blocking capacitors in series with the stimulation electrode (Ortmanns, 2007). These 

capacitors ensure that no DC currents are delivered to the stimulation electrode over time. 

However, it is important to discharge these capacitors frequently to avoid the saturation 

caused by DC integration, and to prevent reduction of the output voltage of the stimulator 

(Sooksood et al., 2009). The portable neurostimulator uses the active pulse balancing 

technique with the capacitors and the exponential discharge process takes place between 

stimuli.  

Additionally, the stimulation pulses can saturate the amplification system of the 

recording device (Nguyen et al., 2013, Kent & Grill, 2012). At the end of the stimulation 

periods (i.e., the on-cycles), the preamplifier should return to baseline creating a long 

discharging tail (i.e., the exponential artifact) that can be seen along the off-cycles. In the 

LFP recordings during CR DBS, a considerable variability was noticed in the exponential 

artifact shapes among electrode channels. Moreover, such variability was observed even in 

individual channels among trails of the same stimulus as indicated in Figure 4.6. This figure 

shows a number of delimited and concatenated off-cycles of LFP recording from a PD 

patient before the removal of the exponential artifact.  

The variability in the artifact shapes among off-cycles can be caused due to, e.g., the 

application of random sequence of CR stimulation through the different contacts. Another 

reason behind this variability is that an exponential decay rides on the falling tail of the 

previous artifact due to different decay times. Thus, the assumption of the regularity of 

artifact shape can no longer be considered as holding true. Due to the variability of the 

exponential artifact, it was the main artifact in the off-cycles which caused a major 

challenge for the removal process in real-time. The optimal solution in this case was to fit 

independent functions for each individual exponential artifact in the off-cycles.  
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Figure 4.6. Variability of the exponential decays in the off-cycles. The figure shows (i) a number of 

merged off-cycles of LFP recording from PD patient, (ii) the variability in steepness, and (iii) variability 

in the off-set of the artifact. This variability makes the task of separation of artifact more challenging. 

 

Polynomial fitting 

Several techniques, which are based on the subtraction of a fitting curve from the recorded 

data, are used for the removal of signal decays after stimuli. A polynomial curve is usually 

preferred to fit such decays (Wagenaar & Potter, 2002). On one hand, polynomial fitting is 

easy to implement and requires less computational effort to calculate the fitting curve. This 

approach is based on matrix multiplications and additions and does not require a large 

memory to buffer intermediate results. On the other hand, the frequency content of the 

desired signal, in some applications, lies outside the frequency content of the polynomial 

curve. For instance, if the frequency of interest is above 20 Hz and the frequency of the 

fitting curve is below 10 Hz then the frequency content of the desired signal is not affected.  

By polynomial fitting of the decays of the off-cycles in the LFP recordings during CR 

DBS, we found that the frequency content of the fitting curves was in the frequency range 

of the parkinsonian resting tremor, i.e. between 3 – 10 Hz. Therefore, it was difficult to 

interpret these results. An example of how polynomial fitting can misrepresent the results 

is given in Figure 4.7. In this example, a polynomial curve, which was used to fit the off-

cycles, is fitted by an exponential curve. Subtracting both fitting curves from each other 

has revealed low frequencies in the fit residuals. These low frequencies were caused by the 

polynomial fitting and were found to be exactly in the frequency range of resting tremor. 

Generally, a higher order polynomial is desirable because fitting curves created by low 

order polynomials (e.g. cubic polynomial) may not be able to accurately fit the portion of 

the exponential curve. Furthermore, the use of polynomials of higher orders, such as ten or 

higher, could not overcome this shortcoming for two reasons: First, the polynomial order 

is given as a static variable before the processing starts, and cannot be changed during the 

course of the recording. So, a polynomial with order higher than that effectively required 

for fitting the given curve may even deteriorate the quality of fit because some undesirable 
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contributions may appear. Second, a polynomial of very high- order (e.g. order >15) may 

end up fitting the recorded neuronal activity itself. While removing the artifact from the 

off-cycles, the recorded neuronal activity will also get removed. Due to these limitations, a 

more sophisticated technique was required. Nevertheless, polynomial fitting was not 

completely excluded, and it was used in some optimization stages and off-line tests.  

 
Figure 4.7. Exponential fitting of a polynomial fitting curve. A: Both fitting curves seem similar on 

absolute scale. However, (B) shows that it is better to directly take the difference and compare (relative 

scale). The residual of such a difference results in a low frequency in the range of the neuronal activity, 

approximately at 7 Hz. 

 

Exponential fitting 

An exponential fitting curve can accurately describe the exponential decay in the off-cycles 

and assures that the frequency content of the recorded neuronal activity is not affected. 

Therefore, a non-linear fitting technique is required. The most well-known algorithms used 

for non-linear fitting are Gauss-Newton (Hartley, 1960, Fletcher & Powell, 1963), 

Levenberg-Marquardt (Marquardt, 1963) and the Nelder-Mead algorithm (Nelder & Mead, 

1965). The two former algorithms are based on derivatives of the objective function, 

whereas the latter is a direct search method that fits data without derivatives.  

Non-linear fitting algorithms use the least squares method, as shown in Equation 4.7. 

Basically, they search for the global minimum, i.e. the optimal solution is found by 

minimizing the sum of the squares of the residuals 𝑟𝑗 among the data points 𝑦𝑗  and the 

estimated points 𝑥𝑗 of the fitting curve 𝑓(𝑥𝑗 , 𝜎), as shown in Equation 4.7 and Equation 4.8. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
42

44

46

Time [s]

A
m

p
li
tu

d
e

 [
m

V
]

Exponential fitting for a polynomial fitting curve

 

 

0 50 100 150 200 250 300 350 400 450
-2

0

2

4
x 10

-3

Time [ms]

A
m

p
li
tu

d
e

 [
m

V
]

Polynomial fitting curve

Exponential fitting curve

A

B



4.1 Artifact reduction during CR DBS  

 

 
35 

Many iterations are required to search for the optimal combination of parameters 𝜎 in order 

to fit the data points the closest.  

 

 
𝒎𝒊𝒏

𝝈
∑𝒓𝒋

𝟐(𝝈)

𝒏

𝒊=𝟎

, 

 

4.7 

 𝐬. 𝐭.    𝒓𝒋 = 𝒚𝒋 − 𝒇(𝒙𝒋 , 𝝈), 𝐟𝐨𝐫  𝐣 = 𝟏,⋯ , 𝐧 4.8 

 

where n is the total number of data points. For the real-time removal of the exponential 

artifact during CR DBS, the Nelder-Mead algorithm was implemented by using of 

Simulink blocks (routines) that can be converted into C source files. The concept of the 

Nelder-Mead algorithm is explained, and the results obtained from its implementation in 

Simulink are shown in Appendix A. 

 

Double exponential fitting 

In order to remove the exponential artifact from the off-cycles, we found that at least a 

double exponential fitting curve is required. Furthermore, it has been seen that LFP 

recordings during CR DBS show that the artifact includes both exponential decays and 

growths. The use of an exponential fitting curve with adequate exponents (positive or 

negative) increases the probability of reaching the best fit within the given number of 

iterations. Thus, we implemented both exponential fitting functions in Simulink for real-

time processing, as described in Equation 4.9 and Equation 4.10. In both equations, the 

term 𝑓(𝑥𝑗 , 𝜎) in Equation 4.8 is replaced by the double exponential curves as follows:  

 

 𝒎𝒊𝒏
𝛔

∑[𝒚𝒋 − (𝒂𝟏 ∙ 𝒆−𝒃𝟏∙𝒕𝒋 + 𝒂𝟐 ∙ 𝒆−𝒃𝟐∙𝒕𝒋)],

𝒏

𝒋=𝟎

 4.9 

 𝒎𝒊𝒏
𝝈

∑[𝒚𝒋 − (𝒂𝟏 ∙ 𝒆𝒃𝟏∙𝒕𝒋 + 𝒂𝟐 ∙ 𝒆𝒃𝟐∙𝒕𝒋)],

𝒏

𝒋=𝟎

 4.10 

 

where j = 1,⋯ , 𝑛 and the parameter vector is defined as 𝜎 = [𝑎1, 𝑎2, 𝑏1, 𝑏2]. 

 

At the end, the control unit in the Simulink module automatically selects which fitting 

curve describes the decay of the off-cycles the closest. The choice is made based on the 

minimal sum of squares of residuals between the fitting curves and the off-cycles. 

Therefore, the implemented Nelder-Mead module in Simulink for exponential fitting 
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provides more flexibility to cope with the variability of the artifact in terms of decay/growth 

and in terms of the steepness of the artifact. An example for fitting the off-cycles of LFP 

recording, taken from a PD patient during CR DBS, by a double exponential curve, is 

shown in Figure 4.8.A. After the removal of the PLI, low frequencies (artifacts) in the 

frequency range of resting tremor were found in the fit residuals, as shown in Figure 4.8.B. 

We found that these low frequencies have multiple causes. For instance, the double 

exponential curve could not fit some off-cycles accurately due to the large amplitude of the 

PLI, as explained later in Section 4.1.6. 

 

 
Figure 4.8. Double exponential fitting of the off-cycles. A: The off-cycles (blue), which are still 

contaminated by PLI, are fitted with a double exponential curve (red). B: Residuals after the removal 

of the artifacts result in a low frequency curve. 

 

High-order exponential fitting 

Apart from the reasons mentioned so far, another reason responsible for the additive low 

frequencies in the fit residuals is described next. In some CR stimulation sessions, high FR 

and low Noff values are used. This creates short and steep exponential decays/growths in the 

off-cycles, especially directly after the on-cycles. As a result, the double exponential fitting 

curve may not describe the decay of the off-cycles accurately. One possibility to increase 

the accuracy of the fitting process is by using a high-order exponential fitting, e.g. of 5th 

order. A high-order exponential can follow the trend of the off-cycles better than that of the 

double exponential fitting.  

In Simulink, we modified the Nelder-Mead module to be able to fit a 5th order 

exponential curve to the off-cycles. The reduction of the exponential artifact by high-order 

fitting curves was effective, since low frequencies were completely removed, as illustrated 

in Figure 4.9. However, it was relatively more demanding from computational perspective, 

since conversion of the module into C source files resulted in a large source code which 

cannot be processed in real-time. Therefore, the performance of the DSP was affected. 
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Nevertheless, this module was used for numerous off-line artifact reduction tests. For the 

5th order exponential fitting the term 𝑓(𝑥𝑗 , 𝜎) in Equation 4.8 is replaced here by the 5th 

order exponential curves, Equation 4.11 and Equation 4.12, and the parameter vector is 

defined here as 𝜎 = [𝑐1, … , 𝑐5, 𝑑1, … , 𝑑5]. 

 

 𝒎𝒊𝒏
𝛔

∑[𝒚𝒋 − (𝒄𝟏 ∙ 𝒆−𝒅𝟏∙𝒕𝒋 + 𝒄𝟐 ∙ 𝒆−𝒅𝟐∙𝒕𝒋 + ⋯+ 𝒄𝟓 ∙ 𝒆−𝒅𝟓∙𝒕𝒋)],

𝒏

𝒋=𝟎

 4.11 

 

 

 

 
Figure 4.9. High-order (5th) exponential fitting. A: The off-cycles (blue) are fitted with 5th order 

exponential curve (red). B: The corresponding residuals after the removal of PLI contain no low 

frequencies.  

 

Segmentation of off-cycles 

As high-order exponential fitting was computationally demanding, another solution was 

required to overcome the limitations created by the hardware and by the steepness of the 

exponential artifact. This solution was to divide the off-cycles into smaller segments. For 

instance, off-cycles which last 450 ms are divided, e.g., into three segments, each of 150 ms 

length. These segments were then fitted separately with double exponential curves. The 

off-cycles were divided maximally into three segments. After subtracting the fitting curves 

from the segments and removing the PLI, the segments were concatenated. This method 

was implemented in Simulink and tested in real-time on the LFP recordings in saline 

solution (see Figure 4.10 and Figure 4.11), as well as on short off-cycles (120 ms) of LFP 

recordings from PD patients (see Figure 4.12).   
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The LFP recordings in saline solution include no neuronal activity. Therefore, the artifact-

reduced off-cycles of these recordings should include neither low frequencies in the time 

domain nor dominant peaks in the frequency domain. Application of the segmentation 

approach on LFP recordings in saline solution and from PD patient have shown that the 

additive low frequencies caused by exponential fitting are eliminated, as shown in Figure 

4.10.C, Figure 4.11.B, and Figure 4.12.C. However, the concatenation of the segments 

caused discontinuities in the signal which in turn affected the spectral analysis. We found 

that the removal of PLI before the exponential artifact further reduced the drawback of the 

concatenation process, as explained in Section 4.1.3 and discussed in detail in 

Section 4.1.6. The removal of the exponential artifact from the off-cycles was the most 

critical stage in artifact reduction during CR DBS, since the frequency response of the 

remaining artifact lies exactly in the frequency range of interest.  

 
Figure 4.10. Segmentation of off-cycles and double exponential fitting (LFP recording in saline 

solution). A: Non-segmented off-cycles are shown in (a1). Low frequencies, which are caused by an 

inaccurate fitting, appear in the fit residuals after the removal of the exponential artifact and PLI (a2) 

and in the power spectrum (a3). B: The off-cycles are divided into two segments (indicated by a red 

arrow). The low frequencies are reduced in (b2) and (b3). C: The off-cycles are divided into three 

segments (c1). The low frequencies are further reduced in (c2) and (3).  
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Figure 4.11. A comparison for a single segment and 3-segment fitting of several concatenated off-

cycles (LFP recording in saline solution). A: The off-cycles (a1) are exponentially fitted without 

segmentation; thus, low frequencies are seen in fit residuals (a2). B: The off-cycles are divided into 

three segments (b1); thus, the low frequencies are strongly reduced (b2). 

 
Figure 4.12. Segmentation and double exponential fitting of short off-cycles, i.e., 120 ms (LFP 

recording from a PD patient). A: Non-segmented off-cycles (a1). Low frequencies appear before (a2) 

and after (a3) the removal of PLI. B: The off-cycles are divided into two segments (red arrow). The 

low frequencies are reduced in (b2) and (b3), as compared to (a2) and (a3), though still not removed 

completely. C: The off-cycles are divided into three segments (c1). The low frequencies before (c2) 

and after (c3) the removal of PLI are strongly reduced. 

