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The aim of this paper is to provide a complete description of the bifurcation scenario of
a uniform flow past a rotating circular cylinder up to Re = 200. Linear stability theory
is used to depict the neutral curves and analyse the arising unstable global modes. Three
codimension-two bifurcation points are identified, namely a Takens–Bogdanov, a cusp
and generalised Hopf, which are closely related to qualitative changes in orbit dynamics.
The occurrence of the cusp and Takens–Bogdanov bifurcations for very close parameters
(corresponding to an imperfect codimension-three bifurcation) is shown to be responsible
for the existence of multiple steady states, as already observed in previous studies. Two
bistability regions are identified, the first with two stable fixed points and the second
with a fixed point and a cycle. The presence of homoclinic and heteroclinic orbits,
which are classical in the presence of Takens–Bogdanov bifurcations, is confirmed by
direct numerical simulations. Finally, a weakly nonlinear analysis is performed in the
neighbourhood of the generalised Hopf, showing that above this point the Hopf bifurcation
is subcritical, leading to a third range of bistability characterised by both a stable fixed
point and a stable cycle.

Key words: bifurcation

1. Introduction

The flow past a circular cylinder is a classical configuration which has been widely
adopted in the fluid dynamics community as a canonical model to investigate vortex
shedding behind bluff bodies. In the case of a fixed cylinder, i.e. without rotation, the
dynamics and the corresponding bifurcations are well known (Williamson 1996). The case
of a rotating cylinder, which has implications for flow control using wall motion (Modi
1997; el Hak 2000), has recently received attention. A number of numerical studies in a
two-dimensional framework have been conducted (Kang, Choi & Lee 1999; Stojković,
Breuer & Durst 2002, 2003; Mittal 2004) and have revealed the existence of several
steady and unsteady regimes. Linear stability approaches (Pralits, Brandt & Giannetti
2010; Pralits, Giannetti & Brandt 2013) have shown the existence of two separated regions
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of instability in the (Re, α) plane, where α is the dimensionless rotation rate and Re is
the Reynolds number. The so called Mode I becomes unstable via a supercritical Hopf
bifurcation and it is present for 0 ≤ α ≤ 2. This mode is the one associated with the
classical Bénard–von-Kármán vortex street, and characterised by the alternate shedding of
vortices of opposite sign. At higher rotation rates, around 4.5 ≤ α < 6 another unsteady
mode exists, denoted as Mode II. The physical mechanism driving this mode is rather
different, as it corresponds to a slow-frequency shedding of vortices with the same
vorticity sign. Its onset is less well characterised than Mode I from the point of view
of bifurcation theory: the fact that the frequency is very low suggests a more complex
bifurcation scenario and its supercritical or subcritical nature is still unclear. The full
characterisation of Mode II is complicated by the fact that, in approximately the same
range of (Re, α) parameter space, a region where three steady-state solutions coexist has
been evidenced (Pralits et al. 2010; Rao et al. 2013a). A more thorough characterisation
of this phenomenon has been carried out by Thompson et al. (2014) who observed that the
region of existence of multiple steady-state solutions grows with the Reynolds number.
Note also that the picture is further complicated by the existence of three-dimensional
(3-D) instabilities in this range. This point is outside of the range of the present paper
which restricts to 2-D dynamics, but a brief review on 3-D stability properties of this flow
can be found in appendix E.

To explain the existence of multiple steady states, Rao et al. (2013a) conjectured that
they emerge from a cusp bifurcation point. Indeed, a cusp correctly explains the change in
the number of steady states from one to three. However, a cusp is not generally associated
with the existence of a Hopf bifurcation in the same range of parameters, so it cannot
explain, alone, all the features discussed above. The fact that the frequency of Mode II
is very small is an indicator of a second kind of codimension-two bifurcation, namely a
02 or Takens–Bogdanov bifurcation (Kuznetsov 2013, chapter 8, p. 314) This bifurcation
typically occurs when the frequency of a limit cycle vanishes. However, in the vicinity of
a standard Takens–Bogdanov bifurcation, only two steady states generally exist, not three.
This combination of features suggests that the picture could hide a codimension-three
bifurcation point, also known as a generalised Hopf bifurcation. The unfolding of this
generalised Takens–Bogdanov bifurcation has been studied by Dumortier et al. (2006)
and Kuznetsov (2005) from a mathematical point of view, but to our knowledge such a
feature has not yet been evidenced in a fluid dynamics system such as the one considered
here.

The main purpose of the present work is to review the classification of the possible
2-D states in the (Re, α) ∈ [0, 200] × [0, 10] parameter plane with the point of view of
dynamical system theory. Firstly, we will characterise the nature of the codimension-one
bifurcation curves (Hopf or saddle nodes). We give a cartography of the regions where
multiple steady states exist and give a detailed description of these multiple states as well
as their stability properties. We further identify three codimension-two points, namely
a Takens–Bogdanov (TB) bifurcation, a cusp and a generalised Hopf (GH) bifurcation.
We show that the two first are effectively located very close to each other and that the
whole dynamics in this range of parameters is effectively described by the unfolding of a
codimension-three bifurcation point.

The article is organised as follows: in § 2 the formulation of the problem is discussed
together with the methodology adopted in the present analysis. Section 3 begins with a
characterisation of the multiple steady states. A complete bifurcation diagram covering the
range (Re, α) ∈ [0, 200] × [0, 10] is then presented. The next subsections aim at clarifying
the picture in the vicinity of the identified codimension-two points.
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FIGURE 1. Sketch of a rotating cylinder immersed in a uniform flow.

2. Problem formulation and investigation methods

2.1. Geometrical configuration and general equations
The two-dimensional flow past a rotating circular cylinder is controlled by two parameters:
the Reynolds number Re = U∞D/ν and the rotation rate α = ΩD/2U∞. Here, Ω is the
dimensional cylinder angular velocity, U∞ is the free stream velocity, D the diameter of
the cylinder and ν the dynamic viscosity of the fluid. The fluid motion inside the domain
is governed by the two-dimensional incompressible Navier–Stokes equations,

∂U
∂t

+ U · ∇U = −∇P + ∇ · τ(U), (2.1a)

∇ · U = 0, (2.1b)

where U is the velocity vector whose components are (U, V), P is the reduced pressure and
the viscous stress tensor τ(U) can be expressed as ν(∇U + ∇UT). The incompressible
Navier–Stokes equations (2.1) are complemented with the following boundary conditions:
on the cylinder surface, no-slip boundary conditions are set by U · t = ΩD/2 and U · n =
0, where (t, n) are the director vectors of the surface in the plane (x, y); in the far field,
uniform boundary conditions are set U → (U∞, 0) when r → ∞, where r is the distance
to the cylinder centre (see figure 1). In the discussion we consider clockwise rotation of
the cylinder surface (α > 0).

In the following, Navier–Stokes equations (2.1) and the associated boundary conditions
will be written symbolically under the form B(∂Q/∂t) = N S(Q), where Q = (U, P) is
the state vector and B is a linear projection operator, meaning that the time derivatives
apply only on the velocity components.

2.2. Linear stability analysis
Under the framework of linear stability analysis, we first need to identify base-flow
solutions defined as the steady solutions Qb of the (two-dimensional) Navier–Stokes
equations, namely the solutions of NS(Qb) = 0. We then characterise the dynamics of
small-amplitude perturbations around this base flow by expanding them over the basis of
linear eigenmodes, i.e.

