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Abstract 

The application of the scanning tunneling 
microscope (STM) and the atomic force micro
scope (AFM) to the study of small biological 
molecules, such as DNA and smaller molec
ules, has received considerable attention in 
the literature. This paper reviews STM and 
AFM studies of larger biological structures 
such as bacterial membranes, bacteriophages, 
viruses, antibodies, etc. The problems 
encountered in these applications are empha
sized, with particular reference to the 
unknown conduction mechanism, tip-sample in
teraction forces, and tip-sample convolution 
artifacts in the images. The latter problem 
is illustrated by new results from IgG 
antibody complexes attached to a bacterial 
sheath layer. A new conduction mechanism in
volving a graphite film overlayer is sug
gested. The future prospects are discussed, 
with emphasis on the unique capabilities of 
these microscopes compared to conventional 
electron microscopes. 
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Introduction 

The scanning tunneling microscope (STM), 
invented by Binnig and Rohrer (1982), was the 
forerunner of a class of scanning probe 
microscopes (SPMs) which produce three 
dimensional images of a surface by probing 
various physical quantities near the 
surface. The STM probes the electron tun
neling current between a sharp conducting 
tip and the surface. A combination of elec
tronic and mechanical feedback is used to 
keep the tip-sample distance constant at 
about 1 nm while the tip is scanned across 
the surface. The atomic force microscope 
(AFM), Binnig et al. (1986), uses a tip 
attached to a very weak cantilever, to probe 
the small force (10-10 N to 10-7 N) between 
the tip and sample surface. The STM and AFM 
are both capable of producing images at 
atomic resolution. Relevant reviews of the 
STM and AFM were given by Hansma et al. 
(1988) and Rugar and Hansma (1990). Other 
scanning probe microscopes make use of; 
magnetic forces, electrostatic forces, near 
field thermometry, near field optical 
effects, near field acoustic effects, 
chemical potential variations (Williams and 
Wickramasinghe, 1991), or ionic conductance 
(Hansma et al, 1989) . The current status and 
future trends of such scanning probe micro
scopes were reviewed recently by Wickrama
singhe (1990). The photon scanning tunneling 
microscope, reported recently by Tsai et al. 
(1990) is a promising tool for biological 
studies with a resolution down to about 10 
nm. 

The STM has become a powerful and 
popular tool for in-vacuum, atomic scale 
studies of conducting and semi-conducting 
surfaces. It can also operate in air or 
liquids, Sonnenfeld and Hansma (1986), which 
makes it attractive for studying biological 
specimens in a more natural environment than 
can be achieved with conventional electron 
microscopes (EM). This feature and the ava
ilability of several commercial STM's have 
lead to a recent increase of applications in 
the biological area. 

The atomic force microscope (AFM), also 
called the scanning force microscope (SFM), 
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does not require the sample to be electri
cally conducting. Since most biological spe
cimens are insulating, the AFM is potentially 
more useful than STM for biological studies, 
and a number of such studies have already 
been reported in the literature. The AFM is 
particularily well suited for studies in 
liquid environments both because electrical 
leakage is not a problem and because the 
liquid reduces the capillary force problem 
present when operating an AFM in air. 

This paper reviews the results which have 
been obtained from STM and AFM studies of 
larger biological structures, with particu
lar emphasis on the problems encountered and 
the future prospects. The review includes: 
bacterial sheaths or s-layers, bacterio
phages, viruses, antibodies, antibody-host 
interaction, microtubules, and enzymes. We 
also present some new results on antibodies 
attached to bacterial sheath . Previous 
reviews were given by Edstrom et al. (1990a), 
Fisher (1989), Salmeron et al. (1990), Trava
glini et al. (1990), Fisher et al. (1990a), 
and Baumeister and Zeitler (19 91 ). 

We omit the more numerous results on 
smaller bio-structures such as DNA, amino 
aci ds, nucleic acids, proteins a nd other 
biomolecules. These are reviewed by Allison 
and by Edstrom in this issue. We also omit 
the STM and AFM studies of Langmuir-Blodgett 
lipid layers. 

One important goal of STM and AFM studies 
of biological structures is to image their 
surfaces in their natural state at atomic 
resolution. This goal is still elusive, 
although some worthwhile results have been 
obtained. Another important application may 
be the use of the STM or AFM to manipulate 
biological structures or objects on their 
surfaces, such as imbedding objects in mem
branes or pores and measuring binding 
strengths. The field is in its infancy and 
there will undoubtably be many other appli
cations. 

STM of Metal Coated Specimens. 