0 1000 2000 3000
44

44.5

45

A
m

p
li

tu
d

e
 [

m
V

]

 Segmentation and double exponential fitting (several off-cycles)

 

 

0 1000 2000 3000
44

44.5

45

Time [ms]

A
m

p
li

tu
d

e
 [

m
V

]

 

 

0 1000 2000 3000

-0.02

-0.01

0

0.01

A
m

p
li

tu
d

e
 [

m
V

]

0 1000 2000 3000

-0.02

-0.01

0

0.01

Time [ms]

A
m

p
li

tu
d

e
 [

m
V

]

LFP recording

Fitting curves

LFP recording

Fitting curve

a2

b2

a1

b1

B

A

0 50 100

-36

-35.8

-35.6

-35.4

-35.2

A
m

p
li
tu

d
e

 [
m

V
]

 

 

0 50 100

-0.02

-0.01

0

0.01

0.02

Segmentation and exponential fitting (LFP recording from a PD patient)

0 50 100
-0.03

-0.02

-0.01

0

0.01

0 50 100

-36

-35.8

-35.6

-35.4

-35.2

A
m

p
li
tu

d
e

 [
m

V
]

 

 

0 50 100

-36

-35.8

-35.6

-35.4

-35.2

Time [ms]

A
m

p
li
tu

d
e

 [
m

V
]

 

 

0 50 100
-0.03

-0.02

-0.01

0

0.01

0 50 100
-0.03

-0.02

-0.01

0

0.01

Time [ms]

0 50 100
-0.03

-0.02

-0.01

0

0.01

0 50 100
-0.03

-0.02

-0.01

0

0.01

Time [ms]

LFP recording

Fitting curve

LFP recording

Fitting curves

LFP recording

Fitting curves

a1

b1

c1

a3

b3

c3

C

B

A

a2

b2

c2



Chapter 4: Software-based Solutions for Artifact Reduction 

  
40 

4.1.3 Power line interference  

The PLI artifact arises from the environmental electric power sources such as turning 

machines (Yacoup & Raoof, 2008). PLI is characterized by fixed frequency sinusoid with 

random amplitude and phase, and also higher harmonics (Costa & Tavares, 2009). LFP 

recordings are contaminated by PLI due to stray currents flowing through the patient and 

the cables (Levkov et al., 2005). In such environments, the patients’ body behaves like an 

antenna which attracts the electromagnetic interference signals. Thus, the PLI gets 

transformed into a virtual differential signal (Huhta & Webster, 1973, Thakor & Webster, 

1980) that cannot be suppressed even by an infinitely high common mode rejection ration 

(CMRR) (Levkov et al., 2005). The PLI in the LFP recordings during CR DBS consists of 

the fundamental 50 Hz and mostly its odd harmonics (i.e. 150 Hz, 250 Hz and 350 Hz). 

Even harmonics (i.e. 100 Hz and 200 Hz) do exist, but are rare. 

Preliminary measures, (e.g. a good isolation of the electric device and cables), 

remained inefficient in the case of a highly contaminated and weak neuronal activity. 

Although biomedical amplifiers have a very high common mode rejection ratio, biological 

signals are often contaminated by residual PLI (Levkov et al., 2005). PLI is generally 

removed by conventional analogue and digital filters. For the short off-cycles of the CR 

stimulation protocol, the main limitation to use filters is that they require continuous data. 

Therefore, filtering was not an efficient approach since there is a phase distortion of PLI 

caused by delimiting the off-cycles. Additionally, the exponential artifact in the off-cycles 

added low frequencies to the data when digital filters were used to remove the PLI before 

delimiting the off-cycles.  

An additional challenge of removing the PLI was the considerable variability of the 

PLI amplitude in consecutive off-cycles. For instance, for some off-cycles, the amplitude 

of PLI was three times larger than the previous or subsequent off-cycles, as shown in Figure 

4.13. In this figure, off-cycles of LFP recording from a PD patient are delimited and 

concatenated after the removal of exponential artifacts. The amplitude fluctuations is 

impulsive, and only during the off-cycles. Besides the digital filters, we tested some 

additional techniques for the removal of PLI from the off-cycles in real-time such as: 

 

Difference between two LFP channels  

A sufficient approach to remove the PLI could be by using the LFP channels themselves. 

Here, we tried to make use of the synchrony of the LFP recordings and assumed that the 

same PLI artifact should be found in the data recorded by the active contacts of the 

implanted electrode (see Section 2.2). This artifact should be removed by taking the 

difference of two LFP signals before the delimitation of the off-cycles. However, the results 

have shown that the PLI was reduced but not eliminated, as shown in Figure 4.14. This 
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shows that PLI has different amplitudes in each channel. Possible reasons for such 

differences are, for example, the variation in the impedances of the electrode contacts or 

the different lengths of connection cables. 

 

Figure 4.13. Variability of PLI amplitude in the off-cycles. The successive off-cycles last 120 ms. The 

amplitude of two off-cycles (between the third and fourth seconds) is three times larger than the 

previous and subsequent off-cycles. 

 
Figure 4.14. Difference between two LFP channels for PLI removal. A and B: Two LFP signals 

recorded by two contacts of the implanted electrode. C: A segment of the difference between 

amplitudes of both signals. D: Off-cycles of the difference are still contaminated by PLI artifact. 
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Off-cycles averaging 

Another attempt to remove the PLI was to average many off-cycles in real-time once the 

off-cycles have been delimitated. This approach worked only partially, since there is a 

phase distortion of the PLI signal caused by the delimitation of the off-cycles. During 

averaging, the amplitude of PLI was reduced to a small extent or even sometimes amplified 

as well but was never eliminated completely. The process of averaging a large number of 

off-cycles over time is shown in Figure 4.15.A. Although the amplitude of PLI was reduced, 

a remaining PLI can be clearly seen at the end of this averaging process (see Figure 4.15.C).  

 
Figure 4.15. PLI removal by averaging of off-cycles. A: A large number of off-cycles contaminated 

by PLI are averaged over time. B: The first off-cycles contaminated by large PLI. C: The result of 

averaging the off-cycles (after 1000s). Although the amplitude of PLI was reduced, a remaining PLI 

can be clearly seen at the end of this averaging process. 

 

Due to the variability in PLI amplitude and the shortness of the off-cycles, subtracting 

an independent reference signal of PLI from each off-cycles period seemed to be a more 

efficient approach. In our tests, we found that making a copy of the PLI signal and 

subtracting it from the biological signal eliminates this artifact without affecting the 

frequency components of the neuronal activity. In order to generate an independent 

reference signal of the PLI for the off-cycles, the amplitude and phase of this signal should 

be determined in real-time. This was possible through the implemented Nelder-Mead 

algorithm. The implementation of this algorithm was twofold since it was used to remove 

both the PLI and the exponential artifact (see Section 4.1.2). The steps of removing the PLI 

and harmonics from the LFP recordings during CR DBS are described as follows: 
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(i) Transformation of the off-cycles from the exponential form to a linear form by 

first removing the exponential artifact, as shown in Figure 4.16.  

(ii) Calculation of the amplitude and phase of the reference signal for the basic PLI, 

i.e., the 50 Hz, using the Nelder-Mead module.  

(iii) Deduction of the reference signal from the off-cycles period in the linear form. 

(iv) Re-processing of the result obtained in step (iii) using the steps (ii) and (iii) for 

the odd harmonics of PLI, as shown in Figure 4.17.  

 

The algorithm copes successfully with changes in amplitude and phase of the PLI and 

harmonics. The objective of removing the PLI and its harmonics was to reveal any neuronal 

activity with fixed latency to stimulation. The end result included off-cycles without PLI 

that can be analyzed for pathological neuronal activity. The saline solution was used here 

to test the Nelder-Mead module, and the results are shown in Figure 4.16 and Figure 4.17. 

 
Figure 4.16. Transformation of the off-cycles from a non-linear form to a linear form. A: Concatenated 

off-cycles in a non-linear form. B: Off-cycles transformed into a linear form. The transformation 

enables the accurate estimation of amplitude and phase of the PLI artifact. 
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Figure 4.17. Removal of PLI from off-cycles (saline solution). A: Generation of reference signals for 

the basic PLI, i.e., 150 Hz (a1) and harmonics (a2 – a4). The PLI artifact-free off-cycles are shown in 

(a5). B: Power spectra of the off-cycles before (b1) and after the removal of basic PLI (b2) and 

harmonics (b3 – b4). The power spectrum of the PLI artifact-free off-cycles is shown in (b5). 

 

4.1.4 Electrical background noise 

Usually, the noise power is assumed to be much smaller than the desired signal power. 

However, the noise was much higher in the LFP recordings during CR DBS than the 

recorded neuronal activity. In comparison to the frequency range of interest (i.e., of the 

neuronal activity), the noise has higher frequency components. Filtering out the noise 

without affecting the signal is generally impossible (Strang & Nguyen, 1996). Averaging 

is one of the most commonly used techniques for noise removal. Due to the short duration 

of the off-cycles and the randomized phase of noise, averaging of off-cycles was the most 

effective de-noising technique for our LFP recordings, as shown in Figure 4.18. The power 

of noise can be strongly reduced by averaging, and this could reveal weak neuronal activity 
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with fixed latency. A large number of off-cycles, triggered by their onset, was mostly 

required to obtain sufficiently good results. 

 
Figure 4.18. Reduction of electrical background noise in the off-cycles (patient data). A: First off-

cycles, after the removal of exponential and PLI artifacts, are contaminated by noise. B: Average of 

665 off-cycles, results in strong reduction of noise.  

 

4.1.5 Rare movements and technical artifacts 

Besides the fore-mentioned principal artifacts in the off-cycles of the LFP recordings from 

PD patients during CR DBS, some unpredictable and rare artifacts were also observed. 

These artifacts were irregular in terms of both form and duration. Possible causes for these 

artifacts include the movements of patients or the stimulation device during recording 

sessions. In some cases, the PLI amplitude was exponentially modulated and in other cases, 

the exponential artifact was modulated by low frequencies, as shown in Figure 4.19. 

Therefore, the reference signal to be generated for PLI artifact rejection must be an 

 
Figure 4.19. Rare movement and technical artifacts in the LFP recordings. A: PLI amplitude is 

exponentially modulated. B: The exponential artifact is distorted by low frequencies. 
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exponentially modulated sinusoid at 50 Hz. That is, additional parameters affecting the 

performance of the DSP should be optimized by the Nelder-Mead algorithm.  

The rareness of these artifacts made not worth the implementation of other artifact 

reduction algorithms. Moreover, in case of averaging many off-cycles, the effect of these 

artifacts is reduced. However, if these artifacts appear frequently in the LFP recordings, 

then the analysis of these recordings would be insufficient. Such artifacts cause low 

frequency activity in the LFP recordings and cannot be classified in real-time whether they 

belong to neuronal activity or not. 

 

4.1.6 Optimal artifact reduction sequence 

Additive low frequencies in the artifact-reduced LFP signal were caused not only by using 

suboptimal fitting curves for the exponential artifact as discussed in Section 4.1.2, but also 

by using the wrong sequence when removing the artifacts. These low frequencies have 

affected the frequency content of interest even after the optimization of the exponential 

artifact removal technique. We found that the sequence of removing the exponential artifact 

and PLI was the main source of these low frequencies.  

The problem could be resolved by removing the exponential artifact first, since it is the 

most significant artifact in the off-cycles. However, the large amplitude of the PLI 

frequency (i.e. the 50 Hz signal) prevented the exponential fitting curve from accurately 

fitting the off-cycles and inducing in this way low frequency components. Both exponential 

fitting curves, before and after the removal of PLI are compared and shown 

 
Figure 4.20. Exponential fitting before and after the removal of PLI. The off-cycles (blue) are fitted 

before (red) and after (green) the removal of PLI. The difference (indicated by the black arrows) 

between both fitting curves affects the frequency content of the analyzed data. 
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in Figure 4.20. Additionally, the segmentation approach of the off-cycles (as described in 

Section 4.1.2) before the removal of PLI components caused discontinuities in the fit 

residuals. By averaging a large number of off-cycles, these discontinuities could be 

amplified due to a fixed latency to stimulation misrepresenting in this way the results of 

spectral analysis.  

Hence, we decided to optimize the removal process of PLI and exponential artifacts. 

The optimization steps were performed as follows:  

(i) The off-cycles were transformed from the non-linear to the linear form by deducting 

an initial exponential fitting curve from the off-cycles, as described at the end of 

Section 4.1.3, and presented in Figure 4.16. The Nelder-Mead module in Simulink 

required a small number of iterations to generate the exponential fitting curve, since 

it is not the primary exponential fit. The purpose of this step is simply to determine 

the amplitude and phase of PLI and harmonics since they cannot be determined 

accurately in the non-linear form. 

(ii) Reference signals for PLI and harmonics are generated by the Nelder-Mead 

algorithm for the off-cycles in the linear form and are successively subtracted from 

the off-cycles in the non-linear form. The objective of removing the harmonics of 

PLI is to minimize the amplitude of PLI as far as possible in order to accurately fit 

the exponential artifact.  

(iii) After the removal of PLI and harmonics from the off-cycles in the non-linear form, 

a second primary and more accurate exponential fitting curve is created. The 

number of iterations of the Nelder-Mead algorithm is increased at this step in order 

to accurately fit the off-cycles.  

(iv)  The steps (i) to (ii) were sufficient to remove the exponential artifact. However, we 

found that the PLI was not completely removed from the off-cycles. This was 

because the first exponential fitting curve in step (i) could not fit the off-cycles 

accurately and this resulted in low frequencies that modulated the PLI amplitude. 

As a result, the accuracy of determining the parameters of the reference signals of 

PLI, especially the amplitude, was reduced. To overcome this, the second primary 

exponential fitting curve was subtracted directly from the original off-cycles in the 

non-linear form, which were still contaminated by PLI. The advantages of these 

additional steps were (a) exclusion of low frequencies and (b) accurate 

determination of PLI amplitude. 

(v) The reference signals of PLI and harmonics were calculated again and deducted 

from the off-cycles in the linear form. Therefore, the exponential artifact and PLI 

were eliminated from the LFP recordings. The steps of the optimal sequence of 

removing the PLI and exponential artifact are shown in Figure 4.21.  
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Figure 4.21. Steps of the optimal artifact reduction sequence of PLI and exponential artifact (LFP 

recording from a PD patient). (i) First exponential fitting curve (red) is generated for the off-cycles 

(blue) in the non-linear form and the residuals include the PLI in the linear from. (ii) Reference signals 

of PLI and harmonics (only 50 Hz reference signal is shown here) are generated in the linear form and 

subtracted from the off-cycles in the original non-linear form. (iii) & (iv) Second primary, and more 

accurate exponential fitting curve is generated after the removal of PLI. Next, the fitting curve is 

deducted from the original off-cycles in the non-linear form, which are still contaminated by PLI. (v) 

Reference signals of PLI and harmonics (the reference signal of the 250 Hz harmonic is shown here) 

are generated again and deducted from the off-cycles in the linear form.  
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 Artifact reduction of spontaneous LFP and tremor recordings 

Artifact reduction of spontaneous LFP recordings after CR DBS was not as complicated as 

during stimulation. This is due to: (i) the continuity of input signal, (ii) the absence of 

superimposed artifacts encountered during CR DBS, particularly the exponential artifact, 

and (iii) the applicability of typical artifact reduction and data analysis techniques (e.g. 

digital filters and spectral analysis). The same also applies to the tremor recordings which 

are contaminated by PLI and electrical background noise. An additional Simulink module 

was implemented for the real-time artifact reduction of tremor and spontaneous LFP 

recordings, which includes the following techniques: 

 

4.2.1 Digital filters 

Spontaneous LFP and tremor recordings were fed to a set of successive digital filters: (i) A 

34 Hz (-3dB) low-pass filter with theoretically perfect suppression of PLI and harmonics, 

which was optimal for data sampled at 1 kHz. As it can be seen in Figure 4.22, the 

magnitude response of the low-pass filter has zeros at PLI frequency and its harmonics. (ii) 

A high-pass filter with 0.5 Hz cut-off frequency used to supress the DC and low frequency 

components. An application of the filters to LFP recording from a non-human 

 
Figure 4.22. Magnitude response of the filters used for artifact reduction of Spontaneous LFP and 

tremor recordings. A: Discrete-time low-pass filter with cut-off frequency of 34 Hz (-3dB) for optimal 

suppression of the PLI artifacts. The roots of the filter function are located at PLI and its harmonics. B: 

Butterworth high-pass filter with cut-off frequency of 0.5 Hz for the removal of DC components and 

unrelated low frequencies.  
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primate is shown in Figure 4.23. In Subplot A, the raw data is depicted, in Subplot B, the 

data after the removal of PLI is presented and in Subplot C, the signal after the removal of 

DC and low frequency components can be seen. As one can see in this subplot, the signal 

is still contaminated by electrical background noise. 