Q(x, y, t) = Qb(x, y) + ε
∑

j

q̂j(x, y) exp(λjt). (2.2)
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Here, ε is a small parameter, λj the eigenvalues and q̂j the eigenmodes. The eigenpairs
[λj, q̂j] have to be determined as the solutions of the following eigenvalue problem:

λû + ub · ∇û + û · ∇ub = −∇p̂ + ∇ · τ(û) (2.3a)

∇ · û = 0. (2.3b)

Which will be written in the following under the symbolic form λjBq̂j + LNS q̂j = 0. In
the following we consider that eigenmodes q̂(x, y) have been normalised, see appendix C
for further details. Note that in (2.2), to fully represent the dynamics, the summation over
eigenmodes may involve a continuous sum over the spectrum, i.e. the discrete and the
continuous or essential spectra of the operator (see Kapitula & Promislow (2013) for a
rigorous discussion). However, to determine global stability we only need to consider a
limited number of eigenmodes, so we keep the summation as a discrete sum indexed by j.

Owing to the eigenvalues, two cases can be distinguished:

(i) If all eigenvalues λj have negative real part the considered base flow is a stable
solution.

(ii) If n eigenvalues have positive real part, the considered base flow will be referred to
as a n-unstable solution. Note that 1-unstable solutions are commonly referred to as
saddle points because a projection of their dynamics in a 2-D plane (phase portrait)
has an attractive direction and another repulsing one, while 2-unstable solutions are
either unstable nodes or unstable foci depending if the leading eigenvalues are both
real or complex conjugates.

The transition from stable to unstable (or from n-unstable to n + 1-unstable) is called
a local bifurcation. The simplest bifurcations (such as saddle nodes and Hopf) are said
to be codimension-one and occur along given curves in the parameter plane (Re, α). The
intersection of two such curves tangentially is called a codimension-two bifurcation and
generally leads to a rich dynamics in the vicinity of the intersection point.

2.3. Notions of bifurcation theory
From the viewpoint of dynamical system theory, the expression (2.2) can be generalised
as a decomposition of the perturbations over the leading modes of the system

Q(x, y, t) = Qb(x, y) +
∑

j

Aj(t)q̂j(x, y). (2.4)

Then, the problem can be reduced to a low-dimensional system governing the amplitudes
Aj(t)

d
dt

Aj = λjAj + (NL), (2.5)

where (NL) represent the nonlinear interactions between modes. Investigation of these
nonlinear terms allows us to predict the dynamics in the vicinity of bifurcation points.
Systematic methods exist to compute these nonlinear terms (such as weakly nonlinear
expansions, centre manifold reduction or Lyapunov–Schmidt reduction). However,
restricting ourselves to a qualitative point of view (up to a continuous change of
coordinates with continuous inverse), it is also possible to predict a number of features
by examining the generic normal form of the bifurcation, namely, a standard form to
which the dynamical system can be reduced by a series of elementary manipulations
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(see Wiggins (2003) for details). Particular forms of codimension-two bifurcations
encountered in the rotating cylinder are discussed in §§ 3.5 and 3.6.

2.4. Numerical methodology
In the present manuscript, we adopt the same numerical methodology used in Fabre
et al. (2020) and described in Fabre et al. (2019). The computation of the steady-state
solutions, the resolution of the linear problems and the time stepping techniques are
implemented using the open-source finite element software FreeFem++. Parametric studies
and generation of figures are performed using Octave/Matlab thanks to the generic drivers
of the StabFem project (see a presentation of these functionalities in Fabre et al. 2019).
According to the philosophy of this project, codes reproducing parts of the results of
the present paper are available from the StabFem website (https://gitlab.com/stabfem/
StabFem). On a standard laptop, all the computations discussed below can be obtained
in a few hours, except time stepping simulations which take longer. Results presented in
§ 3 are obtained with a computational domain Lx = 120 and Ly = 80 in the streamwise
and cross-stream directions, respectively. The cylinder centre is located 40 diameters
downstream of the inlet, symmetrically between the top and bottom boundaries. Numerical
convergence issues are discussed in appendix D by a meticulous comparison between
results obtained with different meshes, where domain dimension and grid density were
varied.

Steady nonlinear Navier–Stokes equations are solved by a Newton method. In the
degenerated cases, pseudo-arc length continuation is performed to be able to compute
multiple steady-state solutions, as described in appendix A. The generalised eigenvalue
problem (2.3) is solved by the Arnoldi method or by a simple inverse iteration algorithm.
Finally, nonlinear unsteady Navier–Stokes equations are integrated forward in time with a
second-order time scheme (Jallas, Marquet & Fabre 2017).

3. Results

3.1. Characterisation of multiple steady-state solutions
To introduce the existence of multiple steady states, we first characterise them by plotting
in figure 2 the associated lift as function of the rotation rate α, for four different values of
α. In these plots, stable solutions are indicated by continuous lines and unstable ones by
dashed lines, following the usual convention in dynamical systems theory.

For Re = 60, as illustrated in figure 2(a), only one steady state exists for all values of α,
for Re = 60. This state is stable except in the ranges α � 2 (corresponding to the existence
of Mode I), and 5.2 � α � 5.5 (corresponding to the existence of Mode II).

For higher Reynolds numbers, a small region of multiple solutions arises in a small-scale
interval around α ≈ 5. This phenomenon is illustrated in figure 2(b) for Re = 100 and is
associated with an ‘s’ shape of the curve, featuring two successive folds. Note that, before
the first fold, the steady solution is 2-unstable (focus type); at the first fold it turns into
1-unstable (saddle type) and at the second fold it turns into stable. To detect these folds,
pseudo-arc length continuation is carried out with α as a parameter and the horizontal
force exerted on the cylinder surface Fx as a monitor to track and distinguish multiple
steady states (see appendix A for a more detailed discussion).

For larger values of the Reynolds number, as illustrated in figure 2(c) for Re = 170,
the interval of existence of multiple states for α ≈ 5 expands to α ∈ [4.75, 5.12]. In
addition, we observe a second range displaying multiple states for α > 5.87. This second
interval is associated with a fold bifurcation at α = 5.87, giving rise to two additional and
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FIGURE 2. Evolution of the horizontal force Fx as a function of the rotation rate α for four
Reynolds numbers, (a) Re = 60, (b) Re = 100, (c) Re = 170 and (d) Re = 200. Solid lines
denote stable steady states, dashed-dotted lines denote unstable steady states of focus type
or nodes, dashed lines are used for steady states of saddle type. Solid circles denote Hopf
bifurcations and solid squares denote saddle-node bifurcations.

disconnected steady solutions. Note that both these solutions are unstable, respectively of
node and saddle types.

Finally, for Re = 200, as illustrated in figure 2(d), we observe that the two ranges
of multiple steady states are merged into a single one. In this case there is a single
saddle-node bifurcation around α = 4.75 leading to two branches of steady states which
are disconnected from the branch existing for lower values of α. Here, one of these
branches is stable and the second is unstable (saddle type).

3.2. Topological description of steady-state solutions
We now illustrate the spatial structure of some steady-state solutions, with emphasis on
the topological structure of the corresponding flows. We restrict ourselves to the case Re =
200, as previously considered in figure 2(d).