Most biomaterials have a low electrical 
conductivity and must be given a conductive 
coating before reliable STM can be per
formed. This is especially true for large 
biological structures, and the most believ
able of STM results on such structures have 
been obtained in this way. Film roughness 
limits the resolution of the imaging, but in 
some cases the coated material has given 
better resolution than either STM or AFM on 
bare material. Another objection to coating 
is the unnatural vacuum-conditions to which 
the specimens must be subjected during the 
preparation procedure, as for conventional 
EM. For these reasons most STM studies of 
biological material have tried to avoid the 
use of coated specimens. However, coated 
samples are a useful complement to STM and 
AFM of bare biological material, and perhaps 
should be a mandatory part of any STM study. 

The most extensive and successful STM 
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studies of coated biological materials used 
freeze dried specimens coated with pt /Ir/C 
films. This technique was first reported for 
DNA by Amrein et al. (1988), and more 
recently for the bacteriophage T4 type III 
polyheads, Amrein et al. (1989a). Wepf et al. 
(1991) reported a detailed study of how 
varying the relative amounts of platinum, 
iridium, and carbon in the films effects 
resolution and grain size. They used films 
of 1-2 nm thickness and were able to achieve 
a lateral resolution of 1.5 nm on T4 poly
heads and on HPI- layer. HPI is a natural two
dimensional crystalline protein l ayer 
covering the surface of the bacterium Deino
coccus radiodurans. The hexagonal symmetry 
structure of both these layers was readily 
observable, with lattice constants of 13 and 
18 nm for T4 polyheads and HPI layer, respec
tively. They found that pt/Ir/C films con
taining at least 25% carbon were three
dimensionally stable on the freeze dried 
macromolecular specimens even after 
exposure to room conditions. This technique 
shows considerable promise. Amrein et al. 
(1991) and Wepf and Amrein (1992) discuss 
comparative studies of STM versus SEM and 
TEM on pt / Ir / C coated HPI layer and T4 poly
heads. Amrein and Gross (1992) discuss the 
details of preparing freeze-dried, met al
coated specimens for STM imaging. Fisher 
(1989) also discussed the freeze-fracture 
technique in relation to STM. 

Guckenberger et al. (1989a) reported a 
successful STM study of pt/C coated HPI
layer and also of type IV collagen, although 
the resolution was not as good as for the 
pt/Ir/C coating described above. 

Our STM group has extensively studied the 
outer sheath layer, or S-layer, of the bac
terium methanospirillum Hungatei (mH), using 
both Au and pt coated specimens on highly 
ordered pyrolytic graphite (HOPG) sub
strates, Blackford et al. (1988,1989). The 
grain size of these coating films was larger 
than that for the pt / Ir/C films discussed 
above, which limited the resolution to 2-3 
nm. The pt films gave considerably better 
resolution than the more diffusive Au films . 
The corrugations expected from EM studies at 
multiples of 3 nm running perpendicular to 
the sheath axis could be resolved easily. 
However, the rectangular symmetry structure 
(lattice constants 3nm by 6nm) expected on 
the basis of electron diffraction studies, 
Stewart et al. (1985), has not yet been seen 
in the STM images, nor has it been detected 
in conventional scanning electron microscopy 
(SEM) or transmission electron microscopy 
(TEM) , Sprott et al. (198 6) . Note that this 
lattice structure is much smaller than for 
the T4 polyheads or the HPI layer discussed 
above. 

We have also imaged the individu a l hoops 
(carbon coated) which comprise the mH sheath 
tubular structure, Blackford et al. (1991) 
and Beveridge et al. (1990). These images 
confirmed that the hoop heights come in mul
tiples of the basic 3 nm corrugation of the 
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sheath tubular structure and also confirmed 
the 9 run wall thickness of the sheath tube. 
The i111ages also showed interesting three
di111ensional contortions in cases where 
several hoops overlapped, proving the high 
degree of flexibility of the mH sheath 
material. Such information is not easily 
obtainable from conventional EM. 

Keller et al. (1990) reported convincing 
STM i111ages of pt/C coated bacteriophage T7 
and DNA strands on HOPG substrates, with a 
resolution of about 5 run. Emch et al. (1990) 
reported STM i111ages of the macromolecule 
fibronectin deposited on mica and coated 
with a pt / C film. Again the resolution was 
about 5 run. 

Thickness Measurements. 
Thickness measurements of biological 

structures are directly obtainable from STM 
i111ages of coated samples. This is because an 
STM in constant current mode monitors the z
position of the tip, which follows the 
surface profile of the sample, thus giving 
the surface topology. Such thickness data 
can be a valuable complement to EM thickness 
data which, by comparison to STM, are i111pre
cise and difficult to obtain. The metal 
coating is necessary since STM thicknesses 
from uncoated speci111ens are usually much 
smaller than expected. The latter is thought 
to be due to elastic deformation caused by 
tip-speci111en interaction forces. This is 
discussed in more detail in the section on 
uncoated speci111ens. 