 
Figure 4.23. Application of the digital filters to a spontaneous LFP recording. A: LFP recording from 

a non-human primate. B: LFP recording after PLI artifact removal. C: The LFP recording after the 

removal of DC and low frequency components. 

 

4.2.2 Signal de-noising using wavelets  

The wavelet transform is an analysis tool well-suited to perform local analysis (i.e. to 

analyze changes of localized segment of a larger signal) and reveal signal aspects that other 

analysis techniques like Fourier transform miss (Strang & Nguyen, 1996). These aspects 

include discontinuities in higher derivatives, breakdown points and trends. Moreover, 

wavelet transform can often de-noise a signal without significant distortion. Thus, the 
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wavelet de-noising technique is used to remove the electrical background noise, and to 

increase the signal to noise ratio (SNR).  

Wavelet transform uses a digital filter bank which consists of a series of high-pass and 

low-pass FIR filters to decompose a broadband signal into a collection of sub-bands with 

smaller bandwidths and lower sample rates (Strang & Nguyen, 1996). For real-time de-

noising of LFP recordings, we integrated the wavelet de-noising module12 provided by 

Simulink with our module. An example of applying the wavelet de-noising to a 

spontaneous LFP recording is shown in Figure 4.24. In this figure, LFP recording from a 

non-human primate is shown in Subplot A and the result of signal de-noising using wavelet 

transform is shown in Subplot B. The wavelet de-noising approach can also be used for the 

LFP recordings during CR DBS if the number (duration) of off-cycles is large enough (>10 

s). For more rigorous treatment of the wavelet transform, we refer to (Strang & Nguyen, 

1996). 

 
Figure 4.24. Application of wavelet de-noising technique to LFP recordings. A: Noisy LFP recording 

from a non-human primate. B: The effect of noise removal. 

 

 
12 MathWorks, Inc., USA, version 2007a 
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Estimation of Demand for Tuning the 

DBS Parameters 

 
In the previous chapter the developed and implemented technical solutions for real-time 

artifact reduction of local field potential (LFP) and resting tremor recordings during and 

after coordinated reset (CR) deep brain stimulation (DBS) were presented. We introduced 

each type of artifact along with a description of its removal techniques. The optimization 

of the artifact reduction techniques was important to obtain a reasonable feedback signal 

for the demand-controlled application of DBS. This chapter’s focus is on the development 

and implementation of technical solutions for: (i) analysis of LFP and tremor recordings, 

(ii) estimation of a demand for adjusting the stimulation parameters, and (iii) adjustment of 

the stimulation parameters. The analysis algorithms are dedicated to find the values of 

relevant biomarkers of pathological activity in the recorded data. Such biomarkers-values 

can be used for the estimation of demand for further stimulation and subsequently for the 

tuning of stimulation parameters.  

LFP recordings show neuronal oscillations at different frequency ranges as described 

in Section 2.1. These oscillations are associated with Parkinson’s disease (PD) symptoms 

such as resting tremor which has been shown to be correlated to subcortical oscillations 

(Tass et al., 2010, Smirnov et al., 2008). Analysis techniques of LFP recordings are 

typically based on computations in the frequency domain such as power spectral 

density (PSD) and coherence (Brown et al., 2001, Rossi et al., 2007, Masimore et al., 2004). 

Additional techniques, e.g., autoregressive modeling have been used to study the temporal 

dependencies of the signal such as causality and stability (Huberdeau et al., 2011).  

For the short off-cycles, in the LFP recordings during CR DBS, we tested several 

analysis techniques to calculate biomarkers-values of the pathological activity. For   

spontaneous LFP and tremor recordings, spectral analysis was the main analysis tool. The 

analysis techniques are based on estimating the strength of pathological synchronized 

activities. The variation in the strength of such activities is monitored over time to quantify 

the demand for adjusting the stimulation parameters.  

 



5.1 Data analysis during CR DBS 
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 Data analysis during CR DBS 

Since the strength and variability of the stimulation artifacts during CR DBS (on-cycles) 

together with the subsequent exponential artifacts prevented a real-time analysis, we only 

analyzed the off-cycles (see Section 4.1.1). Hence, we focused on the short data segments 

(i.e., off-cycles, max. 500 ms) free of stimulation artifacts and the subsequent exponential 

artifacts. In order to calculate biomarkers of the pathological activity, the following two 

analysis methods were utilized: (i) Averaging  of off-cycles, and (ii) spectral analysis.  

 

Averaging of off-cycles  

In this analysis method, a large number of off-cycles are averaged in order to reveal peaks 

that describe neuronal response with fixed latency to stimulation. This approach is useful 

to reveal neuronal activity that has much smaller amplitude than artifacts and electrical 

background noise (Hashimoto et al., 2002). We tested this method using the off-cycles of 

LFP recordings from PD patients. These off-cycles, which last 400 ms, were modified by 

adding a simulated peak with fixed latency of 200 ms prior to the following on-cycles. The 

peak amplitude was set to 1 mV and was added before processing the data by the artifact 

reduction algorithms. After the removal of artifacts, a large number of off-cycles were 

averaged in real-time by the implemented module in Simulink. An example of averaging 

100 and 600 off-cycles, triggered by their onset, where the peak was observed to be well-

defined, is shown in Figure 5.1. The goal of applying this method to different numbers of 

off-cycles was to test its robustness and reliability. Out of these results, we conclude that 

averaging 100 off-cycles in the LFP recordings during CR DBS might be sufficient to 

detect neuronal activity, time-locked to the stimulation, if present.  

 
Figure 5.1. Real-time averaging of off-cycles with a simulated peak. A: Single noisy off-cycles period 

of LFP recording during CR DBS before averaging. The simulated peak was added to all off-cycles of 

the LFP recording. B: Averaging 100 off-cycles shows reduced noise and the simulated peak in the 

middle (red arrow). C: Averaging 600 off-cycles shows that an increased number of off-cycles further 

reduces the noise and makes the peak clearer.  
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Spectral analysis 

Spectral analysis is mainly based on the digital Fourier transformation (DFT) which 

requires continuity in the data in order to capture the power of dominant frequencies. The 

delimitation and subsequently concatenation of a large number of off-cycles causes 

discontinuities, which disturb the coefficients of the DFT and produce a ringing artifact 

(leakage effect) in the power spectrum. Discontinuities can be smoothed by weighting the 

data, e.g., with Hanning or Hamming window. However, depending on the length of the 

off-cycles, the weighting approach may cause low frequencies close to those of resting 

tremor, i.e. 3 – 10 Hz. The concatenation of off-cycles can be useful if the onset of the off-

cycles is a time multiple of the neuronal oscillation period. For instance, if the pathological 

neuronal activity is at, e.g., 5 Hz and the onset of the off-cycles is at multiples of 200 ms, 

then the phase information will be preserved. This case was uncommon in our LFP 

recordings due to the different values of CR stimulation parameters used and the expected 

variation in the frequency of the pathological activity over time.  

To avoid losing the phase information, the spectral analysis was applied to the un-

concatenated off-cycles. Here, the off-cycles appear between the on-cycles that are set to 

zero, as illustrated in Section 4.1.1. The minimum and maximum duration of the off-cycles 

found in our LFP recordings are 120 ms and 500 ms, respectively. Our tests with simulated 

sinusoids showed that a frequency can be estimated even with a half of its period in the un-

concatenated off-cycles. However, the amplitude was reduced due to the blanking of the 

on-cycles. In order to estimate the real amplitude, the spectral power was modified as 

described in the following section.  

 

 Estimation of demand during CR DBS 

The method used an averaging of off-cycles intends to find successive peaks that 

correspond to neuronal activity. The time difference between, at least, two successive peaks 

can be used to determine their frequency. By monitoring the variation of the amplitude of 

these peaks, we can determine the strength of the pathological activity. This strength is 

measured by continuously averaging the amplitudes in real-time and is going to be used to 

quantify the demand for tuning the stimulation parameters. We applied this approach to our 

LFP recordings from four PD patients. Figure 5.2 shows two well-defined successive peaks 

of neuronal activity with fixed latency to stimulation of one patient. These peaks were 

revealed by averaging 1332 off-cycles. Because of the low amplitude of the peaks, 

averaging over a larger number of segments was necessary. For the LFP data of other 

patients, despite of the optimization of the artifact reduction algorithms, no visually clear 

peaks were found.  
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Figure 5.2. Successive peaks revealed by averaging off-cycles of patient’s data. The time difference 

(double red arrow) between the two peaks is 251 ms which corresponds to neuronal activity in the 

approximate range of 4 Hz. The mean amplitude of the peaks is 0.5 mV. 1332 off-cycles were averaged. 

 

Another approach to estimate the demand value during CR DBS was to rescale the 

amplitude of the dominant frequency in the power spectrum of the un-concatenated off-

cycles. The spectral power was scaled by a factor k calculated from the CR stimulation 

parameters, i.e., the number of off-cycles (Noff) and the CR frequency (FR) of the CR pattern 

(Section 2.2.2). The scaling factor is defined as shown in Equation 5.1. 

 

 
𝒌 = {

𝑵𝒐𝒇𝒇 ∙ 𝑫𝒄𝒚

𝒇𝒔
,    for   𝑵𝒐𝒇𝒇 ∙ 𝑫𝒄𝒚 < 𝒇𝒔,

𝟏,                     for   𝑵𝒐𝒇𝒇 ∙ 𝑫𝒄𝒚 ≥ 𝒇𝒔,
 

 

5.1 

 

where 𝑓𝑠 is the sampling rate (1 kHz) and 𝐷𝑐𝑦 is 1/𝐹𝑅 .  

 

This method was tested on a simulated signal, consisting of the sum of two unity-height 

and white-noised sinusoids of 7 Hz and 23 Hz as shown in Figure 5.3. In this figure, two 

different sets of CR stimulation parameters are used to test the amplitude dynamics and the 

scaling factor. Our tests showed that the reduction in the amplitude is proportional to the 

shortness of the off-cycles (see Figure 5.3.D). The actual amplitude was recovered by the 

scaling factor as shown in Figure 5.3.E. Application of this method to LFP recordings 

collected from PD patients under different CR stimulation parameters showed no dominant 

frequencies. The reason behind this is either, that the pathological synchronized neuronal 

activity was reduced due to stimulation or simply that such a synchronized activity was not 

present.  
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Figure 5.3. Rescaling the power spectra of the un-concatenated off-cycles. A: The sum of two 

simulated, unity-height, and white-noised sinusoids at 7 Hz and 23 Hz. The same signal is shown in 

both panels. B: Delimitation of off-cycles using unity-height signals generated with two different sets 

of CR stimulation parameters: (left panel) FR 4 Hz, Noff 2 and Non 2, and (right panel) FR 4 Hz, Noff 3 

and Non 5. C: Multiplication of the signals shown in A and B. The off-cycles are delimited, and the on-

cycles are set to zero. D: Power spectra with un-scaled amplitude. E: Rescaled amplitude with scaling 

factor k: 0.5 (left panel) and k: 0.75 (right panel).  

 

 Analysis of spontaneous LFP and tremor recordings 

Spontaneous LFP activity was recorded intra- and post-operatively from PD patients and 

from non-human primates (Macaque monkeys) after CR stimulation (Section 3.2.1). 

Resting tremor was recorded from PD patients during and after CR DBS. The analysis of 

these recordings was easier than during stimulation due to continuity of data and absence 

of stimulus and exponential artifacts. The main analysis tool was the spectral analysis, 

which aimed at monitoring the variation in the strength of the pathological activity over 

time. For the off-line tests in MATLAB, we used DFT, periodogram and spectrogram 

0 100 200 300
0

1

2

Frequency [Hz]

F
F

T
 p

o
w

e
r

0 100 200 300
0

1

2

F
F

T
 p

o
w

e
r

0 2 4 6 8 10
-10

0

10

Time [s]

A
m

p
li
tu

d
e

0 2 4 6 8 10
0

0.5

1

A
m

p
li
tu

d
e

0 2 4 6 8 10
-10

0

10

Rescaling the power spectra of the un-concatenated off-cycles
A

m
p

li
tu

d
e

0 100 200 300
0

1

2

Frequency [Hz]

0 100 200 300
0

1

2

0 2 4 6 8 10
-10

0

10

Time [s]

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
-10

0

10

B

C

D

A

E



5.3 Analysis of spontaneous LFP and tremor recordings 

 

 
57 

functions. The last two were applied with additional options like windowing and 

overlapping of data segments. An example of applying the DFT and the spectrogram to 

LFP recording of a parkinsonian non-human primate is shown in Figure 5.4. This figure 

presents 12 s of raw data in Subplot A. The results of spectral analysis are shown in 

Subplots B and C where an activity at 8 Hz can be seen. DFT was performed on non-

overlapping sections of equal length, i.e., 1024 points, giving a frequency resolution of 

0.98 Hz. The spectrogram overlapped segments of equal length (i.e., 512 points), 

overlapping of 500 points, and frequency resolution of 0.1 Hz. Spectrograms were used at 

first to locate the epochs of the dominant frequencies in the recorded data.  

 
Figure 5.4. Spectral analysis of spontaneous LFP recordings. A: Raw LFP recording from a non-human 

primate after CR DBS. B: DFT of the recording shows neuronal activity around 8 Hz. C: Spectrogram 

of the LFP recording shows the same activity as in B as a function of time.  

 

We analyzed the recordings of the three contacts in order to estimate the strength of 

the pathological activity in the brain layers where the different contacts are placed. An 

example of two LFP signals, which were recorded by two contacts (i.e., C1 and C2) from 

a non-human primate are shown in Figure 5.5. The amplitude of the recorded activity is 

lower on the first contact. Possible reasons for such a difference in amplitude could be 

dissimilar contact impedances or/and that one contact was closer to the synchronized 

neuronal population than the other. The variation in the pathological activity in terms of 
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frequency and amplitude indicates the need for estimating different demand values for the 

different contacts.  

 

 
Figure 5.5. Spectral analysis of spontaneous LFP recordings of two contacts from a non-human primate. 

A1 and A2: LFP activity recorded by two contacts on the implanted electrode, i.e., C1 and C2, 

respectively. B1: Power spectrum of the recording in A1 shows an activity in the range 8 – 13 Hz. B2: 

Power spectrum of the recording in A2 shows similar activity as in B1, but with higher amplitude. This 

difference in the amplitude indicates the need for different demand values.  

 

 Estimation of demand with spontaneous LFP and tremor 

recordings 

In order to calculate the demand value in the spontaneous LFP and tremor recordings, we 

monitored the variation in the amplitude of the dominant frequencies over time. An 

example of such a variation is shown in Figure 5.6. In this figure, a section of 30 s LFP 

recording from a non-human primate after CR stimulation is divided into three segments 

(each of 10 s). Then, a periodogram (single sided amplitude spectrum) is applied to each 

segment. The results show that the amplitude of the LFP activity is reduced in the second 

segment and further reduced in the third one. This variation in the amplitude can be used 
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to evaluate the strength of the pathological activity and to estimate the demand value in a 

continuous manner.  

 
Figure 5.6. Time-evolving power spectrum of a spontaneous LFP recording from a non-human primate. 

A: LFP recording, which lasts 30 s, is divided into 3 segments each of 10 s (indicated by colors). 

B: Power spectra of the three segments show a reduction in the amplitude of the recorded activity if 

time evolves.  

