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Abstract 

Mouse embryo 3T3 cells were irradiated with 2450 
MHz continuous and low frequency (16 Hz) square 
modulated waves of absorbed energy ranging from 
0.0024 to 2.4 mW/g. The low frequency modulated 
microwave irradiation yielded more morphological cell 
change s than did the continuous microwave fields of the 
same intensity. The amount of free negative charges 
(cationized ferritin binding) on cell surfaces decreased 
following irradiation by modulated waves but remained 
unchanged under the effect of a continuous field of the 
same dose. Modulated waves of 0.024 mW/g dose in­
creased the ruffling activity of the cells, and caused 
ultrastructural alteration in the cytoplasm. Similar 
effects were experienced by continuou s waves at higher 
(0.24 and 2.4 mW/g) doses. 

Key Words: Microwave irradiation , modulation, ultra­
structure, morphology, 3T3 cells, negative charges, 
electron microscopy. 
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Introduction 

The biological effects of microwave irradiation have 
been investigated extensively (1, 2, 4, 8, 20, 25, 36, 
38, 39, 49, 70, 71, 80, 97, 104) and data are available 
about its effect on membrane organization (10) as well 
as membrane functions. Thus, microwave irradiation is 
known to alter the cation permeability and transport of 
plasma membrane (26, 27 , 47, 49) trans-membrane pro ­
tein channels (24) , membrane bound enzyme activity (1, 
2 , 12-15, 97), ligand-receptor interactions (44, 52, 67, 
73, 76), signal transduction (15, 52), cell communication 
(29), and immunity (11, 21, 33, 46, 50, 70, 76, 79, 87, 
89, 103). Microwave irradiation caused membrane 
shedding (46, 67) and altered the phagocytotic activity 
of macrophages (56). 

The morphological changes of the plasma membrane 
and the cell organelles upon exposure to microwave 
fields were investigated on cells of the central nervous 
system (6-8, 42 , 65, 66, 94), lens (104), blood barriers 
(4), lymphocytes (34), and in cell culture (18 , 28, 86, 
102). Data were published about cell shape alteration 
following microwave irradiations (18, 28, 86, 102). 
The mechanisms leading to the membrane injury follow­
ing microwave irradiation depend on the dose and mode 
of irradiations (1, 2, 6, 8, 19, 28, 36, 70, 71, 97). 
Thus, it is well known that high intensity microwaves 
(higher than 10-15 mW/cm) exert direct and indirect 
thermal effects (18, 45, 70, 71, 79, 86). However, the 
biological response also contains a non-thermal compo­
nent, which came into prominence as low doses were 
applied (below 10 mw/cm) (11, 21, 28, 102). Recently 
it was proposed that the membrane effects of continuous 
and modulated electromagnetic (microwave) irradiations 
might not be identical. Chang (16) found that the oscil­
lating electric field (from a few kHz to 1 MHz, the peak 
amplitude of oscillating field 0.5 to 5 kV /cm) caused cell 
poration and cell fusion. Some changes of membrane 
functions (i.e . , cation transport and membrane permea­
bility, ligand binding, signal transduction, cell communi­
cation (6, 8, 11-15, 19, 21, 24, 26, 27, 29, 49, 52, 60, 
67, 73, 76, 96, 103) occur upon weak, low frequency 
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(below 100 Hz) modulated irradiation but continuous 
fields of the same intensity do not cause any effects on 
the cells. These changes in membrane function may be 
explained by a specific interaction between the weak low 
frequency modulated electromagnetic fields and the 
charged groups of membranes as well as the potential 
profile of the membrane (1, 2, 73) . The electric 
potentials of the membrane play an essential role in the 
membrane organization and functions [i.e., protein con­
formation and enzyme activity, lipid composition, signal 
transmission, ion carriers and channels (22, 41, 59, 77, 
78, 95)], some membrane effects of electromagnetic 
fields can be explained by that mechanism. 

