
 

Toward accurate form factors for B-to-light meson decay from lattice QCD
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We present the results of a lattice QCD calculation of the scalar and vector form factors for the unphysical
Bs → ηs decay, over the full physical range of q2. This is a useful testing ground both for lattice QCD and for
our wider understanding of the behavior of form factors. Calculations were performed using the highly
improved staggered quark (HISQ) action on Nf ¼ 2þ 1þ 1 gluon ensembles generated by the MILC
Collaboration with an improved gluon action andHISQ sea quarks.We use three lattice spacings and a range
of heavy quarkmasses from that of charm to bottom, all in theHISQ formalism. This permits an extrapolation
in the heavy quark mass and lattice spacing to the physical point and nonperturbative renormalization of the
vector matrix element on the lattice. We find results in good agreement with previous work using
nonrelativistic QCD b quarks and with reduced errors at low q2, supporting the effectiveness of our heavy
HISQ technique as a method for calculating form factors involving heavy quarks. A comparison with results
for other decays related by SU(3) flavor symmetry shows that the impact of changing the light daughter quark
is substantial but changing the spectator quark has very little effect. We also map out form factor shape
parameters as a function of heavy quark mass and compare to heavy quark effective theory expectations for
mass scaling at low and high recoil. This work represents an important step in the progression from previous
work on heavy-to-heavy decays (b → c) to the numerically more challenging heavy-to-light decays.
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I. INTRODUCTION

Determinations of form factors for weak semileptonic
meson decays can be combined with experimental results to
provide important tests of the Standard Model (SM).
Decays of b quarks are of particular interest as they allow
determination of some of the least well-known elements of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] and
tests of the unitarity of that matrix, a foundation of the weak
sector of the SM. Increasingly small experimental uncer-
tainties in CKM-dependent decay rates must be met with
precise determinations of form factors from the theoretical
side to pin down the CKM matrix elements (see, for
example, [3,4]). The shape of the differential decay rate

in q2, the squared momentum transfer between the initial
and final states, parameterized by the form factors, provides
added detail when testing the SM. Lattice quantum
chromodynamics (lattice QCD) is the only model-
independent method for calculating the hadronic form
factors for such decays and has been used successfully
for many such calculations. For a review, see [5].
Resolving the b quark on the lattice requires a suffi-

ciently small lattice spacing, a < 1=mb ∼ 0.05 fm. This
means that lattice QCD calculations can currently only
reach the b quark mass on the finest lattices available.
One approach to address this difficulty relies on the use

of an effective theory description of the b quark. Examples
include the relativistic heavy quark action [6], the Fermilab
action [7,8], heavy quark effective theory (HQET) [9],
and nonrelativistic QCD (NRQCD) [10–12]. Each of these
must match the relevant effective theory to QCD and
therefore suffer from associated matching errors. For the
case of NRQCD, such matching errors are a dominant
source of uncertainty.
Alternatively, with an action sufficiently improved to

reduce heavy quark discretization effects, one can avoid
this use of effective theory and simulate over a range of
heavy quark masses mh ≲mb and then extrapolate
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(or interpolate if, for example, static quark results are
available) to mb. Examples of this approach include the
ratio method using the twisted mass formulation [13,14],
application of the Möbius domain wall formulation to the b
quark [15] and our recent works using the highly improved
staggered quark (HISQ) action for the b quark in several
b → c decays [16–18].
The HISQ action [19] provides an accurate discretization

of the Dirac equation for relatively heavy quarks [20]. It
allows us to normalize lattice currents nonperturbatively
using conserved currents, avoiding sizable systematic
errors from perturbative truncation in the renormalization
factors for the nonrelativistic case. This “heavy-HISQ”
approach must be carried out on fine lattices, with
a < 0.1 fm so that amh is not too large. On our finest
lattices, amb < 1. In practice, we work at several values of
a and of the heavy quark mass so that we can map out both
discretization effects and physical dependence on the heavy
quark mass to determine the result at mb and in the
continuum. A further advantage of working on such fine
lattices is that we can reach higher physical values of
momentum transfer as the lattice spacing gets smaller. This
is particularly important for b decays where the q2 range for
the decay is large. With the heavy-HISQ approach the
range of accessible q2 values grows on finer lattices in step
with the range of heavy quark masses. This means that we
can cover the full q2 range of the heavy quark decay all the
way up to that of the b [16].
The end game of this program is the determination of

form factors for transitions that involve physical u and d
quarks, such as B → π. In this work, we take an important
step in extending our use of the HISQ action for the b quark
in b → c decays toward the more demanding b → u; d
decays by studying the b → s transition. As ms ≪ mc, this
allows us to gauge the success of this approach for b-to-
light form factors while benefiting from both a significant
savings in computational cost and the typically less noisy
correlators associated with s quarks. Fixing the daughter
quark to the strange quark mass on each ensemble removes
the need to perform a chiral extrapolation, thereby sim-
plifying the continuum extrapolation, a key component in
our study of the efficacy of the heavy-HISQ approach. Here
we study the Bs → ηs decay, where the ηs is an unphysical
ss̄ pseudoscalar meson—an easier to analyze, cheaper to
compute substitute for a pion, with the same quantum
numbers and no valence annihilation. For the purposes of
assessing the viability of this approach, we focus on the
scalar and vector form factors.1

The form factors should not be greatly affected by
changing the spectator quark from an s quark to a u=d
quark, so studying this decay provides an estimate of the
level of precision achievable in the computationally more
expensiveB → K form factor calculation. The heavy-HISQ
approach allows us to extract the dependence of the form
factors on the heavy quark mass as it varies from mc to mb,
permitting useful tests for expectations from heavy quark
symmetry.
The paper is laid out as follows. In Sec. II we set out the

details of our lattice QCD calculation, including analysis of
the correlation functions, normalization of the lattice
currents and our fits to the form factors enabling results
to be obtained for Bs → ηs decay in the continuum limit.
Section III gives results and compares them both to
expectations from heavy quark symmetry and to previous
lattice QCD results for decay processes connected to
Bs → ηs and Ds → ηs by SU(3) flavor symmetry, either
for the active light quark in the decay or the spectator light
quark. Finally, Sec. IV gives our conclusions.

II. CALCULATION DETAILS

A. Form factors

The aim of our calculation is to determine the matrix
element for the V − A electroweak current between Bs and
ηs mesons, hBsjVμ − Aμjηsi. Here the vector current is
defined as Vμ ¼ ψ̄bγ

μψ s and the axial vector current is
Aμ ¼ ψ̄bγ

5γμψ s. For pseudoscalar to pseudoscalar decays,
only contributions from the vector part of the V − A current
are present, as a result of QCD parity invariance.
Our heavy-HISQ approach works by determining the

Bs meson matrix elements from a set of matrix elements
for mesons in which the b quark is replaced by a heavy
quark with mass mh < mb. We denote these pseudoscalar
heavy-strange mesons generically byHs. The form factors
fþðq2Þ and f0ðq2Þ that are determined from the matrix
elements are a function of q2 ¼ ðpHs

− pηsÞ2, and we
compute these across the full kinematic range,
0≤q2≤q2max¼ðMHs

−MηsÞ2. As mh → mb this becomes
the full range for the Bs decay.
The connection between the matrix elements of the

lattice temporal vector and scalar currents and the form
factors of interest, fþðq2Þ and f0ðq2Þ, is

Z0
VZdischηsjV0jĤsi

¼ fHs→ηsþ ðq2Þ
�
EHs

þ Eηs −
M2

Hs
−M2

ηs

q2
ðEHs

− EηsÞ
�

þ fHs→ηs
0 ðq2ÞM

2
Hs

−M2
ηs

q2
ðEHs

− EηsÞ; ð1Þ

ZdischηsjSjHsi ¼
M2

Hs
−M2

ηs

mh −ms
fHs→ηs
0 ðq2Þ: ð2Þ

1The flavor-changing neutral current responsible for the b → s
decay in the SM would also involve the tensor form factor. The
tensor form factor is typically noisier, so we ignore it here. We
also ignore any difficulties associated with converting form
factors into decay rates, such as the cc̄ resonances that appear
in the phenomenology of B → Kμμ̄.
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Bilinears constructed from staggered quarks have a “taste”
degree of freedom and, as will be discussed below, we
need to arrange the tastes of mesons and lattice currents
appropriately so that tastes cancel in the calculated
correlation functions. Here, in spin-taste notation [19],
the lattice currents are S ¼ ψ̄ s1 ⊗ 1ψb and V0 ¼ ψ̄ sγ

0 ⊗
ξ0ψb and Hs and Ĥs denote Goldstone and local non-
Goldstone heavy-strange pseudoscalar mesons, respec-
tively. Equation (2) comes from the partially conserved
vector current (PCVC) relation [21], which also leads to
the renormalization of the vector matrix element [21,22]
(see Sec. II D).
We also require that the matrix element is analytic as

q2 → 0. We can see from Eq. (1) that this demands

fHs→ηsþ ð0Þ ¼ fHs→ηs
0 ð0Þ; ð3Þ

where we will drop the superscript from now on.
Both matrix elements are calculated using a Goldstone

pseudoscalar strange-strange ηs bilinear, ηs ¼ ψ̄ sγ
5⊗ ξ5ψ s,

while the scalar uses the Goldstone pseudoscalar heavy-
strange Hs ¼ ψ̄bγ

5 ⊗ ξ5ψ s, and the vector uses the non-
Goldstone pseudoscalar heavy-strange Ĥs ¼ ψ̄bγ

5γ0 ⊗
ξ5ξ0ψ s. All of these operators are local, giving less noisy
correlation functions than their point-split counterparts.