 

The implemented Simulink module for real-time data processing consists of different steps 

that include artifact reduction (using the methods presented in Section 4.2), data analysis, 

and estimation of the demand value. The following steps are involved in the data analysis 

and are explained in detail: 

 Preprocessing: The aim of this step is to prepare the recorded data for the analysis 

process. The data is first buffered and divided into data segments. A buffer size of 4096 

(212) samples is used for both wavelet de-noising (explained in Section 4.2.2) and spectral 

analysis. This buffer size indicates that every 4 seconds a new frequency value is estimated. 

Furthermore, our tests showed that an overlap of data segments increases the probability of 

detecting a dominant frequency, but it causes discontinuities in the output signal. We used 

an overlap of 1024 samples and the discontinuities were reduced by the wavelet de-noising 

filters without affecting the detected frequencies.  

Detection of dominant frequencies: The frequency content of the buffered data is then 

analyzed using the periodogram function. The latter shows the distribution of the power 

contained in the signals over a frequency range of 3 – 43 Hz, where each frequency is 

resolved by 4 bins, i.e., a frequency resolution of 0.24 Hz. The frequency with highest 

power in the output of the periodogram is marked as a dominant frequency for the current 
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data segment. This step is repeated for 20 successive segments, i.e., 20 frequency values 

are detected and buffered. Once a dominant frequency is detected, its power is set to zero 

in order to detect the next dominant frequency as illustrated in the flow diagram in Figure 

5.7. As each frequency in the power spectrum is resolved by 4 bins, the amplitude-bin of 

the detected frequency ± 1 bins are set to zero. The first dominant frequency is mostly used 

for the estimation of the demand value. However, if this frequency represents a known 

artifact (e.g., an interference), it is useful to detect the second highest peak in the power 

spectrum. A maximum of three frequencies can be detected in each data segment by the 

Simulink module. 

 

Detection of 
first dominant 

frequency

Detection of 
second 

dominant 
frequency

Setting the 
first frequency 
peak to zero

Setting the 
second 

frequency 
peak to zero

Power
 spectrum

. . .

 
Figure 5.7. Flow diagram for successive detection of dominant frequencies in the power spectrum of 

spontaneous LFP and tremor recordings. 

 

Histogram: The aim of this step is to evaluate the distribution of the 20 buffered 

frequency values and to find which frequency is more common in the recorded data. To 

this end, a histogram is used, in which each detected frequency is represented by 4 bins, 

giving a frequency resolution of 0.25 Hz. Then, a threshold is set which implies that each 

frequency should appear at least 12 times in the 20 buffered values. If the distribution of a 

frequency is below this threshold, this frequency value is discarded. The goal of the 

threshold and the 20 buffered values is to find reliable and stable pathological oscillations 

in the LFP and tremor recordings. Examples of the different histograms are shown in Figure 

5.8. When a dominant frequency passes the threshold, its index is divided by 4 (i.e., the 

number of bins in the histogram) to get the frequency value in Hz.  

Estimation of amplitude: The corresponding amplitudes of the 20 detected frequencies 

are estimated from the power spectrum and buffered simultaneously. When a dominant 

frequency passes the threshold in the histogram, all corresponding amplitudes are extracted 

and averaged (divided by the distribution value). This step is done to get the instantaneous 

amplitude of the current pathological activity, as illustrated in Figure 5.9. 

After the estimation of the amplitude, the input signal is shifted by one segment. The 

steps described above are then repeated to evaluate whether the new data segment affects 

the distribution of frequencies or not. The amplitude value is then either updated or the 

stimulation continues with the current value. This approach results in an amplitude value 

every 4 s which can be used to adjust the stimulation parameters. 
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Figure 5.8. Histograms of the 20 detected and buffered frequencies. A: The distribution of a dominant 

frequency is above the threshold which is set to 12. The frequency is at 5.25 Hz (index 21 divided by 

4). B: Case where a low frequency (here at 1 Hz) outside the range of interest is dominant. C: The 

distribution of a dominant frequency is below the threshold and the variation of this frequency is 

indicated by the bins next to it. 
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Figure 5.9. Real-time averaging of the amplitudes of the detected frequencies. The 20 detected 

frequencies are compared with respect to the estimated frequency with maximum distribution in the 

histogram. A logical flag (1/0) indicates the match and mismatch of the values, respectively. The logical 

flags are multiplied by the corresponding amplitudes to select the related amplitudes, which are 

averaged to determine the strength of the current pathological activity.  
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The steps described above are repeated in three phases to detect three dominant 

frequencies in each data segment as shown in Figure 5.7. The threshold of the frequency 

distribution is reduced in case of the second dominant frequency. The reason behind this is 

that the amplitude of the second dominant frequency is often lower than the first one and 

hence, it has a lower probability to be detected. This situation can be described as throwing 

a dice that has sides with different areas. At the time of throwing the dice, the maximal 

probability is given for the side with the largest area which mostly faces the ground. If we 

set the threshold value to, e.g., 50 % (10 results of 20) for the first frequency, it should be 

35 % for the second frequency and even less for the third frequency. However, when the 

amplitude of the detected frequency could not be distinguished from noise, then it would 

not reach the threshold. Moreover, by increasing the frequency resolution of the 

periodogram, it is possible to detect the frequency variations (see Figure 5.8). However, 

this reduces the probability of detecting the main frequency. In order to use a high-

frequency resolution and increase the probability of detecting a dominant frequency, we 

reduced the threshold value to 7 and 5 for the first and second frequencies, respectively. A 

flow diagram that summarizes the steps of estimating the amplitude of pathological activity 

for the demand-controlled application of DBS is shown in Figure 5.10. 
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Figure 5.10. Flow diagram for estimating the amplitude of two dominant frequencies. 
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5.4.1 Tests with LFP and tremor recordings 

The implemented module was tested on different data: (i) stimulation signals generated by 

the portable neurostimulator and recorded from a simple electrical circuit, (ii) LFP 

recordings from non-human primates, and (iii) spontaneous LFP and tremor recordings 

from PD patients. 

 

Tests with an electrical circuit 

The objective of these tests was to investigate the performance of the implemented module 

in detecting dominant frequencies. Another objective was to test the possibility of applying 

this approach to LFP recordings during CR DBS. The four contacts of the stimulation 

electrode were connected to three resistors each of 1 kΩ and a reference. We set the CR 

stimulation parameters such that long off-cycles result (Non 1, Noff 15, and FR 1 Hz). For 

these tests, the off-cycles were concatenated and the length of each off-cycle was 15 s. The 

stimulation signals were sent to the electrical circuit and recorded simultaneously. Later, 

we added simulated sinusoids, with low amplitudes (i.e., 100 – 500 µV), to the recorded 

data before removal of artifacts.  

Two tests were performed with two different sets of sinusoids. In the first test, the sum 

of five sinusoids with the same amplitude and different frequencies were added to the 

recorded data. In the second test, the same five sinusoids were used but with different 

amplitudes, as illustrated in Table 5.1. We selected frequencies close to each other to 

evaluate the ability of the module to detect these frequencies individually. For these tests, 

we extended our module to make it able to detect five frequencies.  

 Figure 5.11 shows that all sinusoids were detected. In the first test, the frequencies 

were detected nearly simultaneously, since all of them have the same probability to be 

detected, i.e. the same amplitude. In the second test, the detection order of the sinusoids 

was according to their amplitudes. The sinusoid with maximum amplitude (highest 

probability) was detected in the first phase, whereas the frequency with lowest amplitude 

was detected by the last phase.  

 

Table 5.1. Two different sets of sinusoids used to test the implemented module. 

Test 1 Test 2 

Frequency [Hz] Amplitude [µV] Frequency [Hz] Amplitude [µV] 

4  300  4 100 

5 300 5 200 

7 300 7 300 

9 300 9 400 

15 300 15 500 
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Figure 5.11. Tests with simulated sinusoids and signals recorded from an electrical circuit. A: Results 

of test 1. Sinusoids with the same amplitude are detected during all phases (indicated by colors) of the 

implemented module. B: Results of test 2. Sinusoids with different amplitudes are detected according 

to their amplitudes. Frequency component with highest and lowest amplitudes are detected at first 

(blue) and last (magenta) phases, respectively. Values at the zero line indicate that no frequency 

component is detected during this phase. 

 

LFP recordings from non-human primates  

We also tested the module retrospectively using LFP recordings collected from 

parkinsonian non-human primates. Scaled-down version of the human electrode (described 

in Section 2.2) was implanted in the brain of three Macaque monkeys in order to record 

LFP activity intra-operatively. More than 20 recordings from each side of the brain were 

taken over 4 months (for more details see Section 3.2.1). The algorithm was able to detect 

dominant frequencies within different frequency bands and monitor the changes in the 

amplitudes of these frequencies. The amplitudes of some of these frequencies were present 

in a larger number of recordings and were approximately constant over time. We performed 

later some experiments in the surgery room (in Peking, China), and found that some of the 

detected frequencies are interferences caused by machines in the background, this holds 

especially for the peaks at 9.75 Hz and 16.5 Hz (see Figure 5.12). Therefore, these peaks 

were marked as known artifacts in the implemented module in order to prevent them from 
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being recognized as neuronal activity during the analysis process. Other peaks were found 

and might represent synchronized, pathological neuronal activities, i.e., the peak detected 

at 6 Hz and around 3 Hz.  

 

 
 

Figure 5.12. Detected frequencies in LFP recording from a non-human primate. The frequencies were 

detected using the implemented 5-phase module. The peaks at 9.75 Hz and 16.5 Hz are artifacts, 

whereas the peaks at 6 Hz and around the 3 Hz could reflect neuronal activities. 

 

Spontaneous LFP recordings from PD patients 

The implemented module was also tested retrospectively on LFP recordings from a PD 

patient with bilateral tremor-dominant of both hands. The LFP activity was recorded from 

the patient over three days using the portable neurostimulator, in an externalized setting, 

i.e. before leads being connected to the implantable pulse generator (IPG). Similar sets of 

CR stimulation parameters were used, which differ only in the value of FR. The latter was 

chosen to be 16.5 Hz, 20 Hz, and 12 Hz in the three stimulation days. The other CR 

stimulation parameters had the following values: amplitude (A) was 4 mA, pulse width 

(PW) 60 µs, balancing pulse width (BPW) 600 µs, number of pulses per burst (N) 6, Non 4, 

Noff 2, and the intra-burst frequency (HF) was 130 Hz. The activation sequence of the 

stimulation contacts was randomized. LFP activity was recorded bipolarly between three 

contacts (0, 1 and 2) starting from the tip and uppermost contact (in this experiment, the 

contact 3 was used as a reference). Therefore, three contact pairs 0-3, 1-3, and 2-3 were 

used for the LFP recording (for more details on the CR stimulation parameters and patterns 

see Section 2.2.2).  

The implemented module estimated the dominant frequency, the amplitude and the 

standard deviation of the amplitude over time, as shown in Figure 5.13. This figure displays 
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the LFP recordings of the contact pairs 0-3 and 1-3 of the left side during the first and the 

last experimental day. In the first day, data was recorded before first stimulation session 

and in the last day, after the last stimulation session. The time difference between two 

stimulation sessions in one day was at least one hour. The change in the synchronicity of 

the pathological neuronal activity in both channels can be seen between the first and last 

day. The amplitude of the synchronous activity was remarkably reduced. This could 

indicate that a fewer number of neurons participated in the synchronized neuronal activity 

on the last day due to CR stimulation. 

 

Tremor recordings from PD Patients 

During and between CR DBS stimulation sessions accelerometers were placed on the limbs 

of PD patients that manifested resting tremor. Some patients had tremor on both hands such 

the one whose LFP data was discussed in the previous section. The tremor recordings of 

both hands of this patient were analyzed using the implemented module and the results are 

shown in Figure 5.14. In this figure a comparison between the first and last day is displayed. 

The module has estimated the frequency and amplitude of resting tremor over time around 

5 Hz as shown in the middle panel. These results were also corroborated after visualizing 

the video streams of the patient. Frequency component at 10 Hz might be a harmonic of 

the detected 5 Hz. The amplitude of tremor was reduced on the last day respect to the first 

day for both hands. This reduction of amplitude is in accordance with the reduction of 

activity power measured in the LFP recordings.  
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Figure 5.13. Monitoring the dominant activities in the spontaneous LFP recordings. The module 

estimates the strength (i.e., the amplitude) of dominant frequencies over time in the spontaneous LFP 

recordings from a PD patient that showed resting tremor. A1 and B1: Raw LFP recordings of two 

contacts of the implanted electrode on the first day (top panel). A2 and B2: Spontaneous LFP recordings 

of the same contacts on the last day (i.e., after three days of stimulation). The middle panels show the 

detected frequencies and the estimated amplitudes over time. One can observe the reduction of 

amplitude of the detected frequencies on the last day with respect to the first day.  
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Figure 5.14. Monitoring the strength and frequency of tremor. The module detects the dominant 

frequencies and estimates their amplitude in the tremor recordings from a PD patient.  A1 and B1: 

Tremor recordings from two accelerometers placed on both hands on the first day (top panel). A2 and 

B2: Tremor recordings from the same accelerometers on the last day. The middle panels show the 

detected frequencies and the estimated amplitudes over time. A reduction of tremor amplitude on the 

last day with respect to the first day can be observed (bottom panels). The reduction in the amplitude 

is in line with the reduction of LFP activity shown in Figure 5.13.  
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 Tuning of CR stimulation parameters 

The LFP and tremor recordings are analyzed to calculate biomarkers-values that can be 

used as a criterion to quantify the demand for tuning the stimulation parameters, i.e., for 

the development of an adaptive DBS system. Such a system aims at continuously adapting 

the DBS parameters to either the clinical fluctuations typical of advanced PD or to 

modifications of the physiological activity caused by therapeutic effects. The detected 

dominant frequencies in thespontaneous LFP and tremor recordings (see Section 5.3 

and 5.4) are used to evaluate the strength of the pathological activity. Our proposed concept 

is to monitor and compare the amplitudes of these frequencies in successive data segments 

in order to calculate the demand value. If the current amplitude of the pathological activity 

is higher than the previous one, the value of the stimulation parameter should be increased 

and vice versa.   

Therefore, a module for the adjustment of the CR stimulation parameters is 

implemented in Simulink. This module uses the tremor recordings as a feedback signal to 

adjust the CR DBS parameters in real-time. The tremor recordings are first filtered, with 

Butterworth band-pass filters, in such a way that the magnitude response of the filters 

includes the pathological activity ±2 Hz. Then, the filtered signal is divided into successive 

segments of 200 ms. The strength of the pathological activity is estimated in the module by 

the standard deviation of the signal. The standard deviation value in the first segment is 

delayed to be compared with the subsequent value. If the current value differs from the 

previous one, a logical flag (i.e., 1) is raised to indicate the demand for adjusting the 

stimulation parameter. Otherwise, the stimulation continues with the current value. Both 

values should be greater than zero. The current value is divided by the delayed one to 

calculate a scaling factor, which is then multiplied by the selected stimulation parameter. 

Since the strength of tremor can vary between patients, a calibration is also available in the 

module to set the maximum values. The initial values of the stimulation parameters can be 

set by the clinicians, and the maximum and minimum values of the stimulation parameters 

are restricted.    

