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Abstract 

Radiation can create atomic-scale defect states in polymers, leading to changes in their optical, 

electrical and mechanical properties. Recent studies of polymers have shown that these defect states 

are sensitive to oxygen or water exposure. It is believed that oxygen cause the number of defect states 

to decrease and the polymers to revert to their original states. However, the time scale of this regression 

is not known. This experiment quantified the time that it takes five polymers to recover and the extent 

of said recovery; polypropylene (PP), low density polyethylene (LDPE), fluorinated ethylene 

propylene (FEP), polymide (PI), and poly ether ether ketone (PEEK). In order to study the regression 

optical transmission data were taken using a StellarNet UV/VIS Spectrometer. Optical data were 

collected at different intervals of time and then compared in order to quantify the time frame of the 

regression. Failure to account for this time-dependent recovery in radiation studies may result in 

inaccurate results and has called into question previous studies involving radiation effects in polymers 

where exposure times were not recorded. 
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Introduction 

The purpose of this experiment was to determine 

the effects of radiation on highly disordered polymers 

using optical transmission and investigate the recovery of 

these changes once exposed to atmosphere. Transmission 

curves were used to understand the nature, creation, and 

recovery of localized trap states in the polymers because 

these trap states are responsible for features in the 

transmission curves. Highly disordered polymers have a 

great deal of structural disorder compared to crystalline 

solids. Examples of highly disordered materials include: 

polyimide (PI), polypropylene (PP), low density 

polyethylene (LDPE), and fluorinated ethylene propylene 

(FEP). The high density of structural disorder leads to a 

high density of localized defects where electrons can be 

weakly bound. Trap states or defects, as depicted in Figure 

1, are states electrons can visit with energies in between 

the valance and conductance band. There are two types of trap states, shallow trap (ST) states and deep 

trap (DT) states. These are caused by different types of defects in the material and result in the material 

absorbing different photon energies.  

Optical measurements provide one key method to explore the nature and distribution of these 

defect states. When light is shown on a material, it will either be reflected, transmitted, or absorbed 

(see Figure 2) depending on its energy [2]. Transmission spectra, like those shown in Figure 3, provide 

information about which energy photons are absorbed. The energies of these photons directly 

Figure 1. Energy level diagram of trap 

states in disordered materials and their 

corresponding energies [3].   

Figure 2. Incident light can be 

transmitted, reflected, or absorbed. 

[2].   
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correspond to the energy distribution of trap states. However, the transmission spectrums are not the 

only way to study trap states. The information for optical transmission and reflectance studies can be 

combined with other measurements made by the Material Physics Group including: conductivity [5], 

electrostatic breakdown [6], radiation induced conductivity, electron emission and cathode-

luminescence. Together these may provide a synergistic model of the defect structure and transmission 

in highly disordered materials [3]. 

After transmission spectrum were taken, the features of the graphs were analyzed. Features and 

absorption edges in ~250 nm to 1000 nm (1.3 eV to 5.0 eV) UV to IR transmission spectra can be 

related to energies associated with various defects previously observed in highly disordered insulating 

materials [9]. The transmission spectrum, shown in Figure 3, shows two crystalline glasses, quartz and 

sapphire, and two polymers, polyimide (PI or Kapton) and polyester ether ketone (PEEK). Notice that 

quartz and sapphire both have very similar high transmission over the full spectra which reflects their 

high transparent nature. They do not have drastic dips like Kapton and PEEK. This is because the band 

gap energies, for quartz and sapphire, of ~8 eV and 9 eV are greater than the range of the spectrometer 

being used and therefore none of the photons tested can produce the quantized energy to excite an 

electron from the valance band to the conductance band to be absorbed.  

Studying the transmission can allow us to determine the type of trap states found in the 

material, the energy distribution of these 

trap states, and the density of these trap 

states. For example, the slope and the 

intercept seen in Figure 4 can be used to 

understand the trap states found in Kapton. 