Figure 3(a) corresponds to α = 1.8, the value at which Mode I is re-stabilised. The
corresponding flow is characterised by a stagnation point located beneath the cylinder
axis, on the left side of the y-cylinder axis. Compared to the steady flow in the non-rotating
case, which is characterised by a symmetrical recirculation region, the upper recirculating
bubble is reduced whereas the lower one is moved downwards.

Further increasing the rotation speed, both recirculation bubbles shrink and eventually
vanish. At α = 4.35 (figure 3b) corresponding to the lower threshold for the existence
of Mode II, recirculating bubbles have already disappeared and the vorticity wraps the
cylinder. Stagnation point is located on the opposite side but downstream the cylinder
vertical axis.
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FIGURE 3. Steady flow around a rotating cylinder (vorticity levels and streamlines) for selected
parameters. (a) α = 1.8, Re = 200 (at the supercritical Hopf bifurcation threshold); (b) α =
4.35, Re = 200 (at the Hopf bifurcation); (c) α = 4.75, Re = 200 (at the fold bifurcation). (d–f )
Correspond to three base-flow solutions existing in the range of multiple solutions, namely for
α = 5.25 and Re = 200. The circled dot shows the position of the hyperbolic stagnation point.

Figure 3(c) corresponds to the steady-state flow at the fold bifurcation observed for
α = 4.75 and giving rise to the disconnected states observed in figure 2(d). Compared to
the previous state, the flow is topologically different as no stagnation point is observed
along the wall of the cylinder. On the other hand, two stagnation points are observed
within the flow. One of them is elliptic and located at the centre of the detached
recirculation bubble. The other is hyperbolic and located along the streamline bounding
the recirculation bubble.

Figure 3(d–f ) displays the three coexisting steady states at α = 5.25 and Re = 200. The
topology of the streamlines of unstable and stable steady states differs. In the stable case
(panel d) there is a single recirculation region encircling the cylinder and bounded by a
hyperbolic stagnation point, as in the classical potential solution existing in this range
of rotation rates. On the other hand, for both unstable states, the topology is similar
to the case of figure 3(c). The recirculation region is detached from the cylinder and
contains an elliptic stagnation point located approximately in the midpoint between the
hyperbolic point and the bottom point of the cylinder surface. In the unstable steady state,
the recirculating region is more stretched, as it can be seen in figure 3(d–f ).

We highlight that even though topological changes in the streamlines of the steady
states and bifurcations of the velocity field are in general independent events (see Brøns
2007), in some cases these two events occur in a small neighbourhood of the space of
parameters (see Heil et al. 2017). In the current situation it has been confirmed that
there is not a one-to-one relation between both phenomena. For instance, the transition
between detached recirculation bubble (as in panel c) and recirculation bubble encircling
the cylinder (as in panel d) along the stable branch occurs at some value of α in the range
[4.75–5.25] where no dynamical bifurcation occurs. Yet, for larger Reynolds numbers,
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i.e. Re � 190, successive creation and destruction of vortices seems to be relevant in the
preservation of the disconnected branch of steady states.

3.3. Analysis of the spatial structure of direct and adjoint eigenmodes
To explain why the steady state displayed in figure 3( f ) is unstable, the two corresponding
unstable modes (both associated with real eigenvalues) are displayed in figure 4 for Re =
200 and α = 5.25. Direct modes are characterised by two recirculating regions of opposite
vorticity. Vorticity is stronger and more localised in Mode IIa while Mode IIb displays a
larger region with non-zero vorticity. Adjoint eigenvectors q̂† for Mode IIa and Mode IIb
are also displayed in figure 4. Adjoint fields (Luchini & Bottaro 2014) can be interpreted
as a kind of Green’s function for the receptivity of the global mode. Scalar product of the
adjoint field with a forcing function or an initial condition provides the amplitude of the
instability mode (see Giannetti & Luchini 2007). Therefore, Mode IIa is highly receptive
in the upper right side of the near wake of the cylinder. The region of maximum receptivity
extends from the close upper right region of the cylinder to a larger region at the bottom
right of the cylinder and it is weaker than Mode IIa. Both modes present weak sensitivity
to forcing upstream of the cylinder.

3.4. Bifurcation diagram in the parameter plane (Re, α)
The bifurcation curves detected in the α < 10, Re < 200 range by linear stability analysis
of all steady-state solutions are depicted in figure 5.

Three Hopf bifurcation curves are detected and plotted with full lines. The first one
encircles the range of existence of unsteady Mode I. The second one delimits the range
of existence of unsteady Mode II in its lower and left parts, but not on its upper part. The
third one (in grey) occurs along a steady state which is already unstable, and hence is not
likely to be related to a bifurcation observable in DNS or experiments.

In addition, we have identified two bifurcation curves associated with saddle nodes
or ‘folds’, here denoted F+ and F−. These curves delimit the range of existence of
multiple two-dimensional steady states, displayed as a grey region in figure 5. Note that the
extension of this region explains the difference between the cases Re = 170 and Re = 200
discussed in the previous paragraph; according to the figure a single interval of α is found
for Re � 190.

In figure 5, the two fold curves seem to merge with the Hopf curve existing for lower Re
at a point with coordinates Re ≈ 75, α ≈ 5.4. Inspection shows that there are actually
both a 02 or TB bifurcation and a cusp (C) bifurcation in very close vicinity in this
range of parameters. This region will be studied in § 3.5. Additionally, in another range of
parameters located at the lower threshold of existence of the Mode II, we have identified
the existence of a Bautin or GH bifurcation which splits the Hopf curve into supercritical
(Re < ReGH) and subcritical (Re > ReGH). This region will be studied in § 3.6.

3.5. Cusp–Takens–Bogdanov region

3.5.1. Qualitative study of the normal form
The transition occurring for Re ≈ 75 and α ≈ 5.4 is characterised by the end of the Hopf

curve (H−) at a fold curve (F+) (characteristic of a Takens–Bogdanov bifurcation), and a
transition between one and three steady states (characteristic of a cusp). This suggests
that the present situation is actually very close to a codimension-three bifurcation. The
dynamical behaviour of the system can thus be expected to be well predicted using

https://doi.org/10.1017/jfm.2020.692
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Bifurcation scenario in 2-D laminar flow past a cylinder 905 A2-9

–2.4 1.1

Mode IIa Mode IIb

Adjoint mode IIa Adjoint mode IIb

4.7

R(ωz)

–2.4 1.1 4.7

R(ωz)

0 0.8 1.5

|q†|

0 0.8 1.5

|q†|

(b)(a)

(c) (d )

FIGURE 4. Contour plot of vorticity ωz of Mode IIa and Mode IIb at α = 5.25 and Re = 200
of the unstable steady state (a,b). The magnitude of adjoint modes (c,d).

the normal form describing the universal unfolding of the codimension-three planar
bifurcation, also called a generalised TB bifurcation. This normal form has been studied
by both Dumortier et al. (2006) and Kuznetsov (2013, chapter 8.3). The normal form can
be written as follows:

dy1

dt
= y2, (3.1a)

dy2

dt
= β1 + β2y1 + β3y2 + εy3

1 + c1y1 y2 − y2
1 y2, (3.1b)

where β1, β2 and β3 are unfolding parameters (mapped from the physical parameters
(Re, α)), c1, ε (which can be rescaled to ±1) are fixed coefficients which depend on
the nonlinear terms of the underlying system. Note that this normal form generalises both
the normal form of the standard TB bifurcation (which is recovered for β1(Re, α) = 0)
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FIGURE 5. Bifurcation curves in the range Re ∈ [0, 200] and α ∈ [0, 10]. Black and grey lines
are used to denote local bifurcations. Solid lines indicate the presence of a Hopf bifurcation,
dashed line designates the first fold bifurcation curve, F−, and dashed dotted line
denotes the second fold bifurcation, F+. Grey region indicates the coexistence of three steady
states. Solid grey line inside the grey region denotes a secondary Hopf bifurcation occurring on
one of the unstable steady states.

and the one of the fold bifurcations (which is recovered for β3(Re, α) = 0). The occurrence
of both these codimension-two conditions for very close values of the parameters is
characteristic of an imperfect codimension-three bifurcation and justifies the relevance
of the associated normal form.