Since the difference in membrane effect between the 
low frequency modulated and continuous microwave 
fields are not clarified in all respects, we decided to 
investigate this problem by electron microscopy, we sup­
posed that the charged groups of membranes may serve 
as primary targets of modulated microwave irradiation. 
Therefore , we studied the amount and distribution of 
fixed negative charges visualized by cationic ferritin 
(CF) binding (23) upon different kinds of microwave 
fields. Parallel changes exerted by modulated and con­
tinuous microwave fields on cell shape and ultrastructure 
in the low (0 .0024 to 2.4 mW/g specific absorption rates 
(SAR) intensity range were investigated. 

Materials and Methods 

Cell culture 

Mouse embryo 3T3 cells were cultured in Eagle 
MEM medium supplemented with glutamine ( 4 mM 
final concentration), and 10% fetal calf serum. They 
were maintained at 37 ° C in a humidified 5 % CO2-95 % 
air atmosphere. The cells were used in confluent 
monolayers. 

Microwave irradiation and dosimetry 

The cell cultures on the glass petri dishes were 
irradiated with 2450 MHz continuous (CW) and 16 Hz 
square modulated waves ( modulation depth 7 5 % ) at field 
intensities 0.798, 7.98, 79.8 µ.W/cm2, SAR were 
0.0024, 0.0244, 0.24 and 2.4 mW/g; energy absorptions 
were 4.32, 43.2, 432 mJ/g and 4.32 J/g, the calculated 
electric field strength : 0.1168, 1.168, 11.68 and 116. 8 
m V /cm2• The exposure facility is shown in Fig. 1. The 
pattern of the power density in TE 10 mode has a sin2 

standing wave across the long transverse axis of the 
wave guide (broadwall): 

P - p b· +a/2· . 2 ( I ) d d av - max Ql _ a/2l Sill 'Jl'"X a X y (1) 

where Pav is the average power density given by the in­
put power and the cross-section area of the waveguide, 
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Figure 1. Experimental setup for radiation and 
dosimetry. The microwave power generator was con­
nected to a wave guide section by directional coupler (20 
dB) and coax wave guide adapter. The cell culture was 
placed on a dielectric matching load at the center of the 
wave guide cross -section. The SAR was measured by 
a thermocouple using on-line computer evaluation (see 
text). 

Figure 2. Electron micrograph of control 3T3 cells. 
Intact mitochondria (M), a few rough endoplasmic reti­
culum (RER), microfilaments (f) are seen . The cationic 
ferritin bound to plasma membrane in some clusters. 
The contact regions of membranes (➔) labelled by 
ferritin particles heavily. Bars = 0.25 µ.m. 

Figure. 3 . Control 3T3 cells. G = Golgi complex, M 
= mitochondria, V = autophagic vacuole, L = lipid 
droplets, (➔) =rough endoplasmic reticulum. Bar: 
A = 0.5 µ.m, B = 0.2 µ.m. 

Figure. 4. Binding of cationized ferritin to continuous 
microwave field treated (2.4 mW/g) cell. The amount 
and distribution of bounded cationized ferritin did not 
change (*). Vacuolization of cytoplasm (V), increased 
number of Golgi vesicles (G), altered mitochondria (M) 
were evident. Bar = 0.25 µ.m. 

Figure 5. Binding of cationized ferritin to modulated 
microwave irradiated cell (0.024 mW/g). The amount 
of bound ferritin decreased markedly . N = nucleus , 
(➔)= rough endoplasmic reticulum . Bar = 0.25 µ.m. 

Figure 6. Scanning electron micrograph of control 3T3 
cells. Bar = 1 µ.m. 

P max• the maximum power density of the wave-guide 
area, and a and b are the size of the walls of wave 
guide . From the equation (1): 

p max = 2Pav (2) 

The sample holder plates were placed on the central area 
of the broadwall of the wave guide and by measuring 
continuously the average input microwave power of 
microwaves the power density was calculated . The spe­
cific absorption rate (SAR) was measured in the culture 
plates by a thermocouple using the equation [2] : 

SAR = 4.186 c dT/dt (3) 

where dT is the temperature rise during the short period 
of dt time interval, and c the specific heat of the ir­
radiated sample. The dT was measured by a thermocou­
ple microprobe (d=0.018 mm, Cole-Parmer J-8606-70 
implant probe) connected to an on-line computer control­
led measuring system [93]) . In the dosimetry 
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measurement the thermal level of irradiation was ap­
plied, using 10 W input power. However the irradiation 
during the experiment remained below the thermal pow­
er reached density and SAR level. The attenuation in 
the sample is exponential: 

p. = Po e·2ax 
m (4) 

where Pin is the power in the sample, P0 the power on 
the surface (on the layer of cells), a the attenuation 
coefficient, x the depth in the sample. The measurement 
point of the SAR by thermocouple is 0 .02 mm distance 
from the surface layer of the cell culture and Pin at this 
point: 