The intercept determines the minimum 

binding energy of the defect states. For 
Figure 3. Transmission spectra for PEEK, 

Kapton, quartz, and sapphire [4]. 
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Kapton this is ~3.2 eV, hence Kapton’s orange color. For PEEK this is ~3.6 eV explaining its yellow 

color. The slope in the semilog plot is proportional to an exponential fall off of the energy density of 

defect states below the conductance band. Other highly disordered insulating polymers will have 

transmission spectrums similar to Kapton.  

Research Objective 

When a highly disordered polymer is exposed to in ionizing radiation additional defect states 

are created through processes including atomic displacement, band breaking or rotation, and 

crosslinking. Recent work has suggested that some of these defect states created by irradiation are 

sensitive to atmospheric exposure (more specifically oxygen, OH−, or other reactive ions) [7]. It is 

proposed that after being exposed to atmosphere these defect states will relax and eventually recover. 

The nature and extent of the recovery time in not well known. The primary goal of this proposed project 

is to determine this time frame and understand the impact this has on transmission spectra and defect 

states. To do this data will be taken sequentially after irradiated polymers are exposed to atmospheric 

conditions.  

It could take minutes, days, or weeks for the polymers to recover. Understanding the time and 

nature of the recovery is of critical importance. Depending on this time frame, previous experiments 

on properties related to the defect structures (e.g, conductance, transmission, etc.) involving irradiated 

polymers may be called into question as many experiments do not carefully document post-irradiation 

exposure to atmosphere. Often exposure to atmosphere was not noted or avoided. 

Knowing whether atmosphere affects these defect states will have a profound effect on projects 

involving highly disorder irradiated polymers. Polymers used on equipment, including spacecraft, have 

been irradiated and tested. These tests were done assuming the polymer was behaving how it would 

after receiving a specific amount of radiation. In space this radiation would be continuous, and the 
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sample would be isolated from oxygen. Therefore, the sample would not be subject to recovery due to 

atmospheric exposure. However, on Earth the sample is typically removed from the radiation 

environment and exposed to atmosphere. If this exposure causes a relaxation in the defect states, the 

polymer under test conditions is no longer behaving how it would in space and the test could be 

inaccurate, perhaps even totally invalid.  

Methods 

A. Transmission Set Up 

 Two high-resolution spectrometers (StellarNet RED-Wave and Black-Comet; 200 nm to 1700 

nm with 0.5 nm to 1.5 nm resolution) were connected to a UV/Vis/NIR light source using fiber optic 

cables to collect transmission data. The irradiated samples were then mounted to a card and placed in-

between the fiber optics cables. The fiber optics cables then shine a light on the sample and the 

transmitted light is collected. The ratio of this transmitted light to incident light forms the transmission 

spectrum, which can be analyzed to determine the defect states found in the polymer.  

B. Exposure to 5 kGy of Radiation 

Initially, Kapton, PP, and LDPE were placed in the Space Survivability Test (SST) Chamber 

and exposed to 5 kGy of beta radiation. This radiation dosage was chosen because it mimics the dosage 

that a spacecraft in a geosynchronous orbit would receive over one year. The SST Chamber is a 

Figure 5. Left: Diagram of the optical transmission set up. Right: Picture of the transmission 

stand that holds the samples. 
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radiation chamber that allows 

samples to be exposed to beta 

radiation from a strontium 90 

source. The SST chamber can 

simulate up to four times the 

electron and photon dose rate 

exposure in geosynchronous orbit 

or about 1-10 Gy/hr [1].  This 

allowed us to expose the polymers to dosages intended to mimic radiation dosages received by 

spacecraft in geosynchronous orbit on an accelerated basis (approx. 12-20 days). Such dosages have 

been shown to affect the optical and electric properties of these three polymers to varying degrees.  

The radiation dosage is directly related to the distance the samples are placed from the source. 

For this radiation run the samples were placed 7.62 cm away from the source resulting in a dose rate 

of 13 Gy/hr. After being removed from the SST chamber the samples were immediately placed in an 

anerobic environment and remained there until transmission data were taken.  