Several groups have reported STM thick
ness measurements on purple membrane (PM). 
Fisher et al. (1990b) studied nitrogen-dried 
(or freeze-etched) and pt/C coated PM on mica 
and glass substrates, respectively. They 
found good agreement between STM and EM 
thickness measurements done on the same 
samples. There were no significant differ
ences in the measured PM thickness es due to 
the mica or glass substrates, except for the 
roughness of the glass surface. They also 
measured the small changes in membrane 
thickness after papa in treatment, demon
strating the utility of STM for detecting 
such small changes. Wang et al. (1990) have 
also done detailed STM thickness studies of 
pt/C coated purple membrane. The PM thick
ness values showed very little variation 
with the substrate and preparation method. 
However the less densely packed HPI layer, 
which they also studied, gave thickness 
values which were strongly influenced by 
those parameters. 

We have done thickness measurements of 
the sheath layer of methanospirillum 
Hungatei (mH) coated with gold or platinum 
and on HOPG substrates, Blackford et al. 
(1988, 1989). The pt coated speci111ens gave 
the best STM i111ages and thickness values 
which were about 20% less than previously 
reported in the literature from EM studies. 
The Au coated speci111ens gave even smaller 
thicknesses. 

A possible source of error in thickness 
measurements on coated speci111ens is that the 
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metal film thickness on the substrate may 
differ from that on the speci111en due to pene
tration of the film into the softer, more 
porous speci111en. Some evidence for this 
comes from the observation that the metal 
film is often smoother on the speci111en than 
on the substrate. 

STM i111aging of metallic replicas of bio
logical structures is an interesting tech
nique which has received very little atten
tion so far. Zasadzinski et al. (1988) 
studied freeze-fracture replicas of DMPC 
bilayers. They could easily see the ripple 
phase and measure the period (13 run) and amp
litude (4.5 run) with a lateral resolution of 
about 3 run. Hansma et al. (1988) also 
discusses such studies. Blackford and 
Jericho (1991) reported a different tech
nique in which the deposited speci111en is 
overcoated with a thick metallic film, which 
is then peeled from the substrate. The 
underside of the substrate was scanned by 
the STM to reveal indentation-type replicas. 
The technique was tried on mH sheath and gave 
a lateral resolution of about 3 run, which was 
si111ilar to that for metal coated sheath spe
ci111ens, Blackford et al . (1989). STM of 
metallic replicas shows some promise and 
deserves further study. 

STM of Uncoated Specimens. 

Despite the poor conductivity problem 
mentioned above, some STM results on 
uncoated biostructures have been reported. 
However, the conduction/contrast mechanism 
is still not understood even though many 
mechanisms have been proposed. In fact there 
is no totally clear evidence that either con
duction or tunneling, actually occurs 
through

1 

the biological material. This ~s 
especially true since possible HOPG arti
facts make the many results on HOPG sub
strates suspect, Clemmer and Beebe 
(1991,1992) and Wepf and Amrein (1992). The 

mysterious conduction mechanism may not 
exist, which we discuss further in the 
"Problems" section. Keeping these misgivings 
in mind we briefly mention below some of the 
STM results on bare speci111ens. 

Baro et al. (1985,1986) reported the 
first STM results on biological material 
using the virus bacteriophage ¢29. They were 
able to observe several characteristic 
features which seemed to correlate with TEM 
results. 

Dahn et al. (1988) reported i111ages of 
fragments of mH bacterial sheath in which 
corrugations with the expected 3 run mini111um 
period could be resolved. The i111aging was 
usually done in air, but was also tried su<;=
cessfully in water. We have not succeeded in 
i111aging the complete mH sheath in the 
uncoated condition using STM. 

Hameroff et al. (1990) studied microtu
bules of cytoskeletal proteins and again the 
expected shapes and sizes were found. In a 
continuation of that work Vernetti et al. 
(1991) found i111proved STM resolution by pro
longed exposure of the proteins to cold tem
peratures prior to i111aging. 
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Edstrom et al. (1989 and 1990a,b) and 
Elings et al. (1990) reported STM studies of 
phosphorylase kinase macro-molecules and 
were able to see individual molecules as 
well as chains of dimers. The heights of the 
molecules in the STM images were only about 
30% of the true height, which is often a 
problem with STM imaging of bare biological 
specimens. 

