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Abstract

Background: Precision oncology involves analysis of individual cancer samples to understand the genes and
pathways involved in the development and progression of a cancer. To improve patient care, knowledge of
diagnostic, prognostic, predisposing, and drug response markers is essential. Several knowledgebases have been
created by different groups to collate evidence for these associations. These include the open-access Clinical
Interpretation of Variants in Cancer (CIViC) knowledgebase. These databases rely on time-consuming manual
curation from skilled experts who read and interpret the relevant biomedical literature.

Methods: To aid in this curation and provide the greatest coverage for these databases, particularly CIViC, we
propose the use of text mining approaches to extract these clinically relevant biomarkers from all available
published literature. To this end, a group of cancer genomics experts annotated sentences that discussed
biomarkers with their clinical associations and achieved good inter-annotator agreement. We then used a
supervised learning approach to construct the CIViCmine knowledgebase.

Results: We extracted 121,589 relevant sentences from PubMed abstracts and PubMed Central Open Access
full-text papers. CIViCmine contains over 87,412 biomarkers associated with 8035 genes, 337 drugs, and 572
cancer types, representing 25,818 abstracts and 39,795 full-text publications.

Conclusions: Through integration with CIVIC, we provide a prioritized list of curatable clinically relevant cancer
biomarkers as well as a resource that is valuable to other knowledgebases and precision cancer analysts in general.
All data is publically available and distributed with a Creative Commons Zero license. The CIViCmine
knowledgebase is available at http://bionlp.bcgsc.ca/civicmine/.

Keywords: Precision oncology, Text mining, Information extraction, Machine learning, Cancer biomarkers

Background
The ability to stratify patients into groups that are clinic-
ally related is an important step towards a personalized
approach to cancer. Over time, a growing number of
biomarkers have been developed to select patients who
are more likely to respond to certain treatments. These
biomarkers have also been valuable for prognostic
purposes and for understanding the underlying biology of

the disease by defining different molecular subtypes of
cancers that should be treated in different ways (e.g.,
ERBB2/ESR1/PGR testing in breast cancer [1]). Immuno-
histochemistry techniques are a primary approach for test-
ing samples for diagnostic markers (e.g., CD15 and CD30
for Hodgkin’s disease [2]). Recently, the lower cost and
increased speed of genome sequencing have also allowed
the DNA and RNA of individual patient samples to be
characterized for clinical applications [3]. Throughout the
world, this technology is beginning to inform clinician
decisions on which treatments to use [4]. Such efforts are
dependent on a comprehensive and current understand-
ing of the clinical relevance of variants. For example, the
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Personalized Oncogenomics project at BC Cancer identi-
fies somatic events in the genome such as point muta-
tions, copy number variations, and large structural
changes and, in conjunction with gene expression data,
generates a clinical report to provide an ‘omic picture of a
patient’s tumor [5].
The high genomic variability observed in cancers means

that each patient sample includes a large number of new
mutations, many of which may have never been docu-
mented before [6]. The phenotypic impact of most of
these mutations is difficult to discern. This problem is ex-
acerbated by the driver/passenger mutation paradigm
where only a fraction of mutations are essential to the
cancer (drivers) while many others have occurred through
mutational processes that are irrelevant to the progression
of the disease (passengers). An analyst trying to under-
stand a patient sample typically performs a literature re-
view for each gene and specific variant which is needed to
understand its relevance in a cancer type, characterize the
driver/passenger role of its observed mutations, and gauge
the relevance for clinical decision making.
Several groups have built in-house knowledgebases,

which are developed as analysts examine increasing num-
bers of cancer patient samples. This tedious and largely
redundant effort represents a substantial interpretation
bottleneck impeding the progress of precision medicine
[7]. To encourage a collaborative effort, the CIViC knowl-
edgebase (https://civicdb.org) was launched to provide a
wiki-like, editable online resource where community-
contributed edits and additions are moderated by experts
to maintain high-quality variant curation [8]. The resource
provides information about clinically relevant variants in
cancer described in the peer-reviewed literature. Variants
include protein-coding point mutations, copy number var-
iations, epigenetic marks, gene fusions, aberrant expres-
sion levels, and other ‘omic events. It supports four types
of evidence associating biomarkers with different classes
of clinical relevance (also known as evidence types).
Diagnostic evidence items describe variants that can

help a clinician diagnose or exclude a cancer. For in-
stance, the JAK2 V617F mutation is a major diagnostic
criterion for myeloproliferative neoplasms to identify
polycythemia vera, essential thrombocythemia, and pri-
mary myelofibrosis [9]. Predictive evidence items
describe variants that help predict drug sensitivity or re-
sponse and are valuable in deciding further treatments.
Predictive evidence items often explain mechanisms of
resistance in patients who progressed on a drug treat-
ment. For example, the ABL1 T315I missense mutation
in the BCR-ABL fusion predicts poor response to ima-
tinib, a tyrosine kinase inhibitor that would otherwise ef-
fectively target BCR-ABL, in patients with chronic
myeloid leukemia [10]. Predisposing evidence items de-
scribe germline variants that increase the likelihood of

developing a particular cancer, such as BRCA1 muta-
tions for breast/ovarian cancer [11] or RB1 mutations
for retinoblastoma [12]. Lastly, prognostic evidence
items describe variants that predict survival outcome. As
an example, colorectal cancers that harbor a KRAS mu-
tation are predicted to have worse survival [13].
CIViC presents this information in a human-readable

text format consisting of an “evidence statement” such
as the sentence describing the ABL1 T315I mutation
above together with data in a structured, programmatic-
ally accessible format. A CIViC “evidence item” includes
this statement, ontology-associated disease name [14],
evidence type as defined above, drug (if applicable),
PubMed ID, and other structured fields. Evidence items
are manually curated and associated in the database with
a specific gene (defined by Entrez Gene) and variant (de-
fined by the curator).
Several groups have created knowledgebases to aid

clinical interpretation of cancer genomes, many of whom
have joined the Variant Interpretation for Cancer Con-
sortium (VICC, http://cancervariants.org/). VICC is an
initiative that aims to coordinate variant interpretation
efforts and, to this end, has created a federated search
mechanism to allow easier analysis across multiple
knowledgebases [15]. The CIViC project is co-leading
this effort along with OncoKB [16], the Cancer Genome
Interpreter [17], Precision Medicine Knowledge base
[18], Molecular Match, JAX-Clinical Knowledge base
[19], and others.
Most of these projects focus on clinically relevant gen-

omic events, particularly point mutations, and provide
associated clinical information tiered by different levels
of evidence. Only CIViC includes RNA expression-based
biomarkers. These may be of particular value for child-
hood cancers which are known to be “genomically quiet,
” having accrued very few somatic mutations. Conse-
quently, their clinical interpretation may rely more heav-
ily on transcriptomic data [20]. Epigenomic biomarkers
will also become more relevant as several cancer types
are increasingly understood to be driven by epigenetic
misregulation early in their development [21]. For
example, methylation of the MGMT promoter is a well-
known biomarker in brain tumors for sensitivity to the
standard treatment, temozolomide [22].
The literature on clinically relevant cancer mutations

is growing at an extraordinary rate. For instance, only 5
publications in PubMed mentioned BRAF V600E in the
title or abstract in 2004 compared to 454 papers in 2017.
In order to maintain a high-quality and up-to-date
knowledgebase, a curation pipeline must be established.
This typically involves a queue for papers, a triage
system, and then assignment to a highly experienced
curator. This prioritization step is important given the
limited time of curators and the potentially vast number
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of papers to be reviewed. Prioritization must identify pa-
pers that contain knowledge that is of current relevance
to users of the knowledgebase. For instance, selecting
papers for drugs that are no longer clinically approved
would not be valuable to the knowledgebase.
Text mining methods have become a common ap-