In order to demonstrate the real-time adjustment of CR DBS parameters, tests were 

performed with tremor-like signals generated by a healthy subject and recorded by the 

portable neurostimulator. The signals were analyzed by the above described module. An 

accelerometer was placed on the right hand of the subject who imitated tremor with 

different frequencies and amplitudes. Six tests were performed to adjust four CR 

stimulation parameters during sequential and random CR stimulation, as well as during HF 

DBS. These parameters are: the amplitude, number of pulses, number of on-cycles, and 

number of off-cycles. During the tests, the other CR stimulation parameters were set to 

constant values as follows: FR 4 Hz, PW 120 µs, BPW 1200 µs, N 10, and HF was 130 Hz. 
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In each test, which lasts 80 s, only one stimulation parameter was adjusted at a time. The 

tests include:  

(i)  Amplitude modulation during standard HF DBS. Figure 5.15 shows a 

tremor-like recording of a control subject and the corresponding 

spectrogram. The latter displays the variation in frequency and amplitude of 

the recording over time. Specifically, the variation in the amplitude is used 

to modulate the amplitude of the HF stimulation pulses on one contact of 

the DBS electrode. The amplitude is increased for higher tremor and vice 

versa. The single charge-balanced stimulation pulses were presented in 

Figure 2.3. In this test, the maximum amplitude was set to 0.5 mA 

considering the rebound effect that can cause strong response when 

stimulation is turned off (Trottenberg et al., 2001, Muta et al., 2001). 

(ii)  Amplitude modulation during sequential CR DBS. Figure 5.16 shows how 

the variation in the strength of the imitated tremor is used to tune the 

amplitude of the CR stimulation pulses. In this case, the amplitude is 

increased for higher tremor and vice versa. The output signals of the portable 

neurostimulator shows the amplitude modulation of the sequential bursts of 

stimulation pulses. These signals were sent to three contacts (C0: blue, C1: 

red and C2: green) of the DBS electrode, while the fourth contact was used 

as a reference. The amplitude was restricted to the range 0 – 2 mA during 

the tests with CR stimulation protocols.  

(iii)  Amplitude modulation during random CR DBS. Figure 5.17 shows the 

tuning of the amplitude of the CR stimulation pulses due to the variation in 

the strength of the imitated tremor. As in (i) and (ii), the amplitude is 

increased for higher tremor and vice versa. Subplot D shows the sum of the 

output signals of the portable neurostimulator and the amplitude modulation 

of the random bursts of stimulation pulses. These signals were sent to the 

three contacts of the DBS electrode as described previously. 

(iv)  Adjustment of the number of pulses during random CR DBS. Figure 5.18 

shows how the variation in the strength of the imitated tremor is used to 

adjust the number of pulses in the CR stimulation bursts of the three 

contacts. Subplot D shows that tremor with higher amplitude results in 

increased number of stimulation pulses and vice versa. The minimum and 

maximum number of pulses was set to 1 and 10.  

(v)  Adjustment of the number of on-cycles during sequential CR DBS. Figure 

5.19 shows the adjustment of the number of on-cycles due to the variation 

in the strength of the imitated tremor. Subplot D shows that high tremor 

amplitude results in an increased number of on-cycles and vice versa. The 

minimum and maximum number of on-cycles was set to 1 and 3.  
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(vi)  Adjustment of the number of off-cycles during sequential CR DBS. Figure 

5.20 shows how the number of off-cycles is tuned according to the variation 

in the strength of the imitated tremor. The minimum and maximum number 

of off-cycles was limited to 0 and 1. In the initial case, the stimulation 

protocol includes one off-cycle, as can be seen in subplot D, time axis [43 – 

47] s. However, the number of off-cycles is reduced to 0 for an increased 

tremor amplitude as can be seen in time axis [41 – 43] s. 

 

The portable neurostimulator sent the tuned CR stimulation signals to an electrical 

circuit, where the four contact cables were connected to three resistors, each of 1 kΩ, and 

a reference. The stimulation signals were then recorded from the electrical circuit by a data 

acquisition card13 and monitored using the software LabVIEW SignalExpress14 on the 

programing laptop described in Section 3.1. The imitated tremor signals, their 

spectrograms, and the continuous adjustment of the different CR stimulation parameters 

(the output signals of the portable neurostimulator) are illustrated from Figure 5.15 to 

Figure 5.20. All these figures present the real-time adjustment of the stimulation parameters 

according to the strength of tremor measured by the standard deviation of the amplitude. In 

order to investigate the changes in amplitude through spectral analysis in real-time, the 

technical realization requires some hardware modifications and a more powerful processor 

as it is going to be discussed in the next chapter. 

 

 

 

 

 

 

 

 
13 cDAQ-9171 Measuring and Testing Equipment from National instruments, Hungary. 
14 LabVIEW SignalExpress 2012 from National instruments 
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Figure 5.15. Real-time amplitude modulation during HF DBS. A: Tremor-like recording during HF 

stimulation. B: Spectrogram of the recorded data shows the variation in frequency and amplitude of the 

tremor-like recording displayed in Subplot A over time. This variation is monitored and used to 

modulate the amplitude of the HF stimulation pulses. C: Amplitude modulation of the HF stimulation 

pulses where the maximum amplitude was restricted to 0.5 mA. D: Magnified plot of signal represented 

in (C) (see time axis). The amplitude of stimulation pulses is increased for higher tremor amplitude and 

vice versa. The single charge-balanced stimulation pulses were presented in Figure 2.3.   
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Figure 5.16. Real-time amplitude modulation during sequential CR DBS. A: Tremor-like recording. 

B: Spectrogram of the recorded data shows the variation in frequency and amplitude of the signal 

displayed in Subplot A over time. This variation is used to adjust the amplitude of the CR stimulation 

pulses. C: Output signals (three channels) of the portable neurostimulator show the amplitude 

modulation of the CR stimulation pulses of the three contacts (C0: blue, C1: red and C2: green). The 

minimum and maximum amplitude modulation was set to 0 and 2 mA. D: Magnified plot of the sum 

of the signal presented in (C) (see time axis). The amplitude of stimulation pulses is increased for higher 

tremor amplitude and vice versa.   
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Figure 5.17. Real-time amplitude modulation during random CR DBS. A: Tremor-like recording. 

B: Spectrogram of the recorded data shows the variation in frequency and amplitude of the tremor-like 

recording showed in Subplot A over time. This variation is used to adjust the amplitude of the CR 

stimulation pulses. C: Output signals (three channels) of the portable neurostimulator show the 

amplitude modulation of the CR stimulation pulses of the three contacts (C0: blue, C1: red and C2: 

green). The minimum and maximum amplitude modulation was set to 0 and 2 mA. D: Magnified plot 

of the sum of the signal presented in (C) (see time axis). The amplitude of stimulation pulses is 

increased for higher tremor amplitude and vice versa.   
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Figure 5.18. Real-time adjustment of the number of pulses during random CR DBS. A: Tremor-like 

recording. B: Spectrogram of the recorded data displays the variation in frequency and amplitude of 

the recording shown in Subplot A over time. This variation is used to adjust the number of pulses. 

C: Output signals (three channels) of the portable neurostimulator show the modification of the number 

of pulses of the three contacts (C0: blue, C1: red and C2: green). The minimum and maximum number 

of pulses was set to 1 and 10 pulse(s). D: Magnified plot of the sum of the signals presented in (C) (see 

time axis). Tremor with higher amplitude results in increased number of stimulation pulses and vice 

versa.  

10 20 30 40 50 60 70

5

10

15

F
re

q
u

e
n

c
y
 [

H
z
]

 

 

10 20 30 40 50 60 70

0

1

2

 [
m

A
]

 

 

0 10 20 30 40 50 60 70

-5

0

5
A

m
p

li
tu

d
e
 [

V
]

Adjustment of the number of pulses 

during random CR DBS - ACC recording (right hand)

10 20 30 40 50 60 70

0

1

2

 [
m

A
]

 

 

10 20 30 40 50 60 70

0

1

2

 [
m

A
]

 

 

B

A

C

0 10 20 30 40 50 60 70

-5

0

5

A
m

p
li
tu

d
e
 [

V
]

Adjustment of the number of pulses 

during random CR DBS - ACC recording (right hand)

10 20 30 40 50 60 70

0

1

2

A
m

p
li
tu

d
e
 [

m
A

]

 

 

55 56 57 58 59 60 61 62 63

0

1

2

Time [s]

A
m

p
li
tu

d
e
 [

m
A

]

 

 

10 20 30 40 50 60 70

5

10

15

F
re

q
u

e
n

c
y
 [

H
z
]

 

 

C0 C1 C2

C0 C1 C2

A

B

C

D



Chapter 5: Estimation of Demand for Tuning the DBS Parameters 

  
76 

 

 
Figure 5.19. Real-time adjustment of the number of on-cycles during sequential CR DBS. A: Tremor-

like recording. B: Spectrogram of the recorded data shows the variation in frequency and amplitude of 

the recorded signal over time. This variation is used to adjust the number of on-cycles. C: Output signals 

(three channels shown in color C0: blue, C1: red and C2: green) of the portable neurostimulator shows 

the modification of the number of on-cycles. The minimum and maximum number of on-cycles was 

set to 1 and 3. D: Magnified plot of sum of signals displayed in (C) shows the variation of the number 

of on-cycles over time (see time axis). High tremor amplitude results in increased number of on-cycles 

and vice versa. 
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Figure 5.20. Real-time adjustment of the number of off-cycles during sequential CR DBS. A: Tremor 

recording. B: Spectrogram of the recorded data shows the variation in frequency and amplitude of the 

recorded signal over time. This variation is used to adjust the number of off-cycles. C: Output signals 

(three channels shown in color C0: blue, C1: red and C2: green) of the portable neurostimulator shows 

the modification of the number of off-cycles. The minimum and maximum number of off-cycles was 

limited to 0 and 1. D: Magnified plot of the sum of the signals displayed in (C) shows the variation of 

the number of off-cycles over time (see time axis). The number of off-cycles is reduced in the case of 

large tremor amplitude. 
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Summary and Discussion  

 
Feedback control or adaptive techniques for deep brain stimulation (DBS) aim at 

optimizing the stimulation strategy to further improve the quality of life of the patients, e.g. 

by minimizing side effects and maximizing the efficiency of therapeutic stimulation. In the 

last few years, several paradigms have been proposed for delivering adaptive DBS 

(Santaniello et al., 2011, Rosenblum & Pikovsky, 2004, Popovych et al., 2008, Rosin et al., 

2011, Little et al., 2013, Hauptmann et al., 2005, Tass, 2003b, Popovych et al., 2005, Tass, 

2003a). Computational and practical adaptive DBS paradigms aim at quantifying the 

pathological state by analyzing electrophysiological signals in order to vary the stimulation 

parameters. These electrophysiological signals are either simulated or collected from 

patients or non-human primates. Some examples of experimental setups of adaptive DBS 

paradigms are described briefly:  

In the experimental setup designed by Rosin et al., two anatomical targets in the brain 

of non-human primates are selected for the adaptive DBS (Rosin et al., 2011). The first 

anatomical target is a reference where an electrode detects a trigger signal for stimulation. 

The trigger is an occurrence of an action potential. The second target is the stimulated 

structure in the globus pallidus internus (GPi) to which the stimulus at high frequency (HF) 

is delivered with a predetermined fixed latency of 80 ms to the trigger signal. The stimulus 

is a single pulse or short train of 7 pulses at 130 Hz. In this setup, a copy of six recorded 

analog signals is delivered to an external digitial signal processor (DSP) chip which uses 

one of the signals as a reference for trigger identification (Rosin et al., 2011).  

In another experimental setup described by Little et al., local field potentials (LFPs), 

which are band-pass filtered at beta frequency, are recorded bipolarly directly from the 

stimulating electrode in the subthalamic nucleus (STN) (Little et al., 2013). Recordings are 

processed using special external amplification and filtering systems (Eusebio et al., 2011). 

Filtered recordings are rectified and smoothed to compare the amplitude of the beta activity 

to a user-defined threshold. The frequency of the beta activity is determined from the power 

spectrum intra-operatively. The stimulation at HF (i.e., 130 Hz) begins with a latency of 30 

– 40 ms after crossing the threshold. The stimulation is delivered starting at 0.5 V and 

increased by 0.5 V until clinical benefits were seen without side effects. It was 

demonstrated that an optimization of the stimulation parameters intra-operatively results in 
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a strong clinical improvement and a reduction of stimulation time and power (Little et al., 

2013).  

Only few implantable adaptive stimulation hardware have been proposed for clinical 

use and are dedicated to deliver HF DBS (Jensen et al., 2008). Lately, Medtronic has 

announced the launch of its first implantable pulse generator (IPG) that enables the sensing 

and recording of brain activity while simultaneously provide DBS therapy (Medtronic, 

2013). Medtronic implantable hardware, which received Conformité Européenne (CE) 

mark, is dedicated to collect data from patients for research purposes.  

In this project, we investigated the realization of a demand-controlled application of 

desynchronizing coordinated reset (CR) DBS that is adapted according to the variations of 

the pathological activity of the patients. We studied retrospectively the suitability of two 

kinds of data for such an application. These include: (i) LFP recordings from Parkinson’s 

disease (PD) patients and parkinsonian non-human primates, and (ii) resting tremor 

recordings from PD patients. LFP and tremor data was recorded during CR DBS and after 

the stimulation sessions. The demand-controlled application of desynchronizing CR DBS 

requires a real-time data processing strategy that incorporates pre-processing and several 

analysis steps as illustrated in the flow diagram in Figure 6.1.   

To this end, we developed, and implemented software-based technical solutions to 

obtain feedback signals from the recordings and to calculate biomarkers-values of the 

pathological state. These biomarkers-values are used as a criterion to quantify the demand 

for tuning the stimulation parameters. The proposed approach aims to monitor, register and 

analyze the variation in the strength of the recorded activity in order to find reliable and 

stable pathological oscillations. The implemented technical solutions were tested on the 

abovementioned recorded data, simulated signals, and measurements in saline solution. 

Additionally, a demonstration of the tuning of several CR DBS parameters was performed 

in real-time with a DSP board using tremor-like recordings collected from a healthy subject.  

 

Patient
LFP/ACC 

recordings
Artifact 

reduction
Data 

analysis

Estimation 
of

 demand

Adjustment 
of stimulation 

parameters

The portable neurostimulator
DSP 

board
 

 

Figure 6.1. Flow diagram of the processing steps used in the demand-controlled application of CR DBS. 

Technical solutions are developed for each step, tested off-line, implemented for real-time processing, 

and tested on the DSP board placed in the portable neurostimulator. 
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The technical solutions were tested on a DSP board within a portable neurostimulator. 

The latter is an external trial DBS device mainly used for the application of 

desynchronizing DBS stimulation techniques (Hauptmann et al., 2009). The distinct data 

processing steps of the implemented module are summarized and discussed in the 

subsequent sections. 

 

 Artifact reduction 

Artifacts are usually found in LFP recordings during DBS. An artifact-reduced signal is 

important to enable the calculation of the demand value in a continuous way. In order to 

obtain a feedback signal during CR DBS, we tested several technical solutions for the 

removal of artifacts. Although many techniques have been introduced in the literature (as 

described in Section 4.1.1 and Section 4.1.2), our solutions resulted to be more adaptable 

to deal with considerable signal variability. The latter was noticed in the artifact shapes 

among electrode channels and even in individual channels among trials of the same type of 

stimulus. The variability was also found across patients due to, e.g., different stimulation 

intensities which are set according to the severity of the clinical symptoms, the sensitivity 

to stimulation and the position of the electrode in the brain. Moreover, the electrical 

impedance around the contacts of the implanted electrode varies considerably between 

stimulation sessions (Benabid et al., 1996). Taking into account the abovementioned 

reasons, it was important to find adaptable and appropriate artifact removal techniques for 

the LFP recordings collected during CR DBS. The most relevant artifacts are: stimulus 

artifact, exponential decay/growth after stimulus, power line interference (PLI), and 

electrical background noise. 