The dynamics of the normal form (3.1) has been explored by Dumortier et al. (2006)
who classified the possible phase portraits and the associated bifurcation diagrams as
functions of the unfolding parameters (β1, β2, β3) along a spherical surface. They showed
that all possible bifurcation diagrams fall into three possible categories, called focus,
saddle and node according to the values of the coefficients c1 and ε. The situation
0 < c1 < 2

√
2 and ε = −1 corresponds to the stable focus case and is found to lead to

a bifurcation diagram consistent with the present situation, so we concentrate on this case.
Figure 6 illustrates all the possible behaviours of the dynamical system, sketched by

sample phase portraits, along with their range of existence in the (β1, β2) plane. This
figure corresponds to a subset of the complete diagram displayed in Dumortier et al.
(2006, chapter 1, pp. 6–8), restricted to a range of parameters which is sufficient to explain
all the dynamical features of the present problem. The bifurcation diagram displays two
codimension-two points, a cusp C and a TB. These codimension-two points result from
the tangential intersection of two codimension-one curves: the cusp point C occurs when
the two fold curves F+ and F− collide, while the TB point arises from the intersection
of the supercritical H− Hopf curve and the F+ fold. In addition, the bifurcation diagram
predicts a homoclinic global bifurcation along a curve H∞ originating from the TB point
and terminating along the F− fold on a point denoted SNL (for saddle-node loop). Left
from this point, the F− curve corresponds to a local saddle node while right from this
point it corresponds to a homoclinic saddle-node bifurcation (appearance of two fixed
points along a previously existing cycle). Note that the SNL point and the intersection of
H− and F− are formally not codimension-two points (see Dumortier et al. 2006).

Phase portraits obtained in the various regions delimited by bifurcation boundaries
are displayed in the panels of figure 6. One of the most interesting predictions is the
existence of two regions characterised by the existence of two stable states, a bistability
phenomenon. The first region (3), in the vicinity of the cusp, is characterised by two stable
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α

FIGURE 6. Bifurcation diagram predicted using the normal form 3.1 in the stable focus case
(adapted from Dumortier et al. 2006), and qualitative phase portrait in regions (1), (2), (3), (4),
(5) and along curve H∞. Note that in the qualitative phase portraits, focus and node points are
not distinguished.

Type Re α

TB 77.6 5.36
C 75.6 5.38
GH 160 4.46

TABLE 1. Position of codimension-two bifurcation points.

steady states. The third region (4) is characterised by both a stable steady state and a stable
cycle. In all other regions, there is a single stable solution which is either a steady state (in
regions 1 and 5) or a cycle (in region 2).

Note that in these phase portraits nodes and foci are not distinguished. Distinguishing
between these cases (Dumortier et al. 2006) leads to consideration of a larger number of
subcases (for instance region 1 could be split in two subregions corresponding to a stable
node and a stable focus . . . ) but the transitions between these subcases are not associated
with bifurcations.

3.5.2. Numerical results in the C–TB region
In order to check the predictions of the normal form approach, we have conducted an

accurate exploration of the range of parameters corresponding to the C–TB region. The
exploration allowed us to confirm the existence of both a cusp and a Takens–Bogdanov
point. The locations in the (α, Re) plane are given in table 1.

Figure 7 displays ‘zooms’ of the full bifurcation diagram (figure 5) in two narrow ranges
centred on the C and TB codimension-two points. The bifurcation curves and the regions
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FIGURE 7. Zooms of figure 5 in the vicinity of the C and TB codimension-two points. Black
solid lines denote fold bifurcations F±, long dashed (red) line is used for the Hopf bifurcation
line H− and short dashed (red) curve denotes the local change from stable focus to stable node.
Numbers correspond to each phase portrait of figure 6(a). (a) Zoom in the region of cusp
bifurcation. (b) Zoom in the region of Takens–Bogdanov bifurcation.

400(a) (b)

6

1

1
2

–

4

–10 –5 0

lo
g

(T
)

2

200

4.4 4.6

log (α – αSN)α
4.8

T

0

FIGURE 8. Evolution of the period of the limit cycle as it approaches the homoclinic
connection. (a) Linear plot of the period T as a function of the rotation rate α where αSN is the
rotation rate at the saddle node. (b) Logarithm of the period and the distance to the bifurcation
point.

are numbered with the same convention as in figure 6. Although it is not possible to present
all results in a single figure because the curves are very steep and close to each other,
the numerical results fully confirm the predictions of the normal form. In particular, the
numerical results allow us to confirm the coexistence of two stable states (in regions 3)
and of a stable cycle and a stable state (in region 4). However, a precise mapping of the
curve H∞ bounding the region 4 could not be achieved, but the occurrence of a global
homoclinic bifurcation was confirmed (see § 3.5.3).

3.5.3. Homoclinic bifurcation
As explained in § 3.5, the normal form predicts a homoclinic curve H∞ and a homoclinic

saddle-node bifurcation along the F− curve, right from the SNL point, corresponding to
the appearance of two steady solutions along a previously existing cycle.
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FIGURE 9. Phase portrait of the dynamics of the rotating cylinder at Re = 170 for three values
of the rotation rate α. Vertical (horizontal) axis is the lift force Fy (drag force Fx ) on the cylinder
surface, empty dots denote steady-state solutions. (a,b) Limit sets (respectively transients) are
depicted by a thick solid line (respectively thin dashed). (c) Heteroclinic connections between
unstable–stable (respectively saddle–stable) are depicted by thin solid lines (respectively dashed
dotted).

A generic feature of the imminent presence of a homoclinic saddle-node bifurcation
is the divergence of the period of the limit cycle on which the saddle node appears.
More precisely, the period is expected to scale as ∝ 1/

√
αSN − α as α → αSN (see Gasull,

Mañosa & Villadelprat 2005). To check this prediction, time stepping simulations were
conducted for Re = 170 and values of α just below the F− curve. As shown in figure 8 the
period of the limit cycle effectively diverges as one approaches the bifurcation following
the theoretical behaviour.

Dynamics near the threshold can be perfectly understood in a two-dimensional
manifold. Phase portraits of the bifurcation are displayed in figure 9. These phase portraits
were computed with an initial guess generated by a small linear perturbation to a steady
state in the direction of its corresponding eigenmode. The initial guess is then integrated
in time until it reaches its limit set, i.e. a periodic, homoclinic orbit or another steady
state. Below the bifurcation threshold (figure 9a) a stable limit cycle exists, represented
by a thick solid line. At the bifurcation threshold, a saddle node arises along this
cycle, which ceases to exist, giving rise to a homoclinic connection (an approximation
of this orbit is delineated by a thick solid line in figure 9b). Beyond the saddle-node
bifurcation, the saddle node splits into two fixed points. Hence, three steady states exist,
including a stable one (see figure 9c). There exist four stable heteroclinic connections,
two between unstable–stable steady states represented by a dashed line in figure 9(c) and
other two between saddle–stable steady states denoted by a solid line. This sequence of
events is fully consistent to the sequence connecting phase portraits (2), (SNL) and (4)
in figure 6.