The above four studies all used HOPG as 
the substrate. Other substrates have also 
been used. Mantovani et al. (1989) studied 
the tobacco mosaic virus TM on evaporated 
and on sputter-coated palladium/gold sub
strates. They found that the virus imaged as 
a hump on the evaporated Pd/Au substrate but 
imaged as a depression on the sputter-coated 
Pd/Au substrates. They reasonably inter
preted the humps as due to the virus getting 
under the thin (20 nm) evaporated Pd/Au film. 
The virus could not penetrate the sputtered 
film, and imaged as an apparent depression 
due to a combination of poor conductivity and 
elastic effects. 

Guckenberger et al. (1989b) reported con
vincing STM images of uncoated HPI layer on 
Ft/C coated glass substrates. Extreme 
voltage and current conditions were 
required [v?.5V and ~ .5 pA) and it was also 
necessary to control the specimen hydration 
via humidity. Under such conditions it is 
unlikely that conduction was by tunneling. 
The resolution was similar to that for Ft/C 
coated HPI layer but not as good as the reso
lution obtained by Wepf et al. (1991) for 
Ft/Ir/C coating. Wang et al. (1990) did STM 
thickness measurements on uncoated HPI 
layers and found values of about 4 nm, in 
good agreement with those for coated HPI. 
More recently, Guckenberger et al. (1991) 
succeeded in imaging uncoated purple 
membrane PM also using the same extreme 
voltage and current values. However, the 
images sometimes showed negative contrast as 
well as positive contrast, similar to the 
findings of Mantovani et al. (1989) for the 
TM virus mentioned above. In the PM case 
however, the contrast was found to depend on 
the sharpness of the tip and Guckenberger et 
al. (1991) proposed a different explanation 
which takes the tip shape into account. 

A common problem for STM imaging of bare 
biological material is that the specimens 
often do not bond well to the substrate. As 
a result, the lateral force of the tip pushes 
the specimen along the substrate and no 
image is obtained. One approach to avoid 
this problem has been to try alternative 
substrates to HOPG, which may produce better 
bonding. Epitaxial Au films on mica, Chidsey 
et al. (1988) and Putnam et al. (1989) for 
example, have been used by various groups 
with some success. Flame-grown Au or pt ball 
crystals have also been used, Lindsay and 
Barris (1988b) and Schneir et al. (1988) for 
example. Wilson et al. (1991) used chemi
cally modified Si surfaces. Akari et al. 
(1988) reported an STM study of the semicon
ductor wse 2 , which cleaves easily to give 
atomically flat surfaces. They suggested 
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that it may be a good substrate for biologi
cal specimens, especially for higher tip 
biases. In a following study Fuchs et al. 
(1990) used wse 2 as a substrate for Langmuir
Blodgett monolayer films. We have found 
that TaSe2 is also a useful substrate. 

An alternative means to avoid specimen 
movement was reported by Jericho et al. (1989) 
who developed the ''hopping" mode for the STM 
in which the tip is periodically withdrawn and 
reapproached during scanning, to prevent the 
lateral stress build-up. It was possible to 
move deposits around on the surface using the 
normal STM mode and then re-image them with 
the hopping mode. Successful applications of 
the hopping technique were reported on frag
ments of bare mH sheath, Jericho et al. (1990) 
and Beveridge et al. (1990), and on bare pepsin 
molecules, Jericho et al. (1990). The hopping 
technique does not help with the problem of 
poor conductivity of the specimen. The con
duction mechanism was not known in these 
applications. We have not succeeded to image 
a complete mH sheath in the bare state, nor 
individual hoops of the bare sheath, both of 
which are thicker than the sheath fragments or 
pepsin molecules. The complete sheath often 
imaged as depressions, i.e. negative contrast, 
which is consistent with poor conductivity and 
the tip pushing into the sheath. 

Vold (1992) reported a comparative study 
of the stability of adsorbates imaged with and 
without the STM hopping technique. He found 
that the hopping technique gave better images 
in most cases. 

We recently tried the hopping technique 
in our efforts to obtain STM images of bare 
DNA on HOPG. The hopping technique compared 
favorably to the normal STM mode and some 
DNA-like structures were seen, but no truly 
convincing images were found. The hopping 
technique needs more application before 
definite conclusions can be reached about its 
usefulness. 

AFM of Uncoated Specimens 

The atomic force microscope does not 
require the specimen or substrate to be con
ducting, but the specimen must be adequately 
bound to the substrate to withstand the 
force of the tip. Also, the soft biological 
material may be deformed by the tip, causing 
poor resolution. Although excellent resolu
tion has been reported for flat surfaces and 
smal 1 molecular structures, Egger et al . 
(1990) for example, the resolution on large 
biological structures has been poor so far. 
The resolution is particularily poor for in
dividual biological specimens which do not 
form a regular crystalline structure. 