proach to help prioritize literature curation. These
methods fall broadly into two main categories, infor-
mation retrieval (IR) and information extraction (IE).
IR methods focus on paper-level information and can
take multiple forms. Complex search queries for spe-
cific terms or paper metadata (helped by the MeSH
term annotations of papers in biomedicine) are com-
mon tools for curators. More advanced document
clustering and topic modeling systems can use semi-
supervised methods to predict whether a paper would
be relevant to curation. Examples of this approach in-
clude the document clustering method used for the
ORegAnno project [23].
IE methods extract structured knowledge directly from

the papers. This can take the form of entity recognition,
by explicitly tagging mentions of biomedical concepts
such as genes, drugs, and diseases. A further step can in-
volve relation extraction to understand the relationship
discussed between tagged biomedical entities. This
structured information can then be used to identify pa-
pers relevant to the knowledgebase. IE methods are also
used for automated knowledgebase population without a
manual curation step. For example, the miRTex knowl-
edgebase, which collates microRNAs and their targets,
uses automated relation extraction methods to populate
the knowledgebase [24]. Protein-protein interaction net-
works (such as STRING [25]) are often built using auto-
matically generated knowledgebases. Our previous work
has used information extraction methods to extract the
role of genes in cancer but did not identify specific aber-
rations or the clinical relevance of them [26].
The main objective of this project was to identify fre-

quently discussed cancer biomarkers that fit the CIViC
evidence model but are not yet included in the CIViC
knowledgebase. We developed an information extraction-
based method to extract key parts of the evidence item:
cancer type, gene, drug (where applicable), and the specific
evidence type from published literature. This allows us to
count the number of mentions of specific evidence items
in abstracts and full-text articles and compare against the
CIViC knowledgebase. We present our methods to de-
velop this resource, known as CIViCmine (http://bionlp.
bcgsc.ca/civicmine/). The main contributions of this work
are an approach for knowledgebase construction that
could be applied to many areas of biology and medicine, a
machine learning method for extracting complicated rela-
tionships between four entity types, and extraction of rela-
tionships across the largest possible publically accessible

set of abstracts and full-text articles. This resource, con-
taining 87,412 gene-cancer associations with clinical rele-
vance, is valuable to all cancer knowledgebases to aid their
curation and also as a tool for precision cancer analysts
searching for evidence supporting biomarkers not yet in-
cluded in any other resource.

Methods
Corpora
The full PubMed, PubMed Central Open Access
(PMCOA) subset, and PubMed Author Manuscript Col-
lection (PMCAMC) corpora were downloaded from the
NCBI FTP website using the PubRunner infrastructure
[27]. These documents were converted to the BioC format
for processing with the Kindred package [28]. HTML tags
were stripped out and HTML special characters converted
to Unicode. Metadata about the papers were retained in-
cluding PubMed IDs, titles, journal information, and pub-
lication date. Subsections of the paper were extracted
using a customized set of acceptable section headers such
as “Introduction,” “Methods,” “Results,” and many syno-
nyms of these (accessible through the GitHub repository).
The corpora were downloaded in bulk in order to not
overload the EUtils RESTFUL service that is offered by
the NCBI. The updated files from PubMed were processed
to identify the latest version of each abstract to process.

Term lists
Term lists were curated for genes, diseases, and drugs
based on several resources. The cancer list was curated
from a section of the Disease Ontology [14]. All terms
under the “cancer” (DOID:162) parent term were selected
and filtered for nonspecific names of cancer (e.g., “neo-
plasm” or “carcinoma”). These cancer types were then
matched with synonyms from the Unified Medical
Language System (UMLS) Metathesaurus [29] (2019AA),
either through existing external reference links in the Dis-
ease Ontology or through exact string-matching on the
main entity names. The additional synonyms in the UMLS
were then added through this link. The gene list was built
from the Entrez gene list and complemented with UMLS
terms. Terms that overlapped with common words found
in scientific literature (e.g., ice) were removed.
The drug list was curated from the WikiData resource

[30]. All Wikidata entities that are medication instances
(Wikidata identifier: Q12140) were selected using a
SPARQL query. The generic name, brand name, and
synonyms were extracted where possible. This list was
complemented by a custom list of general drug categor-
ies (e.g., chemotherapy, tyrosine kinase inhibitors) and a
list of inhibitors built using the previously discussed
gene list. This allowed for the extraction of terms such
as “EGFR inhibitors.” This was done because analysts are
often interested in and publications often discuss
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biomarkers associated with drug classes that target a
specific gene.
All term lists were filtered with a stopword list. This

was based on the stopword list from the Natural Lan-
guage Toolkit [31] and the most frequent 5000 words
found in the Corpus of Contemporary American Eng-
lish [32] as well as a custom set of terms. It was then
merged with common words that occur as gene names
(such as ICE).
A custom variant list was built that captured the main

types of point mutations (e.g., loss of function), copy
number variation (e.g., deletion), epigenetic marks (e.g.,
promoter methylation), and expression changes (e.g.,
low expression). These variants were complemented by a
synonym list.
The word lists and tools used to generate them are access-

ible through the BioWordlists project (https://github.com/
jakelever/biowordlists) and data can be found in the Zenodo
repository (https://doi.org/10.5281/zenodo.1286661).

Entity extraction
The BioC corpora files were processed by the Kindred
package. This NLP package used Stanford CoreNLP [33]
for processing in the original published version [28]. For
this work, it was changed to Spacy [34] for the improved
Python bindings in version 2 for this project. This pro-
vided easier integration and execution on a cluster with-
out running a Java subprocess. Spacy was used for
sentence splitting, tokenization, and dependency parsing
of the corpora files. Furthermore, we use the Scispacy
parsing model [35].
Exact string matching was then used against the toke-

nized sentences to extract mentions of cancer types,
genes, drugs, and variants. Longer terms were prioritized
during extraction so that “non-small cell lung cancer”
would be extracted instead of just “lung cancer.” Vari-
ants were also extracted with a regular expression sys-
tem for extracting protein-coding point mutations (e.g.,
V600E).
Gene fusions (such as BCR-ABL1) were detected by

identifying mentions of genes separated by a forward
slash, hyphen, or colon. If the two entities had no over-
lapping HUGO IDs, then it was flagged as a possible
gene fusion and combined into a single entity. If there
were overlapping IDs, it was deemed likely to be refer-
ring to the same gene. An example is HER2/neu which
is frequently seen and refers to a single gene (ERBB2)
and not a gene fusion. We used the 24 gene fusions as-
sociated with acute myeloid leukemia from MyCancer-
Genome (https://www.mycancergenome.org/) as a sanity
check and found that 23 were found in the literature
using this method with only RPN1-MECOM missing.
Acronyms were also detected, where possible, by iden-

tifying terms in parentheses and checking the term

before it, for instance, “non-small cell lung carcinoma
(NSCLC).” This was done to remove entity mistakes
where possible. The acronym detection method takes
the short-form (the term in brackets) and iterates back-
ward through the long-form (the term before brackets)
looking for potential matches for each letter. If the long-
form and short-form have overlapping associated ontol-
ogy IDs, they likely refer to the same thing and can be
combined, as in the example above. If only one of the
long-form or short-form has an associated ontology ID,
they are combined and assigned the associated ontology
ID. If both long-form and short-form have ontology IDs
but there is no overlap, the short-form is disregarded as
the long-form has more likelihood of getting the specific
term correct.
Gene mentions that are likely associated with signaling

pathways and not specific genes (e.g., “MTOR signaling”)
are also removed using a simple pattern based on the
words after the gene mention. One final post-processing
step merges neighboring terms with matching terms. So
“HER2 neu” would be combined into one entity as the
two terms (HER2 and neu) refer to the same gene.