Pin(0.02mm) = 0.9655 P0 (5) 

and the measured SAR in the solution is as follows : 

SARcell = 1.017 S~ (6) 

where SARm is the measured absorbed power, the 
SARccll is the SAR at the cell layer surface and a = 
0.876 Neper/m. From the equation (6), the error of the 
SAR is negligible because of the distance of the meas­
urement point of the SAR from the thermocouple and 
the irradiated cell layer. The internal electric field 
strength was calculated by the equation: 

where Ei is the internal electric field in the solution, <J 

the conductivity of the solution (<I= 2.79 mho/m [25]), 
€" the loss factor, w = 2-irf, f is the frequency in hertz 
and p the mass density in kg/m 3• 

Cytochemistry 

Negatively charged sites were visualized by cationic 
ferritin binding (23). Prior to ferritin binding, the cells 
were fixed for 30 minutes in 0.1 M phosphate buffered 
0.025% glutaraldehyde (pH 7.3). 

Transmission and scanning electron microscopy 

The cells were fixed in situ in a glass petri dish for 
1 hour in 0 .1 M phosphate buffered 2.5 % glutaralde­
hyde (pH 7 .3), at 4 °C, postfixed in 1 % OsO4, dehy­
drated with alcohol or acetone, and embedded in Durcu­
pan AC (Fluka). Ultrathin sections were cut with glass 
or diamond knives on an LKB ultramicrotome. The sec­
tions were examined by Tesla BS-500 and JEOL lO0CX 
transmission electron microscopes. For scanning elec­
tron microscopy, the samples were dehydrated and dried 
in a Sorvall critical point drying apparatus and coated 
with gold. Specimens were viewed and photographed 
using a JEOL 50A scanning electron microscope 
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Figure 7. Micromorphology of 3T3 cells after 
modulated microwave irradiation (0.024 mW/g). The 
cells have some cytoplasmic projections or exhibit 
spindle shaped forms. Bar = 1 µm. 

Figure 8. Scanning electron micrograph of continuous 
microwave irradiated (0.024 mW/g) cells. The cell 
shape and micromorphology similar to the control. Bar 
= 0.5 µm. 

Figure 9. 3T3 cells after higher intensity (2.4 mW/g) 
continuous microwave irradiation. Some attached cells 
however, exhibit a few ruffled cells with cytoplasmic 
projections . Bar = 0.5 µm . 

Figure 10. Part of the cytoplasm of microwave treated 
cell (modulated, 0.024 mW/g) . The nucleus (N) are in­
vaginated. The cell has some autophagic vacuoles (➔) 

and altered mitochondria . Bar = 0.3 µm. 

Figure 11. Invaginated nucleus (N) after continuous 
microwave irradiation (2.4 mW/g). Cationized ferritin 
binding did not change upon microwave field(➔) . Bar 
= 0 .3 µm. 

Figure 12. Part of a cytoplasm of modulated micro­
wave treated cell (0.024 mW/g). Altered mitochondria 
(M) and dilated endoplasmic reticulum (➔). The endo­
plasmic reticulum cistemae contained amorphous mate­
rial. Bar = 0.2 µm. 

operating at an accelerating voltage of 20 kV, and a tilt 
angle of 45 °. 