Worcester et al. (1988) were the first to 
apply the AFM to a study of the purple 
membrane PM layer. They were barely able to 
resolve some features forming a 6 nm hexago
nal lattice, which they identified with the 
cytoplasmic surfaces of trimers of bacterio
phodopsin molecules. Butt et al. (1990) used 



A Review of STM and AFM of Large Biological Structures 

Fig.l. AFM image of two uncoated overlapping 
French-pressed fragments of the sheath layer 
of methanospirillum Hungatei (mH) on a mica 
substrate. The upper sheath fragment 
measures "" 320 x 480 nm• and the smallest cor
rugation that could be resolved on the lower 
fragment was "" 18 nm. In the upper fragment 
the outer sheath surface has been imaged while 
the lower fragment shows the smoother inner 
sheath surface. Scanning speed: c:el00 nm/s. 
Scanning force: "" 3 x 10-g N. 

Fig.2. AFM image of four gold-labeled mono
clonal IgG antibodies attached to the surface 
of an mH sheath on a mica substrate. In the 
image a gold-antibody complex is "" 15 nm high 
and several tens of nm wide. Some of th e 
smaller (c:e 4 nm high) bumps in the image are 
thought to represent unlabeled antibodies. 
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the AFM to study purple membrane in a buffer 
solution. They obtained clearer images of 
the hexagonal symmetry, especially after 
strong filtering of the original data and 
unit cell averaging. They also observed 
ferritin, a ball shaped protein (12 nm 
diameter), bound to the surface of the purple 
membrane, suggesting the possibility of 
antibody attachment studies. 

Weisenhorn et al. (1990) studied actin 
filaments on mica in a buffer solution. They 
could resolve monomeric subunits on indivi
dual filaments and also manipulate the fila
ments with the tip. 

Edstrom et al. (1990a) used the AFM as 
well as the STM to study phosphorylase 
kinase macro-molecules on HOPG. The resolu
tion was much worse for the AFM images, 
which presumably was due to inadequate 
sharpness of the AFM tip. The lack of 
suitably sharp AFM tips is still an important 
problem at this time. 

Wiegrabe et al. (1991) used an AFM operat
ing in the dynamic mode and in the attractive 
force regime to study the hydrated HPI layer 
in air. Forces as small as 10- 12 N could be 
achieved with this method, but the best reso
lution was achieved with higher forces of 
about 10-8 N. The resolution was not as good 
as had been obtained pre vio usly from STM of 
coated HPI layer, Wepf et al. (1991), or STM 
of uncoated HPI layer, Guckenberger et al. 
(1989a) . 

We developed an AFM, Mulhern et al. 
(1991a), based on our bi.morph-design STM, 
Blackford et al. (1987), with an optic-fibre
interference displacement sensor for the 
detection of the lever motion, Breen et al. 
(1990). AFM images of complete mH sheath on 

mica substrates were easily obtained, 
Mulhern et al. (1991b). Figure 1 shows an 
example of images of two partially overlap
ping sheath fragments. The lower one shows 
coriugation lines approximately 18 nm apart 
but is otherwise smooth, while the upper 
fragment has a much rougher appearance. 
Examination of many such fragments, as well 
as of complete sheath, suggested that the 
rougher surface is the outside of the sheath, 
while the smoother surface belongs to the 
inside part of the sheath. 

We have also recently studied gold 
labeled IgG monoclonal antibodies attached 
to mH sheath as shown in Fig. (2). In this 
study nominally 10 nm diameter gold parti
cles coated with protein-A molecules (c:e 5 nm 
diameter) were attached to the FC portion of 
the IgG antibodies on the sheath. (For 
further details see Mulhern et al, 1992). 
Figure 2 shows several antibody-gold com
plexes and possibly also a number of unla
beled antibodies. The individual complexes 
appeared broad and showed no structural 
details. The poor resolution is thought to 
be due to the large cone angle of the Si3N4 
tips used, even though they were among the 
best tips available commercially, at the 
time, and could achieve atomic resolution on 
flat mica or HOPG. This is a serious problem 
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for imaging 3-D objects, which is discussed 
further in the section on ''Tip-Sample Convo
lution Artifacts". 

Problems 

Unknown Conduction/Contrast Mechanism, 
STM 

Most biological materials are good insu
lators and should not be imagible by STM 
unless they are thin enough (52 nm) to allow 
tunneling through the deposit to the sub
strate. The fact that many STM images of 
thicker bare biological specimens have been 
reported has lead to a number of proposed 
explanations for the apparent conduction 
mechanism: (a) surface conduction; (b) 

resonant state tunneling effects, Lindsay et 
al. (1990); (c) through bond tunneling; (d) 
surface charge relaxation effects, Heckl and 
Smith {1991). In addition there are some 
contrast mechanisms which do not require 
conduction: (e) variations in workfunctions <I> 

produced by the deposit, assuming it is thin 
enough to tunnel through; and (f) various 
tip-sample elastic interaction effects. 