B. Lattice details

The calculation was run on ensembles of gluon field
configurations generated by MILC [23,24]. These include
in the sea two degenerate light quarks, strange and charm
quarks, with masses msea

l , msea
s , and msea

c , respectively,
using the HISQ action. The three ensembles used have
parameters listed in Table I. The gluon action is Symanzik
improved to remove discretization errors through Oðαsa2Þ
[25]. Our calculation follows the approach in the calcu-
lation of Bs → Ds in [16] but with a strange daughter quark
in lieu of a charm. The ensembles that we use here have
unphysically heavy light quark masses (of value around
1=5 of the s quark mass). In [16], little effect was seen on
the form factors from the light quark mass in the sea. We
similarly expect little effect here since Bs → ηs does not
involve any valence light quarks. Our main focus here is to
test the heavy quark mass dependence and so we simply

address the mistuning of sea light quark masses when we
extrapolate to the physical point in Sec. II E.
We denote the heavy quark h and its mass mval

h and use a
range of heavy masses from the physical charm to
amval

h ¼ 0.8, the point where discretization errors start to
become significant, on each set of gluon configurations.
This allows us to perform a fit to our results as a function of
heavy quark mass and obtain results at the physical bmass.
At the same time we determine the dependence of the form
factors on the heavy mass from the charm to the bottom
withDs → ηs and Bs → ηs at the two ends of the range. On
the finest lattice amval

h ¼ 0.8 is close to the physical bmass,
allowing good control of the subsequent extrapolation
to mb.
We choose a range of daughter momenta so as to give

good coverage of the full momentum transfer range of the
decay (see Table II) and implement these momenta using

TABLE I. Gluon field ensembles used in this work. The Wilson flow parameter w0 ¼ 0.1715ð9Þ fm is determined in [26], following
the approach outlined in [27], and is used to calculate the lattice spacing a via values for w0=a, in column 3, which are from [16].
Column 4 gives the spatial (Ns) and temporal (Nt) dimensions of each lattice in lattice units, while columns 5–7 give the masses of the
sea quarks.

Set Handle w0=a N3
s × Nt amsea

l amsea
s amsea

c

1 Fine 1.9006(20) 323 × 96 0.0074 0.037 0.440
2 Superfine 2.896(6) 483 × 144 0.0048 0.024 0.286
3 Ultrafine 3.892(12) 643 × 192 0.00316 0.0158 0.188

TABLE II. Values of simulation parameters on each ensemble
used in this work. Valence strange quark masses amval

s are tuned
as described in [29]. Valence heavy quark masses amval

h are
chosen to span the range from the physical charm, tuned as in
[29], to amval

h ¼ 0.8. Simulated ηs momenta ap⃗ηs are fixed using
twisted boundary conditions as described in the text. On each
ensemble, we use ncfg configurations and nsrc time sources. Data
are generated for multiple temporal source-sink separations T
between the ηs and Hs mesons.

Set 1 Set 2 Set 3

amval
s 0.0376 0.0234 0.0165

amval
h 0.449 0.274 0.194

0.566 0.45 0.45
0.683 0.6 0.6
0.8 0.8 0.8

jap⃗ηs j 0 0 0
0.0728 0.1430 0.0600
0.2180 0.2390 0.1300
0.3641 0.3340 0.1900
0.4370 0.4108 0.4000

ncfg × nsrc 504 × 16 454 × 8 118 × 4

T=a 14 20 33
17 25 40
20 30
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twisted boundary conditions on the daughter strange quark
in the ηs, as described in [28]. The heavy meson remains at
rest in all stages of the calculation, meaning the strange
spectator and heavy quark have no twist applied.
We calculate two-point correlation functions for the

Goldstone pseudoscalar (γ5 ⊗ ξ5) ηs and the two heavy-
strange bilinears detailed above. The correlators are built
using

CHs
ðtÞ ¼ 1

4

X
x⃗0;x⃗t

hTr½g†hðxt; x0Þgsðxt; x0Þ�i; ð4Þ

Cp⃗
ηsðtÞ ¼

1

4

X
x⃗0;x⃗t

hTr½gθ†s ðxt; x0Þgsðxt; x0Þ�i; ð5Þ

where gqðxt; x0Þ is the one-spinor component staggered
propagator for a quark of flavor q, from point x0 ¼ ð0; x⃗0Þ
to point xt ¼ ðt; x⃗tÞ. The twist angle θ is given by
θ ¼ jap⃗jNs=ð

ffiffiffi
3

p
πÞ, with ap⃗ in the spatial (1,1,1) direction.

We sum the spatial components of xt over the lattice sites
to give the two-point correlation function for each
0 ≤ t ≤ aNt. The hi denotes path integration over all fields,
carried out using the averaging over ensembles, and the
trace is over color. Random wall sources are used at x0 to
improve statistical precision.
The local non-Goldstone pseudoscalar (γ5γ0 ⊗ ξ5ξ0)

heavy-strange meson is similarly defined, but the spin-
taste structure is implemented using a lattice site-dependent
phase:

CĤs
ðtÞ ¼ 1

4

X
x⃗0;x⃗t

hð−1Þx̄00þx̄0t Tr½g†hðxt; x0Þgsðxt; x0Þ�i; ð6Þ

where x̄μ ¼ ðPν≠μ x
νÞ=a. We need to use this in the three-

point correlation function with temporal vector current in
order to cancel tastes. The mass of the local non-Goldstone
meson only differs from that of the Goldstone by discre-
tization effects, which are very small and disappear in the
limit of zero lattice spacing. In our case the mass splittings
between Hs and Ĥs are so small as to only be visible above
the statistical uncertainty on the fine lattice.
We also calculate three-point functions, with the

scalar and temporal vector current insertions as defined
in Sec. II A. We place the ηs operator at x0, the current at xt,
and the relevant heavy-strange Hs or Ĥs at xT ¼ ðT; x⃗TÞ,
where we again sum over spatial components. We then
need extended heavy quark propagators from xT to xt for
each heavy quark mass. The three-point functions combine
quark propagators as

Cp⃗
Sðt; TÞ ¼

1

4

X
x⃗0;x⃗t;x⃗T

hTr½g†hðxT; xtÞgsðxT; x0Þgθ†s ðxt; x0Þ�i;

ð7Þ

Cp⃗
V0ðt; TÞ

¼ 1

4

X
x⃗0;x⃗t;x⃗T

hð−1Þx̄0tþx̄0TTr½g†hðxT; xtÞgsðxT; x0Þgθ†s ðxt; x0Þ�i:

ð8Þ

T takes several different values on each lattice, detailed in
Table II, and we determine correlation functions for all xt
from 0 to T. The combination of propagators needed is
illustrated in Fig. 1.