C. Exposure to 600 kGy of Radiation 

 After seeing the minimal changes in transmission results from exposing the samples to 5 kGy 

of radiation it was determined that a higher radiation dosage was needed. It was determined that PEEK 

would be exposed to 600 kGy of radiation. This was done over a period of three days using a high 

energy electron gun test chamber. The monochromatic electron beam used was at 80 keV with a dose 

rate of ~8 kGy/hr. 

 

 

Figure 6. Raw intensity data of Kapton. The transmission spectrum is 

recorded ten times and is then averaged. This helps to eliminate 

background noise and tests the reproducibility if the spectrum 

measurements. 
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D. Collection and Analysis of Transmission Spectrum 

After the samples were exposed to radiation, they were removed from the radiation source and 

mounted on cards. These cards where then slid into the transmission set up (see section A) and 

transmission spectrum were collected. The spectrometer measured the amount of transmitted light over 

the full wavelength range. Calculations were done at each wavelength using Eq. (1) to compute the 

transmission spectra of the sample.  

 
% 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = [

𝐼𝑆𝑅 − 𝐼𝐷

𝐼𝑁 − 𝐼𝐷
] ∙ 100   

(1) 

This relation compares the transmitted light from a radiated sample, 𝐼𝑆𝑅, to the transmitted light 

from the system with no sample in place, 𝐼𝑁 at each wavelength. The 𝐼𝐷 term corrects for background 

light and is also known as the dark spectrum.   

Typical raw intensity data from the spectrometer are shown in Figure 6. However, after it has 

been normalized to determine transmission using Eq. (1), the normalized transmission data look like 

that in Figure 4. Information related to the defect states can now be found from the transmission graph 

(see introduction). Finally, the corrected transmission spectra where compared to determine how the 

transmission curves change with radiation exposure and over what time scale the polymers returned to 

their original state. Computations where made using Eq. (2), where the transmitted light from a non-

irradiated sample, 𝐼𝑆, is compared to the transmitted light from a radiated sample, 𝐼𝑆𝑅, and the 𝐼𝐷 term 

corrects for background light. 

 
% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =

[
𝐼𝑆𝑅−𝐼𝐷
𝐼𝑁−𝐼𝐷

]

[
𝐼𝑆−𝐼𝐷′

𝐼𝑁′−𝐼𝐷′
]

∙ 100                            
 

(2) 

Because the time that the relaxations occurs is of interest in this experiment, transmission 

spectrum were taken at varying intervals. In addition to collecting the transmission spectrum of the 
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irradiated samples, transmission spectrum for an unirradiated PEEK sample and glass witness samples 

were collected as controls. 

Results 

A. 5 kGy of Radiation 

An initial exposure of 5 kGy did 

not result in a large enough change in 

transmission for the StellarNet RED-

Wave and Black-Comet to detect. Figure 

7 shows the transmission graphs of 

Kapton, LDPE, and PP after being 

exposed to 5 kGy of radiation. Notice 

that all three graphs have the same trend 

and that all three graphs consist of data 

that result in straight lines (except the 

noise at the high energy end of the 

Kapton graphs). The three samples used 

all have varying structures and react to 

radiation in different ways. Having the 

same trend on three graphs indicates that 

the samples did not receive a large enough radiation dosage to show a change in transmission. The 

trend that is observed is most likely the result of a change in an external factor and not a result of the 

radiation. This external factor may have been a shift in the detector, a shift in the sample, or another 

systematic error. 

Figure 7. Relaxation of the change in relative optical 

transmission of (a) Kapton, (b) LDPE, and (c) PP after 5 

kGy of irradiation.  

(a)  

(c)  

(b)  



 

Nelson: PHYS 4900 Project 12/6/2019 

B. 600 kGy of Radiation 

An initial visual comparison of the 

samples immediately after being 

irradiated with 600 kGy and after being 

exposed to atmosphere, shows that there 

appears to be a significant change in 

transmission. Figure 8 shows the samples 

immediately after being removed from the radiation source and 230 hrs later. It appears like the yellow 

coloring, that resulted from the irradiation, lessens as time increases.  