We believe that the evidence for conduc
tion in biological structures is not totally 
convincing, especially since most of the 
reported images were obtained using HOPG as 
the substrate. It is well known that images 
on bare HOPG can sometimes look deceptively 
like various biological structures. Recently 
this was demonstrated dram atically by th e 
DNA-like images reported by Clemmer and 
Beebe (1991) on bare HOPG, which casts doubt 
on the numerous DNA studies on HOPG. Wepf 
and Amrein (1992) and Heckl and Binnig {1992) 
have also reported various artifacts on 
HOPG. 

We would like to suggest an additional 
conduction mechanism which does not require 
conduction through the biological structure. 
It applies to HOPG substrates and is a form 
of metal coating in which the specimen 
becomes covered by a thin graphite film con
forming to the specimen shape. Tunneling 
occurs from the tip to the graphite film, 
which forms a conducting path to the sub
strate, Fig{3). The scanning tip itself is 
thought to be the means of getting the 
graphite film onto the specimen. There is 
ample opportunity for the tip to pick up a 
flake of graphite and drape it over the 
specimen, since it is usually necessary to 
make many scans before seeing any biological 
structures. 

On the other hand, evidence for conduc
tion through organic films was reported 
recently by Specht et al. (1991). They used a 
combined STM/AFM setup to simultaneously 
measure tunneling current and force as a 
function of position of the tunneling tip as 
it approaches and penetrates an organic film 
on a solid substrate. At tip voltages of 
about 1 V they could measure tunneling 
currents at thicknesses up to about 3 nm, 
while at 6 V currents could be detected up to 
several times 10 nm. The latter observation 
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Tip Graphite Film 

HOPG Substrate 

Fig .3. A proposed conduction/imaging mechan
ism in which a thin layer of graphite covers 
the biological structure, forming a conduct
ing path to the HOPG substrate. 

may be relevant to the results of Gucken
berger et al. (1989b) who imaged bare HPI 
layer at similarily high voltages. 

Moisture is always present on or in the 
specimens when operating an STM 'in air'. It 
may play an important role in the conduction 
mechanism for all cases involving uncoated 
specimens. For example, it was very diffi
cult to explain the STM imaging in air of 
thick (~ 100 nm) insulating alkanes by Michel 
et al. {1989). However, the same alkanes 
could not be imaged under vacuum conditions 
Durig, 1991 {IBM Research Division, Zurich: 
Pri".'ate ~ommunication). One possible expla
nation is a surface conduction mechanism 
associated with a water, or contamination 
layer, but further experiments are needed to 
resolve this question. 

Biological specimens are often deposited 
on the substrate with salt buffers in the 
solution, and in some cases successful STM 
images could only be obtained soon after 
deposition while moisture was still present. 
Amrein et al. (1989b) reported this for bare 
DNA-like structures and we also found it for 
pepsin molecules imaged with the STM hopping 
technique, Jericho et al. (1990). 

The lack of understanding of the conduc
tion mechanism has been a major drawback to 
the application of STM to uncoated biologi
cal specimens because it makes image in
terpretation very difficult. More experi
ments designed to investigate the conduction 
mechanism under a variety of conditions, 
such as those of Specht et al. (1991) and 
Lindsay et al. (1991), are needed. 
Tip-Sample Interaction Forces 

There are unavoidable forces between the 
tip and sample with both the STM and AFM. 
The force is intrinsic to position sensing 
with the AFM, and for an STM there is always 
a force-producing contamination layer when 
operating in air. If the forces are too large 
the specimen may be dislodged or damaged. 
Smaller forces may still deform the soft 
biological material and cause poor resolu
tion. 

The tunneling gap resistance of an STM 
provides a measure of the tip-sample force. 
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Fig.4. STM image of a carbon coated mH sheath 
which was damaged by previous imaging at a gap 
resistance of 100 MO. The carbon coating was 
c:e4 nm thick. 

Fig.Sa. An STM image of carbon-coated gold
labeled IgG antibodies attached to an mH 
sheath. The carbon film thickness was "" 4 nm. 

Fig.Sb. A magnified view of a single 
antibody-gold complex imaged with an etched 
tungsten Nanotip. The structural detail is 
tip dependent, which can be seen by compari
son with the image in (c) obtained with a dif
ferent tip. 
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Fig.Sc. A magnified view of a single 
antibody-gold complex imaged with an etched 
platinum-iridium Controlled Geometry tip. 