Sentence selection
With all biomedical documents parsed and entities
tagged, all sentences were selected that mention at least
one gene, at least one cancer, and at least one variant. A
drug was not required as only one (predictive) of the
four evidence types involves a drug entity. We evaluated
100 randomly selected sentences and found that only 10
contained information potentially relevant to CIViC,
with 7 of the sentences referring to prognostic associa-
tions. Many of the sentences report genetic events found
in cancer types, methods, and other irrelevant informa-
tion. Manual annotation of a dataset with only 10% rele-
vance would be hugely inefficient and frustrating for
expert annotators. Furthermore, any machine learning
system would face a large challenge dealing directly with
a class balance of 10%. Therefore, we elected to use a
keyword search to enrich the sentences with CIViC rele-
vant knowledge.
Through manual review of a subset of the sentence

combined with knowledge of the requirement of CIViC,
we selected the keywords found in Table 1. Most of the
keywords target a specific association type (e.g., survival
for prognostic). This set was not designed to be exhaust-
ive but to keep a reasonable balance of relevant sen-
tences that could be later filtered by a machine learning
system. In selecting each keyword, the filtered sentences
were evaluated for relevance and the keyword was added
if at least half of the sentences seemed relevant to
CIViC. The five groups were treated separately such that
20% of the corpus comes from each of the five groups.
This was done to provide coverage for the rarer types
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such as diagnostic that were not found at all in the initial
100 sentences evaluated.

Annotation platform
A web platform for simple relation annotation was
built using Bootstrap (https://getbootstrap.com/). This
allowed annotators to work using a variety of devices,
including their smartphones. The annotation system
could be loaded with a set of sentences with entity an-
notations stored in a separate file (also known as
standoff annotations). When provided with a relation
pattern, for example, “Gene/Cancer,” the system would
search the input sentences and find all pairs of the
given entity types in the same sentence. It would make
sure that the two entities are not the same term, as in
some sentences a token (or set of tokens) could be an-
notated as both a gene name and a cancer type (e.g.,
“retinoblastoma”). For a sentence with two genes and
two cancer types, it would find all four possible pairs
of gene and cancer type.

Each sentence, with all the possible candidate relations
matching the relation pattern, would be presented to the
user, one at a time (Fig. 1a). The user can then select
various toggle buttons for the type of relation that these
entities are part of. They can also use these to flag entity
extraction errors or mark contentious sentences for dis-
cussion with other annotators.

Annotation
For the annotation step (outlined in Fig. 1b), the anno-
tated data set (known as the gold set) was constructed
using a consensus of multiple annotators. An equal
number of sentences were selected from each of the
groups outlined in Table 1. This guaranteed coverage of
all four evidence types as otherwise the prognostic type
dominated the other groups. If this step was not done,
100 randomly selected filtered sentences would only
contain 2 (on average) from the diagnostic group. How-
ever, this sampling provided poor coverage of sentences
that describe specific point mutations. Many precision
oncology projects only focus on point mutations and so
a further requirement was that 50% of sentences for an-
notation include a specific point mutation. Altogether,
this sampling provides better coverage of the different
omic events and evidence types that were of interest.
Special care is required when evaluating models built on
this customized training set as an unweighted evaluation
would not be representative of the real literature.
Sentences that contain many permutations of relation-

ships (e.g., a sentence with 6 genes and 4 cancer types
mentioned) were removed. An upper limit of 5 possible

Table 1 The five groups of search terms used to identify
sentences that potentially discussed the four evidence types.
Strings such as “sensitiv” are used to capture multiple words
including “sensitive” and “sensitivity”

General Diagnostic Predictive Predisposing Prognostic

marker diagnostic sensitiv risk survival

resistance predispos prognos

efficacy DFS

predict

(a) (b)

Fig. 1 a A screenshot of the annotation platform that allowed expert annotators to select the relation types for different candidate relations in all of
the sentences. The example sentence shown describes a prognostic marker. b An overview of the annotation process. Sentences are identified from
literature that describes cancers, genes, variants, and optionally drugs before being filtered using search terms. The first test phase tried complex
annotation of biomarker and variants together but was unsuccessful. The annotation task was split into two separate tasks for biomarkers and variants
separately. Each task had a test phase and then the main phase on the 800 sentences that were used to create the gold set

Lever et al. Genome Medicine           (2019) 11:78 Page 5 of 16

https://getbootstrap.com/


relations was enforced for each sentence. This was done
with the knowledge that the subsequent relation extrac-
tion step would have a greater false positive rate for sen-
tences with a very large number of possible relations. It
was also done to make the annotation task more man-
ageable. An annotation manual was constructed with
examples of sentences that would and would not match
the four evidence types. This was built in collaboration
with CIViC curators and is available in our Github re-
pository (https://github.com/jakelever/civicmine). Each
annotation task began with a test phase of 100 sen-
tences. This allows the annotators to become accus-
tomed to the annotation platform and make adjustments
to the annotation manual to clarify misunderstandings.
The first test phase (Biomarker + Variant) involved an-

notating sentences for ternary (gene, cancer, variant) or
quaternary (gene, cancer, variant, drug) relationships.
The ternary relationships included diagnostic, prognos-
tic, and predisposing, and the quaternary relationship
was predictive. As many sentences contain multiple
mentions of the same gene or variant, we found there
was a combinatorial problem as different annotators
found it challenging to decide which variants should be
associated with which gene. The annotators were trying
to decide linguistically which of the mentions was part
of the biomarker being described. For example, in a sen-
tence that mentioned the same variant five times, differ-
ent annotators chose different mentions of the same
variant. These were flagged as differences and reduced
the annotator agreement. This led to the low F1-score
inter-annotator agreement (average of 0.52) and forced
us to reconsider the annotation approach.
To reduce the possible combinations, we split the task

into two separate tasks, the biomarker annotation, and
the variant annotation. The biomarker annotation in-
volved binary (gene, cancer) and ternary (gene, cancer,
drug) relations that described one of the evidence types.
The variant annotation task (gene, variant) focused on
whether a variant (e.g., deletion) was associated with a
specific gene in the sentence. For a sentence containing
two genes, two cancer types, and three variants, the ori-
ginal combined task would have 12 combinations that
would require annotation. By splitting it into the two
tasks, the biomarker task would have four combinations
and the variant task would also have four combinations.
We hypothesized that a smaller number of combinations
would reduce the cognitive load for the annotators and
increase inter-annotator agreement. To further reduce
complexity, the predictive and prognostic evidence types
were merged (as shown in Fig. 2), to further reduce the
annotation complexity. The predictive/prognostic anno-
tations could be separated after tagging as relationships
containing a drug would be predictive and those without
would be prognostic. A further postprocessing step to

generate the gold set involved identifying prognostic re-
lationships that overlapped with predictive relationships
(i.e., shared the same gene and cancer type in a sen-
tence) and removing them.
With the redefined annotation task, six annotators

were involved in biomarker annotation, all with know-
ledge of the CIViC platform and having experience
interpreting patient cancer variants in a clinical context.
Three annotators (one of whom was involved in the bio-
marker annotation) were involved in variant annotation
and they all had experience in cancer genomics. Both
annotation tasks started with a new 100-sentence test
phase to evaluate the redefined annotation tasks and re-
solve any ambiguity within the annotation manuals.
Good inter-annotator agreement was achieved at this
stage for both the biomarker annotation (average F1-
score = 0.68) and variant annotation (average F1-
score = 0.95). The higher agreement scores validated
our reasoning to split the annotation task in two. In
fact, the very high variant annotation score suggests
that this task was made relatively easy by separating it.
These 100 sentences were discarded as they exhibited
a learning curve as annotators become comfortable
with the task. Between each annotation stage, the
annotators discussed through video conference the dif-
ficulties that had been encountered. These comments
were used to improve the annotation manuals with the
aim to capture sentences with greater relevance to
CIViC and also increase inter-annotator agreement.
To generate the highest possible annotations, each

sentence would be annotated by three different annota-
tors and a majority voting system used to resolve con-
flicts. As there were six annotators for the biomarker
annotation task, we split them into two groups who
would work on each half of the 800-sentence corpus.
Separately, three annotators worked on variant annota-
tion with the 800-sentence set. Table 2 shows the inter-
annotator agreement for these tasks for the full 800
sentences. The inter-annotator agreement is even higher
for the biomarker task than the initial 100-sentence test
suggesting that the refinements to the annotation man-
ual and the video conference discussions helped. The
biomarker and variant annotations are then merged to
create the gold corpus of 800 sentences used for the
machine learning system.