3.6. Generalised Hopf

3.6.1. Normal form analysis
Bautin bifurcation or GH is a codimension-two bifurcation where the equilibrium has

purely imaginary eigenvalues λ1,2 = ±ω0 with ω0 > 0, and the third-order coefficient of
the normal form vanishes. Generalised Hopf bifurcation is thus a degenerate case of the
generic Hopf bifurcation, where the cubic normal form is not sufficient to determine the
nonlinear stability of the system. To unravel the dynamics near the Bautin bifurcation point
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FIGURE 10. Qualitative bifurcation scenario in the vicinity of the GH bifurcation.

consider the normal form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx1

dt
= β2x1 − x2 + β1x1(x

2
1 + x2

2) ± x1(x
2
1 + x2

2)
2.

dx2

dt
= β2x2 + x1 + β1x2(x

2
1 + x2

2) ± x2(x
2
1 + x2

2)
2.

(3.2)

Three curves are of special interest:

(i) System (3.2) undergoes a supercritical Hopf bifurcation in the half-line H+ =
{(β1, β2)|β2 > 0, β1 = 0}. This curve separates a region containing a stable focus
to a region containing an unstable focus plus a stable limit cycle.

(ii) System (3.2) undergoes a subcritical Hopf bifurcation in the half-line H− =
{(β1, β2)|β2 < 0, β1 = 0}. This curve separates a region containing an unstable
focus, from one containing a stable focus and two limit cycles (one being stable
and the other one being unstable).

(iii) System (3.2) undergoes a fold cycle bifurcation on the curve FLC = {(β1, β2)|β2
1 +

4β2 = 0, β1 < 0}. This curve separates a region containing two limit cycles from
one which does not contain any limit cycle (a stable fixed point also exists in both
regions).

The most notable feature of this bifurcation is the existence of a bistability region
characterised by two stable states (a fixed point and a cycle). Therefore, hysteretic
behaviour is expected as one successively crosses curves H− and FLC. The bistability range
is also characterised by the existence of an unstable limit cycle constituting the ‘edge state’
bounding the basins of attraction of the two stable states (figure 10).
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3.6.2. Weakly nonlinear analysis
Unstable limit cycles are not easy to track, since they require stabilisation techniques,

such as BoostConv (Citro et al. 2017) or edge-state tracking (Bengana et al. 2019), or the
use of continuation techniques, such as harmonic balance (Fabre et al. 2019). Alternatively,
we have performed a multiple-scale analysis up to fifth order (see appendix C). This
method was previously used to study thermoacoustic bifurcations in the Rijke tube
(Orchini, Rigas & Juniper 2016), displaying a good match with time stepping simulations
with a much lower computational cost. By performing a weakly nonlinear analysis up
to fifth order it is possible to determine a complex amplitude equation for the amplitude
A of the critical linear mode q̂. Here, the critical linear mode is normalised so that its
L2B-norm (see appendix C), i.e. its kinetic energy, is unity, which corresponds to the same
normalisation as in Mantič-Lugo, Arratia & Gallaire (2014). The governing equation is a
Stuart Landau equation, depending on a small parameter ε2 = Rec(α)−1 − Re−1

dA
dt

= (iω0 + ε2λ0 + ε4λ1)A + (ν1,0 + ε2ν1,1)|A|2A + ν2,0|A|4A. (3.3)

We remark that (3.3) is equivalent to (3.2) if separating real and imaginary parts. Searching
for a solution under the form A = |A| eiωt, and injecting into (3.3) leads to

|A| =
√√√√− ν1,r

2ν2,r
±

√
ν2

1,r

4ν2
2,r

− λr

ν2,r

ω = ω0 + ν1,i|A| + ν2,i|A|2

⎫⎪⎪⎬
⎪⎪⎭ , (3.4)

where ν1 = ν1,0 + ε2ν1,1, λ = ε2λ0 + ε4λ1, ν2 = ν2,0 and subscripts r, i denote real and
imaginary parts respectively. It turns out that ν2,r is always negative while ν1,r changes
sign at (Re, α) = (ReGH, αGH). One can deduce the following consequences:

(i) If Re < ReGH (i.e. ν2r < 0), (3.4) has a single solution |A| for λr > 0 (i.e. Re > Rec)
and none for λr < 0 (i.e. Re < Rec). In this case, the Hopf bifurcation is supercritical.

(ii) If Re > ReGH , (i.e. ν2r > 0), (3.4) has a single solution |A| for λr > 0 (i.e. Re > Rec),
two solutions if λc < λr < 0 with λc = ν2

1,r/4ν2,r and no solution if λr < λc. In this
case, the Hopf bifurcation is subcritical. The condition λr = λc defines a curve in
the (Re, α) plane which corresponds to the fold cycle bifurcation associated with
the emergence of the two limit cycles.

Figure 11 represents the amplitude and frequency of the limit cycles predicted by (3.4)
for three values of Re. According to these results, the fold curve is predicted to be very
close to the Hopf curve, i.e. within a few tenths of Re up to Re = 250. This behaviour
allows us to clarify the transition occurring at the GH point in figure 6. For Re < ReGH ,
when increasing Re for fixed α (or increasing α with fixed Re), the transition occurs
via a supercritical Hopf bifurcation. On the other hand, for Re > ReGH , the transition
is predicted to be subcritical, involving the existence of a band where both steady state
and Mode II coexist. Note that the width of the bistability band predicted by the weakly
nonlinear analysis is very narrow, and could thus be difficult to evidence using direct
numerical simulations.

4. Conclusion and discussion

The present study allowed us to clarify the bifurcation scenario in the two-dimensional
flow past a rotating cylinder, especially concerning the range of parameters corresponding
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FIGURE 11. (a) Amplitudes of stable (solid line) and unstable (dashed line) limit cycles for four
Rec = 100; 170; 200; 250, where Rec denotes the Reynolds number at the Hopf bifurcation. Grey
scale: darker curves designate quantities associated with a lower Re, i.e. black curve Re = 100
and light grey Re = 250. (b) Strouhal number of limit cycles.

to the onset of the ‘Mode II’ unsteady vortex shedding mode. Using steady-state
calculation involving arclength continuation and linear stability analysis, we have been
able to draw all bifurcation curves existing in the range of parameters corresponding to
Re < 200 and α < 5. Three codimension-two bifurcations have been identified along the
border of the range of existence of this mode, namely a Takens–Bogdanov, a cusp and a
generalised Hopf. The first two are located in close vicinity, in such a way that the whole
dynamics can be understood using the normal form of the codimension-three bifurcation
(for a generalised Takens–Bogdanov bifurcation). The analysis also allowed us to identify
three ranges of parameters characterised by bistability, two of them located in the vicinity
of the Takens–Bogdanov and cusp points, the third one emanating from the generalised
Hopf point. Time stepping simulations and a weakly nonlinear analysis have confirmed
these findings, and have also allowed us to characterise the homoclinic and heteroclinic
orbits connecting the fixed points, in full accordance with the predictions of the normal
form theory.