Results 

Binding of cationized ferritin 

The cationized ferritin (CF) particles were mainly 
bound in the patches to the apical surface of the control 
cells (Figs. 2, 3). Binding of CF on the surface of villi 
and at sites of cell contact areas also was observed (Fig. 
2 insert) . The continuous microwave irradiation did not 
cause any changes in CF binding capacity of the plasma 
membrane at the used dose range (Fig. 4, also see Fig. 
11). However, following low frequency modulated 
microwave irradiation (0.024 mW/g) the capacity of the 
cells to bind CF markedly decreased (Fig. 5) 

Micromorphological and fine structural alterations 
The control 3T3 cells exhibited a flat typical 

polygonal form (Fig. 6). Rounded or elongated cells 
represented only 3-5 per cent of the total cell population. 
The modulated microwave treatments from 0.024 mW/g 
increased the amount of altered cells to 50-60%. The 
cells showed increased ruffling activity, cell edges ele­
vated from the substrate, and the cells exhibited long 
cytoplasmic extensions (Fig. 7). Continuous microwave 
fields did not cause any changes in cell shape and micro-
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Figure 13. 3T3 cell after modulated microwave treat­
ment (0.24 mW/g). There are some autophagic vacuoles 
(V) in the cytoplasm. M = mitochondria. Bar = 0. 3 
µm. 

Figure 14. Dilated and vacuolized Golgi complex (G) 
after continuous microwave irradiation (2.4 mW/g) 
Dilated endoplasmic reticulum(-+). Bar = 0.3 µm. 

morphology when applied in 0.024 and 0.24 mW/g in­
tensities (Fig. 8). However 2.4 mW/g intensity caused 
a elevated ruffling activity (Fig. 9). 

In addition to cell shape alterations, the modulated 
microwave fields elicited changes in the ultrastructure of 
the cytoplasm which were already produced at 0.024 
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mW/g . On the other hand, marked structural changes of 
the cells after continuous wave exppsure, were only 
found at 0.24 and 2.4 mW/g SAR. -In spite of differ­
ences in the sensitivity of cells to the two modes of 
irradiation, the changes in structure of cell organelles 
elicited by the effective doses of either modulated or 
continuous wave were similar. We observed dilation of 
the cisternae of rough endoplasmic reticulum (Figs. 12, 
14) and Golgi elements (Figs. 4, 14). The number of 
lysosome-like bodies and autophagic vacuoles increased 
(Figs . 4, 10, 12, 13). Disruption of mitochondrial inter­
nal membranes and appearance of electrolucent vacuoles 
containing myelinated figures and amorphous material of 
unidentifiable origin (Figs. 4, 10, 12) was observed. 
The nuclei of the cells showed deep indentations (Figs. 
10, 11). 

Discussion 

The two main findings of our studies are that micro­
wave irradiation may damage 3T3 cells and that these 
cells are more sensitive to modulated microwave fields 
than to continuous microwave irradiation . One of the 
effects of microwave irradiation was the disappearance 
of CF binding sites from the cell membrane. The nega­
tive surface potential plays an essential role on the 
membrane organization and functions (22, 33, 59, 78, 
96) . Physical agents including ionizing radiations ( 43 , 
82-84) heat treatment (75), ultrasonic insonications (3, 
40) are all known to decrease the amount of negative 
charges on the cell surface. Redistribution of some 
membrane proteins (acetylcholine-, ricin- , Concanava­
line-A- and Phaseolus vulgaris lectin receptors, intra­
membrane particles) was observed in various cells sub­
jected to weak external electric fields (19, 64, 90, 98). 