Relation extraction
The sentences annotated with relations were then proc-
essed using the Kindred relation extraction Python pack-
age. Relation extraction models were built for all five of
the relation types: the four evidence types (diagnostic,
predictive, predisposing, and prognostic) and one associ-
ated variant relation type. Three of the four evidence
type relations are binary between a gene entity and a
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cancer entity. The associated variant relation type is also
binary between a gene entity and a variant entity. The
predictive evidence item type was ternary between a
gene, a cancer type, and a drug.
Most relation extraction systems focus on binary rela-

tions [36, 37] and use features based on the dependency
path between those two entities. The recent BioNLP
Shared Task 2016 series included a subtask for non-
binary relations (i.e., relations between three or more

entities), but no entries were received [38]. Relations
between 2 or more entities are known as n-ary relations
where n ≥ 2. The Kindred relation extraction package,
based on the VERSE relation extraction tool [39], which
won part of the BioNLP Shared Task 2016, was en-
hanced to allow prediction of n-ary relations. First, the
candidate relation builder was adapted to search for rela-
tions of a fixed n which may be larger than 2. This
meant that sentences with 5 non-overlapping tagged
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Fig. 2 a The precision-recall curves illustrate the performance of the five relation extraction models built for the four evidence types and the
associated variant prediction. b This same data can be visualized in terms of the threshold values on the logistic regression to select the
appropriate value for high precision with reasonable recall
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entities would generate 60 candidate relations with n = 3.
These candidate relations would then be pruned by en-
tity types. Hence, for the predictive relation type (with
n = 3), the first entity must be a cancer type, the second
a drug, and the third a gene. Two of the features used
are based on the path through the dependency graph
between the entities in the candidate relation. For rela-
tions with more than two entities, Kindred made use of
a minimal spanning tree within the dependency graph.
The default Kindred features were then constructed for
this subgraph and the associated entities and sentences.
All features were represented with 1-hot vectors or bag-
of-word representations.
During training, candidate relations are generated with

matching n-ary to the training set. Those candidate rela-
tions that match a training example are flagged as positive
examples with all others as negative. These candidate rela-
tions are vectorized, and a logistic regression classifier is
trained against them. The logistic regression classifier out-
puts an interpretable score akin to a probability for each
relation, which was later used for filtering. Kindred also
supports a Support Vector Machine classifier (SVM) or
can be extended with any classifier from the scikit-learn
package [40]. The logistic regression classifier was more
amenable to adjustment of the precision-recall tradeoff.
For generation of the knowledgebase, the four evi-

dence type relations were predicted first which provided
relations including a gene. The associated variant rela-
tion was then predicted and attached to any existing evi-
dence type relation that included that gene.

Evaluation
With the understanding that the annotated sentences
were selected randomly from customized subsets and
not randomly from the full population, care was taken in
the evaluation process.
First, the annotated set of 800 sentences was split

75%/25% into a training and test set that had similar
proportions of the four evidence types (Table 3). Each

sentence was then tracked with the group it was selected
from (Table 1). Each group has an associated weight
based on the proportion of the entire population of pos-
sible sentences that it represents. Hence, the prognostic
group, which dominates the others, has the largest
weight. When comparing predictions against the test set,
the weighting associated with each group was then used
to adjust the confusion matrix values. The goal of this
weighting scheme was to provide performance metrics
which would be representative for randomly selected
sentences from the literature and not for the customized
training set.

Precision-recall tradeoff
Figure 2a shows precision-recall curves for all five of the
relation types. The diagnostic and predisposing tasks are
obviously the most challenging for the classifier. This
same data can be visualized by comparing the threshold
values used against the output of the logistic regression
for each metric (Fig. 2b).
To provide a high-quality resource, we decided on a

trade-off of high precision with low recall. We hypothe-
sized that the most commonly discussed cancer bio-
markers, which are the overall goal of this project, would
appear in many papers using different wording. These
frequently mentioned biomarkers would then be likely
picked up even with lower recall. This also reduces the
burden on CIViC curators to sift through false positives.
With this, we selected thresholds that would give as
close to 0.9 precision given the precision-recall curves
for the four evidence types. We require a higher preci-
sion for the variant annotation (0.94). The thresholds
and associated precision-recall tradeoffs are shown for
all five extracted relations in Table 4.

Application to PubMed, PMCOA, and PMCAMC with
updates
With the thresholds selected, the final models were ap-
plied to all sentences extracted from PubMed, PMCOA,
and PMCAMC. This is a reasonably large computational
problem and was tasked to the compute cluster at the
Canada’s Michael Smith Genome Sciences Centre.
To manage this compute and provide infrastructure for

easy updating with new publications in all three corpora,
we made use of the updated PubRunner infrastructure

Table 2 The inter-annotator agreement for the main phase
for 800 sentences, measured with F1-score, showed good
agreement in the two sets of annotations for biomarkers as
well as very high agreement in the variant annotation task.
The sentences from the multiple test phases are not included
in these numbers and were discarded from further analysis

Annotator 2 Annotator 3

Annotator 1 0.74 0.73

Annotator 2 NA 0.74

Annotator 1 0.78 0.85

Annotator 2 NA 0.79

Annotator 1 0.96 0.96

Annotator 2 NA 0.96

Table 3 Number of annotations in the training and test sets

Annotation Train Test

Associated variant 768 270

Diagnostic 156 62

Predictive 147 43

Predisposing 125 57

Prognostic 232 88
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(paper in preparation - https://github.com/jakelever/pub-
runner). This allows for easy distribution of the work
across a compute cluster. The resulting data was then
pushed to Zenodo for perpetual and public hosting [41].
The data is released with a Creative Commons Public Do-
main (CC0) license so that other groups can easily make
use of it.
The PubRunner infrastructure enables the easy update

of the resource. We plan to update the resource every
month. It manages the download and execution of the
tool as well as the upload of the data to the Zenodo
repository.

CIViC matching
To make comparisons with CIViC, we downloaded the
nightly data file from CIViC (https://civicdb.org/releases
– downloaded on 24 September 2019) and matched evi-
dence items against items in CIViCmine. The evidence
type and IDs for genes and cancers were used for match-
ing. Direct string matching was used to compare drug
names for predictive biomarkers. The exact variant was
not used for comparison in order to find genes that con-
tain any biomarkers that match between the two
resources.
Some mismatches occurred with drug names. For ex-

ample, CIViCmine may capture information about the
drug family while CIViC contains information on spe-
cific drugs or a list of drugs. Another challenge with
matching with CIViCmine is related to the similarity of
cancer types in the Disease Ontology. Several pairs of
similar cancers types are used interchangeably by some
researchers and not by others, e.g., stomach cancer and
stomach carcinoma. CIViC may contain a biomarker for
stomach cancer and CIViCmine matches all the other
details except it relates it to stomach carcinoma.