The most surprising result of the study is the existence of an almost perfect
codimension-three bifurcation in a problem characterised by only two control parameters.
Such a feature suggests that the problem could be quite sensible to any small perturbations
in a way such that small perturbations could completely change the scenario. We have
checked that the scenario is robust with respect to numerical discretisation issues (see
appendix D). The dependency with respect to additional physical parameters is more
interesting. The effect of compressibility is an interesting question which we expect to
investigate in future studies. Preliminary results have shown that for a Mach number of
order 0.1, the dynamics in the region of the near-codimension-three point is effectively
greatly modified. Other additional parameters, such as for instance shear or confinement,
could be added. Finally, one may question the relevance of the present findings for
three-dimensional flows. A short review of three-dimensional stability properties of
the rotating cylinder flow is given in appendix E. The discussion confirms that the
most important results of the present study occur in range of parameters where no
three-dimensional instabilities are present.
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Appendix A. Pseudo arc-length continuation

Arc-length continuation is a standard technique in dynamical systems theory. It allows
for the continuation of a given solution branch through a turning or fold point. At the
turning point the Jacobian of the system is singular; therefore, any iterative method based
on the Jacobian is doomed to failure. To prevent the stall in the convergence of the
Newton’s method, an extra condition needs to be added to the system of equations. In
the current study we have chosen a pseudo arc-length methodology, which is based in a
predictor–corrector strategy. The extended system adds an extra equation which ensures
the tangency to the branch of the solution. For that purpose, a parameter is chosen,
here either Re or α, and a monitor of the variation, either the horizontal force acting
on the cylinder surface Fx or the vertical force Fy . The parameter and the monitor are
parametrised by the length of the branch, here indicated by the parameter s. The current
solution is varied by a given step Δs tangent to the solution branch and later corrected by
a orthogonal correction. Let us denote by the subscript j the arc-length iteration and by the
superscript n the Newton iteration of the corrector step, where N is used to denote the last
step. In the description below, let us consider without loss of generality we have fixed the
parameter α and the monitor Fx .

A.1. Predictor
The predictor step consists in the determination of a initial guess α0

j for the iteration j of
the arc length. The initial guess is determined from a tangent extrapolation of the solution
branch.

α0
j = αN

j−1 + dαN
j−1

ds
Δs, (A 1a)

q0
j = qN

j−1 + dqN
j−1

ds
Δs =⇒ Fx(q0

j ) = Fx(qN
j−1) + dFx(qN

j−1)

ds
Δs. (A 1b)

In (A 1), dαN
j−1/ds is the slope of the tangent in the α direction and dqN

j−1/ds in the
direction of the vector field. The tangent is computed from the differentiation of the
stationary Navier–Stokes equations (2.1)

dqN
j−1

ds
= −

[
∂NSqN

j−1

∂q

]−1 ∂NSqN
j−1

∂α
, (A 2)

where we have used the notation NSqN
j−1

= 0 to denote the steady incompressible
Navier–Stokes equation whose solution is qN

j−1. The tangent is completed with a
normalisation condition in the arc length

∥∥∥∥∥dFx(qN
j−1)

ds

∥∥∥∥∥
2

2

+
∥∥∥∥∥dαN

j−1

ds

∥∥∥∥∥
2

2

= 1. (A 3)
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A.2. Corrector
This step consists in an orthogonal correction of the tangent guess. To do so one needs to
solve the following system of equations⎡

⎣ ∂NSqn
j

∂q

∂NSqn
j

∂α

dFx (qn
j1)

ds Fx(·) dαn
j

ds

⎤
⎦ [

Δqn+1
j

Δαn+1
j

]
=

[ −NS(u)

Δs − dFx

ds Fx(qn
j − qN

j−1) − dα

ds (α
n
j − αN

j−1)

]
, (A 4)

where the last equation of (A 4) comes from the differentiation of the normalisation
condition (A 3) and considering that Δαj = Δαn+1

j + αn
j − αN

j−1 = αN
j − αN

j−1 (similarly
on q).

Appendix B. Weakly nonlinear analysis to determine the normal
form of the saddle-node bifurcation

Saddle-node bifurcation and homoclinic saddle-node bifurcation are locally
characterised by the normal form of the saddle-node bifurcation (see Kuznetsov 2013). In
the generic case, when a2(Re, α) /= 0 and a0(Re, α) /= 0 the central manifold is unravelled
by its second-order normal form

dx1

dt
= a0(Re, α) + a2(Re, α)x2

1 + O(x3
1). (B 1)

Coefficients a2(Re, α) /= 0 and a0(Re, α) /= 0 can be obtained with aid of weakly
nonlinear analysis. Let us consider the following transformations:

t = τ0 + ε2τ1, (B 2a)

d
dt

= d
dτ0

+ ε2 d
dτ1

, (B 2b)

Q = Qb + εq̂ + ε2q2, (B 2c)

where ε2 = (1/Rec) − (1/Re). The system at order ε0 is the incompressible Navier–Stokes
system that provides the base flow. The system at order ε1 is identical to the linearised
Navier–Stokes problem (2.3). At order ε2 secular term appears and solvability condition
must be imposed

a0 =
〈
û†

, −τ(Ub)
〉

〈
û†

, û
〉 , (B 3)

a2 =
〈
û†

, −û∇û
〉

〈
û†

, û
〉 . (B 4)

Here, û† denotes the adjoint or left eigenvector of linearised Navier–Stokes equations
associated with the null eigenvalue.

Appendix C. WNL to determine the normal form of the Hopf bifurcation
degeneracy

Weakly nonlinear analysis has been used extensively in the case of Hopf
bifurcations to unravel the frequency of the limit cycle near the bifurcation threshold
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(see Gallaire et al. 2016) and to determine the validity of stability analysis on the mean
flow (see Sipp & Lebedev 2007). In this article WNL analysis is used to determine the
existence of a generalised Hopf bifurcation (see § 3.6). The starting point of the weakly
nonlinear method is the decomposition of the flow field into multiple scales

Q = Qb + ε
[
Awnlq̂ eiω0t + c.c.

]
+ ε2

[
q2,0 + |Awnl|q|Awnl|

2,0 + (A2
wnlq2,2 e2iω0t + c.c.)