LFP activity is recorded during typical CR stimulation patterns, which contain 

stimulation periods (on-cycles) and large pauses (off-cycles) as can be seen in Figure 6.2. 

This figure shows LFP recording from a PD patient and illustrates the on- and off-cycles 

during CR DBS. The technical solutions for artifact reduction during stimulation are 

developed in such a way that only the signal parts corresponding to the off-cycles are taken 

into account. This is because the strength and variability of the stimulation artifacts during 

the on-cycles together with the subsequent exponential artifacts prevented a real-time 

artifact removal. As a consequence and in order to accurately interpret the neuronal activity, 

the complete removal of the on-cycles was necessary. Collecting the stimulation artifact-

free off-cycles enables the investigation of the recorded neuronal activity on a regular base. 

To this end, two methods were implemented in order to delimit the off-cycles from the LFP 

recordings in real-time: candidate segment of data and sawtooth wave (both methods were 

introduced in Section 4.1.1).  
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A key advantage of the candidate segment of data method is the ability to automatically 

detect the onset and end of the stimulation periods (i.e., the on-cycles). One shortcoming 

of this method is the discarding of some milliseconds after stimulation. This might result 

in the loss of neuronal activity. The main advantage of the sawtooth wave method is that it 

is based on the selected CR stimulation parameters. One limitation of this method is that 

the LFP signal has to be synchronized with the sawtooth wave. However, this has to be 

done once at the beginning of the recording process and is performed as long as CR 

stimulation parameters remain constant. Both methods are implemented in Simulink and 

presented in Appendix B. 

 
Figure 6.2. LFP recording from a PD patient during CR DBS. The plot illustrates the on-cycles (red 

double arrow) and off-cycles (green double arrow). The off-cycles are delimited and analyzed for 

pathological neuronal activity. The CR parameter values used here are: HF 130 Hz, FR 4 Hz, Non 3, Noff 

2, N 8, A 2 mA and PW 60 µs.  

 

The exponential artifact, which is caused by the saturation of the amplification system, 

is the main artifact in the off-cycles as explained in Section 4.1.2. Techniques available for 

the removal of such artifacts were suboptimal for our application due to the variability of 

the artifact (Wagenaar & Potter, 2002). The optimal solution was to fit independent 

functions to each individual artifact. We found that the use of inappropriate fitting 

techniques generates new artifacts. For instance, we found that polynomial fitting is 

suboptimal, since the frequency content of the fit residual of the polynomial fitting curve 

overlaps that of parkinsonian resting tremor, i.e. 3 – 10 Hz. This makes it difficult to classify 

in the frequency domain whether a peak is caused by the polynomial fitting or by neuronal 

activity (see Figure 4.7). The use of low polynomial order (e.g., cubic polynomial) has the 

shortcoming that the curve cannot describe the off-cycle accurately and its residual is not 

negligible. Hence, other techniques were required to ensure that the frequency response of 

recorded neuronal activity is not affected.  

An efficient solution for the exponential artifact removal is the Nelder-Mead algorithm 

(Nelder & Mead, 1965). This algorithm is a non-linear and iterative optimization technique 

based on the least squares method. We implemented the algorithm in Simulink and used it 
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to fit 2nd (double) and 5th order exponential curves to the off-cycles. Our findings showed 

that double exponential curves could not fit some of the off-cycles accurately due to, e.g., 

large PLI amplitude or a high CR frequency of the CR DBS pattern. The 5th order 

exponential curve was effective in removing the exponential artifact. Since this method is 

computationally demanding, it will be used as an off-line approach for artifact removal.  

In order to overcome the hardware limitations and to calculate more accurate fitting 

curves, the off-cycles were divided into smaller segments, where each segment was fitted 

separately with a double exponential curve. The off-cycles are divided into a maximum of 

three segments and are concatenated again at the end of the artifact removal process. This 

approach is less expensive from computational perspective and produced more accurate 

fitting curves. Figure 6.3 shows the result of 10 off-cycles of LFP recording from a PD 

patient individually fitted. The off-cycles are triggered on the end of the on-cycles, divided 

into three segments and fitted by double exponential fitting curves after the removal of PLI.  

Furthermore, the off-cycles in the LFP recordings during CR DBS include both 

exponential decays and growths. The use of an exponential fitting curve with adequate 

exponents (positive or negative) increases the probability of reaching the best fit within a 

small number of iterations. Thus, both exponential fitting functions were implemented in 

the Simulink module. The latter can automatically select the fitting curve that describes the 

exponential artifact the best.   

 

 
Figure 6.3. Variability of the saturation (exponential) artifact in the off-cycles. Shown are 10 aligned 

off-cycles (blue lines), of LFP recording from a PD patient during CR DBS, triggered on the end of the 

on-cycles. The off-cycles are fitted individually by double exponential fitting curves (red lines) after 

the removal of PLI.  
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The challenge of removing PLI from the LFP recordings during CR DBS is the short 

duration of the off-cycles (see Section 4.1.3). Standard filtering approaches are suboptimal 

here since there is a phase distortion of PLI caused by delimiting the off-cycles. Our tests 

of some removal techniques of PLI (e.g., subtracting two LFP channels from each other or 

averaging of off-cycles) showed that the effect of PLI was reduced but not completely 

eliminated as shown in Section 4.1.3. We found that subtracting an independent reference 

signal of PLI from the off-cycles is the most effective solution due to the variability of the 

PLI amplitude and the shortness of the off-cycles. Fortunately, our implemented Nelder-

Mead module provided again the solution to remove this artifact and enabled the generation 

of the reference signals. The module estimates the amplitude and phase of the PLI reference 

signals within a few number of iterations (<50) (as presented later in Appendix A). The 

main advantage of this approach is that it copes successfully with changes in amplitude and 

phase of the PLI and its harmonics. By implementing the Nelder-Mead algorithm in 

Simulink, we provide a subtraction approach that can dynamically adapt to the variability 

of the artifacts. The module is used to remove the PLI and the exponential artifacts and 

provides a practical solution to the complex problem of artifact removal from the short data 

segments.  

For the removal of electrical background noise during CR DBS, real-time averaging of 

off-cycles was the most effective de-noising technique since the noise was strongly reduced 

during averaging. Furthermore, other artifacts were found in the LFP recordings, e.g., 

caused by a movement of the patients during the recording sessions. These artifacts are 

irregular in terms of form and duration. In case of averaging a large number of off-cycles, 

the effect of these artifacts was strongly reduced. However, if these artifacts appear 

frequently, then the averaging method would be not suitable. Such artifacts cause low 

frequency components in the LFP recordings and one cannot determine in real-time 

whether they reflect neuronal activity or not. 

The tests of our implemented technical solutions for artifact reduction on data recorded 

in saline solution and from PD patients during CR DBS showed that the abovementioned 

artifacts were strongly reduced. The objectives of these tests were to give a proof-of-

principle and to evaluate the efficiency of the implemented techniques. LFP recordings in 

saline solution contain no neuronal activity; thus, the artifact-reduced off-cycles of these 

recordings display no clear peaks or low frequencies, as shown in Figure 6.4.A. In contrary, 

some peaks, which may represent pathological neuronal activity, were revealed in the LFP 

recordings collected from a PD patient as shown in Figure 6.4.B.  

An additional Simulink module is implemented for the real-time artifact reduction of 

spontaneous LFP and tremor recordings. Artifact reduction of these recordings is 

computationally less expensive than the one during CR DBS. This is due to (i) continuity 

of input signal and (ii) absence of stimulus and exponential artifacts. The artifact reduction 

solutions are mainly based on digital filters and wavelet de-noising approaches as described 
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in Section 4.2. The recordings pass through a set of successive digital filters for suppression 

of PLI and its harmonics as well as the DC and low frequency components. In this thesis, 

it was shown that our filters are optimal for data sampled at 1 kHz and the wavelet de-

noising approach has strongly reduced the electrical background noise without signal 

distortion (see Section 4.2.1 and 4.2.2). 

 

 
Figure 6.4. Tests of the implemented module using LFP recordings in saline solution and from PD 

patient. A1: Off-cycles recorded in saline solution through three contacts C0, C1, and C2 (shown in 

color) of the implanted DBS electrode, where the fourth contact was used as a reference. A2: The same 

off-cycles shown in A1, after the removal of artifacts, include no peaks or low frequencies. B1: Off-

cycles recorded from PD patient through three contacts. B2: The off-cycles displayed in B1 after the 

removal of artifacts show some clear peaks which might reflect pathological neuronal activity. 

 

Generally, simultaneous DBS and LFP recording through the same electrode make the 

recording of pathological neuronal activity more difficult due to large stimulation artifacts. 

One suggested approach to reduce artifacts it to use separate electrodes for stimulation and 

data acquisition (Al-ani et al., 2011, Hashimoto et al., 2002, Rosin et al., 2011). If the 

recording site is far away from the stimulation site, the artifacts and the evoked 

physiological response will not overlap and this approach is even more effective (Harding, 

1991). Furthermore, finding a relationship between two anatomical regions in the brain 

allows the stimulation of one region and data acquisition form another (Rosin et al., 2011). 

However, the use of separate electrodes may be accompanied with an increase in the 

technical and surgical complexity, as more electrodes should be chronically implanted for 

the demand-controlled application of DBS. Nevertheless, using the DBS electrode for the 

demand-controlled application still has the advantage that it requires no additional electrode 
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or hardware (Little & Brown, 2012). The accuracy of LFP recordings can also be improved 

by using more contacts on the implanted electrode for DBS (Buhlmann et al., 2011). 

 

 Data analysis 

The technical solutions for data analysis aimed at the calculation of biomarkers-values of 

the pathological activity in the LFP and tremor recordings. The shortness of the off-cycles 

is a challenge for the analysis process during CR DBS. In order to find biomarkers of the 

pathological neuronal activity, we used two analysis methods presented in Section 5.1: (i) 

off-cycles averaging, and (ii) spectral analysis. A large number of off-cycles are averaged 

in order to reveal peaks that describe neuronal response with fixed latency to stimulation. 

We tested this method on LFP recordings from a PD patient by adding a simulated peak to 

the off-cycles with fixed latency of 200 ms prior to the following on-cycles. The off-cycles 

last 400 ms. Once the artifacts are removed, a large number of off-cycles were averaged in 

real-time and the peak was observed to be well-defined. We found that averaging 100 off-

cycles might be sufficient to detect neuronal activity, time-locked to the stimulation.  

Spectral analysis of individual off-cycles in the LFP recordings is impractical due to 

the short duration of off-cycles (i.e., 120 ms – 500 ms). Additionally, the concatenation of 

a large number of off-cycles causes discontinuities which produce a ringing artifact 

(leakage effect) in the power spectrum. Smoothing these discontinuities by weighting the 

data, e.g. with a Hamming window, causes the presence of low frequencies close to those 

of resting tremor, i.e. 3 – 10 Hz. The main problem by the concatenation approach is the 

partial loss of phase information. In order to solve this problem and estimate the demand 

value during CR DBS, the spectral analysis was applied to the un-concatenated off-cycles 

as discussed in the next section.  

For the spontaneous LFP and tremor recordings, spectral analysis was the main 

analysis tool (see Section 5.3). We used DFT, periodogram, and spectrogram functions for 

the off-line analysis. Spectrograms were used at first to locate the epochs of the dominant 

frequencies in the recorded data. The results show synchronized activity of the spontaneous 

LFP recordings from PD patients and from non-human primates (Macaque monkeys) in the 

range from 3 – 15 Hz. An additional module is implemented in Simulink for real-time 

analysis based on the periodogram function. We analyzed the LFP recordings of the three 

contacts in order to estimate the strength of the pathological activity in the brain layers 

where the different contacts are placed. We found different characteristics of the 

pathological activity in terms of frequency and amplitude. This variation in the pathological 

activity on the different contacts indicates the need for estimating different demand values 

for the different stimulated brain layers.  
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 Proposed approach for tuning the DBS parameters 

The method used for averaging the off-cycles during CR DBS intends to find successive 

peaks that correspond to neuronal activity. The time difference between, at least, two 

successive peaks can be used to determine their frequency. The strength of the pathological 

activity, measured by averaging the amplitudes of these peaks, can be used to adjust the 

stimulation parameters. We applied this approach to the LFP recordings from different PD 

patients and found some well-defined successive peaks of neuronal activity with fixed 

latency to stimulation as shown in Figure 6.5.  

 
Figure 6.5. Detection of successive peaks in the averaged off-cycles of a PD patient. The time 

difference between such peaks and their amplitudes can be useful to determine the frequency and the 

strength of the pathological activity, respectively. 

 

Another approach to estimate the demand value during CR DBS was to rescale the 

amplitude of dominant frequencies in the power spectrum of the un-concatenated off-

cycles. Our tests with simulated sinusoids and different sets of CR stimulation parameters 

showed that a frequency can be estimated even with half of its period in the un-concatenated 

off-cycles. However, the amplitude was reduced due to the blanking of the on-cycles. We 

found that the reduction in the amplitude is proportional to the shortness of the off-cycles. 

In order to recover the amplitude, we modified the spectral power by a scaling factor k 

calculated from the CR DBS parameters (as shown in Section 2.2.2 and Equation 5.1). The 

tests with sinusoids showed that the actual amplitude was recovered by the scaling factor 

(Section 5.2). Applications of this method to LFP recordings collected from PD patients 

for different CR stimulation parameters showed no dominant frequencies. The reason 

behind this is either, that the pathological synchronized neuronal activity was reduced due 

to stimulation or simply that such a synchronized activity was not present.  

In order to calculate the demand value from the spontaneous LFP and tremor 

recordings, we focused on the variation of dominant frequencies in the power spectra of 

these recordings (see Section 5.4). The signals are divided into successive segments, where 
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a periodogram function analyzes the frequency content of each segment. The dominant 

frequencies in 20 successive segments, together with their amplitudes, are buffered. 

Subsequently, a histogram function evaluates the distribution of the 20 buffered frequencies 

in the range from 3 – 43 Hz. Then, a threshold is set which implies that each frequency 

should appear at least 12 times in the 20 buffered values. The goal of the threshold and the 

20 buffered values is to find reliable and stable pathological oscillations in the LFP or 

tremor recordings. When a dominant frequency exceeds the threshold in the histogram, all 

corresponding amplitudes are extracted and averaged (divided by the distribution value). 

This is done in order to get the instantaneous amplitude of the current pathological activity. 

This approach results in an amplitude value every 4 s which can be used to adjust the 

stimulation parameters. We found that increasing the frequency resolution of the 

periodogram enables the detection of frequency variations, but it reduces the probability of 

detecting the main frequency. In case of using a high-frequency resolution, the threshold 

can be reduced.  

The tests on different data showed the efficiency of our implemented module for the 

detection of dominant frequencies and the estimation of their amplitudes. The tests were 

performed on tremor and spontaneous LFP recordings from PD patients and LFP 

recordings from non-human primates. We also tested the module with simulated sinusoids 

and stimulation signals generated by the portable neurostimulator and acquired from a 

simple electrical circuit. An example of monitoring the variation in the amplitude of the 

dominant frequencies is shown in Figure 6.6. This figure shows the time-evolving power 

spectrum of LFP recording from a PD patient, with an activity around the 5 Hz.  

 
Figure 6.6. Monitoring the variation of the dominant frequency in an LFP recording from a PD patient. 

This variation is analyzed to quantify the demand for adjusting the stimulation parameters. 