Fig.Sd. A triple image of a single antibody
gold complex taken with a ground tungsten 
tip having three active microtips. 

Salmeron et al. (1990) found that considerable 
damage was done to a nickel surface at 68 MO 
gap resistance and virtually no damage at 28 
GO. Higher gap values must be used for soft 
biological deposits. Wilson et al. (1991) 
found that a layer of tRNA on oxidized silicon 
was dislodged at 300 GO, whereas it could be 
imaged at 900 GO. The conductivity of the 
specimen also effects the force, since poor 
conductivity requires a smaller tip-sample 
spacing for a given gap resistance. 

For the AFM, the normal tip force is 
measured directly from the cantilever def
lection. Associated with the normal force is 
a horizontal force which depends on both the 
tip and specimen shape. Weisenhorn et al. 
(1990) found in an AFM study of actin fila
ments on mica that the actin was dislodged 
when the normal force exceeded about S nN. 
We found in our AFM studies of mH sheath on 
mica that small fragments and individual 
hoops must be imaged at much less force than 
could be used with the more massive complete 
sheath. The horizontal force can be used to 
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advantage for measuring binding strengths, 
as reported recently by Mulhern et al. (1992) 
for IgG antibodies attached to mH sheath 
membrane. 

The force of an STM tip can be measured 
directly by using a combined STM/AFM system. 
The deflection of a conducting cantilever, 
with a conducting tip, can be monitored 
during an STM scan. Salmeron et al. (1991) 
reported such a study on HOPG and found that 
the forces at typical gap resistances used in 
STM can have significant effects. At times 
the forces in STM imaging were found to be 
larger than in AFM imaging. These authors 
give an extensive general discussion of 
elastic/plastic deformation effects in 
STM/AFM. The study of Specht et al. (1991) 
also used a combined STM/AFM setup. 

The STM tip force can not be ignored even 
when imaging metal coated biological speci
mens. The best possible resolution is 
obtained with thin coatings, but such films 
are very delicate. As an example of this, 
Fig.4 shows the result of trying to image a 
carbon coated mH sheath at a gap resistance 
of 100 MO. The carbon layer and sheath were 
badly damaged and dislodged on the right 
hand side of the sheath. Previous to this 
image, the same sheath had been imaged 
several times at 10 GO gap resistance 
without any damage. Also, subsequent images 
at this higher value did not cause further 
damage. 

Tip-Sample Convolution Artifacts 
An ideal STM or AFM tip has only a single 

atom at its apex. However, such a tip is 
ideal only for imaging atomically flat 
surfaces. If the surface has 3-D structure, 
then the image becomes a convolution of the 
3-D shape of the sample and tip. It is easy 
to register the symmetry structure on a flat 
crystalline surface, such as HOPG, even with 
a relatively blunt tip. However, the 
apparent shape of the units (atoms in the 
case of HOPG) that make up the pattern in 
such images is usually not a reliable indica
tor of their true shape. This becomes a 
serious problem for imaging individual bio
logical structures whose aspect ratio is 
similar to, or greater than, that of the tip. 
Also, the tip may consist of several micro
tips which leads to multiple image effects. 
These problems have been known since the 
beginning of STM and have been discussed by a 
number of authors (Amrein et al. (1989a), 
Fisher et al. (1990a), for example) but need 
to be emphasized. 

Figure 5 shows some recent examples of 
tip related problems from STM images of 
coated, gold-labeled IgG antibodies on mH 
sheath. These are the same type of antibody 
as used in the AFM studies previously 
described in the section on "AFM of Uncoated 
Samples". These antibody complexes are a 
rigorous test for the sharpness of STM tips. 
Figure 5a shows an STM image of carbon
coated, gold-labeled IgG antibodies attached 
to an mH sheath. The measured diameters are 
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about 50 nm, which is much larger than the 
expected c,,30 nm, allowing for the combined 
thickness of the protein-A and carbon film 
coatings. This can be attributed to the 
blunt cone-like shape of the tip. Also, all 
antibody-complexes in a given image showed 
identical detailed structure. It was 
tempting to attribute this structural detail 
to the antibody-complex but it was found to 
be strongly influenced by the shape of the 
tip used. Commercially prepared etched 
tungsten Nanotips (Digital Instruments, 
Santa Barbara, CA} usually gave ellipsoi
dally shaped bumps with grooves along the 
long axis, as shown in Fig. 5b. On the other 
hand, commercially etched Ftir tips of the 
Controlled Geometry type (Materials Analyti
cal Services, Raleigh, NC) gave a more real
istic semi-spherical shape, as shown in Fig. 
5c. The effect of tip shape is further dem
onstrated in Fig .5d which shows a triple 
image of a single antibody-complex taken 
with a mechanically ground tungsten tip 
having three active microtips. The struc
tural detail is different in each image, 
which must be due to the tip. All antibody 
complexes imaged with this tip produced the 
same triple image as in Fig. 5d. 