C. Analysis of correlation functions

We perform a simultaneous, multiexponential fit of the
two- and three-point correlation function data using a
standard Bayesian approach, introduced in [30] and
expanded upon in [31,32]. Further detail is available in
the documentation for the Gvar [33], Lsqfit [34] and
Corrfitter [35] PYTHON packages used to perform the
analysis.
Bias in the small eigenvalues of a large data covariance

matrix with a finite data sample is addressed with a
singular value decomposition (SVD) cut. This is a
conservative move which avoids underestimating errors
(see Appendix D of [36]). We implement the SVD cut by
replacing eigenvalues smaller than the product of the cut
and the largest eigenvalue with that value. We determine
an appropriate SVD cut from eigenvalues of bootstrapped
data, a facility which is built into Corrfitter. We check
stability against doubling and halving the SVD cut
compared to the recommended value and demonstrate
this in Fig. 3.
Using an SVD cut and broad priors can lead to an

artificial reduction in χ2=d:o:f: Corrfitter has a built-in
facility permitting the determination of a more realistic
value (see documentation [33–35] and Appendix D of [36])
by adding SVD and prior noise. We have checked that
the fits reported below give values of χ2=d:o:f: close to 1
with this augmented noise. We report the raw χ2=d:o:f:

FIG. 1. The arrangement of propagators in our calculation of
the three-point correlation functions.
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values in Fig. 3 since they still provide a useful comparison
between fits.
Bayesian fits provide an additional fit statistic, the

Bayes factor, which penalizes overfitting, thereby pro-
viding a measure of fit quality complementary to χ2.
For each fit, Corrfitter calculates the Gaussian Bayes
factor (GBF), the Bayes factor under assumed Gaussian
probability distributions. When evaluated together, GBF
and χ2=d:o:f: provide a useful diagnostic for evaluating
the ability of a fit to describe the data while not
overfitting.
We aim to extract the ground state energies from the two-

point functions and use these, combined with ground state
amplitudes, to extract ground state to ground state matrix
elements from the three-point correlators.
We fit two-point correlators for a meson M to

CM
2 ðtÞ ¼

XN2pt
exp

i¼0

ðjaM;n
i j2ðe−EM;n

i t þ e−E
M;n
i ðaNt−tÞÞ

− ð−1Þt=ajaM;o
i j2ðe−EM;o

i t þ e−E
M;o
i ðaNt−tÞÞÞ; ð9Þ

where a tower of excited states of energy EM;n
i and

amplitude aM;n
i above the ground state (i ¼ 0) are generated

by our lattice operator. Discarding data for t < tmin allows
us to fit a finite number N2pt

exp of these states, and tmin=a
takes values in the range 3–9 for different correlators and
different lattice spacings. As detailed in [19], HISQ two-
point correlators also produce states which oscillate in time
from lattice site to lattice site, with the exception of the zero
momentum ηs, where the quark and antiquark of the same
mass prevent this effect from being exhibited. These states
have their own amplitudes and energies aM;o

i and EM;o
i in

our fits.
We determine priors for the ground state energies

and amplitudes using the effective mass and effective
amplitude, defined as

aMeffðtÞ ¼
1

2
cosh−1

�
C2ðt − 2aÞ þ C2ðtþ 2aÞ

2C2ðtÞ
�
; ð10Þ

aeffðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ðtÞ
e−Meff t þ e−MeffðaNt−tÞ

s
: ð11Þ

We give each a broad uncertainty, checking that the final
result of the fit is much more precisely determined than
this prior. The lowest oscillating state prior is taken to be
the nonoscillating ground state plus ΛQCD (which we take
to be 0.5 GeV), with an error around 50%. The energy
differences between all excited states are taken to be ΛQCD

with an error of 50%. We use log-normal priors through-
out to enforce positive values on energy splittings and
amplitudes. Priors for excited state nonoscillating and all

oscillating amplitudes are based on previous experience of
amplitude sizes, and some are slightly adjusted to maxi-
mize the GBF; these are listed in Table III. In all cases,
priors are many times broader than the final fit uncertain-
ties, as demonstrated in Fig. 2.

TABLE III. Priors used in the fit on each set. Priors are based
on previous experience and given large widths. In some places,
adjustment is made for lattice spacing, and priors are tuned using
an increase in the GBF. The effect of doubling and halving
the standard deviation on all priors on the final fit result is shown
in Fig. 3.

Set ani≠0 and aoi Skl≠nn00 Vkl≠nn
00

Sklij≠00 Vkl
ij≠00

1 0.10(10) 0.0(8) 0.2(1.0) 0.0(3) 0.0(3)
2 0.10(10) 0.0(8) 0.0(1.0) 0.0(3) 0.0(4)
3 0.05(05) 0.0(8) 0.0(1.0) 0.0(3) 0.0(4)

FIG. 2. Representative plots demonstrating two-point and
three-point correlator data, prior selection and fit results. Both
plots are from set 2 with amh ¼ 0.8. In the top panel, Eq. (10) is
used to plot the effective mass for the Hs meson two-point
correlator data. The EHs;n

0 prior is shown by the wide green band
and the posterior by the narrow blue band. The bottom panel
shows the vector three-point correlator data, for jap⃗ηs j ¼ 0.143,
plotted as the three-point effective amplitude using Eq. (13). The
prior for Vnn

00 is given by the wide green band and the posterior by
the narrow blue band.
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We perform three-point fits to

C3ðt; TÞ ¼
XN3pt

exp

i;j¼0

ðaηs;ni Jnnij a
Hs

ð∧Þ
;n

j e−E
ηs;n
i te−E

Hs
ð∧Þ

;n
j ðT−tÞ

− ð−1ÞðT−tÞ=aaηs;ni Jnoij a
Hs

ð∧Þ
;o

j e−E
ηs;n
i te−E

Hs
ð∧Þ

;o
j ðT−tÞ

− ð−1Þt=aaηs;oi Jonij a
Hs

ð∧Þ
;n

j e−E
ηs;o
i te−E

Hs
ð∧Þ

;n
j ðT−tÞ

þ ð−1ÞT=aaηs;oi Jooij a
Hs

ð∧Þ
;o

j e−E
ηs;o
i te−E

Hs
ð∧Þ

;o
j ðT−tÞÞ;

ð12Þ

for different masses of Hs (for the scalar current insertion)
or Ĥs (for the temporal vector current insertion) mesons
and different twists of ηs meson. Jnoij represents the
amplitude for the ith nonoscillating state of the ηs and
the jth oscillating state of the heavy meson. J ¼ S, V, for
our scalar and vector current insertions. We create the ηs at
t ¼ 0, insert the current at t and annihilate theHs (Ĥs) at T.
Priors for Jnn00 are based on the effective three-point

amplitudes, which can be determined from

Jeffðt; TÞ ¼
C3ðt; TÞ
aηseffa

Hs

ð∧Þ

eff

eM
ηs
eff teM

Hs
ð∧Þ
eff ðT−tÞ: ð13Þ

Priors for all other Jklij values are listed in Table III. Figure 2
shows representative plots of the two-point and three-point
correlator data, illustrating prior selection and providing a
comparison of fit results with both the prior and data. The
effect of doubling and halving the standard deviation given
to all priors on the overall results of the fit are shown
in Fig. 3.
On each ensemble, we perform a chained, marginalized

fit to our two- and three-point correlator data. For detailed
descriptions of chaining and marginalization, see [31,32]
and the Corrfitter documentation [35].
The chained fit begins with a simultaneous fit to all of the

two-point correlators (Hs and Ĥs for eachmh and ηs for each
ap⃗), fixingN2pt

exp in Eq. (9) for each lattice spacing such that it
gives an acceptable χ2 and maximizes the GBF. We take
N2pt

exp ¼ 5 in the case of set 1 andN2pt
exp ¼ 6 in the case of sets

2 and 3. The next step in the chained fit is a simultaneous fit
to all three-point correlators. This includes both S and V
current insertions and data at the values for T chosen for each
ensemble (listed in Table II). The chained fit prescription
uses two-point correlator fit posteriors as priors for the two-
point fit parameters that appear in the subsequent three-point
correlator fit, accounting for correlations between these
posteriors and the three-point correlator data.
In the three-point correlator fits, the number of states

N3pt
exp in Eq. (12) must be understood in terms of

marginalization. Marginalization [31] subtracts fit function
terms, evaluated using priors, from the data before perform-
ing the fit. In this way, effects from these terms are
accounted for while the fit function used by the minimizer
is simplified. For sets 1, 2 and 3, we chooseN3pt

exp ¼ 2, 3 and
2, respectively, such that we achieve an acceptable
fit (χ2 per degree of freedom of 0.342, 0.079 and 0.047,
respectively). On each set, the total number of states
accounted for, either explicitly fit using Eq. (12) or
subtracted from the data, is equal to N2pt

exp. For example,
on set 1 we fit two-point correlators with N2pt

exp ¼ 5. For
the fit to the three-point correlators, we first subtract
from the data contributions from terms in Eq. (12) with i
or j equal to 3, 4 or 5. We then fit this data using Eq. (12)
with N3pt

exp ¼ 2. This is useful here because our three-
point data are noisier than our two-point data, so fewer
states are required in their fits. Marginalization allows us
to include information about higher states obtained from
two-point fits.
We also check that the momentum dispersion relation for

our ηs fit results agrees with the momenta given in the

FIG. 3. Stability tests of the chained, marginalised fit used on a
typical three-point correlator. Test 0, the final result, shows the
value of Vnn