User interface
To make the data easily explorable, we provide a Shiny-
based front-end (Fig. 3a) [42]. This shows a list of bio-
markers extracted from abstracts and papers, which can
be filtered by the Evidence Type, Gene, Cancer Type,
Drug, and Variant. To help prioritize the biomarkers, we
use the number of unique papers in which they are men-
tioned as a metric. By default, the listed biomarkers are

shown with the highest citation count first. Whether the
biomarker is found in CIViC is also shown as a column
and is an additional filter. The CIViC information is up-
dated daily by downloading the latest nightly release.
This allows CIViC curators to quickly navigate to bio-
markers not currently discussed in CIViC and triage
them efficiently.
With filters selected, the user is presented with pie

charts that illustrate the representation of different can-
cer types, genes, and drugs. When the user clicks on a
particular biomarker, an additional table is populated
with the citation information. This includes the journal,
publication year, section of the publication (e.g., title, ab-
stract or main body), subsection (if cited from the main
body), and the actual text of the sentence from which
the relationship was extracted. This table can further be
searched and sorted, for example, to look for older cita-
tions or citations from a particular journal. The PubMed
ID is also provided with a link to the citation on
PubMed.

Results
From the full PubMed corpus and all downloadable pa-
pers from PubMed Central, we extracted 87,412 bio-
markers with a breakdown into the four types (Fig. 3b).
As expected, based on our preliminary analysis, there
are many more prognostic evidence items than the other
three types. Table 5 outlines examples of all four of
these evidence types. 34.8% of sentences (42,363/121,
589) contain more than one evidence item, such as the
predictive example which relates EGFR as a predictive
marker in NSCLC to both erlotinib and gefitinib. In
total, we extracted 186,659 mentions of biomarkers from
67,210 unique papers. These biomarkers relate to 8035
genes, 572 cancer types, and 337 drugs. We further
delved into the variants extracted for each of the evi-
dence types. For extracting protein-coding mutations,
we are unable to ascertain directly from the text if they
are germline or somatic. Instead, we compared them
with entries in COSMIC [43] that were tagged as som-
atic and dbSNP [44] that were found above 1% in the
population. Figure 3c shows that, as expected, the pre-
disposing type is most strongly associated with germline
variants. Interestingly, many of the prognostic variants
are also germline while diagnostic and predictive vari-
ants are more likely to be somatic.
EGFR and TP53 stand out as the most frequently ex-

tracted genes in different evidence items (Fig. 4a). Over
50% of the EGFR evidence items are associated with lung
cancer or non-small cell lung carcinoma (NSCLC).
CDKN2A has a larger proportion of diagnostic bio-
markers associated with it than most of the other genes
in the top 20. CDKN2A expression is a well-established
marker for distinguishing HPV+ versus HPV− cervical

Table 4 The selected thresholds for each relation type with the
high precision and lower recall trade-off

Extracted relation Threshold Precision Recall

Associated variant 0.70 0.941 0.794

Diagnostic 0.63 0.957 0.400

Predictive 0.93 0.891 0.141

Predisposing 0.86 0.837 0.218

Prognostic 0.65 0.878 0.414
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cancers. Its expression or methylation states are dis-
cussed as diagnostic biomarkers in a variety of other
cancer types including colorectal cancer and stomach
cancer.
Breast cancer is, by far, the most frequently discussed

cancer type (Fig. 4b). A number of the associated bio-
markers focus on predisposition, as breast cancer has
one of the strongest hereditary components associated
with germline mutations in BRCA1 and BRCA2. NSCLC

shows the largest relative number of predictive bio-
markers, consistent with the previous figure showing the
importance of EGFR.
For the predictive evidence type, we see a disproportion-

ally large number associated with the general term chemo-
therapy and specific types of chemotherapy including
cisplatin, paclitaxel, and doxorubicin (Fig. 4c). Many tar-
geted therapies are also frequently discussed such as the
EGFR inhibitors, gefitinib, erlotinib, and cetuximab. More
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Fig. 3 a A Shiny-based web interface allows for easy exploration of the CIViCmine biomarkers with filters and overview pie charts. The main table
shows the list of biomarkers and links to a subsequent table showing the list of supporting sentences. b The entirety of PubMed and PubMed
Central Open Access subset were processed to extract 87,412 biomarkers distributed between the four different evidence types shown. c Protein-
coding variants extracted for each evidence item are compared against somatic variants in COSMIC and > 1% prevalence SNPs in dbSNP
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general terms such as “tyrosine kinase inhibitor” capture
biomarkers related to drug families.
Lastly, we see that expression related biomarkers dom-

inate the variant types (Fig. 4d). Markers based on ex-
pression are more likely to be prognostic than those
using non-expression data (83.3% versus 45.2%). The
popular approach to exploring the importance of a gene
in a cancer type is to correlate expression levels with pa-
tient survival. With the extended historical use of immu-
nohistochemical methods as well as the accessibility of
large transcriptome sets and survival data (e.g., TCGA),
such associations have become very common. The “mu-
tation” variant type has a more even split across the four
evidence types. The mutation term covers very general
phrasing without a mention of a specific mutation. The
substitution variant type does capture this information
but there are far fewer than biomarkers with the “muta-
tion” variant type. This reflects the challenge of extract-
ing all of the evidence item information from a single
sentence. It is more likely for an author to define a mu-
tation in another section of the paper or aggregate pa-
tients with different mutations within the same gene and
then use a general term (e.g., EGFR mutation) when dis-
cussing its clinical relevance. There are also a substantial
number of evidence items where the variant cannot be
identified and are flagged as “[unknown].” These are still
valuable but may require more in-depth curation to
identify the actual variant.
Of all the biomarkers extracted, 21.4% (18,709/ 87,

412) are supported by more than one citation. The most
cited biomarker is BRCA1 mutation as a predisposing
marker in breast cancer with 682 different papers dis-
cussing this. The initial priority for CIViC annotation is
on highly cited biomarkers that have not yet been cu-
rated into CIViC, to eliminate obvious information gaps.
However, the single citations may also represent valuable
information for precision cancer analysts and CIViC cu-
rators focused on specific genes or diseases.

We compared the 87,412 biomarkers extracted by
CIViCmine with the 2518 in the CIViC resource as of 24
September 2019. The first Venn diagram in Fig. 5a
shows the overlap of exact evidence items between the
two resources. The overlap is quite small and the num-
ber evidence extracted in CIViCmine not yet included in
CIViC is very large. The associations that are unique to
CIViCmine would likely contain curatable associations
that should be added to CIViC. The associations that are
unique to CIViC indicate limitations of this method.
Many of these associations are likely not described
within a single sentence or are in publications for which
the full-text is inaccessible. Furthermore, this approach
is most successful with variants that are mentioned mul-
tiple times in the literature and will have a harder time
with associations mentioned only a single time.
We next compare the cited publications using

PubMed ID. Despite not having used CIViC publica-
tions in training CIViCmine, we find that a substantial
number of papers cited in CIViC (294/1474) were
identified automatically by CIViCmine. The remaining
~ 1100 papers were likely not identified as they did not
contain a single sentence that contained all the infor-
mation necessary for extraction. Future methods that
can identify biomarkers discussed across multiple sen-
tences would likely identify more of these papers.
Altogether, CIViCmine includes 6600 genes, 443
cancer types, and 251 drugs or drug families not yet in-
cluded in CIViC.
We further compared CIViCmine with the Cancer

Genome Interpreter (CGI) and OncoKB resources,
two more resources that are part of the VICC consor-
tium. We compare the CGI biomarkers dataset
against CIViCmine predictive variants and the CGI
cancer genes marked as predisposing against CIViC-
mine predisposing genes in Fig. 5a. While we find
reasonable overlap with the small set of predisposing
genes, the overlap with predictive biomarkers is very
small. While there are challenges mapping one knowl-
edgebase to another (e.g., making sure that disease
identifiers match up), a manual inspection suggested
that this was only a minor issue and that the two
datasets do not overlap well. Furthermore, the overlap
of biomarkers from OncoKB and CIViCmine predict-
ive variants is also very small. The CIViCmine system
is designed to best capture biomarkers that are men-
tioned multiple times in the literature within a single
sentence. This suggests that many of the biomarkers
in the Cancer Genome Interpreter and OncoKB are
not mentioned many times in the literature. Finally, it
strongly suggests that the CIViCmine resource is
valuable to the broader community as it contains vast
numbers of associations that should be added to these
other resources.