 

The portable neurostimulator system allows the adjustment of five CR DBS 

parameters: the amplitude (A), number of off-cycles (Noff), number of on-cycles (Non), the 

number of pulses (N), and the pulse width (PW) (Section 2.2.2 and Section 5.5). Each 

parameter can be adjusted independently by an algorithm based on the estimated demand 
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value in real-time. The concept is to monitor and compare the strength of the pathological 

activity in successive data segments. If the amplitude of the pathological activity in the 

current data segment differs from the previous one, a flag is raised to indicate the demand 

for updating the stimulation parameter. The current value is divided by the stored value to 

define a scaling factor that is then multiplied by the value of current stimulation parameter. 

Otherwise, the stimulation proceeds with the current value. The initial values of the 

stimulation parameters can be set by the clinicians, and the maximum and minimum values 

of the stimulation parameters are restricted.    

A module is implemented in Simulink, which currently uses the tremor recordings as 

a feedback signal, to adjust the CR DBS parameters in real-time. The module can also be 

calibrated to the individual clinical state as the strength of tremor varies between patients. 

Demonstrations of the simulated adjustment process of four CR stimulation parameters 

through tremor-like recordings from a healthy subject were performed with the module. 

The strength of tremor was measured by the standard deviation of the amplitude in the 

successive data segments. This demand-controlled approach is tested successfully in real-

time on the DSP board and the results are presented from the Figure 5.15 to Figure 5.20 in 

Section 5.5.  

 

 Limitations and future directions 

Deploying real-time applications with limited resources in terms of processing speed and 

memory is challenging. In this case, feedback signals for the demand-controlled 

applications of DBS are managed with the lowest computational requirements to reduce 

the processing time and the battery consumption. In this thesis, the implementation of 

complex algorithms for artifact reduction and data analysis, particularly during CR DBS, 

results in a complex source code. Hence, the implemented algorithms were improved 

iteratively to meet the hardware requirements imposed by the DSP board (Section 3.1.1 and 

Appendix B). The complexity of the source code can be reduced by discarding some 

processing steps which will yield in less accurate results, e.g., artifacts might not be 

eliminated. Considering this and for implantable pulse generators (IPGs), a compromise 

between the size of algorithms and accuracy of results versus processing time and battery 

consumption must be taken into consideration and proposed as a future work. Besides the 

software solutions, hardware modifications can improve the artifact reduction process, e.g., 

the integration of a dedicated amplification system may reduce the artifacts in the early 

recording stage and increase the data quality (Little et al., 2013, Rossi et al., 2007).  

Biomarkers of the pathological activity should be specific, sensitive, and should 

provide an instantaneous measure of the clinical state (Little & Brown, 2012). LFP 

recordings are still the most suitable biomarkers for the pathological neuronal activity than 

other signals like electroencephalogram (EEG) or single-unit recordings. This is the reason 
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why they result to be the most attractive option for the design and development of demand-

controlled DBS systems (Priori et al., 2013). Clinical tests, e.g. using the external stimulator 

can answer the question if the dynamic of LFP recordings can be used to characterize the 

different clinical conditions of the disease and whether there is a need to establish multiple 

biomarkers for each different symptoms (Little & Brown, 2012). Furthermore, during these 

first retrospective clinical tests the analysis algorithms must still be optimized in order to 

enable the calculation of reliable neurophysiological biomarkers-values that provide 

information regarding to the current patients’ clinical state. Recent results, where a simple 

spectral analysis and the division of the pathological activity into different frequency bands 

were used, support the assumption of a linear relationship between the recorded data and 

the clinical feature. Nevertheless, more complex algorithms might be required to uncover 

other complex relationships among brain areas and disease symptoms (Little & Brown, 

2012). These critical issues were not addressed in this work since the main focus was the 

development of technical solutions for the individual processing of the recorded data. 

The work presented in this thesis has set the necessary conditions for the 

implementation of a demand-controlled application of DBS as well as shown that the 

adaptation of the stimulation parameters using LFP data is possible. In this work, the 

demand for DBS is adaptable to the clinical characteristics of each patient through the 

adjustment of the stimulation parameters according to the strength of the on-going 

pathological activity. The results presented here can be used in future studies and 

experiments as groundwork for the development of an autonomic DBS system implanted 

in PD patients. Such a system is expected to open new doors for the deeper understanding 

of the disease causes and providing new insights about the mechanism of the electrical 

DBS.



 

Appendix A  

 

 

Implementation of the Nelder-Mead 

Algorithm in Simulink 

 
The Nelder-Mead algorithm or simply the simplex-algorithm is a commonly used non-

linear optimization technique proposed by John Nelder and Roger Mead (Nelder & Mead, 

1965). This algorithm is one of the direct, iterative and unconstrained search methods that 

are easy to program and do not require derivatives (Mckinnon, 1998). Based on the least 

squares problem, the algorithm is used to solve parameter estimation, e.g. data fitting. In 

this appendix we introduce the Nelder-Mead algorithm briefly and present the results of its 

implementation in Simulink. 

 

A.1 Algorithm 

The Nelder-Mead algorithm uses the concept of a simplex, which is a polytope of n + 1 

vertices 𝑣𝑖  in n dimensions (Nelder & Mead, 1965). The vertices are associated with 

function values 𝑓𝑖 = 𝑓(𝑣𝑖) which are sorted in such a way that the functions with minimal 

(i.e., best vertex) and maximal (i.e., worst vertex) values have index 1 and n + 1, 

respectively (Baudin, 2010). A function with n parameters requires a simplex with n + 1 

vertices. In this section, we use the same definitions of the equations as in the algorithmic 

implementation of the fminsearch15 function in MATLAB. The method approximates a 

local optimum of a problem with n variables where the objective function f is described as  

 

min𝑓 (𝑥), for 𝑥 ∈ ℝ𝑛. 

 

Through iterative comparisons of function values in the parameter space, the method 

controls the tendency towards the minimum value.  

The algorithm, as explained by Lagarias et al.,  makes use of four scalar parameters: 

coefficients of reflection 𝜌, expansion𝜒, contraction 𝜓, and shrinkage 𝜎 (Lagarias et al., 

1998). According to the original Nelder-Mead method, these parameters should satisfy: 

 
15 MathWorks, Inc., USA, version 2007a 
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𝜌 > 0, 𝜒 > 1, 0 < 𝜓 < 1, and   0 < 𝜎 < 1 

 

The almost standard choices used in the Nelder-Mead algorithm are 𝜌 = 1, 𝜒 = 2, 𝜓 = 

0.5, and 𝜎 = 0.5.  

The algorithm replaces the worst vertex 𝑣𝑛+1 at each step in the iteration by a new one. 

In order to do this, the centroid �̅� of the n best vertices should be computed as follows: 

 

�̅� =
1

𝑛
∑𝑣𝑖

𝑛

𝑖=1

. 

 

The centroid is used for the reflection step, which is performed with respect to the worst 

vertex 𝑣𝑛+1 to generate the reflected point 𝑥𝑟 as follows: 

 

𝑥𝑟 = (1 + 𝜌) ∙ �̅�(𝑛 + 1) − 𝜌 ∙ 𝑣𝑛+1. 

 

Then, the reflection point 𝑥𝑟 (i.e., a new vertex) is used to evaluate the function: 

 

𝑓𝑟 = 𝑓(𝑥𝑟). 

 

This function is compared with the function values of the other vertices to find the worst 

vertex and to replace it, i.e., if 𝑓1 ≤ 𝑓𝑟 < 𝑓𝑛, replace 𝑥𝑛+1 with  𝑥𝑟. 

 

If 𝑓𝑟 < 𝑓1, i.e., the new reflected point 𝑥𝑟 is better than the best point 𝑥1, then calculate the 

expansion point 𝑥𝑒 

 

𝑥𝑒 = (1 + 𝜌 ∙ 𝜒) ∙ �̅�(𝑛 + 1) − 𝜌 ∙ 𝜒 ∙ 𝑣𝑛+1, 

 

and evaluate the function: 

 

𝑓𝑒 = 𝑓(𝑥𝑒). 

 

This function is further compared with the function values of the other vertices to replace 

again the worst vertex. 

 

If 𝑓𝑒 < 𝑓𝑟, the worst vertex 𝑣𝑛+1is replaced by 𝑥𝑒, otherwise it is replaced by 𝑥𝑟.  
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If 𝑓𝑟 < 𝑓𝑛, the worst vertex 𝑣𝑛+1is replaced by 𝑥𝑟, otherwise a contraction between �̅� and 

the better of 𝑣𝑛+1 and 𝑥𝑟  is required. The contraction step considers two cases: outside 

contraction and inside contraction. 

 

If 𝑓𝑟 < 𝑓𝑛+1 , i.e., 𝑥𝑟  is strictly better than 𝑣𝑛+1, then an outside contraction is 

computed as follows: 

 

𝑥𝑜𝑐 = (1 + 𝜓 ∙ 𝜌) ∙ �̅�(𝑛 + 1) − 𝜓 ∙ 𝜌 ∙ 𝑣𝑛+1. 

 

The outside construction point 𝑥𝑜𝑐 is then used to evaluate the function: 

 

𝑓𝑜𝑐 = 𝑓(𝑥𝑜𝑐) . 

 

If 𝑓𝑜𝑐 ≤ 𝑓𝑟 , the worst vertex 𝑣𝑛+1 is replaced by 𝑥𝑜𝑐 , otherwise a shrink step is 

required. 

 

If 𝑓𝑜𝑐 > 𝑓𝑟, compute the inside contraction point 𝑥𝑖𝑐 from 

 

𝑥𝑖𝑐 = (1 − 𝜓) ∙ �̅�(𝑛 + 1) + 𝜓 ∙ 𝑣𝑛+1, 

 

and evaluate the function: 

 

𝑓𝑖𝑐 = 𝑓(𝑥𝑖𝑐) . 

 

If 𝑓𝑖𝑐 < 𝑓𝑛+1, the worst vertex 𝑣𝑛+1is replaced by 𝑥𝑖𝑐, otherwise a 

shrink step is required. 

 

 The shrink step is used to form a new simplex and is defined for all vertices as 

 

𝑣𝑖 = 𝑣1 + 𝜎 ∙ 𝑣𝑖 − 𝑣1, 

                    

where the function values 𝑓𝑖 = 𝑓(𝑣𝑖) should be computed again and the steps described 

above should be repeated until the minimum is found. The minimization process of a 

simplex with 11 vertices by our Simulink module is shown in Figure A.1. 
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Figure A.1. Iterative minimization of a simplex with 11 vertices in Simulink. A: First 50 iterations 

show the convergence process of the simplex towards the minimum. The simplex varies in shape from 

iteration to iteration. The axes x, y, and z show the function f(x) of the vertices. B: Initial simplex with 

large function values (scale 104). C: the minimized simplex with a very small function value (scale 

0.27) in comparison with the one shown in (B).  
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A.2 Applications  

In this thesis, the Nelder-Mead module is used to fit a double- or 5th order exponential 

function to the input data in order to remove the exponential artifact from the off-cycles of 

the LFP recordings. Another application of the algorithm is to remove PLI and its 

harmonics from very short signals. For the reference signal of PLI, which is a sinusoid with 

two parameters, amplitude and phase (n=2), a simplex with three vertices (i.e., n+1=3) is 

formed. Double exponential fitting has four parameters and thus a simplex with 5 vertices 

is required and for the 5th order exponential fitting a simplex with 11 vertices is used. An 

example of the applications of the module is shown in Figure A.2. 

 
Figure A.2. Applications of the Nelder-Mead module to LFP recordings during CR DBS. A: 5th order 

exponential curve is calculated by the module to remove the exponential artifact. B: Fit residuals after 

the removal of the exponential artifact shown in (A). C: Generation of reference signal for PLI shown 

in (B). D: Fit residuals after the removal of PLI show the artifact-reduced LFP recording. 

 

A.3 Implementation  

The algorithm is implemented in several ways in different programming languages such as 

MATLAB, Scilab, Fortran, and C. For more details about the distinct implementations of 

the algorithm we refer to (Baudin, 2010).  In our Simulink module, we implemented the 

algorithm using Simulink blocks (Appendix B). One of the main differences between the 

various implementations lies in the construction of the initial simplex and in the selection 

of the termination condition that is used to end the optimization process. Starting values 

are used to calculate the vertices that form the initial simplex. These values were calculated 

as it was done in the fminsearch function. 
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𝐶 = (1 + 𝛿) ∙ 𝐶𝑖, 

 

where Ci is the initial guess given as a vector of ones and 𝛿 = 0.05. The initial values C are 

computed and given as constant matrices in the Simulink module. 

 

𝐶𝑃𝐿𝐼 = [
1

1.05
1
1

1 1.05
],               𝐶𝑒𝑥𝑝 =

[
 
 
 
 

1 1
1.05 1
1
1
1

1.05
1
1

1 1
1 1
1

1.05
1

1
1

1.05]
 
 
 
 

, 

 

where CPLI and Cexp are the start values for the reference signal of PLI and double 

exponential fitting curves, respectively. In order to terminate the minimization process, the 

function f(x) of the vertices is compared at each iteration to test the convergence of the 

simplex. This approach is also used in the fminsearch function of MATLAB. If the function 

values of the vertices become similar (Figure A.1.D), the iterative for-loop is terminated 

even when the maximum number of iterations has not been reached.  

The implementation of the Nelder-Mead algorithm should take some special cases into 

consideration. For instance, the maximum number of iterations is reached before finding a 

minimum or a shrink step is started at the last iterations. In such cases, a restart of the 

algorithm is usually performed using modified starting values.  

In our module, the maximum number of iterations is restricted, since it should process 

successive segments of data in a limited amount of time. Thus, we implemented the 

optimization process in several successive modules. If the first module could not converge 

to the minimum within a given amount of time, a second module of parameter optimization 

is performed. Not more than three successive modules are used. The number of iterations 

was also reduced during the second and the third phases, since the estimated parameters of 

the first phase are given as starting values for the next phase. In this way, the parameters 

can be further optimized using smaller number of iterations, as shown in Figure A.4. A 

further optimization of parameters is also useful when shrinkage of the simplex is required. 

Although the shrink step was programmed in the module, it was not required in our 

application. Furthermore, the number of iterations was set according to the number of 

parameters to be optimized. For a function with 10 parameters (e.g., the 5th order 

exponential fit), the number of iterations was three times the number of iterations required 

for a function with 4 parameters (e.g., the double exponential fit).  

The rate of convergence was tested using data segments (i.e., off-cycles of LFP 

recordings) that were contaminated with PLI and electrical background noise. The rate of 

convergence for double exponential fitting and the reference signal of the PLI are shown 

in Figure A.3. As can be seen in this figure, the module uses a smaller number of iterations 

for the PLI reference signal to converge in comparison to the double exponential fitting. 
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The rate of convergence for the 5th order exponential fitting before and after the removal of 

PLI from the off-cycles is shown in Figure A.4. In this figure, the optimal parameters 

calculated by the algorithm before the removal of PLI (Subplot A) were used for the 

optimization process after removing the PLI (Subplot B). This explains the low function 

values in the y-axis and the low number of iterations required in Subplot B.   

The processing steps of the algorithm are included in a Simulink for-loop block that is 

incorporated in an enabled subsystem. Our module accepts the input data as a frame 

(buffered samples) and gives two outputs: the fitting curve and the residuals. This module 

was converted successfully into C code by the Embedded Coder of MATLAB. The module 

can also be used to fit arbitrary functions to input data for many scientific applications 

developed on Simulink. These functions should be included in a Simulink subsystem than 

can be integrated into the module in a straightforward manner. The number of iterations 

can also be changed arbitrary. Some block diagrams of the implemented Simulink module 

are shown in Appendix B.  