The lack of tip sharpness is even more of 
a problem for an AFM, since the tips on the 
best available AFM cantilevers are not yet 
as sharp as STM tips. This is thought to be 
responsible for the rather poor resolution 
obtained so far with the AFM on individual 
biological structures. Figure 2 shows an AFM 
image of the same IgG gold labeled antibodies 
as in Fig.5 and it is clear that the resolu
tion is not as good. Also it is not possible 
to sharpen insulating Si3N4 AFM tips in-situ, 
which can be done with STM tips by applying 
high bias voltage to make carbon whiskers 
grow on the tip, Tiedje et al. (1988} or 
Amrein and Gross (1992), for example. In this 
regard it would be useful to have conducting 
AFM tips/cantilevers, and the Si ones 
recently developed by Nonnenmacher et al. 
(1991) and Wolter et al. (1992) may be 
suitable for this purpose. Keller and Chung 
(1992} recently reported that a sharp carbon 
whisker can be grown on a si 3N4 tip by 
placing it in the beam of a scanning electron 
microscope, which is similar to the proce
dure of Ichihashi and Matsui (1988). The res
ulting tip/whisker gave dramatically 
improved resolution and appears to be an 
important advance for AFM imaging of biolog
ical structures. 

The imaging of individual hoops of mH 
sheath is also a severe test of tip sharp
ness, as reported by Blackford et al. (1991) 
for STM of coated hoops. Recently we imaged 
bare hoop material with the AFM and found 
much poorer resolution than for the STM 
images of coated hoops. 

Prospects 

It may be possible to further improve on 
tip shape and sharpness to reduce tip-sample 
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convolution artifacts in the iJnages. 
However this approach is liJnited due to the 
floppiness of ultra-sharp tips, Hanrieder et 
al. (1992) for example, and it is likely that 
such tip problems will ultiJnately liJnit the 
usefulness of STM and AFM for topographical 
studies of three diJnensional biostructures. 

Further iJnprovements of conductive 
coatings to reduce coating artifacts in the 
image may also be possible. The 1.5 nm reso
lution achieved by Wepf et al. (1991) is 
already very iJnpressive. Most studies of 
bare material would benefit from compliJnen
tary studies on coated material since the 
latter are generally more reliable and 
easier to interpret. 

Low temperature measurements to iJnprove 
resolution by increasing the rigidity of the 
biological structures is another possibil
ity. Vacuum drying would probably be needed 
to prevent ice from forming on the surface 
and masking detail, and/ or damage to the 
speciJnen by freezing of absorbed water. 
Some preliJninary work of this nature has 
been attempted by Hansma et al. (1991) but it 
is not yet certain how useful the technique 
will be. 

The possibility of AFM and STM studies of 
biological structures in their natural 
liquid environments remains an attractive 
feature of these microscopies. Considerable 
work of this type has already been done on 
smaller organic species, Lindsay et al. 
(1988a,b) and Drake et al. (1989) for example. 
For large biological structures, it is 
expected that adhesion to the substrate may 
be a problem. Also, the structures are much 
softer in their hydrated state, which may 
aggrevate the resolution problem. However, 
Dahn et al. (1992) recently reported STM 
imaging of complete chloroplasts in solution 
and were able to obtain molecular scale 
resolution (~3 nm) on the outer membrane. In 
air the uncoated chloroplasts could not be 
iJnaged successfully. Recently Hiberle et al. 
(1991) have developed an AFM set-up for 
holding and investigating living cells in 
water which shows promising results and 
permits the possibility of studying nanos
cale biological processes in real tiJne. 

Studies of antibody-membrane interac
tions to determine the nature of the attach
ment points and the bond strengths, Mulhern 
et al. (1992), seems to be an area where the 
STM/AFM techniques will also have an advan
tage over electron microscopy. 

The use of spectroscopic variations (eg. 
I vs V or dI/dV vs V) as an iJnage contrast 
mechanism for detecting and identifying bio
logical structures should become a routine 
compliJnent to topographic scans. Some 
recent studies of this nature were reported 
by Har:-ber et al. (1991), Allison et al. (1990) 
and Lindsay et al. (1991), for example. 

Scanning probe microscopes have opened 
an entirely new field of study in biology. 
They should not be viewed as a replacement 
for conventional electron microscopes but 
rather as a compliJnentary tool with unique 
capabilities for doing interesting and wor-
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thwhile biological applications on the nan
ometer scale. 
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