Table 5 Four example sentences for the four evidence types
extracted by CIViCmine. The associated PubMed IDs are also
shown for reference

Type PMID Sentence

Diagnostic 29214759 JAK2 V617F is the most common mutation in
myeloproliferative neoplasms (MPNs) and is a
major diagnostic criterion.

Predictive 28456787 In non-small cell lung cancer (NSCLC) driver
mutations of EGFR are positive predictive bio-
markers for efficacy of erlotinib and gefitinib.

Predisposing 28222693 Our study suggests that one BRCA1 variant
may be associated with increased risk of
breast cancer.

Prognostic 28469333 Overexpression of Her2 in breast cancer is a
key feature of pathobiology of the disease and
is associated with poor prognosis.
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Use cases
There are two use cases of this resource that are already
been realized by CIViC curators at the McDonnell Gen-
ome Institute and analysts at BC Cancer.
Knowledgebase curation use case: The main purpose

of this tool is to assist in curation of new biomarkers in
CIViC. A CIViC curator, looking for a frequently dis-
cussed biomarker, would access the CIViCmine Shiny
app through a web browser. This would present the
table, pie charts, and filter options on the left. They

would initially filter the CIViCmine results for those not
already in CIViC. If they had a particular focus, they
may filter by evidence type. For example, some CIViC
curators may be more interested in diagnostic, predict-
ive, and prognostic biomarkers than predisposing. This
is due to the relative importance of somatic events in
many cancer types. They would then look at the table of
biomarkers, already sorted by citation count in descend-
ing order, and select one of the top ones. This would
then populate a table further down the page. Assuming
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Fig. 4 The top 20 a genes, b cancer types, c drugs, and d variants extracted as part of evidence items
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that this is a frequently cited biomarker, there would be
many sentences discussing it, which would quickly give
the curator a broad view of whether it is a well-
supported association in the community. They might
then open multiple tabs on their web browser to start
looking at several of the papers discussing it. They might
select an older paper, close to when it was first estab-
lished as a biomarker, and a more recent paper from a
high-impact journal to gauge the current view of the
biomarker. Several of the sentences may cite other pa-
pers as being important to establishing this biomarker.
The curator would look at these papers in particular, as
they may be the most appropriate to curate. Importantly,
the curator can use this to identify the primary literature
source(s), which includes the experimental data support-
ing this biomarker.
Personalized cancer analyst use case: While interpret-

ing an individual patient tumor sample, an analyst typic-
ally needs to interpret a long list of somatic events.
Instead of searching PubMed for each somatic event,
they can initially check CIViC and CIViCmine for exist-
ing structured knowledge on the clinical relevance of
each somatic event. First, they should check CIViC given
the high level of pre-existing curation there. This would
involve searching the CIViC database through their web-
site or API. If the variant does not appear there, they
would then progress to CIViCmine. By using the filters
and search functionality, they could quickly narrow
down the biomarkers for their gene and cancer type of

interest. If a match is found, they can then move to the
relevant papers that are listed below to understand the
experiments that were done to make this assertion. As
they evaluate this biomarker, they could enter this evi-
dence and all of the structured fields that may be spread
throughout the publication into the CIViC database.
Both CIViC and CIViCmine reduce curation burden by
aggregating likely applicable data across multiple syno-
nyms for the gene, disease, variant, or drug not as easily
identified through PubMed searches.

Evaluation by CIViC curator
To evaluate the curation value of the data provided by
CIViCmine, a CIViC curator evaluated the top bio-
markers identified by CIViCmine that were not found in
CIViC. Biomarkers with high citation counts were
selected for each evidence type and filtered for those
which the variant was also extracted. They were then
evaluated for correctness (whether the sentences
matched the extracted structured data), usability
(whether there was enough information for curation into
CIViC contained within the sentence), and need
(whether this information was lacking in CIViC). Each
biomarker was marked in all three categories with yes,
intermediate, and no. Intermediate scores are used to
identify cases where additional information (e.g., reading
the full paper or its citations) was needed. Figure 5b
shows the summary of the results as percentages for
each of the three metrics across the four evidence types.

Fig. 5 a A comparison of the associations and papers in CIViCmine with CIViC, the Cancer Genome Interpreter and OncoKB. b The top results in
CIViCmine were evaluated by a CIViC curator and measured for three categories (correctness, usability, and need). Percentages are shown for
each metric and evidence type for no, intermediate, and yes
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Overall, the results are very positive with 73% of evalu-
ated biomarkers being deemed needed by CIViC. The
predictive evidence type was found to have a larger pro-
portion of unneeded evidence items. This was due to the
catch-all groups (e.g., EGFR inhibitors) that were
deemed to be too vague for inclusion into CIViC but
might provide valuable information for other clinical re-
searchers. The high percentage of intermediate for the
usability of predisposing biomarkers was due to the gen-
eral variant terms identified (such as mutation) where
the exact variant was unclear and further curation would
be needed. Overall, these results show that CIViCmine
provides valuable data that can be curated into CIViC
and other knowledgebases.

Discussion
This work provides several significant contributions to the
fields of biomedical text mining and precision oncology.
Firstly, the annotation method is drastically different from
previous approaches. Most annotation projects (such as
the BioNLP Shared Tasks [45, 46] and the CRAFT corpus
[47]) have focused on abstracts or entire documents. The
biomarkers of interest for this project appear sparsely in
papers so it would have been inappropriate to annotate
full documents and a focus on individual sentences was
necessary. In selecting sentences, we aimed for roughly
half the sentences to contain positive relations. This would
enable better classifier training with a more even class bal-
ance. Therefore, we filtered the sentences with a series of
keywords after identifying those that contain the appropri-
ate entities. This approach could be applied to many other
biomedical topics.
We also made use of a simpler annotation system than

the often used brat [48] which allowed for fast annota-
tion by restricting the possible annotation options.
Specifically, annotators did not select the entities but
were shown all appropriate permutations that matched
the possible relation types. Issues of incorrect entity an-
notation were reported through the interface, collated,
and used to make improvements to the underlying
wordlists for gene, cancer types, and drugs. We found
that once a curator became familiar with the task, they
could curate sentences relatively quickly with approxi-
mately 1–2 min spent on each sentence. Expert annota-
tion is key to providing high-quality data to build and
evaluate a system. Therefore, reducing the time required
for expert annotators is essential.
The supervised learning approach differs from methods

that used co-occurrence based (e.g., STRING [25]) or
rule-based (e.g., mirTex [24]) methods. Firstly, the method
can extract complex meaning from the sentence providing
results that would be impossible with a co-occurrence
method. A rule-based method would require enumerating
the possible ways of describing each of the diverse

evidence types. Our approach can capture a wide variety
of biomarker descriptions. Furthermore, most relation ex-
traction methods aim for optimal F1-score [38], placing
an equal emphasis on precision and recall. To minimize
false positives, our approach of high precision and low re-
call would be an appropriate model for other information
extraction methods applied to the vast PubMed corpus.
Apart from the advantages outlined previously, several

other factors lead to the decision to use a supervised
learning approach to build this knowledgebase. The CIViC
knowledgebase could have been used as training data in
some form. The papers already in CIViC could have been
searched for the sentences discussing the relevant bio-
marker, which could then have been used to train a super-
vised relation extraction system. An alternative approach
to this problem would have been to use a distant supervi-
sion method using the CIViC knowledgebase as seed data.
This approach was taken by Peng et al., who also
attempted to extract relations across sentence boundaries
[49]. They chose to focus only on point mutations and ex-
tracted 530 within-sentence biomarkers and 1461 cross-
sentence biomarkers. These numbers are substantially
smaller than the 70,655 extracted in CIViCmine.
The reason to not use the CIViC knowledgebase in