00 for amh ¼ 0.45, ajp⃗j ¼ 0.1430 on set 2, with
N3pts

exp ¼ 3 exponential terms and three additional states margin-
alised (as discussed in the text), with tmin=a ¼ 2, the number of
data points removed from the fit at the start and end of the data.
Tests 1 and 2 show the effects of increasing and decreasing the
number of fitted exponentials by 1, tests 3 and 4 show the effect
of doubling and halving the SVD cut, and 5 and 6 show the effect
of doubling and halving the error on all priors. Test 7 shows the
effect of an increase on tmin=a by 1, and test 8 shows the
reduction of the marginalised exponentials from 6 to 5. Finally,
test 9 shows the result of just fitting the vector 3 point correlator
for this mass and twist, and the relevant 2 points; this gives a
reduced error since the smaller fit requires a smaller SVD cut.
Fitting like this does not preserve correlations, however, so we
use a global fit. Other two and three-point correlators behaved
similarly well under the same tests. The χ2=dof values
(purple × s) are also plotted for reference. Note that these are
the raw values and hence artificially small (see text) and the
degrees of freedom are not the same across all tests.
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lattice calculation. The two should differ by discretization
effects only, which are small for the ηs as it contains
only s quarks but grow with momentum. This is displayed
in Fig. 4.
Fit results are converted according to

hηsjJjHs

ð∧Þ
i ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MHs

Eηs

p
Jnn00 ; ð14Þ

to extract the matrix elements which appear in the defi-
nition of the form factors [Eqs. (1) and (2)]. We always
use the mass of the Goldstone heavy-strange pseudoscalar
for MHs

as the non-Goldstone mass is the same in the
continuum limit. Tests showed that changing this to the
non-Goldstone mass in the case of the vector matrix
element made no difference at all to our continuum form
factors, as discretization errors are accounted for in our
extrapolation to the physical point.
The results from the fits for each of the three lattice

spacings are summarized in theAppendix inTablesVI–VIII.

D. Current normalization

The PCVC relation, applied at zero spatial momentum
for the daughter meson,

Z0
V ¼ ðmh −msÞhηsjSjHsi

ðMHs
−MηsÞhηsjV0jHsi

����
p⃗ηs¼0

; ð15Þ

allows us to normalize the vector matrix element non-
perturbatively using the scalar matrix element [16,22,37].
This uses the fact that this current is conserved in the HISQ
formalism, that is to say that the product of the bare mass
and the scalar matrix element does not require renormal-
ization. We also make the small correction Zdisc to account
for small tree-level mass-dependent discretization effects
beginning at order ðamhÞ4. For the determination of Zdisc

see [38,39]. Values for these normalizations can be found
in Table IV.

E. Continuum and quark mass extrapolation

Having calculated f0ðq2Þ and fþðq2Þ for the three lattice
spacings and at a range of heavy quark masses and q2

values on each lattice, we now perform a fit in heavy quark
mass, sea quark mass and lattice spacing. We can then
evaluate our form factors at the physical quark masses and
zero lattice spacing. Our fits also allow us to examine the
heavy quark mass dependence of the form factors, all the
way down to the charm mass.

1. Fit ansatz and priors

Following the method successfully employed in [16], we
fit the form factors on the lattice using the Bourrely-
Caprini-Lellouch parameterization [40]:

f0ðq2Þ ¼
1

1 − q2

M2

H0
s

XN−1

n¼0

a0nzn;

fþðq2Þ ¼
1

1 − q2

M2
H�
s

XN−1

n¼0

aþn

�
zn −

n
N
ð−1Þn−NzN

�
; ð16Þ

where we use a mapping of q2 to z, a region inside the unit
circle of the z plane,

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð17Þ

with tþ ¼ ðMH þMKÞ2, the lowest mass combination with
the same quantum numbers as the current where a cut in the
q2 plane begins. Since we do not explicitly determine MH

and MK here, we use MH ¼ MHs
þ aðMphys

B −Mphys
Bs

Þ and

FIG. 4. We plot the ratio ðE2
ηs −M2

ηsÞ=jp⃗ηs j2 from our fit
results against jap⃗ηs j2 to check that the ηs energy in our final
fit results agrees with the momentum given to the meson in the
lattice calculation. The results agree well throughout the range of
momenta.

TABLE IV. Values for normalization constants appearing in
Eqs. (1) and (2). ZV is calculated as in Eq. (15) and Zdisc is
defined in [38].

Set amval
h ZV Zdisc

1 0.449 1.0061(25) 0.99892
0.566 1.0110(30) 0.99826
0.683 1.0164(36) 0.99648
0.8 1.0226(43) 0.99377

2 0.274 1.0003(73) 0.99990
0.45 1.004(10) 0.99928
0.6 1.008(12) 0.99783
0.8 1.018(15) 0.99377

3 0.194 0.996(27) 0.99997
0.45 0.987(55) 0.99928
0.6 1.015(73) 0.99783
0.8 1.032(96) 0.99377
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MK ¼ Mηs þ aðMphys
K −Mphys

ηs Þ. These have the correct
limit at physical quark mass values. We choose to take
t0 ¼ 0. To fit the data for f0ðq2Þ and fþðq2Þ, tabulated in
the Appendix, we calculate for each quark mass and
momentum simulated the corresponding value of z, using
the associated meson masses and values of q2.
The poles in Eq. (16) account for the production of on

shellHs0 andH�
s states for q2 > q2max, and the massMHs0

is
taken as MHs

þ 0.4 GeV, which is consistent with lattice
results in [41] and experimental results [42] for the axial
vector–vector splitting, MBs

ð1þÞ −MBs
ð1−Þ. We do not

need to know this number precisely as we are simply
removing a pole in the data to ease the fitting process and
then replacing it later. Indeed, excluding the pole from the
f0 fit function completely leads to fit results which are
consistent with those from including the pole. The position
of the MH�

s
pole can be estimated, as in [16], using the fact

that MH�
s
−MHs

→ 0 as mh → ∞, with the ansatz MH�
s
¼

MHs
þ x=MHs

. We find x from the Particle Data Group

(PDG [42]) value of Mphys
B�
s

− Mphys
Bs

¼ x=Mphys
Bs

¼
0.0489ð15Þ GeV. We go one step further to ensure that
this ansatz also gives the correct PDG value for
Mphys

D�
s

¼ 2.1122ð4Þ GeV, using

MH�
s
¼MHs

þMphys
Ds

MHs

ΔðDsÞ

þMphys
Bs

MHs

�
MHs

−Mphys
Ds

Mphys
Bs

−Mphys
Ds

�
ΔðBsÞ−

Mphys
Ds

Mphys
Bs

ΔðDsÞ
��

;

ð18Þ

with splittings ΔðBsÞ ¼ 0.0489ð15Þ GeV and ΔðDsÞ ¼
0.14386ð41Þ GeV, from the PDG. We find no significant
difference in the final form factors from the change of
ansatz, supporting our assertion that the exact pole position
is not crucial, as any small errors here are accounted for by
higher orders of the z expansion. We use N ¼ 3 in Eq. (16)
for our final results.
We fit coefficients a0;þn to a general fit form, accounting

for heavy quark mass dependence and discretization
effects:

a0;þn ¼
�
1þ ρ0;þn log

�
MHs

MDs

��

×
XNijk−1

i;j;k¼0

d0;þijkn

�
ΛQCD

MHs

�
i
�
amval

h

π

�
2j
�
aΛQCD

π

�
2k

× ð1þN 0;þ
n Þ: ð19Þ

We use MHs
as a physical proxy for the heavy quark mass,

as the two are equal at leading order in HQET. Terms in
ΛQCD=MHs

(with ΛQCD ¼ 0.5 GeV) parameterize the

effect of changing heavy mass, while the other terms in
the sum allow for discretization effects, which for the HISQ
action appear as even powers of energy scales. In this case
the two relevant energies are the heavy quark mass and
ΛQCD. The log term comes from the matching of our
HQET-inspired fit function to QCD [43,44]. From [43],
we expect the coefficient of the log term to be of order
unity, so we use a prior of 0� 1.
The term

N 0;þ
n ¼ cval;0;þs;n δvals þ c0;þs;n δs þ 2c0;þl;n δl

10mtuned
s

þ cval;0;þc;n

�
Mηc −Mphys

ηc

Mphys
ηc

�
ð20Þ

accounts for mistuning of valence (marked val) and sea

quark masses, where δðvalÞq ¼ mðvalÞ
q −mtuned

q . We determine
the tuned mass of the strange quark using

mtuned
s ¼ mval

s

�
Mphys

ηs

Mηs

�
2

; ð21Þ

where Mphys
ηs ¼ 0.6885ð22Þ GeV was calculated in [26].