 To confirm these qualitative visual results, transmission spectrum of all three PEEK samples 

and of the unirradiated PEEK sample were collected and compared. These results can be seen in Figure 

9. The first three graphs all show the transmission results for the irradiated PEEK samples. However, 

these three samples all had slightly different radiation dosages. They were all placed in the radiation 

source for the same amount of time, but PEEK 1 was closest to the radiation source, with PEEK 2 in 

the middle, and PEEK 3 farthest from the radiation source. The closer the samples were to the source 

the more radiation is received as closer samples attenuated the incident radiation. The final graph is an 

unirradiated PEEK sample that can be used as a control for this experiment. 

Despite the difference in radiation dosage, there are a few similarities between all four graphs. 

First, there is a discontinuity at approximately 2.4 eV. This energy corresponds to the point where the 

two separate spectrometers detector ranges overlap. Ideally, this discontinuity would not exist. 

However, its appearance in all four graphs indicates that there is a calibration issue. This calibration 

issue has been corrected in subsequent studies so raw transmission data can be compared. 

Figure 8. Visual comparison of irradiated samples at 

different times. 
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Unfortunately, the data analyzed in this report cannot be adjusted. As a result, the data has been 

normalized using the unirradiated sample and the relative transmission is compared.   

The second similarity found in all four graphs is the noise present above approximately 4.25 

eV. This noise is a result of the low intensity in the raw signal (see Fig, 6) above ~4.25 eV in the UV 

range. To eliminate this noise future data will be taken using a longer interval. This will create a 

smother curve and minimize the noise seen in the current graphs making the data above 4.24 eV usable.  

Despite the calibration and noise error the data displayed in Figure 9, identifies some useful 

results. The data indicate that radiation does have a large effect on the transmission of PEEK. Changes 

in Figures 9 (a-c) show that the irradiated samples have >100% variations while the unirradiated 

samples seen in Figure 9 (d) shows <10% variations. This indicated that the large change in the 

transmission is a result of radiation and atmospheric exposure and not just atmospheric exposure. 

Figure 9. Relaxation in the relative optical transmission of the four PEEK samples 

after exposure to 600 kGy of irradiation and atmosphere. 
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Figures 9 (a-d) also show that different 

energies are affected in diverse ways with 

some energies decreasing in transmission 

and some energies increasing in 

transmission.  

The graphs also show that time 

after irradiation influences the 

transmission. Each color on the graph 

correspond to a distinct time after 

irradiation with the colors being 

organized in rainbow order. The PEEK 1, 

2 and 3 samples all show that as time 

continues the change in transmission 

begins to decrease and return to the 

transmission of the original unirradiated 

sample. This indicates a relaxation in the 

radiation effect. However, the current 

experiment did not determine if this 

relaxation was simply a result of elapsed 

time after irradiation, or if it 

corresponded to an exposure time to 

atmosphere after being irradiated. Future, 

experiments will try to determine which explanations of these is correct.  

Figure 10. Change in relative transmission at (a) 1.75 eV, (b) 

2.25 eV, and (c) 2.75 eV in all five samples and their respective 

best fit lines 

(a) 

(b) 

(c) 
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𝜎𝐵 = 𝐵√
1

𝑁 − 2
(

1

𝑅2
− 1) 

(3) 

In order to better understand the changes seen in Figure 9, the relative transmission of the 

samples at 1.75 eV, 2.25 eV and 2.75 eV were plotted over time (Fig. 10).  After the data were plotted 

a linear fit was determined for each set of data. A visual inspection of these graphs shows that the 

irradiated peek samples have a negative slope indicating that the change in the transmission from the 

irradiated sample diminishes with exposure time and the samples irradiation effects are relaxing. The 

unirradiated peek and the cover glass appear to be flat. To confirm these visual results the uncertainty 

of the slope for each best fit line was calculated using Eq. (3). In Eq. (3) 𝜎𝐵 is the uncertainty in the 

slope, B is the slope, N is the number of samples and 𝑅2 is the statistical r-squared value. The slopes 

and their associated uncertainties are listed in table 1.  