the creation of the training data was taken to avoid any
curator-specific bias that may have formed in the selec-
tion of papers and biomarkers already curated. Avoiding
this approach was key to providing a broad and unbiased
view of the biomarkers discussed in the literature. CIViC
evidence items include additional information such as
directionality of a relationship (e.g., does a mutation
cause drug sensitivity or resistance), whether the variant
is germline or somatic, the level of support for it (from
preclinical models up to FDA guidelines) and several
other factors. It is highly unlikely that all this informa-
tion will be included within a single sentence. Therefore,
we did not try to extract this information concurrently.
Instead, it is an additional task for the curator as they
process the CIViCmine prioritized list. While single gene
biomarkers are the most commonly discussed findings,
there are an increasing number of multi-gene markers
or more complex interactions involving multiple variants
or treatments. Our system focuses on mapping a single
gene, with a single variant (where possible) with a single
cancer type and a single drug (for predictive evidence
items). Further research would be needed to extract
these complex associations, especially as they are more
likely to span multiple sentences. It is also challenging to
judge the immediate clinical utility of the extracted bio-
markers as their use would rely on the data accessible to
a clinician (e.g., whether they have panel, whole-genome
sequencing, or expression data).
A robust named entity recognition solution does not

exist for a custom term list of cancer types, drugs, and
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variants. For instance, the DNorm tool [50] does not
capture many cancer subtypes. A decision was made to
go for high recall for entity recognition, including genes,
as the relation extraction step would then filter out
many incorrect matches based on context. This decision
is further supported by the constant evolution of cancer
type ontologies, as demonstrated by workshops at recent
Biocuration conferences.
CIViCmine has two limitations that are shared by al-

most all text-mined knowledgebases, access to the pub-
lished literature for text-mining, and the focus on
sentences as the unit of discovery. PubMed contains
over 20 million abstracts but PubMed Central only con-
tains approximately 2 million full-text articles. It has
been shown many times that the full-text contains the
majority of text-mineable information but over 90% of
papers are behind paywalls. Furthermore, the supple-
mentary materials may also provide further text for text
mining, but the lack of standardization in accessing this
text is a large obstacle. Text mining methods are also
broadly limited to focusing on single sentences due to
the huge challenges that remain in coreference reso-
lution to link pronouns to entities in other sentences. It
is incredibly difficult to quantify how much knowledge is
lost due to this limitation, but as the associations
become more complicated and include more entities,
the recall will drop substantially. The limitation is likely
one of the main reasons for the poor overlap with the
other knowledgebases.

Conclusions
The CIViCmine resource, accessible at http://bionlp.
bcgsc.ca/civicmine, and freely available associated data
provide a valuable addition to the precision oncology in-
formatics community. CIViCmine can be used to assist
curation of other precision cancer knowledgebases and
can be used directly by precision cancer analysts to
search for biomarkers of interest. As this resource will
be updated monthly with the latest research, it will con-
stantly change as new cancer types and drug names
enter the lexicon. We anticipate that the methods
described can be used in other biomedical domains and
that the resources provided will be valuable to the bio-
medical text mining and precision oncology fields.

Acknowledgements
The authors would like to thank Compute Canada for the use of compute
infrastructure for this research.

Authors’ contributions
JL, MRJ, OLG, MG, and SJMJ developed the project idea. JL developed the
methods, did the analyses, and wrote the initial paper draft. JL, MRJ, AMD,
KK, MB, JG, LC, and MG annotated text data. OLG, MG, and SJMJ supervised
the project. All authors read and approved the final manuscript.

Funding
CIViC is supported by the National Cancer Institute (NCI) of the National
Institutes of Health (NIH) under award number U01CA209936. JL is
supported by a Vanier Canada Graduate Scholarship. MG is supported by the
NHGRI under award number R00HG007940.

Availability of data and materials
The complete datasets are available in the Zenodo repository (https://doi.
org/10.5281/zenodo.1472826) with the September 2019 release used for this
paper [41]. The data can also be viewed through the web viewer (http://
bionlp.bcgsc.ca/civicmine/) and subsets of the data can be downloaded
there. The code for the analysis and web viewer is available at GitHub
(https://github.com/jakelever/civicmine/).

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.
2University of British Columbia, Vancouver, BC, Canada. 3McDonnell Genome
Institute, Washington University School of Medicine, St. Louis, MO, USA.
4Siteman Cancer Center, Washington University School of Medicine, St. Louis,
MO, USA. 5Division of Oncology, Department of Medicine, Washington
University School of Medicine, St. Louis, MO, USA. 6Department of Genetics,
Washington University School of Medicine, St. Louis, MO, USA. 7Simon Fraser
University, Burnaby, BC, Canada.

Received: 17 June 2019 Accepted: 7 November 2019

References
1. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes

based on ER/PR and Her2 expression: comparison of clinicopathologic
features and survival. Clin Med Res. 2009;7(1–2):4–13.

2. Rüdiger T, Ott G, Ott MM, Müller-Deubert SM, Müller-Hermelink HK.
Differential diagnosis between classic Hodgkin’s lymphoma, T-cell-rich B-cell
lymphoma, and paragranuloma by paraffin immunohistochemistry. Am J
Surg Pathol. 1998;22(10):1184–91.

3. Prasad V, Fojo T, Brada M. Precision oncology: origins, optimism, and
potential. Lancet Oncol. 2016;17(2):e81–6.

4. Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev
Clin Oncol. 2014;11(2):109–18.

5. Laskin J, Jones S, Aparicio S, Chia S, Ch’ng C, Deyell R, et al. Lessons learned
from the application of whole-genome analysis to the treatment of patients
with advanced cancers. Mol Case Stud. 2015;1(1):a000570.

6. Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, et al.
Identifying recurrent mutations in cancer reveals widespread lineage
diversity and mutational specificity. Nat Biotechnol. 2016;34(2):155.

7. Good BM, Ainscough BJ, McMichael JF, Su AI, Griffith OL. Organizing
knowledge to enable personalization of medicine in cancer. Genome Biol.
2014;15(8):438.

8. Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, et al.
CIViC is a community knowledgebase for expert crowdsourcing the clinical
interpretation of variants in cancer. Nat Genet. 2017;49(2):170.

9. Mesa R, Jamieson C, Bhatia R, Deininger MW, Gerds AT, Gojo I, et al.
Myeloproliferative neoplasms, version 2.2017, NCCN clinical practice
guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(12):1572–611.

10. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, et al. Detection of
BCR-ABL mutations in patients with CML treated with imatinib is virtually
always accompanied by clinical resistance, and mutations in the ATP
phosphate-binding loop (P-loop) are associated with a poor prognosis.
Blood. 2003;102(1):276–83.

11. King M-C, Marks JH, Mandell JB. Others. Breast and ovarian cancer risks due
to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.

Lever et al. Genome Medicine           (2019) 11:78 Page 15 of 16

http://bionlp.bcgsc.ca/civicmine
http://bionlp.bcgsc.ca/civicmine
https://doi.org/10.5281/zenodo.1472826
https://doi.org/10.5281/zenodo.1472826
http://bionlp.bcgsc.ca/civicmine/
http://bionlp.bcgsc.ca/civicmine/
https://github.com/jakelever/civicmine/


12. Harbour JW. Overview of rb gene mutations in patients with
retinoblastoma: implications for clinical genetic screening1. Ophthalmology.
1998;105(8):1442–7.