]
+ ε3

[
Awnl eiω0t

(
q3,1 + |Awnl|2q|Awnl|2

3,1 + |Awnl|2qAwnlĀwnl
3,1

)
+ A3

wnl e3iω0tq3,3 + c.c.
]

+ ε4
[
q4,0 + |Awnl|2q|Awnl|2

4,0 + |Awnl|4q|Awnl|4
4,0

+A2
wnl e2iω0t

(
q4,2 + |Awnl|2q|Awnl|2

4,2

)
+ A4

wnl e4iω0tq4,4 + c.c.
]

+ O(ε5), (C 1a)

where the complex amplitude Awnl depends upon a slow time scale τ = ε2t. The choice
of the parameter ε is the same as in Fabre et al. (2019), ε2 = 1/Rec(α) − 1/Re, where
the critical Reynolds Rec(α) is a function of the rotation rate α. When the ansatz (C 1)
is substituted into the Navier–Stokes equations, at orders O(ε3) and O(ε5) solvability
conditions need to be imposed due to the presence of secular terms which lead to a
Stuart–Landau equation depending upon the slow time scale τ

∂Awnl

∂τ
= (λ0 + ε2λ1)Awnl + (ν1,0 + ε2ν1,1)|Awnl|2Awnl + ε2ν2,0|Awnl|4Awnl. (C 2)

If we take into account the definition of the slow time scale τ = ε2t, the fact that up to
leading order O(ε) we have dAwnl/dt = iω0εAwnl and we define a new amplitude which
depends on ε as A = εAwnl we can rewrite (C 2) as

dA
dt

= (iω0 + ε2λ0 + ε4λ1)A + (ν1,0 + ε2ν1,1)|A|2A + ν2,0|A|4A. (C 3)

In the following we consider that the eigenmode q̂ and its adjoint q̂† have been normalised
so that ||q̂||2B = 〈

q̂,Bq̂
〉 = 〈

û, û
〉 = 1 and

〈
q̂†

,Bq̂
〉
=

〈
û†

, û
〉
= 1. This normalisation is the

same as that one used in the self-consistent methodology (see Mantič-Lugo et al. 2014):
with this choice, A is a real constant representing the amplitude of the linear mode with
respect to its L2 norm. In the following we will use the notation LNS iωq = iωBq −
LNSq to denote the application of the linearised operator at a specific frequency ω.

The ansatz (C 1) is substituted into the incompressible Navier–Stokes equations (2.1):

(i) Order O(ε0) leads to the steady-state Navier–Stokes equations (2.1).
(ii) Order O(ε1) leads to the linearised Navier–Stokes equations (2.3).

(iii) Order O(ε2) contains three terms, which are computed as the solution of three linear
systems:

LNS0q2,0 = −2∇ · (d(Ub)), (C 4a)

LNS0u|Awnl|
2,0 = −q̂ · ∇ ¯̂u + ¯̂u · ∇q̂, (C 4b)

LNS2iω0 u2,2 = −û · ∇û. (C 4c)
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(iv) At order O(ε3) there are degenerate terms, i.e. terms corresponding to the frequency
iω0. The operator LNS iω0 is not injective (q̂ belongs to its kernel) and it is not
surjective because q̂† belongs to the kernel of its adjoint and the operator is Fredholm
in L2. Therefore we need to impose solvability conditions in order to obtain terms
q3,1, q|Awnl|2

3,1 and qAwnlĀwnl
3,1 . Solvability conditions at O(ε3) correspond to

μ1 = −
〈
û†

, û · ∇u|Awnl|
2,0 + u|Awnl|

2,0 · ∇û
〉

〈
û†

, û
〉 , (C 5)

μ2 = −
〈
û†

, ¯̂u · ∇u2,2 + u2,2 · ∇ ¯̂u
〉

〈
û†

, û
〉 , (C 6)

λ0 = −
〈
û†

, û · ∇u2,0 + u2,0 · ∇û + 2∇ · (d(û))
〉

〈
û†

, û
〉 , (C 7)

where μ1 + μ2 = ν1,0. Additionally, given the fact that L2 is a Hilbert space and the
operator is Fredholm, the space can be decomposed into a direct sum of the range of
the operator LNS iω0 and the kernel of its adjoint. This implies that secular terms are
determined up to a constant in the direction of the eigenmode q̂, i.e. q3,1 → q3,1 +
δ0q̂, δ0 ∈ R. This degree of freedom is fixed by considering δ0 = 0, i.e. each secular

term is orthogonal to the linear adjoint mode q̂† in the norm B, i.e.
〈
q̂†

,Bq3,1

〉
= 0.

This choice for the extra degree of freedom has been also used in Carini, Auteri &
Giannetti (2015). This leads to

(LNS iω0 −Bq̂
q̂†HB 0

) (
q3,1
λ0

)
=

(
F 3,1

0

)
(C 8)

and similarly for pairs (q|Awnl|2
3,1 , μ1) and (qAwnlĀwnl

3,1 , μ2 replacing F 3,1 by F |Awnl|2
3,1 and

F AwnlĀwnl
3,1 respectively. Please note that

F 3,1 = −û · ∇u2,0 − u2,0 · ∇û − 2∇ · (d(û))

F |Awnl|2
3,1 = −û · ∇u|Awnl|

2,0 − u|Awnl|
2,0 · ∇û

F AwnlĀwnl
3,1 = −¯̂u · ∇u2,2 − u2,2 · ∇ ¯̂u

⎫⎪⎪⎬
⎪⎪⎭ . (C 9)

The other non-resonant term is solved as usually,

LNS3iω0 q3,3 = F 3,3 = −û · ∇u2,2 − u2,2 · ∇û. (C 10)
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(v) At order O(ε4) we find six terms which are solved by the resolution of the following
linear systems

LNS0q4,0 = F 4,0

LNS0q|Awnl|2
4,0 = F |Awnl|2

4,0

LNS0q|Awnl|4
4,0 = F |Awnl|4

4,0

LNS2iω0 q4,2 = F 4,2

LNS2iω0 q
|Awnl|2
4,2 = F |Awnl|2

4,2

LNS4iω0 q4,4 = F 4,4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (C 11)

where the right-hand side terms are

F 4,0 = −u2,0 · ∇u2,0 − 2∇ · d(u2,0), (C 12)

F |Awnl|2
4,0 = −u3,1 · ∇ ¯̂u − ¯̂u · ∇u3,1 − ū3,1 · ∇û − û · ∇ū3,1

− u2,0 · ∇u|Awnl|2
2,0 u|Awnl|2

2,0 · ∇u2,0, (C 13)

F |Awnl|4
4,0 = −u2,2 · ∇ū2,2 − ū2,2 · ∇u2,2 − u|Awnl|2

2,0 · ∇ − u|Awnl|2
2,0

− u|Awnl|2
3,1 · ∇ ¯̂u − ¯̂u · ∇u|Awnl|2

3,1 − ū|Awnl|2
3,1 · ∇û − û · ∇ū|Awnl|2

3,1

− uAwnlĀwnl
3,1 · ∇ ¯̂u − ¯̂u · ∇uAwnlĀwnl

3,1 − ūAwnlĀwnl
3,1 · ∇û − û · ∇ūAwnlĀwnl

3,1 , (C 14)

F 4,2 = −u|A|2wnl
2,0 · ∇u2,0 − u2,0 · ∇u|A|2wnl

2,0 − u3,1 · ∇û − û · ∇u3,1

− 2∇ · d(u2,2), (C 15)

F |Awnl|2
4,2 = −u2,0 · ∇u2,2 − u2,2 · ∇u2,0 − u|Awnl|2

3,1 · ∇û − û · ∇u|Awnl|2
3,1

− uAwnlĀwnl
3,1 · ∇û − û · ∇uAwnlĀwnl

3,1 − u3,3 · ∇ ¯̂u − ¯̂u · ∇u3,3, (C 16)

F 4,4 = −u2,2 · ∇u2,2 − u3,3 · ∇û − û · ∇u3,3. (C 17)

(vi) At order O(ε5) we find three degenerate terms proportional to Awnl, Awnl|Awnl|2 and
Awnl|Awnl|4. As for the case of the third-order solvability conditions, they lead to the
computation of coefficients λ1, ν1,1 and ν2,0