We find mtuned
l using [45]

mphys
s

mphys
l

¼ 27.18ð10Þ: ð22Þ

We find Mηc on the three sets from [16] and take

Mphys
ηc ¼ 2.9766ð12Þ GeV. This value differs from the

experimental ηc mass [42] by 7 MeV to allow for the
effect determined in [46] of missing quark-line discon-
nected diagrams in the lattice calculation of the ηc mass.
We give all d coefficients a prior of 0� 1, with the

exception of di10n, which multiply terms with ðamhÞ2 in
them. Since the HISQ action is improved up to second
order in the lattice spacing, we expect these terms to be
small, giving them a prior of 0.0� 0.5. We set dþi000 ¼ d0i000
and ρþ0 ¼ ρ00 to enforce f0ð0Þ ¼ fþð0Þ on the fit, in the
continuum and in the absence of quark mistuning, although
relaxing this constraint still leaves the two values agreeing
within errors, giving fþð0Þ=f0ð0Þ ¼ 0.95ð11Þ. We take
cvals ¼ 0� 1 based on a study of s quark mistuning. In the
case of maximum mistuning, where ms ¼ ml and we have
the B → π decay, we can compare our form factors with
those from [7] and find that this gives an upper bound on
our valence quark mistuning of cvals ≈ 2. This is a very
extreme case of quark mistuning, so we take the prior width
at half of this. Sea quark mistunings, as well as those of the
valence charm quark, make less of a contribution so we
give all other c coefficients a prior of 0.0� 0.3. In Eq. (19)
we take Nijk ¼ 3.
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In our fit we also include a data point corresponding
to the Bs → ηs scalar form factor in the continuum,
f0ðq2maxÞ ¼ 0.811ð17Þ from previous work by the
HPQCD Collaboration [47]. This data point was obtained
in a calculation using NRQCD b quarks, working directly
at the tuned b quark mass. A ratio was constructed to
remove the systematic errors from renormalization of the
NRQCD-HISQ current that would otherwise reduce the
accuracy of the result. For this reason, this point can be
included alongside our HISQ data, without introducing
additional errors associated with NRQCD. This result is
included as a statistically independent data point for the f0
fit function in the continuum and physical quark mass
limits and reduces our error at f0ðq2maxÞ. The effect of its
removal is demonstrated by test 4 in Fig. 7.

2. Continuum and physical quark mass limit

The fit outlined in the previous section has a χ2 value of
0.16 per degree of freedom, for 109 degrees of freedom.
It produces best-fit results for the coefficients in Eqs. (19)
and (20), from which we construct the z-expansion coef-
ficients of Eq. (16).
By evaluating Eq. (19) at a;N 0;þ

n ¼ 0, we obtain the
z-expansion coefficients, and therefore the form factors from
Eq. (16), in the continuum limit and at physical light, strange
and charm quark masses. By choosing physical values of
Mphys

Bs
¼5.36688ð14ÞGeV, Mphys

B�
s

¼ 5.4158ð15Þ GeV and

Mphys
Ds

¼ 1.968340ð70Þ GeV from the PDG [42] and

Mphys
Bs0

¼ Mphys
Bs

þ 0.4 GeV, we ensure the Hs interpolates
between the correct physical mass Bs and Ds mesons.
In Table V we show the final results of our evaluation of

the form factors fphys0 ðq2Þ and fphysþ ðq2Þ at the physical
point for the Bs → ηs decay. From the given values of the
coefficients and pole masses, as well as their correlation
matrix (given in the bottom of the table), one can fully
reconstruct both form factors across the full physical
q2 range.

3. Fit analysis and stability check

In Figs. 5 and 6we show our lattice data in z space, as well
as the results of the fit at the physical point for each form
factor. In both cases these are plotted with their respective
poles removed. We see very little z dependence in the f0
case, which we can also infer from our a01 and a02 values
(TableV), both ofwhich are consistentwith zero. In contrast,
fþ displays a negative linear z dependence, again clear in the
expansion coefficients. Both of these trends are similar to the
findings in [16]. Both cases have large errors in some
ultrafine data, which simply arises from lack of statistics on
thevery computationally expensive ultrafine configurations.
The lowest masses on each set correspond approximately

to the physical charm mass, and we can see in Fig. 5 that
these points lie on top of each other, indicating that lattice
artifacts such as discretization errors are small at this mass.
Other masses that are approximately equal are the ultrafine
amh ¼ 0.45 and superfine amh ¼ 0.6, the ultrafine amh ¼
0.6 and superfine amh ¼ 0.8, and the superfine amh ¼
0.45 and fine amh ¼ 0.683. By comparing these values in
Fig. 5 we can see that, while lattice artifacts become
slightly more significant above the charm mass, they are
still small, and that the heavy mass dependence itself is
what dominates this plot. The picture is less clear in Fig. 6
because of larger statistical errors, but it appears to be
similarly dominated by heavy quark mass dependence.
We verify our results for the form factors at the physical

point are stable with respect to reasonable variations
of the fit by modifying the fit as illustrated in Fig. 7 and
discussed in the caption. The fit is stable under these
variations, suggesting associated systematic uncertainties
are adequately accounted for.

4. Form factor error budget

Figure 8 shows how the relative percentage error of each
of the form factors builds up as contributions are added.
This is plotted over the full q2 range. We note that the error
in the f0 form factor shrinks with q2, while that in fþ
grows. This is true even without the continuum data point

TABLE V. Values of fit coefficients a0;þn and pole masses at the physical point for the Bs → ηs decay with correlation matrix are given
below. Form factors can be reconstructed by evaluating Eq. (16) using these coefficients and pole masses. Note that MBs0

is set to
MBs

þ 0.4 GeV. Masses are in GeV. The pole masses are very slightly correlated due to the way the fit function is constructed. These
correlations are too small to have any meaningful effect on the fit, but we include them for completeness in reconstructing our results.

a00 a01 a02 aþ0 aþ1 aþ2 MBs0
MB�

s

0.296(25) 0.15(20) 0.29(47) 0.296(25) −1.22ð32Þ 0.9(1.2) 5.76688(17) 5.4158(15)

1.00000 0.90818 0.72266 1.00000 0.30483 0.09764 −0.00042 0.00021
1.00000 0.93763 0.90818 0.38642 0.09064 0.00002 −0.00009

1.00000 0.72266 0.40724 0.07271 0.00012 −0.00036
1.00000 0.30483 0.09764 −0.00042 0.00021

1.00000 0.51317 0.00179 −0.01229
1.00000 −0.00045 0.00248

1.00000 0.00000
1.00000
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FIG. 5. ð1 − q2

M2

H0
s

Þf0ðzÞ data points and final result at the physical point (blue band). Data points are labeled by mass for sets 1, 2 and 3,

respectively, where e.g., m0.8 indicates amh ¼ 0.8 on that ensemble. Lines between data points of a given heavy mass over the full z
range are there to guide the eye. The additional continuum data point from [47] is shown as a purple diamond and helps to pin down the
form factor in the high q2 limit.

FIG. 6. ð1 − q2

M2
H�
s

ÞfþðzÞ data points and final result at the physical point (red band). Data points are labeled by mass for sets 1, 2 and 3,

respectively, where e.g., m0.8 indicates amh ¼ 0.8 on that ensemble. Lines between data points of a given heavy mass over the full z
range are there to guide the eye.
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from [47], so that statistical errors completely dominate
f0ðq2maxÞ. The vector form factor has a minimum error
somewhere in between 0 and q2max, where our data are most
densely distributed. This trend is similar in the scalar form
factor if we remove the continuum data point which
dominates the error at high q2. We also note that the quark
mistuning and input errors for both cases are small and
almost independent of q2, as we would expect. It is clear
that our error is statistics dominated, which is a strong
affirmation of the heavy HISQ method and nonperturbative
current renormalization, as well as of the suitability of our z
expansion. This also leaves the door open to a significant
reduction in error, simply by increasing our statistics,
particularly on the finest ensemble, a costly but straightfor-
ward exercise. We can see that, with sufficient computing
time, errors could be reduced to 2%–3% across the full q2

range for both the scalar and vector form factors.