 
Figure A.3. Rate of convergence of the double exponential and the reference signal of PLI. A:  Double 

exponential simplex converges towards the minimum within 25 iterations. B: The simplex of PLI 

reference signal converges in less than 15 iterations towards the minimum. The rate of convergence 

depends on the number of parameters (vertices). 
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Figure A.4. Rate of convergence of the 5th order exponenital fitting . A: Rate of convergence of the 

function values before the removal of PLI. B: Rate of convergence after the removal of PLI. Less 

number of iteration is used in B. This is because the optimal parameters calculated  in (A) were used 

as starting values for the simplex in (B). 
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Appendix B  

 

Simulink Modules 
 

In this Appendix we present the Simulink modules of the developed and implemented 

technical solutions for the demand-controlled application of desynchronizing CR DBS. In 

order to give a better idea of the multiple layers of complexity, we presented the most 

representative modules. The modules comprise interlinked blocks that perform several 

calculations. Very complex calculation blocks can be condensed into a modular block set, 

called subsystem, to be viewed in a more intuitive way. A subsystem may also include 

further subsystems and several MATLAB routines. This approach allowed the creation of 

independent subsystems outside of the main Simulink module. After testing and functional 

verification, these subsystems can be easily integrated into the primary module. The latter 

includes the independent modules for (i) artifact reduction, (ii) data analysis, (iii) estimation 

of demand, and (iv) adjustment of the stimulation parameters. The advantage of testing a 

module outside of the main module is that the time required for testing and processing can 

be decreased significantly. The Simulink modules were tested with the digital signal 

processor (DSP) board. The content of the Simulink modules shown along this appendix 

are highlighted using colored backgrounds and explained in sections as follows:  

 

B.1 Data processing modules during CR DBS 

The main module for artifact reduction during CR DBS is shown in Figure B.1. The 

reference signal, which is generated by the portable neurostimulator and used to build the 

delimiting signal, is preprocessed in the blocks colored magenta. The subsystem with a 

cyan background builds the delimiting signal by using the candidate segment of data 

method (Section 4.1.1). The subsystem with a green background imports the local field 

potential (LFP) signal which is still contaminated with artifacts. The subsystem with a blue 

background is an enabled subsystem that includes the artifact reduction algorithm and the 

implemented Nelder-Mead algorithm. An enabled subsystem contains an enable port which 

acts like an In-Port. If the subsystem receives a positive signal (trigger) on this port, it is 

activated. The counter subsystem with an orange background is dedicated to estimate and 

count the duration and the number of the detected off-cycles, respectively. Figure B.2 

shows the block diagram corresponding to the candidate segment of data method. In this 

figure, the subsystems with blue backgrounds take into consideration the different window 
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sizes used to detect the off-cycles.  A graphical example of the content of these subsystems 

is shown in Figure B.3.  

 
 

Figure B.1. Simulink block diagram of the main module used to process the data during CR DBS.    

 

 
 

Figure B.2. Simulink block diagram of the candidate segment of data method.  
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Figure B.3. A subsystem used for the implementation of the candidate segment of data method. In this 

particular case, a window size of 40 is used to detect the off-cycles.  
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Figure B.4 shows the content of the artifact removal module (see Figure B.1). The red 

blocks determine the length of the off-cycles which is an important step in the process of 

dividing the off-cycles into segments. When a specific number of samples is reached, a 

MATLAB routine (green block) activates the enabled subsystem of the artifact reduction 

module (blue background). The detail of this subsystem is shown from Figure B.5 to Figure 

B.19. 

 

 

 

Figure B.4. Block diagram of the artifact removal subsystem 

 

Figure B.5 includes the subsystems used to remove the exponential artifact and power 

line interference (PLI), as detailed in Section 4.1.2. In this figure, the subsystems depicted 

in blue include the first and second phases of the procedure for the exponential artifact 

removal. These two phases are implemented before and after the removal of PLI. The 

subsystems with a magenta background are used as part of the PLI removal approach (for 

the first and second phases). In these subsystems, reference signals are generated for the 

50 Hz PLI and its harmonics. All these subsystems include the implemented Nelder-Mead 

algorithm explained in Appendix A. In the subsystems that correspond to the exponential 

artifact removal, either double or 5th order exponential fitting functions can be calculated. 

A mixture of both is also possible. An example of the block diagram that implements the 

second phase of PLI removal is shown in Figure B.6. In this phase, the generated reference 

signals for PLI and harmonics are subtracted one after the other from the input signal (i.e., 

the off-cycles of the LFP recordings) and before the removal of the exponential artifact.  
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Figure B.5. Simulink block diagram that correspond to the removal of exponential artifact and PLI 

approaches .  

 

 
 

Figure B.6. Simulink block diagram of PLI removal after the removal of the exponential artifact. The 

removal of PLI and harmonics is performed here using subsystems connected in series. This module 

was optimized and replaced by only one subsystem as shown later in Figure B.20. 

 

The two phases for the exponential artifact removal are shown in Figure B.7 and Figure 

B.8. Each phase includes the exponential fitting functions with positive and negative 

exponents where each exponential fitting curve is optimized three times using three 

subsystems (blue background): exponential fitting functions with positive exponents are 

located at the top row and negative exponents are placed at the bottom row. The parameters 

of the fitting curve calculated in the first subsystem are sent to the next subsystem to be 

further optimized. The subsystem with a magenta background is used to build the initial 

step of the simplex (Nelder-Mead algorithm described in Appendix A). The selection of 

the best fitting function is performed in the blocks with an orange background which 

compares the outputs of both fitting functions (with positive and negative exponents). Then, 

using the estimated parameters, the exponential fitting curve is generated in the subsystems 

with a green background. At the end, the exponential artifact is removed by subtracting the 

fitting function from the input signal (red blocks).   
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Figure B.7. Module where it is implemented the first phase of the exponential artifact removal 

approach before removing the PLI.  

 

 
 

Figure B.8. Module where it is implemented the second phase of the exponential artifact removal 

approach after removing the PLI.  
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The main block diagram for the Nelder-Mead module is shown in Figure B.9. The 

module consists of two subsystems for (i) building the initial simplex (blue background) 

and (ii) optimizing the parameters in a for-iterator (magenta background). The block 

diagrams for the initial phase in the simplexes for double and 5th order exponential fitting 

are shown in Figure B.10 and Figure B.11, respectively. For the first simplex (both for the 

exponential artifact and for the PLI removal), a constant matrix is used as starting values; 

whereas for the second phase, the simplex is rebuilt taking as initial values the parameters 

that were optimized in the first phase. This process increases the accuracy of the fitting 

process and reduces the number of iterations significantly. The block diagrams for 

rebuilding the simplexes for the double and 5th order exponential fitting functions are 

shown in Figure B.12 and B.13, respectively. The content of the for-iterator subsystem is 

shown from Figure B.14 to Figure B.19. 

 

 
Figure B.9. Main module of the Nelder-Mead algorithm. 

 

 
 

Figure B.10. Block diagram used in the second phase for building the simplex of the double 

exponential fitting.  
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Figure B.11. Block diagram used in the first phase for building the simplex of the 5th exponential fitting.  

 

 
 

Figure B.12. Rebuilding the simplex to optimize the double exponential fitting function. 
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Figure B.13. Rebuilding the simplex to optimize the 5th order exponential fitting function. 
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The for-iterator module of the Nelder-Mead algorithm is presented in Figure B.14. The 

subsystem colored magenta includes the internal processing steps of the algorithm that 

optimize the parameters of the objective function. The number of iterations is limited taking 

into account the restrictions coming from the real-time implementation. Examples of the 

block diagrams of some internal processing steps performed within the for-iterator loop are 

shown from Figure B.15 to Figure B.19. The mean value of the vertices of the simplex (see 

Appendix A) is calculated with the block diagram shown in Figure B.15. The reflection 

step in which the worst vertex is reflected with respect to the mean value is implemented 

using the block diagram shown in Figure B.16.  

 

 

 

Figure B.14. Simulink block diagram of the for-iterator of the Nelder-Mead algorithm.  
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Figure B.15. Block diagram to calculate the mean value of three vertices, e.g., the reference signal of 

the PLI.  

 

 
Figure B.16. Block diagram to calculate the reflection point of the simplex. 
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to be analyzed in this subsystem. Although the shrink step was not reached during the 

processing of our data, the block diagram of this step was implemented. In case that a shrink 

step is required, the parameters can be optimized in the next subsystems (see Figure B.7 

and Figure B.8). The block diagrams for the shirk step of the double and 5th exponential 

fitting functions are shown in Figure B.17 and Figure B.18, respectively. The block 

diagram for calculating the 5th order exponential fitting function (Equations 4.11 and 4.12) 

is shown in Figure B.19.  
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Figure B.17. Block diagram of the shrink step of the double exponential fitting.  

 

 
 

Figure B.18. Block diagram of the shrink step for the 5th order exponential fitting.  
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Figure B.19. Calculation of the 5th exponential fitting function 
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B.2 Optimization of the artifact reduction module 

In order to increase the performance of the processing module during CR DBS and to 

reduce the size of the C files (Section 3.3), the module was optimized. Instead of using 

multiple subsystems that include the Nelder-Mead algorithm (as shown in Figure B.5 and 

Figure B.6), only one subsystem (orange background) is used for generating the reference 

signals of the PLI and harmonics as shown in Figure B.20. After subtracting the reference 

signal of PLI from the input signal, they were feedback to the same subsystem in order to 

remove the other harmonics. Careful timing was required to trigger the entire module. The 

triggering was performed by the controlling subsystem, colored green, in which the data 

can also be divided into smaller segments. This subsystem is also used to generate time 

series of the input data. 

 The second method, i.e., the sawtooth method (Section 4.1.1), used to delimit the off-

cycles is included as a MATLAB routine in the subsystem with a magenta background. 

This subsystem generates the sawtooth signal using the stimulation parameters. Real-time 

averaging of off-cycles to reveal neuronal activity with fixed latency to stimulation (Section 

5.2) is performed in the subsystem colored cyan.  

The optimized module to remove PLI is shown in Figure B.21. In this figure, the 

subsystems with cyan and orange backgrounds include the implemented Nelder-Mead 

algorithm. Three switchers select the frequency of PLI and harmonics (multiplied by a 

factor of 2) and determine whether the signal should be processed before or after the 

removal of the exponential artifact. The switchers are triggered by the controlling 

subsystem.  

In the optimized module we also tested the polynomial fitting functions to remove the 

exponential artifact. They are implemented in the subsystem with a blue background (see 

Figure B.20). The two phases of polynomial fitting are illustrated in Figure B.22. In this 

figure, a MATALB routine implemented in the magenta block determines the order of the 

polynomial function. A trigger signal determines which polynomial function should be 

used before and after the PLI removal. Both polynomials can have different orders. In order 

to generate the parameters of the polynomial fitting function, we used either the Simulink 

function Polyfit (Figure B.22) or our built module for polynomial fitting (Figure B.23). It 

is worth to mention that polynomial fitting is used as a secondary fitting technique for the 

exponential artifact removal. The main technique was the exponential fitting with the 

Nelder-Mead algorithm as shown in the previous section.  
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Figure B.20. Optimization of the data processing module during CR DBS 
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Figure B.21. Single subsystem for the PLI removal.  

 

Figure B.22. Two phases of polynomial fitting using the Simulink block polyfit.  

PLI-free

signal

2

Orignial 

signal

1

start simplex

signal 1

time1

PLI_F

v

fv

signal

time

fun_eva4

In1

time

PLI_F

Out1

Terminator

Multiport

Switch2

Multiport

Switch1
Multiport

Switch

Select

Columns

[PLI_F]
[Pro_sig][O_S]

[Pro_sig]

[O_S]
[PLI_F]

[PLI_F]

To
Sample

To

Frame

For Iterator

Subsystem

for { ... }

In1

In2

In3

fv

signal

time

PLI_F

param

fv 1

Add1

Add

2*50Hz

100

2*350Hz2

700

2*250Hz1

500

2*150Hz

300

Enable

signal2

6

Trigger

5

Original

signal

4

O_exp

3

time

2

signal1

1

O_exp_sig

3

time1

2

sig1

1

Multiport

Switch

Least Squares

Polynomial Fit1

Polyfit

Least Squares

Polynomial Fit

Polyfit

To
Frame

To
Frame

Embedded

MATLAB Function4

u

t
yfcn

Embedded

MATLAB Function1

u

t
yfcn

Convert 2-D to 1-D2

U( : )

Convert 2-D to 1-D1

U( : )

Enable

sig

4

Tg

3

time

2

signal

1



Appendix B: Simulink Modules 

  
114 

 
Figure B.23. Block diagram of the implemented module for polynomial fitting.  
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The main module for artifact reduction and analysis of spontaneous LFP and tremor 

recordings is shown in Figure B.23. The subsystem with a magenta background has the 

same function as the one shown in Figure B.20; where it is used for delimiting the off-

cycles. Particularly, this module is dedicated for delimiting long off-cycles, i.e., > 5 s. The 

subsystem with a blue background comprises three subsystems: (i) digital filters to remove 

PLI and low frequency components, (ii) signal de-noising algorithm using wavelet filters, 

and (iii) a periodogram block for spectral analysis. These three subsystems are shown in 

Figure B.25. The subsystems colored orange have the same block set and include the three 

phases used for detecting three dominant frequencies in the spontaneous LFP or tremor 

recordings (see Section 5.4). The detail of these subsystems is presented in Figure B.26 and 

Figure B.27. 

 
Figure B.24. Main module for artifact reduction and analysis of spontaneous LFP and tremor 
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Figure B.25. Block diagram of the subsystems used for the removal of PLI and electrical background 

noise as well as for spectral analysis.  

 

Figure B.26 shows the subsystem used for detecting a dominant frequency in the 

recorded data. The cyan block includes a MATLAB routine to restrict the frequency content 

to the range of 3 – 43 Hz. The subsystems with blue and yellow backgrounds buffer the 

detected values of dominant frequencies and their amplitudes, respectively. The histogram 

block (red) calculates the distribution of the detected frequencies. A MATLAB routine 

implemented in the magenta block: (i) compares the distribution of each frequency with a 

threshold value and (ii) decides whether the buffered values should be sent to the next 

subsystem (colored green). The latter determines the amplitude of the most common 

frequency and its content is shown in Figure B.27. This Simulink module extracts and 

averages the amplitudes of the most common frequency (moving-average) and estimates 

the strength of the on-going pathological activity. 

 

 
 

Figure B- 26. Analysis module of spontaneous LFP and tremor recordings.  
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Figure B.27. Simulink block diagram for estimating the amplitude of the dominant frequencies in the 

spontaneous LFP and tremor recordings.  
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signals and sent the tuned stimulation signals to the outputs of the portable neurostimulator 

(Section 3.1).  

Figure B.29 shows the content of the analysis subsystem. The recorded signals are first 

filtered (Section 5.5) within the subsystem colored green. The strength of the pathological 

activity is measured by the standard deviation of the filtered signal in the blue subsystem. 

Then, the stimulation signal is scaled by a MATLAB routine implemented in the orange 

block before being sent as outputs of the portable neurostimulator. The filters block 

diagram is shown in Figure B.30. 

 

 
 

Figure B.28. Block diagram of the module used for tuning the stimulation parameters. 

 

 

 
 

Figure B.29. Block diagram of the module used for filtering, analyzing and scaling the stimulation 

signals.  
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Figure B.30. Block diagram of the filtering module. 
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