λ1 =
〈
û†

, F 5,1

〉
ν1,1 =

〈
û†

, F Awnl|Awnl|2
5,1

〉
ν2,0 =

〈
û†

, F Awnl|Awnl|4
5,1

〉

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (C 18)
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where F 5,1, F |Awnl|2
5,1 and F |Awnl|4

5,1 are defined as follows:

F 5,1 = −u2,0 · ∇u3,1 − u2,0 · ∇u3,1 − u4,0 · ∇û − û · ∇u4,0

− 2∇ · d(u3,1), (C 19)

F Awnl|Awnl|2
5,1 = −u2,0 · ∇u|Awnl|2

3,0 − u|Awnl|2
3,0 · ∇u2,0

− u2,0 · ∇uAwnlĀwnl
3,0 − uAwnlĀwnl

3,0 · ∇u2,0

− u|Awnl|2
2,0 · ∇u3,1 − u3,1 · ∇u|Awnl|2

2,0

− u2,2 · ∇ū3,1 − ū3,1 · ∇u2,2

− û · ∇u|Awnl|2
4,0 − u|Awnl|2

4,0 · ∇û

− ¯̂u · ∇uA2
wnl

4,0 − uA2
wnl

4,0 · ∇ ¯̂u
− 2∇ · d(u|Awnl|2

3,0 ) − 2∇ · d(uAwnlĀwnl
3,0 ), (C 20)

F Awnl|Awnl|4
5,1 = −u|Awnl|2

2,0 · ∇u|Awnl|2
3,0 − u|Awnl|2

3,0 · ∇u|Awnl|2
2,0

− u|Awnl|2
2,0 · ∇uAwnlĀwnl

3,0 − uAwnlĀwnl
3,0 · ∇u|Awnl|2

2,0

− u2,2 · ∇ū|Awnl|2
3,0 − ū|Awnl|2

3,0 · ∇u2,2

− u2,2 · ∇ūAwnlĀwnl
3,0 − ūAwnlĀwnl

3,0 · ∇u2,0

− u|Awnl|4
4,0 · ∇ ¯̂u − ¯̂u · ∇u|Awnl|4

4,0

− uA2
wnl|Awnl|2

4,0 · ∇ ¯̂u − ¯̂u · ∇uA2
wnl|Awnl|2

4,0

− ū2,2 · ∇u3,3 − u3,3 · ∇ū2,2. (C 21)

Appendix D. Mesh convergence

Mesh independence of the solutions has been verified systematically. First, we have
considered a given mesh refinement and varied the physical size of the domain, see table 2.
We have observed that for a domain length of 80 diameters downstream the cylinder
centre, 40 diameters upstream the cylinder centre and 40 in the cross-stream direction
the solution is not affected by the imposition of boundary conditions. Secondly, we have
looked at the effect of the mesh refinement on the properties of the solution. For that
purpose a parametric study of eigenvalues, Hopf WNL coefficients and global monitors
of a given steady-state solution have been carried out, see (table 3). The sensitivity to
mesh convergence of cusp and Takens–Bogdanov bifurcation points has been also tested.
Results show that each of them is found within ΔRec < 0.2. Every mesh is computed by
Delaunay triangulation. Mesh M1 has been generated by blocks, as it is generally done
with structured meshes; M2 and M3 have been computed following the mesh adaption
procedure described in Fabre et al. (2019, appendix A), with respect to base flow only
and with respect to base flow and direct mode structure; M4 and M5 are the consequence
of successive division of each triangle edge by two and four respectively, with respect to
mesh M3. The mesh selected for this study is M1 which provides results within the one per
cent of relative error with respect to the finest mesh. One of the reasons that led us not
to use mesh adaptation is the fact that the structure of the mode greatly changes within
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Mesh Xmin Xmax Ymax Method

M1 −40 80 40 Meshed by blocks
M2 −40 80 40 Adapted BF
M3 −40 80 40 Adapted BF + EM
M4 −40 80 40 Adapted BF + EM + (split 2)

M5 −40 80 40 Adapted BF + EM + (split 4)

M6 −20 40 20 Meshed by blocks

TABLE 2. Geometrical parameters of the physical domain of meshes Mi and the method
adopted for their generation.

Mesh ωc αc Fx Fy μ1 μ2 Np

M1 0.3057 4.433 −0.0107 10.712 −0.0348 + 0.0669i 0.0334 − 0.0231i 32 291
M2 0.3035 4.447 −0.0028 10.791 −0.0442 + 0.0548i 0.0469 − 0.0553i 1966
M3 0.3067 4.429 −0.0146 10.700 −0.0351 + 0.0663i 0.0330 − 0.0232i 7682
M4 0.3075 4.424 −0.0160 10.675 −0.0349 + 0.0655i 0.03290 − 0.0227i 30 364
M5 0.3027 4.444 −0.0142 10.772 −0.0349 + 0.0691i 0.0342 − 0.0240i 120 728
M6 0.3078 4.4486 −0.0575 10.7844 −0.0343 + 0.0695i 0.0324 − 0.0219i 8089
M7 0.3053 4.4308 −0.0226 10.7018 −0.0354 + 0.0669i 0.0336 − 0.0231i 72 088

TABLE 3. Comparison of the performance of several meshes at Rec = 170.

the parameter range (Re, α) investigated: this would have required many successive mesh
adaptions.

Appendix E: Three-dimensional stability of steady-state solutions

In this section, we review three-dimensional stability studies carried out by Pralits et al.
(2013), Rao et al. (2013a,b), Radi et al. (2013) and Rao et al. (2015).

It is now well known the secondary three-dimensional transition from a
two-dimensional unsteady flow towards a three-dimensional flow at Re ≈ 190 and α = 0,
see Williamson (1996). Vortices in the wake of the fixed cylinder, i.e. α = 0, develop
spanwise waviness whose wavelength is approximatelyfour cylinder diameters. The
rotation of the cylinder surface on this linear steady mode, denoted as Mode A in Rao
et al. (2015), has a stabilising effect for rotation rates α < 1, see figure 12.

Instead, if we consider the stability of an infinitesimal spanwise perturbation on a
steady-state solution, the flow displays spanwise waviness at a much lower Reynolds
number Re ≈ 100 and α = 0. The onset of instability of this stationary mode, denoted
as Mode E in Rao et al. (2015), is shown in figure 12 as a function of (Re, α).

In the same region of existence of the unsteady two-dimensional Mode II, experimental
evidence has shown the presence of a three-dimensional mode, see Linh (2011). A steady
three-dimensional mode, here denoted as Mode II-3D, extends to lower Reynolds values
than the two-dimensional threshold of the non-rotating cylinder, and for a larger interval
in α than the two-dimensional Mode II. The instability mechanism of Mode II-3D is of
hyperbolic nature, see Pralits et al. (2013).
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FIGURE 12. Neutral stability curves in the range Re ∈ [0, 200] and α ∈ [0, 10]. Black and
grey lines are used to denote two-dimensional local bifurcations whereas red lines are used
to designate the boundaries of three-dimensional local bifurcations. Dashed and point-dashed
lines indicate the presence of a stationary bifurcation boundary, solid lines are used to designate
unsteady bifurcation boundaries.

Finally, note that the occurrence of two unstable modes has also been documented in
the flow past rotating spheres (Citro et al. 2016; Fabre et al. 2017). However, the spatial
structure of the direct and adjoint modes for our geometrical configuration is very different
with respect to the case of the rotating sphere flow.
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