III. FORM FACTOR RESULTS AND
COMPARISONS

Our form factors at zero lattice spacing and physical
quark mass are shown over the full physical q2 range in
Fig. 9. We can compare these with Bs → ηs results from a
lattice calculation that used NRQCD b quarks given in the
Appendix of [32]. We find the results to be in good
agreement with an improvement in uncertainty across
the q2 range in the case of the f0 form factor and an
improvement by a factor of 2 at q2 ¼ 0. The systematic
uncertainties in the NRQCD calculation are dominated by
the extrapolation to q2 ¼ 0 from high q2 values close to
zero recoil and the associated discretization errors. The use
of relatively coarse lattices in the NRQCD approach means
that results are restricted to small daughter meson momen-
tum. There is also a sizable systematic uncertainty from
current renormalization present in the NRQCD results. We
do not have these sources of error here. Our result for
fþðq2maxÞ agrees to 1σ with the NRQCD value, but with
significantly larger uncertainty. This is a region of q2 space

FIG. 7. Stability tests of the fit of the form factors f0;þð0Þ,
f0ðq2maxÞ and fþðq2maxÞ. Test 0 is the final result, shown
throughout by the blue band. Tests 1, 2 and 3 are the results
if the fine, superfine and ultrafine data are removed, respectively.
Test 4 is the fit without the data point from [47]. Test 5 adds a
cubic term in the z expansion [Eq. (16)]. Test 6 shows the effect of
extending the i, j, k sum in Eq. (19). Tests 7 and 8 remove the
highest masses and momenta for all lattice spacings, respectively.
Test 9 is without the log term in Eq. (19); here we find that di000
terms change to mimic the Taylor expansion of the log, and we
require much larger priors (0� 5) to account for this. Test 10
shows the effect of doubling the width of all dijkn priors. We see
that our extrapolation is stable to all of the above modifications.
Increasing the prior widths decreases the GBF, giving us
confidence our priors are chosen conservatively.

FIG. 8. The contributions to the total percentage error (black
line) of f0ðq2Þ (top) and fþðq2Þ (bottom) from different sources,
shown as an accumulating error. The red dashed line (“inputs”)
includes values for masses taken from the PDG [42] and used in
the fit as described above. The purple dotted line (“qmistunings”)
adds, negligibly, to the inputs the error contribution from the
quark mistunings associated with c fit parameters, while the solid
green line (“statistics”) further adds the error from our correlator
fits. The blue dot-dashed line (“HQET”) includes the contribution
from the expansion in the heavy quark mass, and, finally, the
thick black line (“Discretization”), the total error on the form
factor, also includes the discretization errors. The percentage
variance adds linearly and the scale for this is given on the left-
hand axis. The percentage standard deviation, the square root of
this, can be read from the scale on the right-hand side.

FIG. 9. Final form factor results for f0ðq2Þ and fþðq2Þ. Results
from [32] at q2 ¼ 0 and q2 ¼ q2max are also shown.
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where our data have large statistical errors because of the
way that fþ is constructed from a temporal vector current in
that limit. The differential rate for the decay vanishes
rapidly toward q2max so it is the smaller values of q2 at which
we want to improve lattice QCD determination of the form
factors and we have succeeded in doing this.

A. Comparisons testing SU(3) flavor and
heavy quark symmetries

While the Bs → ηs decay does not correspond to a
physical process, it is related to a host of physical decays
via combinations of SU(3) flavor andheavyquark symmetry.
In this section, we evaluate these symmetries by comparing
to published results for symmetry-related decays.
Figure 10 shows the effect of changing heavy quark mass

over the full range of MHs
from the physical MDs

to the
physical MBs

, for both form factors at q2 ¼ 0 [recall that
fþð0Þ ¼ f0ð0Þ] and at maximum physical q2. Our use of a
range of heavy masses from the physical charm to the
physical bottom allows for good control of this heavy mass
dependence. The uncertainty at the lighter end is particu-
larly small, as all three ensembles had a physical charm

mass data point, whereas only set 3 was fine enough to give
data at the physical bottom mass. f0;þð0Þ, f0ðq2maxÞ and
fþðq2maxÞ are converging as MHs

is reduced and one can
imagine them meeting if extrapolated in mass belowMDs

to
Mηs . That point would correspond to the ηs → ηs decay,
where only q2 ¼ 0 is kinematically allowed and we expect
fþ ¼ f0 ¼ 1. A similar effect was seen in [16].
Previous lattice QCD results for other decay processes

related by SU(3) flavor symmetry are included in Fig. 10 in
the same color labeling system. We see very good agree-
ment with the D → K and B → K decays for both form
factors at both ends of the q2 range, suggesting that the
mass of the spectator quark has almost no effect on the form
factors and supporting our use of Bs → ηs to test the
viability of a B → K calculation. Bs → K data show good
agreement for f0 but fþðq2maxÞ is in slight tension. This
suggests, as expected, that the form factors are much more
sensitive to SU(3) flavor symmetry breaking in the daugh-
ter quark in the transition than in the spectator quark. This is
further supported by the D → π results, which are in poor
agreement with our Ds → ηs form factors across the board.
B → π results are in even worse agreement and are not
included in the plot. This implies that symmetry breaking in

FIG. 10. The form factors f0;þð0Þ, f0ðq2maxÞ and fþðq2maxÞ over the range of heavy masses from the physical Ds to the physical Bs.
Results are included for f0;þð0Þ, f0ðq2maxÞ and fþðq2maxÞ (in their respective colors) for several other decays related by SU(3) flavor
symmetry [7,10,22,32,48]. Data points are plotted at the x axis values corresponding to their physical heavy meson mass, not the mass
that would result from their heavy quark and a strange quark (which would put them all atMDs

orMBs
). In the case ofMB andMD some

of the points are offset slightly either side of the mass for clarity.
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the light daughter quark becomes even more important as
the heavy parent quark becomes heavier.

B. Tests of HQET

That we are able to evaluate our form factors over the full
range mc ≤ mh ≤ mb means we are in a unique position to
test predictions of HQET. One such set of predictions
relates to the characterization of form factor shape. The
quantities α, δ and β−1 are used to describe the shape of the
form factors in HQET [49,50]. The latter two of these are
related to the slope of the form factors at q2 ¼ 0 and the
first to the value at high q2:

1

1 − α
¼ 1

M2
H�

s

Resq2¼M2
H�
s

fþðq2Þ
fþð0Þ

; ð23Þ

δ ¼ 1 −
M2

Hs
−M2

ηs

fþð0Þ
�
dfþ
dq2

����
q2¼0

−
df0
dq2

����
q2¼0

�
; ð24Þ

1

β
¼ M2

Hs
−M2

ηs

fþð0Þ
df0
dq2

����
q2¼0

: ð25Þ

Figure 11 shows our results for these quantities, plotted
across the full range of heavy masses from c to b using as
the x axis the mass of the heavy-strange pseudoscalar
meson. Our results for α and β are qualitatively in agree-
ment with expectations from HQET [49] with α and β close
to one at the heaviest masses and differing further from one
as the heavy quark mass falls. Our results are accurate
enough that they could be used to constrain scaling laws in
the mass from other theoretical approaches. We see that δ is
close to zero at the Bs end of the plot but clearly nonzero
at the Ds end. We find values of αMBs

¼ 0.698ð56Þ,
βMBs

¼ 1.33ð22Þ, δMBs
¼ −0.01ð19Þ, αMDs

¼ 0.398ð42Þ,
βMDs

¼ 1.905ð45Þ and δMDs
¼ 0.582ð12Þ.