13. Phipps AI, Buchanan DD, Makar KW, Win AK, Baron JA, Lindor NM, et al.
KRAS-mutation status in relation to colorectal cancer survival: the joint
impact of correlated tumour markers. Br J Cancer. 2013;108(8):1757.

14. Schriml LM, Arze C, Nadendla S, Chang Y-WW, Mazaitis M, Felix V, et al.
Disease ontology: a backbone for disease semantic integration. Nucleic
Acids Res. 2011;40(D1):D940–6.

15. Wagner AH, Walsh B, Mayfield G, Tamborero D, Sonkin D, Krysiak K, et al. A
harmonized meta-knowledgebase of clinical interpretations of cancer
genomic variants. bioRxiv. 2018:366856. https://doi.org/10.1101/366856.

16. Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, et al. OncoKB: a
precision oncology knowledge base. JCO Precis Oncol. 2017;1:1–16.

17. Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, Rovira
A, et al. Cancer Genome Interpreter annotates the biological and clinical
relevance of tumor alterations. Genome Med. 2018;10(1):25.

18. Huang L, Fernandes H, Zia H, Tavassoli P, Rennert H, Pisapia D, et al. The
cancer precision medicine knowledge base for structured clinical-grade
mutations and interpretations. J Am Med Inform Assoc. 2017;24(3):513–9.

19. Patterson SE, Liu R, Statz CM, Durkin D, Lakshminarayana A, Mockus SM. The
clinical trial landscape in oncology and connectivity of somatic mutational
profiles to targeted therapies. Hum Genomics. 2016;10(1):4.

20. Adamson PC, Houghton PJ, Perilongo G, Pritchard-Jones K. Drug discovery
in paediatric oncology: roadblocks to progress. Nat Rev Clin Oncol. 2014;
11(12):732.

21. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer–a mechanism for
early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107.

22. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M, et al.
MGMT gene silencing and benefit from temozolomide in glioblastoma. N
Engl J Med. 2005;352(10):997–1003.

23. Aerts S, Haeussler M, Van Vooren S, Griffith OL, Hulpiau P, Jones SJ, et al.
Text-mining assisted regulatory annotation. Genome Biol. 2008;9(2):R31.

24. Li G, Ross KE, Arighi CN, Peng Y, Wu CH, Vijay-Shanker K. miRTex: a text
mining system for miRNA-gene relation extraction. PLoS Comput Biol. 2015;
11(9):e1004391.

25. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The
STRING database in 2017: quality-controlled protein–protein association
networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362-
D368. https://doi.org/10.1093/nar/gkw937.

26. Lever J, Zhao EY, Grewal J, Jones MR, Jones SJ. CancerMine: a literature-
mined resource for drivers, oncogenes and tumor suppressors in cancer.
Nat Methods. 2019;16:505-507.

27. Anekalla KR, Courneya J, Fiorini N, Lever J, Muchow M, Busby B. PubRunner:
a light-weight framework for updating text mining results. F1000Res. 2017;6.

28. Lever J, Jones S. Painless relation extraction with kindred. BioNLP. 2017;2017:
176–83.

29. Bodenreider O. The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 2004;32(suppl_1):D267–70.

30. Vrandečić D, Krötzsch M. Wikidata: a free collaborative knowledgebase.
Commun ACM. 2014;57(10):78–85.

31. Bird S. NLTK: the natural language toolkit. In: Proceedings of the coling/acl
on interactive presentation sessions. Sydney: Association for Computational
Linguistics; 2006. p. 69–72.

32. Davies M. The 385+ million word Corpus of Contemporary American
English (1990–2008+): design, architecture, and linguistic insights. Int J
Corpus Linguist. 2009;14(2):159–90.

33. Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The
Stanford CoreNLP natural language processing toolkit. In: Proceedings of
52nd annual meeting of the association for computational linguistics:
System demonstrations; 2014. p. 55–60.

34. Honnibal M, Johnson M. An improved non-monotonic transition system for
dependency parsing. In: Proceedings of the 2015 conference on empirical
methods in natural language processing. Lisbon: Association for
Computational Linguistics; 2015. p. 1373–8. Available from: https://aclweb.
org/anthology/D/D15/D15-1162.

35. Neumann M, King D, Beltagy I, Ammar W. ScispaCy: Fast and Robust Models
for Biomedical Natural Language Processing; 2019.

36. Björne J, Salakoski T. TEES 2.1: Automated annotation scheme learning in
the BioNLP 2013 Shared Task. In: Proceedings of the BioNLP Shared Task
2013 Workshop; 2013. p. 16–25.

37. Bui Q-C, Campos D, van Mulligen E, Kors J. A fast rule-based approach for
biomedical event extraction. In: Proceedings of the BioNLP Shared Task
2013 Workshop; 2013. p. 104–8.

38. Chaix E, Dubreucq B, Fatihi A, Valsamou D, Bossy R, Ba M, et al. Overview of
the Regulatory Network of Plant Seed Development (SeeDev) Task at the
BioNLP Shared Task 2016. In: Proceedings of the 4th BioNLP Shared Task
Workshop; 2016. p. 1–11.

39. Lever J, Jones SJ. VERSE: Event and relation extraction in the BioNLP 2016
Shared Task. In: Proceedings of the 4th BioNLP Shared Task Workshop; 2016.
p. 42–9.

40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12(Oct):
2825–30.

41. Lever J, Jones MR, Danos AM, Krysiak K, Bonakdar M, Grewal J, et al.
CIViCmine dataset: Zenodo; 2019. Available from: https://doi.org/10.5281/
zenodo.3441694

42. RStudio, Inc. Easy web applications in R. 2013.
43. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al.

COSMIC: exploring the world’s knowledge of somatic mutations in human
cancer. Nucleic Acids Res. 2014;43(D1):D805–11.

44. Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, et al.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;
29(1):308–11.

45. Kim J-D, Ohta T, Pyysalo S, Kano Y, Tsujii J. Overview of BioNLP’09 shared
task on event extraction. In: Proceedings of the workshop on current trends
in biomedical natural language processing. Boulder, Colorado: Shared task:
Association for Computational Linguistics; 2009. p. 1–9.

46. Kim J-D, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsujii J. Overview of BioNLP
shared task 2011. In: Proceedings of the BioNLP shared task 2011 workshop.
Portland, Oregon: Association for Computational Linguistics; 2011. p. 1–6.

47. Bada M, Eckert M, Evans D, Garcia K, Shipley K, Sitnikov D, et al. Concept
annotation in the CRAFT corpus. BMC Bioinformatics. 2012;13(1):161.

48. Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J. BRAT: a web-
based tool for NLP-assisted text annotation. In: Proceedings of the
Demonstrations at the 13th Conference of the European Chapter of the
Association for Computational Linguistics. Avignon: Association for
Computational Linguistics; 2012. p. 102–7.

49. Peng N, Poon H, Quirk C, Toutanova K, Yih W-T. Cross-Sentence N-ary
relation extraction with graph LSTMs. Trans Assoc Comput Linguist. 2017;5:
101–15.

50. Leaman R, Islamaj Doğan R, Lu Z. DNorm: disease name normalization with
pairwise learning to rank. Bioinformatics. 2013;29(22):2909–17.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Lever et al. Genome Medicine           (2019) 11:78 Page 16 of 16

https://doi.org/10.1101/366856
https://doi.org/10.1093/nar/gkw937
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162
https://doi.org/10.5281/zenodo.3441694
https://doi.org/10.5281/zenodo.3441694

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Corpora
	Term lists
	Entity extraction
	Sentence selection
	Annotation platform
	Annotation
	Relation extraction
	Evaluation
	Precision-recall tradeoff
	Application to PubMed, PMCOA, and PMCAMC with updates
	CIViC matching
	User interface

	Results
	Use cases
	Evaluation by CIViC curator

	Discussion
	Conclusions
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