The electric pulses or modulated magnetic and elec­
trical fields caused changes of transmembrane potential, 
induced effects to ion transport, reversible or irreversi ­
ble poration of the membrane, electrofusion, and electro­
transfection (17, 19, 30 , 35, 37, 51, 53-55, 60, 61-63, 
68, 73, 74, 91, 95, 105). For example, the electric 
pulses caused an increase of negative charges on the cell 
wall in yeast cells (95). Sinusoidal modulated electric 
and magnetic fields may exert different effects on the 
cell surface of Physarum polycephalum . The exposure 
to an electric field increases the negative charge on cell 
surface while the magnetic-field decreased the hydropho­
bic character of the surface, as shown by aqueous par­
tition chromatography (54). Microwave electromagnetic 
radiation caused a higher electrophoretic mobility of 
erythrocytes 30 min after exposures at SARs greater 
than 10 W/kg (37) . Low frequency modulated electro ­
magnetic fields (below 100 Hz) may disturb the cell 
membranes with mechanisms of transductive coupling 
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(1, 2). Our experimental results may be explained by a 
structural rearrangement of the plasma membrane, which 
caused orientation changes of negatively charged mole­
cules because these may be "sinking" into the membrane 
material. The changes in cell shape and micromorpholo­
gy similar to these observed in this study, were observed 
in cells after ionizing radiation (81, 82, 84, 85), laser 
treatments ( 100), ultrasonic insonication ( 48), heat treat­
ments (5, 101), and application of steady state or pulsed 
electric fields (9, 16, 31, 32, 57, 58, 64, 88, 99). It 
was shown recently that the long term treatments with 
electromagnetic fields (72) or with Helium-Neon lasers 
(69) can transform fibroblasts. Limited data are avail­
able on the morphological effect of microwave irradia­
tion after high doses of continuous waves (18, 28, 34, 
86, 87). The increased ruffling activity of the cells 
observed in our experiments may be related to the de­
crease of the amount of negatively charged surface sites. 
This assumption is based on our earlier observations (84) 
showing that blocking of the negatively charged surface 
sites results in a rapid increase of ruffling activity of 
human primary fibroblasts. The correlation between the 
low frequency microwave field induced change of mem­
brane potential and the decrease of the cell's negative 
surface charge together with changes of cell shape under 
the influence of microwave irradiation remains to be 
elucidated. 

As reported earlier, a short exposure of low inten­
sity microwave at 10 mW/cm (SAR = 0.2418 W/kg) 
caused marked changes in fine structure of Chang liver 
cells (28). We found similar ultrastructural changes 
following irradiation by continuous waves in the same 
intensity range; however, the modulated microwave 
fields were more effective, as shown in the present 
paper. The mechanism by which the low intensity 
microwave field damages the cells is not known. Ac­
cording to Webber et al. (102), the observed fine struc­
tural alterations are not due to heat effects. Liburdy and 
Vanek (47) think that reactive oxygen species are in­
volved in the mechanism of membrane damage during 
exposure of the cells to microwave irradiation. It is 
known that free hydroxy radicals can also cause mem­
brane damage (92). Taken together our observations, 
and the above mentioned data of the literature strongly 
suggest that the cell membranes are targets of micro­
wave irradiation. 
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Discussion with Reviewers 

J.R. Trevithick: Have any acoustic measurements been 
performed to show whether thermoelastic transduction 
produces pressure waves in the sample in the modulated 
mode? 
Authors : The acoustic measurement have not been per­
formed. The 16 Hz square wave modulation with 50 % 
filling coefficient and low level intensity was not able to 
cause thermoelastic pressure wave propagation in the 
sample . This pressure wave acoustic propagation exists 
in the short microwaves pulses (i.e., radar pulse with the 
µ,s range) with high power of pulses [Lin JC, Su J-L, 
Wang Y (1988) Microwave-induced thermoelastic pres­
sure wave propagation in the cat brain . Bioelectromag­
netics 9, 141-147]. 

J.R. Trevithick: Do the changes observed seem similar 
to those found when cells are exposed to ultrasound or 
sound waves at similar repetition rate? 
Authors : Yes, preliminary experiments have been per­
formed with similar changes of cell surfaces negative 
charges at low frequency pulsed ultrasound . 

H.P. Rodemann : Is there any information available 
from the experiments done so far whether 3T3 fibroblast 
cultured on collagenized glass petri dishes react differ­
ently, e.g ., in ultrastructural changes etc., in response to 
microwave irradiation than cells seeded on pure glass 
petri dishes? 
Authors: It is known that the various extracellular mat­
rix components (i.e., collagen, fibronectin, proteo­
glycans) can modulate some functions of fibroblasts and 
at the same time can cause altered responsiveness of 
cells for some environmental factors . We did not inves­
tigate these problems upon microwave irradiation. 

H.P. Rodemann : Does the clonogenic activity of the 
cells irradiated with 16 Hz square modulated waves 
decrease as compared to controls? 
Authors : We have not investigated the clonogenic 
activity of the cells irradiated with 16 Hz square 
modulated waves. 




	Effects of Modulated and Continuous Microwave Irradiation on the Morphology and Cell Surface Negative Charge of 3T3 Fibroblasts
	Recommended Citation

	WDCcenterscan1991SomosyThuroczyKubasova-EffectsModulatedContinuous