The form factor ratio f0ðq2Þ
fþðq2Þ ð1 −

q2

M2
B�s
Þ−1 is shown inFig. 12,

where it is compared with the HQET expectation [51]

lim
q2→M2

Bs

f0ðq2Þ
fþðq2Þ

�
1 −

q2

M2
B�
s

�
−1

¼
�
fBs

fB�
s

�
1

gB�
sBsηs

: ð26Þ

This is included in [51] as aB → π expectation; to test it here
in Bs → ηs we replace Bwith Bs. We take the ratio of decay

constants
fB�s
fBs

¼ 0.953ð23Þ [52]. No difference is visible in

this ratio between Bs and B in [52]. We take the coupling
gB�

sBsηs ≈ gB�Bπ ¼ 0.56ð8Þ [53], because again the light quark
mass dependence seen in [53] is mild. This leads us to expect
little impact from SU(3) flavor symmetry breaking in our test
of Eq. (26). This is also consistent with our observation in
Fig. 10 that SU(3) flavor symmetry breaking effects in the
daughter quark affect both f0 and fþ at large q2, and so there
will be some cancellation of the effects in their ratio.
Figure 12 shows reasonable agreement with Eq. (26) in
the limit q2 → M2

Bs
, as is found for B → π in [7].

Figure 13 tests the relationships between form factors for
a changing initial state but fixed final state with a fixed
energy. In [49] it is shown that the f0 form factor for a
pseudoscalar heavy meson decay to a pseudoscalar light
meson at fixed energy is inversely proportional to the
square root of the heavy meson mass. This scaling should
work both at small energy, close to zero recoil, and also at
large energy, high recoil. In [49] this is used to compare
B → π and D → π decay. Here we compare Bs → ηs to
Hs → ηs for variable Hs mass from Ds upward.
Figure 13 compares f0ðHs → ηsðEÞÞ=f0ðBs → ηsðEÞÞ

to the expectation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBs

=MHs

p
given by the black line. We

include an error in the HQETexpectation from higher-order

HQET terms of �
ffiffiffiffiffiffiffi
MBs
MHs

q
ΛQCDjM−1

Hs
−M−1

Bs
j. Results are

shown at two energies: the blue line and error band
give results at zero recoil (Emin ¼ Mηs) and the red
line and error band give results at a higher energy, the
maximum energy available to an ηs in a Ds decay

FIG. 11. The quantities α, β−1 and δ, defined in Eqs. (23), (24)
and (25), over the range of heavy masses from the physical Ds to
the physical Bs.

FIG. 12. The form factor ratio f0ðq2Þ
fþðq2Þ ð1 −

q2

M2
B�s
Þ−1 over the range

0 ≤ q2 ≤ M2
Bs

(blue band), as compared with the HQET expect-

ation in the limit q2 → M2
Bs

(red band), defined in Eq. (26).
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[Emax ¼ ðM2
Ds

þM2
ηsÞ=2MDs

¼ 1.105 GeV]. Our results

at both energies are flatter than the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=MHs

p
expectation,

indicating that sizable corrections are needed to this
expectation to describe the physical behavior. This is
reminiscent of results for the decay constant of heavy-
strange pseudoscalar mesons in that it does not vary so
strongly with mass as predicted; [20] shows that this decay
constant only changes by 9.4(1.4)% over the range from c
to b when the leading-order HQET behavior is asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=MHs

p
, i.e., a 65% change.

Finally, large-recoil scaling laws [54,55] give the pre-

diction fBsþ ð0Þ
fHs
þ ð0Þ ¼ ðMHs

MBs
Þ3=2 at leading order.We examine this in

Fig. 14, showing our results as a blue band and the HQET
expectation as a black dashed line. We see that indeed the
HQET expectation is borne out in the large heavy mass
region close to the b. There are large corrections away from

this region, however. We find fBsþ ð0Þ
fDs
þ ð0Þ ¼ 0.402ð33Þ which is

almost twice the size of ðMDs
MBs

Þ3=2 ¼ 0.222 [42].

IV. CONCLUSIONS

We have performed the first calculation of form factors
for a b → light quark transition in which we use our heavy-
HISQ technique. This requires results at multiple values of
the heavy quark mass on multiple sets of gluon field
configurations with fine lattice spacing (going down to
0.045 fm here) so that we can map out the heavy quark
mass dependence of the form factors and obtain physical
results for a heavy quark mass equal to that of the b. One
advantage of this technique over previous calculations is
that we can normalize the lattice currents completely
nonperturbatively. Here we do this for the vector and scalar
currents that give the vector and scalar form factors. This
means that we can avoid sizable systematic errors from the
one-loop matching of lattice currents to continuum currents
that is done, for example, for NRQCD b quarks. A second
advantage of the heavy-HISQ technique is that it enables us
to cover the full range in q2 of the decay rather than just
values of q2 close to zero recoil (low momentum for the
daughter meson). This is possible because the accessible
range in q2 grows as the accessible range in heavy quark
mass grows on finer lattices.
As a stepping-stone toward a variety of physical decay

processes, we have chosen to study first the unphysical
process Bs → ηs here because this does not involve valence
u or d quarks and the s quark mass can be accurately tuned
to its physical value on all of our gluon field configurations.
We present our final form factor results in Fig. 9. The form
factor values at the end points of the q2 range are

f0;þð0Þ ¼ 0.296ð25Þ;
f0ðq2maxÞ ¼ 0.808ð15Þ;
fþðq2maxÞ ¼ 2.58ð28Þ: ð27Þ

Our uncertainty for the form factor at the kinematically
important point (for the differential rate) q2 ¼ 0 is 8%. This
is an improvement by a factor of 2 over earlier results that
used NRQCD b quarks and coarser lattices. The uncer-
tainties of the NRQCD result were dominated by the
extrapolation of lattice results from relatively high q2

values to q2 ¼ 0, along with the associated discretization
effects, statistical errors and a current matching uncertainty
of 3%. Our error budget as a function of q2 is given in Fig. 8

FIG. 13. The form factor ratio
fHs
0

ðq2ðEÞÞ
fBs
0
ðq2ðEÞÞ evaluated at ηs energy

E ¼ Emin ¼ Mηs ¼ 0.6885ð22Þ GeV (blue line and error band)
and at Emax corresponding to the largest energy available to the ηs
in a Ds decay (red line and error band). Both ratios are plotted
over a range of inverse heavy meson masses up toM−1

Ds
. The black

dashed line marks M−1
Hs

¼ M−1
Bs
. Results are compared with the

expectation of
ffiffiffiffiffiffiffi
MBs
MHs

q
[49], given by the black band (see text).

FIG. 14. The form factor ratio fBsþ ð0Þ
fHs
þ ð0Þ plotted against the meson

mass ratio MHs
=MBs

in a log-log plot. Our results are shown as a
blue curve with error band. The HQET expectation that the
form factor ratio should depend on the 3=2 power of the
mass ratio is shown as a black dashed line. In contrast, the red
dashed line shows linear dependence on the mass. Results
for the Ds meson correspond to the left-hand end of the plot,
logðMDs

=MBs
Þ¼−1.003.
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and is dominated by statistical errors that can be improved
at the cost of additional computing resource, to 2%–3%
over the full q2 range.
Although our results correspond to an unphysical process,

Bs → ηs is related to physical processes through SU(3)
flavor symmetry for the light quark. Becausewe have results
for the range of heavy quarkmasses from c to bwe can study
this SU(3) symmetry breaking through comparison to
previous lattice QCD results for the physical processes
for bothB andD decay. This is shown in Fig. 10.We find that
SU(3) flavor symmetry breaking in the daughter quark in the
transition affects the form factors increasingly as the parent
quark gets lighter. In contrast, symmetry breaking in the
spectator quark has very little effect.
HQET expectations for the mass scaling behavior of

form factors for h → l decay should hold for Bs → ηs up to
effects from the s quark mass, which should be small. We
show comparison to such expectations in Figs. 12–14. The
latter two show substantial corrections to the leading-order
HQET behavior are present.
Our results provide further evidence that the heavy-

HISQ approach is an improved method for calculating
hadronic form factors for semileptonic decays involving
heavy quarks. This leads us to conclude that a heavy HISQ
calculation of form factors for a physical b → s process,
B → Klþl− will be able to improve upon the previous

errors in [10,56]. An accurate determination of the renorm-
alization of the lattice tensor current [57], possible with
HISQ quarks, will allow us to improve the determination of
the tensor form factor for that process as well. Our results
are also encouraging for similar calculations involving
b → l decays, such as B → π and Bs → K, enabling
improvement in the determination of the CKM element
Vub when combined with experimental results.
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APPENDIX: CORRELATOR FIT RESULTS

TABLE VI. Results from fits to correlators on set 1. For each heavy quark mass there are five values for the ηs momentum, giving five
different values for q2. For each of these values we give the ground state energy of the ηs, as well as the two current matrix elements (the
matrix element for the vector is given before renormalization with ZV). The final two columns give the values for f0ðq2Þ and fþðq2Þ,
determined using Eqs. (1) and (2).