Table 1. Slopes and corresponding uncertainties for the best fit lines in Fig. (10) 

 Slope (% change in transmission per day) 

  

1.75 eV 

 

2.25 eV 

 

2.75 eV 

Peek 1 −9 ± 1.7 −4 ± 1.0 −1 ± 2.1 

Peek 2 −8 ± 3.8 −5 ± 2.2 −4 ± 3.3 

Peek 3 −4 ± 1.4 −2 ± 1.6 −4 ± 3.5 

Unirradiated 

Peek   

−3 ± 1.1 −2 ± 0.7 0 ± 2.5 

Cover Glass −2 ± 0.7 −1 ± 0.5 −1 ± 0.8 

 

This table shows the slope of Unirradiated Peak and the Cover Glass are consistently less than 

the slope for the Peek 1, 2, and 3 samples. The Unirradiated Peek and Cover Glass are expected to have 

a slope of zero. Unfortunately, these results were not seen and are likely the result of a systematic error. 

However, the consistently larger slopes of Peek 1, 2, and 3 indicate that a relaxation of the radiation 

effects is occurring. The rate of relaxation is quantified by the slope of the best fit line. Another trend 
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that can be observed form table 

1 is that the rate of relaxation is 

greater for the smaller eV 

values and decreases as you 

approach 2.75 eV. 

To quantify the 

magnitude of the uncertainty 

associated with each 

transmission spectra, transmission spectra of a 𝑆𝑖𝑂2 cover glass slide were recorded at each time 

interval (Fig. 11). The hydrophobic 𝑆𝑖𝑂2 glass is expected to be largely impervious to atmosphere and 

therefore not exhibit significant changes due to atmospheric exposure. Rather any observed changes 

would most likely be due to instrument drift or other systematic errors.  Relatively small changes of 

<15% observed in the witness sample which are uncorrelated with exposure time confirms that 

instrumental drift is most likely not the cause of the much larger changes for irradiated PEEK of >100% 

seen in Fig. 9. 

Conclusion and Future Work 

The initial irradiation run showed that 5 kGy did not change the optical structure of Kapton, 

PP, and LDPE enough for the transmission spectrum to change appreciably. However, the second run 

with 600 kGy of irradiation demonstrated that radiation has a significant effect on the optical 

transmission spectra of PEEK. In the 1.25 eV to 2.75 eV energy range the relative transmission 

increased; the greatest increase, of 150%, occurs in the lower eV ranges and the smallest increase, 0%, 

occurs at approximately 2.75 eV. Additionally, a decrease in relative transmission can be seen in the 

2.75 eV to 3.25 eV. The maximum decrease in transmission, -100%, occurs at 3.25 eV. 

Figure 11. Relative in the relative optical transmission of 

𝑆𝑖𝑂2 after exposure to atmosphere 
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This change in transmission is hypothesized to be correlated with a change in the distribution 

of defect states. Over time the transmission spectra decrease, suggesting the radiation effects begin to 

recover with exposure to atmosphere. This may indicate that over time the number of radiation-induced 

defect states in the PEEK sample begin to decrease through chemical reactions with oxygen or 𝑂𝐻− 

radicals which repair radiation-induced damage.  

Further analysis showed that the unirradiated PEEK samples did not change significantly with 

time. This indicates that radiation plays an important part in the changes that occur. It is hypothesized 

that both irradiation and exposure to atmosphere are required for the polymer to relax and begin to 

return to its original state.  

After the large effect of radiation was confirmed an attempt was made to quantify the rate of 

the relaxation. The rate of relaxation at specific energies can be seen in table 1. It was also noted that 

the rate of relaxation is not consistent across all energies. The lower energies experience a faster 

relaxation and this rate decreases as the energies approach 2.75 eV.  

 Preliminary results found during this study are encouraging, but future work is necessary to 

determine further information about the nature and cause of the radiation induced defects. Additionally, 

the procedures of this experiment will be improved in an attempt to eliminate systematic errors. 

Additional samples will be tested to determine if all highly disordered polymers have a similar 

reduction in the radiation effects. The irradiation dosage will be varied to determine if this has an effect 

on the relaxation. All these things will then be combined to determine the rate of relaxation.  
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