Set amval
h aMHs ðaqÞ2 aEηs ZdiscahηsjSjHsi ZdiscahηsjV0jĤsi f0ðq2Þ fþðq2Þ

1 0.449 0.90084(11) 0.34436(15) 0.314015(89) 1.6978(32) 1.1830(27) 0.9798(18)
0.32936(15) 0.322342(87) 1.6715(33) 1.1635(28) 0.9646(19) 1.282(90)
0.22140(13) 0.382266(73) 1.5117(34) 1.0473(29) 0.8724(19) 1.0421(88)
0.043910(98) 0.480778(58) 1.3129(60) 0.9137(52) 0.7576(35) 0.7811(38)
−0.059421ð83Þ 0.538131(52) 1.219(18) 0.857(14) 0.704(10) 0.6776(98)

1 0.566 1.03355(13) 0.51773(20) 0.314015(89) 1.7762(36) 1.2902(35) 0.9679(19)
0.50052(20) 0.322342(87) 1.7482(37) 1.2686(36) 0.9527(20) 1.38(15)
0.37665(18) 0.382266(73) 1.5797(38) 1.1402(36) 0.8608(20) 1.114(15)
0.17301(14) 0.480778(58) 1.3707(65) 0.9923(59) 0.7470(35) 0.8278(56)
0.05446(13) 0.538131(52) 1.273(19) 0.930(15) 0.694(10) 0.714(11)

1 0.683 1.16007(14) 0.71582(27) 0.314015(89) 1.8494(40) 1.3880(46) 0.9570(20)
0.69649(26) 0.322342(87) 1.8199(42) 1.3643(47) 0.9418(21) 1.47(22)
0.55746(23) 0.382266(73) 1.6436(42) 1.2248(45) 0.8505(21) 1.189(24)
0.32890(20) 0.480778(58) 1.4255(69) 1.0639(69) 0.7377(35) 0.8758(87)
0.19583(18) 0.538131(52) 1.324(20) 0.997(17) 0.685(10) 0.752(13)

1 0.8 1.28117(16) 0.93539(33) 0.314015(89) 1.9194(44) 1.4795(60) 0.9485(21)
0.91406(33) 0.322342(87) 1.8885(45) 1.4540(60) 0.9333(21) 1.58(31)
0.76051(30) 0.382266(73) 1.7055(44) 1.3041(56) 0.8428(21) 1.270(35)
0.50809(26) 0.480778(58) 1.4790(72) 1.1309(79) 0.7309(35) 0.927(13)
0.36113(24) 0.538131(52) 1.375(20) 1.059(19) 0.679(10) 0.792(17)
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TABLE VII. Results from fits to correlators on set 2. For each heavy quark mass there are five values for the ηs momentum, giving five
different values for q2. For each of these values we give the ground state energy of the ηs, as well as the two current matrix elements (the
matrix element for the vector is given before renormalization with ZV). The final two columns give the values for f0ðq2Þ and fþðq2Þ,
determined using Eqs. (1) and (2).

Set amval
h aMHs ðaqÞ2 aEηs ZdiscahηsjSjHsi ZdiscahηsjV0jĤsi f0ðq2Þ fþðq2Þ

2 0.274 0.59142(13) 0.14776(11) 0.207020(84) 1.2075(65) 0.7870(47) 0.9859(51)
0.095058(93) 0.251579(69) 1.0731(64) 0.6966(51) 0.8762(51) 1.041(23)
0.018658(73) 0.316169(55) 0.924(13) 0.600(11) 0.755(11) 0.778(12)
−0.072133ð52Þ 0.392925(44) 0.815(30) 0.532(22) 0.666(24) 0.598(23)
−0.151516ð34Þ 0.460038(38) 0.717(94) 0.492(73) 0.585(77) 0.491(68)

2 0.450 0.80078(20) 0.35256(25) 0.207020(84) 1.3367(92) 0.9568(79) 0.9529(64)
0.28119(23) 0.251579(69) 1.1845(88) 0.8433(81) 0.8444(61) 1.207(71)
0.17775(20) 0.316169(55) 1.016(16) 0.720(14) 0.724(11) 0.891(30)
0.05482(17) 0.392925(44) 0.890(34) 0.631(27) 0.634(24) 0.672(26)
−0.05267ð14Þ 0.460038(38) 0.78(10) 0.576(85) 0.559(74) 0.535(69)

2 0.6 0.96656(27) 0.57690(42) 0.207020(84) 1.432(12) 1.078(11) 0.9261(74)
0.49077(39) 0.251579(69) 1.266(11) 0.948(10) 0.8190(71) 1.34(12)
0.36590(35) 0.316169(55) 1.083(18) 0.807(17) 0.700(12) 0.980(55)
0.21753(31) 0.392925(44) 0.945(37) 0.703(31) 0.611(24) 0.734(37)
0.08779(27) 0.460038(38) 0.84(11) 0.638(95) 0.541(72) 0.576(82)

2 0.8 1.17473(36) 0.93646(71) 0.207020(84) 1.545(16) 1.217(14) 0.8972(88)
0.83177(67) 0.251579(69) 1.365(15) 1.070(13) 0.7926(83) 1.50(20)
0.68002(62) 0.316169(55) 1.165(21) 0.910(19) 0.677(12) 1.095(92)
0.49968(57) 0.392925(44) 1.013(41) 0.787(35) 0.588(23) 0.819(59)
0.34200(52) 0.460038(38) 0.90(12) 0.71(11) 0.525(70) 0.64(12)

TABLE VIII. Results from fits to correlators on set 3. For each heavy quark mass there are five values for the ηs momentum, giving
five different values for q2. For each of these values we give the ground state energy of the ηs, as well as the two current matrix elements
(the matrix element for the vector is given before renormalization with ZV ). The final two columns give the values for f0ðq2Þ and
fþðq2Þ, determined using Eqs. (1) and (2).

Set amval
h aMHs ðaqÞ2 aEηs ZdiscahηsjSjHsi ZdiscahηsjV0jĤsi f0ðq2Þ fþðq2Þ

3 0.194 0.43980(32) 0.08164(20) 0.15407(17) 0.949(16) 0.591(14) 0.992(15)
0.07172(19) 0.16535(15) 0.909(15) 0.564(15) 0.951(15) 1.25(27)
0.03985(16) 0.20159(13) 0.807(20) 0.499(17) 0.844(20) 0.963(49)
0.00198(13) 0.24464(10) 0.703(57) 0.438(43) 0.735(59) 0.739(60)

−0.1598983ð72Þ 0.428673(59) 0.51(25) 0.34(18) 0.54(26) 0.39(21)

3 0.45 0.74667(78) 0.35118(94) 0.15407(17) 1.136(38) 0.841(38) 0.922(30)
0.33433(92) 0.16535(15) 1.087(37) 0.803(37) 0.883(28) 1.6(1.2)
0.28022(86) 0.20159(13) 0.962(36) 0.707(35) 0.781(28) 1.26(27)
0.21593(79) 0.24464(10) 0.834(73) 0.615(65) 0.677(59) 0.93(23)
−0.05890ð50Þ 0.428673(59) 0.63(31) 0.50(27) 0.51(25) 0.49(24)

3 0.6 0.9107(10) 0.5724(16) 0.15407(17) 1.225(57) 0.931(53) 0.887(40)
0.5519(16) 0.16535(15) 1.172(54) 0.890(49) 0.849(38) 1.8(1.8)
0.4859(15) 0.20159(13) 1.037(49) 0.784(45) 0.751(35) 1.39(44)
0.4075(14) 0.24464(10) 0.898(83) 0.685(73) 0.651(60) 1.00(38)
0.0723(10) 0.428673(59) 0.68(34) 0.56(30) 0.49(25) 0.51(27)

3 0.8 1.1177(13) 0.9285(25) 0.15407(17) 1.340(84) 1.056(74) 0.856(53)
0.9033(25) 0.16535(15) 1.282(79) 1.009(69) 0.820(50) 2.1(2.8)
0.8223(24) 0.20159(13) 1.134(70) 0.889(61) 0.725(44) 1.58(72)
0.7261(23) 0.24464(10) 0.982(99) 0.775(87) 0.628(63) 1.13(65)
0.3147(18) 0.428673(59) 0.74(37) 0.63(34) 0.47(24) 0.54(35)
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